Susana Martinez OF NEW M Governor Ken McQueen Heather Riley. Division Director Cabinet Secretary **Oil Conservation Division Matthias Sayer** Deputy Cabinet Secretary New Mexico Oil Conservation Division approval and conditions listed below are made in accordance with OCD Rule 19.15.7.11 and are in addition to the actions approved by BLM on the following 3160-3 APD form. Operator Signature Date: 7/17/2018 Well information; _, Well Name and Number_ Simber ussh / had 7674/ Operator Enduring API# <u>30-045-35879</u>, Section 17, Township <u>33</u> N/S, Range <u>9</u> E/W Conditions of Approval: (See the below checked and handwritten conditions)

- ✓ Notify Aztec OCD 24hrs prior to casing & cement.
- ☑ Hold C-104 for directional survey & "As Drilled" Plat
- Hold C-104 for NSL, NSP, DHC
- Spacing rule violation. Operator must follow up with change of status notification on other well to be shut in or abandoned
- Regarding the use of a pit, closed loop system or below grade tank, the operator must comply with the following as applicable:
 - A pit requires a complete C-144 be submitted and approved prior to the construction or use of the pit, pursuant to 19.15.17.8.A
 - A closed loop system requires notification prior to use, pursuant to 19.15.17.9.A
 - A below grade tank requires a registration be filed prior to the construction or use of the below grade tank, pursuant to 19.15.17.8.C
- Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string

o Submit Gas Capture Plan form prior to spudding or initiating recompletion operations

Regarding Hydraulic Fracturing, review EPA Underground Injection Control Guidance 84

Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.

Well-bore communication is regulated under 19.15.29 NMAC. This requires well-bore Communication to be reported in accordance with 19.15.29.8.

NMOCD Approved by Signature

-31-2018

Date

Form 3160-3 (March 2012)				FORM OMB N Expires (APPROVED Jo. 1004-0137 Detober 31, 2014		
UNITED STATE DEPARTMENT OF THE BUREAU OF LAND MAI	S INTERIOR Nagement			5. Lease Serial No. NMNM136298			
APPLICATION FOR PERMIT TO	DRILL OF	REENTER		6. If Indian, Allotee or Tribe Name			
la. Type of work: 🗹 DRILL 🗌 REENT	TER			7 If Unit or CA Agree KIMBETO WASH U	eement, Name and No. JNIT / NMNM135255A		
Ib. Type of Well: 🖌 Oil Well 🗌 Gas Well 🗌 Other	Si	ngle Zone 🖌 Multi	iple Zone	8. Lease Name and V KIMBETO WASH U	Well No. JNIT 767H		
2. Name of Operator ENDURING RESOURCES LLC				9. APT Well No.	5-35829		
3a. Address 1050 17TH ST STE 2500 DENVER CO 80265	3b. Phone No (505)386-8	. (include area code) 3205	APP - N	10. Field and Pool, or I BASIN MANCOS /	Exploratory BASIN MANCOS		
 Location of Well (Report location clearly and in accordance with a At surface SESE / 471 FSL / 1063 FEL / LAT 36.22074 	nty State requiren	vents.*))7.806892	Carlos and Carlos	11. Sec., T. R. M. or B	Ik. and Survey or Area		
At proposed prod. zone NWNW / 330 FNL / 1200 FWL / L	AT 36.23325	5 / LONG -107.817	7055				
 Distance in miles and direction from nearest town or post office* 35.9 miles 		\mathbb{N}		12. County or Parish SAN JUAN	13. State NM		
15. Distance from proposed* location to nearest 20 feet property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No. of a 160	cres in lease	17. Spacin 640	g Unit dedicated to this v	well		
 Distance from proposed location* to nearest well, drilling, completed, 471 feet applied for, on this lease, ft. 	19. Propose 4533 feet	d Depth / 10357 feet	20. BLM/I FED: U	BIA Bond No. on file	0.0		
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 6561 feet	22. Approxi 09/01/201	mate date work will sta 8	art*	23. Estimated duration30 days	n NNOUD		
	24. Atta	chments			AUG 30 P		
 the following, completed in accordance with the requirements of Onsh Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office). 	ore Oil and Gas 1 Lands, the	 Order No. I, must be : Bond to cover Item 20 above) Operator certifi Such other site BLM. 	attached to th the operatio cation e specific infe	is form: ns unless covered by an ormation and/or plans as	existing hand on file (see		
25. Signature (Electronic Submission)	Name Lace	(Printed Typed) y Granillo / Ph: (50	5)636-974	3	Date 07/17/2018		
Title Permitting Specialist							
Approved by (Signature)	Name Re	(Printed Typed)	f the	-145	Date 5/29/17		
Title <u>Fre Id</u> <u>Manager</u> Application approval does not warrant or certify that the applicant ho	ARI Ids legal or equi	MINGTON table title to those rig	hts in the sub	ject lease which would e	entitle the applicant to		
Conduct operations thereon. Conditions of approval, if any, are attached.							
itle 18. U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a tates any false, fictitious or fraudulent statements or representations a	crime for any p s to any matter v	erson knowingly and within its jurisdiction.	willfully to n	nake to any department of	or agency of the United		
(Continued on page 2)				*(Inst	ructions on page 2)		
BLM'S APPR THIS ACTIO LESSEE ANI OBTAINING	OVAL OF N DOES N O OPERAT ANY OTI	ACCEPTAN OT RELIEVE FOR FROM IER AUTHOF	CE OF E THE RIZATIO)N	× 2		
REQUIRED	FOR OPE	RATIONS ON		AUTHORIZ	NG OPERATIONS		

This action is subject to techn and procedural review pursu 43 CFR 3165.3 and appeal pursuant to 43 CFR 3165.4 Acres

P

NMOCDA

COMPLIANCE WITH ATTACHED "GENERAL REQUIREMENTS"

District I 1625 N. French Drive. Hopps. NM 88240 Phone. (575) 393-6161 Fax (575) 393-0720

District II 811 S. First Street, Antesia, NM 88210 Phone (575) 748-1283 Fax (575) 748-9720

District III 1000 Hio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

District IV 1220 S. St. Francis Drive, Santa Fe, NM 87505 Phone (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department

Form C-102 Revised August 1, 2011

Submit one copy to Appropriate District Office

AMENDED REPORT

OIL CONSERVATION DIVISION 1220 South St. Francis Drive Santa Fe, NM 87505

WELL LOCATION AND ACREAGE DEDICATION PLAT

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

ENDURING RESOURCES IV, LLC 1050 SEVENTEENTH STREET, SUITE 2500 DENVER, COLORADO 80265

DRILLING PLAN: Drill, complete, and equip single lateral in the Gallup formation

WELL INFORMATION:

Name:	Kimbeto Wash Unit 767H			
API Number:	30-045-			
State:	New Mexico			
County:	San Juan			
Surface Elevation:	6,561 ft ASL (GL)	6,583 ft ASL (KB)		
Surface Location:	17-23N-09W Sec-Twn-Rng	471 ft FSL	1,063 ft FEL	
	36.220745 ° N latitude	107.806892 ° W longitude	(NAD 83)	
BH Location:	17-23N-09W Sec-Twn-Rng	330 ft FNL	1,200 ft FWL	
	36.233255 ° N latitude	107.817055 ° W longitude	(NAD 83)	
Driving Directions:	From the intersection of US H	WY 550 and US HWY 64 in Bloo	mfield, NM: South on US H	IWY 550 for 35.9 miles to MM
	115.7, right (southwest) at Na	geezi Post Office on CR 7800 fo	r 0.4 miles to 4-way interse	ection; straight (southwest)
	exiting CR7800 and continuing	g on 7820 for 0.6 miles to fork i	n road, right (southwest) o	n 7820 for 1.1 miles to 4-way

intersection, straight (southwest) for 2.7 miles to existing access road for Kimbeto Wash 771H well. The 767H well is

GEOLOGIC AND RESERVOIR INFORMATION:

on the same pad.

Prognosis:	Formation Tops	TVD (ft ASL)	TVD (ft KB)	MD (ft KB)	O/G/W	Pressure
	Ojo Alamo	6,438	145	145	W	normal
	Kirtland	6,341	242	242	W	normal
	Fruitland	6,081	502	502	G, W	sub
	Pictured Cliffs	5,731	852	853	G, W	sub
	Lewis	5,526	1,057	1,061	G, W	normal
	Chacra	5,341	1,242	1,251	G, W	normal
	Cliff House	4,336	2,247	2,315	G, W	sub
	Menefee	4,321	2,262	2,331	G, W	normal
	Point Lookout	3,331	3,252	3,382	G, W	normal
	Mancos	3,051	3,532	3,679	O,G	normal
	Gallup (MNCS. A)	2,826	3,757	3,918	0,G	normal
	Gallup (Target Depth)	2,085	4,498	5,087	O,G	normal
	PROJECTED WELL TD	2,050	4,533	10,357	O,G	normal

Surface: Nacimiento

Oil & Gas Zones: Several gas bearing zones will be encountered; target formation is the Gallup

Pressure:	Normal pressure gradient (0.43 psi/ft) anticipated in all formations									
	Max. pressure gradient:	0.43	psi/ft	Evacuated hole gradient:	0.22	psi/ft				
	Maximum anticipated BH pr	1,940	psi							
	Maximum anticipated surface	e pressure,	assuming pa	rtially evacuated hole:	960	psi				

Temperature: Maximum anticipated BHT is 165° F or less

H₂S INFORMATION:

H₂S Zones: Encountering hydrogen-sulfide bearing zones is NOT anticipated.

Safety: Sensors and alarms will be placed in the substructure, on the rig floor, above the pits, and at the shakers.

LOGGING, CORING, AND TESTING:

Mud Logs: None planned; remote geo-steering from drill out of 9-5/8" casing to TD; gas chromatograph from drillout of 13-3/8" casing to TD.

MWD / LWD: Gamma Ray from drillout of 13-3/8" casing to TD

Open Hole Logs: None planned

Testing: None planned

Coring: None planned

Cased Hole Logs: CBL on 5-1/2" casing from deepest free-fall depth to surface

DRILLING RIG INFORMATION:

Contractor: Aztec

Rig No.: 1000

Draw Works: E80 AC 1,500 hp

Mast: Hyduke Triple (136 ft, 600,000 lbs, 10 lines)

Top Drive: NOV IDS-350PE (350 ton)

Prime Movers: 4 - GE Jenbacher Natural Gas Generator

Pumps: 2 - RS F-1600 (7,500 psi)

BOPE 1: Cameron double gate ram (11", 5,000 psi)

- BOPE 2: Cameron annular (11", 5,000 psi)
- *Choke* Cameron (4", 10,000 psi)

KB-GL (ft): 22

BOPE REQUIREMENTS:

See attached diagram for details regarding BOPE specifications and configuration.

- 1) Rig will be equipped with upper and lower kelly cocks with handles available.
- 2) Inside BOP and TIW valves will be available to use on all sizes and threads of drill pipe used while drilling the well.
- 2) BOP accumulator will have enough capacity to open the HCR valve, close all rams and annular preventer, and retain minimum of 200 psi above precharge on the closing manifold without the use of closing pumps. The fluid reservoir capacity shall be at least double the usable fluid volume of the accumulator system capacity, and the fluid level shall be maintained at manufacturer's recommendation. There will be two additional sources of power for the closing pumps (electric and air). Sufficient nitrogen bottles will be available and will be recharged when pressure falls below manufacturer's recommended minimum.
- 3) BOP testing shall be conducted (a) when initially installed, (b) whenever any seal is broken or repaired, (c) if the time since the previous test exceeds 30 days. Tests will be conducted using a test plug. BOP ram preventers will be tested to 5,000 psi for 10 minutes, and the annular preventer will be tested to 2,500 psi for 10 minutes. Ram and annular preventers will be tested to 250 psi for 5 minutes. Additionally, BOP and casing strings will be tested to .22 psi/ft or 1,500 psi, whichever is greater but not exceeding 70% of yield strength of the casing, for 30 minutes, prior to drilling out 13-3/8" and 9-5/8" casing. Rams and hydraulically operated remote choke line valve will be function tested daily at a minimum.
- 4) Remote valve for BOP rams, HCR, and choke shall be placed in a location that is readily available to the driller. The remote BOP valve shall be capable of closing and opening the rams.
- 5) Manual locking devices (hand wheels) shall be intalled on rams. A valve will be installed on the annular preventer's closing line as close as possible to the preventer to act as a locking device. The valve will be maintained in the open position and shall only be closed when the there is no power to the accumulator.

FLUIDS AND SOLIDS CONTROL PROGRAM:

Fluid Measurement: Pumps shall be equipped with stroke counters with displays in the dog-house. Slow pump speed shall be recorded daily and after mudding up, at a minimum, on the drilling report. A Pit Volume Totalizer will be installed and the readout will be displayed in the dog-house. Gas-detecting equipment will be installed at the shakers, and readouts will be available in the dog-house and the in the geologist's work-station (if geologist or mud-logger is on-site). Closed-Loop System: A fully, closed-loop system will be utilized. The system will consist of above-ground piping and above-ground storage

tanks and bins. The system will not entail any earthen pits, below-grade storage, or drying pads. All equipment will be disassembled and removed from the site when drilling operations cease. The system will be capable of storing all fluids and generated cuttings and of preventing uncontrolled releases of the same. The system will be operated in an efficient manner to allow the recycling and reuse of as much fluid as possible and to minimimize the amount of fluids and solids that require disposal.

Fluid Disposal: Fluids that cannot be reused, recycled, or returned to the supplier will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).

Solids Disposal : Drilling solids will be stored (until haul-off) on-site in separate containers with no other waste, debris, or garbage products. Waste solids will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).

Fluid Program: See "Detailed Drilling Plan" section for specifics.

DETAILED DRILLING PLAN:

SURFACE: Drill vertically to casing setting depth (plus necessary rathole), run casing, cement casing to surface.

	0	ft (MD)	to	240 ft	0 ft ft (MD) Hole Section Length:			
	0	ft (TVD)	to	240 ft	ft (TVD)	1012 3	sing Required:	220 f
	Note: Surface	hole may be d	rilled cased ar	nd cemented u	with a smaller ri	a in advance o	of the drilling ri	a.
	Note: Surjuce	noie may be a	mea, casca, a	in centencer	vien a sinanci in	g in advance o	, the uning fi	9.
			FL		YP			
Fluid:	Туре	MW (ppg)	(mL/30 min)	PV (cp)	(lb/100 sqft)	pH	Comr	nents
	Fresh Water	8.4	N/C	2 - 8	2 - 12	9.0	Spud	mud
Hole Size:	17-1/2"							
Bit / Motor:	Mill Tooth or F	DC, no motor						
MWD / Survey:	No MWD, run	gyro survey aft	er drilling					
Logging:	None							
Casina Specs:	9	Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	Tens. Body (Ibs)	Tens. Conn (Ibs)
Specs	13.375	54.5	J-55	BTC	1,130	2,730	853,000	514,000
Loading			and the faith		105	499	111,406	111,406
Min. S.F.					10.78	5.47	7.66	4.61
	Assumptions:	Collapse: fully	evacuated casi	ng with 8.4 pp	g equivalent ex	ternal pressure	e gradient	
		Burst: maximu	m anticipated	surface pressu	re with 9.5 ppg	fluid inside cas	ing while drillir	ig
		intermediate h	ole and 8.4 pp	g equivalent e	xternal pressure	gradient		
		Tension: buoye	ed weight in 8.4	1 ppg fluid with	h 100,000 lbs ov	er-pull		
1U Torque (ft lbs):	Minumum:	N/A	Optimum:	N/A	Maximum:	N/A		
	*	Make-up as pe	er API Buttress	Connection rul	nning procedure			
Casing Details:	Float shoe, 1 j	t casing, float c	ollar, casing to	surface				
Centralizers:	2 centralizers	per jt stop-ban	ded 10' from ea	ach collar on b	ottom 3 jts, 1 ce	entralizer per 2	jts to surface	
			Yield	Water	Hole Cap.		Planned TOC	Total Cmt
Cement:	Type	Weight (ppg)	(cuft/sk)	(gal/sk)	(cuft/ft)	% Excess	(ft MD)	(sx)

Calculated cement volumes assume gauge hole and the excess noted in table

1.174

Class G

15.8

5.15

0.6946

100%

0

284

Halliburton HALCEM surface cementing blend

Notify NMOCD & BLM if cement is not circulated to surface. Cement must achieve 500 psi compressive strength before drilling out.

INTERMEDIATE:	Drill as per di	rectional plan t	to casing setting	g depth, run c	asing, cement c	asing to surfa	ce, install wellh	ead.	
	220	ft (MD)	to	2,384	ft (MD)	Hole S	Section Length:	2,164 ft	
	220	ft (TVD)	to	2,312	t (TVD)	Ca	ising Required:	2,384 ft	
Fluid:	Туре	MW (ppg)	FL (mL/30 min)	PV (cp)	YP (lb/100 sqft)	pН	Comr	nents	
	WBM	8.8 - 9.5	20	8 - 14	8 - 14	9.0 - 9.5	OBM as contingency		
Hole Size: Bit / Motor: MWD / Survey: Logging: Pressure Test: Note:	12-1/4" PDC w/mud m MWD with GF None NU BOPE and The intermedi Maximum ant	notor 8, inclination, an test (as noted a iate hole sectio icipated surfac	nd azimuth surv above); pressur n may be drilleo e pressure while	vey (every 100 e test 13-3/8" d with annular e drilling inter	' at a minimum) casing to preventer and mediate hole se	1,500 blind rams onl	psi for 30 minu y (no pipe rams 490	ites.). psi	
Casing Specs:		Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	Tens. Body (lbs)	Tens. Conn (lbs)	
Specs	9.625	36.0	J-55	LTC	2,020	3,520	564,000	453,000	
Loading	FRIDAY AND		a service and the		1,010	1,092	174,843	174,843	
Min. S.F.					2.00	3.22	3.23	2.59	
MU Torque (ft lbs): Casing Details: Centralizers:	Minumum: Float shoe, 1 j 2 centralizersp	3,400 t casing, float c per jt stop-band	Optimum: ollar, landing co ded 10' from ea Yield (cuft/sk)	4,530 ollar, casing to ch collar on bo Water (gal/sk)	Maximum: surface bttom 3 jts, 1 ce Hole Cap. (cuft/ft)	5,660 ntralizer per 2	jts to surface Planned TOC (ft MD)	Total Cmt	
Lead	G:POZ Blend	12.3	1.987	10.16	0.3132	40%	0	416	
Tail	Class G	15.8	1.148	4.98	0.3132	10%	1.884	150	
PRODUCTION:	Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD foll	ment volumes a CONOCEM & HA D & BLM if cem g out. Jowing direction	assume gauge h ALCEM cementii nent is not circu nal plan, run ca	ole and the ex ng blend ilated to surfa asing, cement	access noted in ta lice. Cement mu casing to surfac	ble st achieve 500 re.) psi compressiv	ve strength	
	2,384	ft (MD)	to	10,357	ft (MD)	Hole S	ection Length:	7,973 ft	
	2,312	ft (TVD)	to	4,533	ft (TVD)	Ca	sing Required:	10,357 ft	
Fluid:	Туре	MW (ppg)	FL (mL/30')	PV (cp)	YP (Ib/100 sqft)	pH	Comm	nents	
Hole Size	8-1/2"	0.0 - 9.5	20	0 - 14	0-14	9.0 - 9.5		nungency	
Rit / Motor:	BDC w/mud m	otor							
MWD / Survey:	MWD with GR	, inclination, ar	nd azimuth (sur	vey every join	t from KOP to La	anding Point a	nd survey every	100'	
Logging:	GR MWD for e	entire section, r	no mud-log or c	uttings sampli	ng, no OH WL lo	ogs			

	NU BUFE anu	test (as noted a	bove); pressure	e test 9-5/8"	casing to	1,500	psi for 30 minu	utes.
						,	Tens. Body	Tens. Con
Casing Specs:	Size (in)	Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	(lbs)	(lbs)
Specs	5.500	17.0	P-110	LTC	7,460	10,640	546,000	445,000
Loading				1	2,239	8,924	251,932	251,932
Min. S.F.					3.33	1.19	2.17	1.77
	Assumptions:	Collapse: fully e	evacuated casir	ng with 9.5 p	pg fluid in the an	nulus (floating	g casing during i	running)
		Burst: 8,500 ps	i maximum sur,	face treating	pressure with 10).2 ppg equiva	lent mud weigh	t sand lader
		fluid with 8.4 p	pg equivalent e	external pres	sure gradient			
		Tension: buoye	d weight in 9.0	ppg fluid wi	th 100,000 lbs ov	er-pull		
1U Torque (ft lbs):	Minumum:	3,470	Optimum:	4,620	Maximum:	5,780		
Casina Details:								
	Float shoe 2 if	ts casing float o	collar landing c	ollar toe-int	itiation sleeve wi	th handling n	ins 1 it casing	toe-initiatio
	cloovewith har	ndling nuns cas	ing to KOP with	20' marker	ioints snaced eve	nly in lateral	every 2 000' Pla	ce Floatatio
	Sub at KOP (+)	() Continue ru	ning to kor with	surface The	too-initiation de	eves must be	nositioned INS	IDE the 330
	Sub at KOP (+/	-j. continue fui	ining casing to	surface. me	toe-initiation sit	eves must be	positioned into	IDE the 550
Controllingues	unit setback.	un of 1 control	lizer per 2 ioint	-				
Centralizers:	Lateral: winim	num of 1 central	inzer per 2 joint					
	curve: 1 centri	alizer every join	it from landing	point to KUP				
	March 1	1 I'm	ininte from KOI	0 to 0 E /0 !! .!	1	the frame O F /	" chooto curfo.	
	Vertical: 1 cen	tralizer every 2	joints from KO	P to 9-5/8" sl	noe, 1 every 3 joi	nts from 9-5/8	B" shoe to surface	ce
	Vertical: 1 cen	tralizer every 2	joints from KO	P to 9-5/8" sl Water	Hole Cap.	nts from 9-5/8	B" shoe to surface	Total Cmt
Cement:	Vertical: 1 cen	tralizer every 2 Weight (ppg)	joints from KO Yield (cuft/sk)	P to 9-5/8" sl Water (gal/sk)	Hole Cap. (cuft/ft)	nts from 9-5/8 % Excess	B" shoe to surface Planned TOC (ft MD)	Total Cmt (sx)
Cement: Lead	Vertical: 1 cen Type G:POZ blend	tralizer every 2 Weight (ppg) 12.3	joints from KO Yield (cuft/sk) 1.987	P to 9-5/8" sl Water (gal/sk) 10.16	noe, 1 every 3 joi Hole Cap. (cuft/ft) 0.2691	nts from 9-5/8 % Excess 40%	B" shoe to surface Planned TOC (ft MD) 0	Total Cmt (sx) 689
Cement: Lead Tail	Vertical: 1 cen Type G:POZ blend G:POZ blend	tralizer every 2 Weight (ppg) 12.3 13.3	joints from KOI Yield (cuft/sk) 1.987 1.354	P to 9-5/8" sl Water (gal/sk) 10.16 5.94	Hole Cap. (cuft/ft) 0.2691 0.2291	nts from 9-5/8 % Excess 40% 10%	B" shoe to surfact Planned TOC (ft MD) 0 3,850	Total Cmt (sx) 689 1,211
Cement: Lead Tail	Vertical: 1 cen Type G:POZ blend G:POZ blend <i>Calculated cen</i>	Weight (ppg) 12.3 13.3 ment volumes a	joints from KOI Yield (cuft/sk) 1.987 1.354 ssume gauge h	P to 9-5/8" sl Water (gal/sk) 10.16 5.94 ole and the e	Hole Cap. (cuft/ft) 0.2691 0.2291 xccss noted in to	nts from 9-5/8 % Excess 40% 10% ble	3" shoe to surfac Planned TOC (ft MD) 0 3,850	Total Cmt (sx) 689 1,211
Cement: Lead Tail	Vertical: 1 cen Type G:POZ blend G:POZ blend <i>Calculated cen</i> <i>Halliburton EC</i>	Weight (ppg) 12.3 13.3 ment volumes a. CONOCEM & EXT	joints from KOI Yield (cuft/sk) 1.987 1.354 ssume gauge hi TENDACEM cen	P to 9-5/8" sl Water (gal/sk) 10.16 5.94 ole and the e	Hole Cap. (cuft/ft) 0.2691 0.2291 excess noted in to	nts from 9-5/8 % Excess 40% 10% ble	B" shoe to surface Planned TOC (ft MD) 0 3,850	Total Cmt (sx) 689 1,211
Cement: Lead Tail	Vertical: 1 cen Type G:POZ blend G:POZ blend Calculated cen Halliburton EC Notify NMOCI	Weight (ppg) 12.3 13.3 ment volumes a: CONOCEM & EXT D & BLM if cem	joints from KOI Yield (cuft/sk) 1.987 1.354 ssume gauge ha TENDACEM cen ent is not circu	P to 9-5/8" sl Water (gal/sk) 10.16 5.94 ole and the ementing blend lated to surf	Hole Cap. (cuft/ft) 0.2691 0.2291 excess noted in tag dace.	nts from 9-5/4 % Excess 40% 10% ble	B" shoe to surface Planned TOC (ft MD) 0 3,850	Total Cmt (sx) 689 1,211
Cement: Lead Tail Note:	Vertical: 1 cen Type G:POZ blend G:POZ blend Calculated cen Halliburton EC Notify NMOCI The lateral ma	tralizer every 2 Weight (ppg) 12.3 13.3 ment volumes a: CONOCEM & EXT D & BLM if cem by be drilled pas	joints from KOI Yield (cuft/sk) 1.987 1.354 ssume gauge hi TENDACEM cen ent is not circu t applicaple set	P to 9-5/8" sl Water (gal/sk) 10.16 5.94 ole and the e henting blend lated to surf back to max	Hole Cap. (cuft/ft) 0.2691 0.2291 excess noted in tag ace.	nts from 9-5/4 % Excess 40% 10% ble	B" shoe to surface Planned TOC (ft MD) 0 3,850 ted interval and	to maximize
Cement: Lead Tail Note:	Vertical: 1 cen Type G:POZ blend G:POZ blend Calculated cen Halliburton EC Notify NMOCI The lateral ma resource recov	tralizer every 2 Weight (ppg) 12.3 13.3 ment volumes a CONOCEM & EXT D & BLM if cem by be drilled pas very. If the well	joints from KOI Yield (cuft/sk) 1.987 1.354 ssume gauge ho TENDACEM cen ent is not circu t applicaple set is drilled past t	P to 9-5/8" sl Water (gal/sk) 10.16 5.94 ole and the ementing blend lated to surf back to max he setback, t	Hole Cap. (cuft/ft) 0.2691 0.2291	nts from 9-5/8 % Excess 40% 10% ble of the comple sleeve and all	B" shoe to surface Planned TOC (ft MD) 0 3,850 ted interval and perforations wi	to maximize
Cement: Lead Tail Note:	Vertical: 1 cen Type G:POZ blend G:POZ blend <i>Calculated cen</i> <i>Halliburton EC</i> Notify NMOCI The lateral ma resource recov inside the sett	Weight (ppg) 12.3 13.3 nent volumes a CONOCEM & EXT D & BLM if cem by be drilled pass very. If the well back. An unorth	joints from KOI Yield (cuft/sk) 1.987 1.354 ssume gauge hi TENDACEM cen ent is not circu t applicaple set is drilled past t odox location a	P to 9-5/8" sl Water (gal/sk) 10.16 5.94 ole and the enenting blend lated to surf back to max he setback, to pplication is	hoe, 1 every 3 joi Hole Cap. (cuft/ft) 0.2691 0.2291 excess noted in to d ace. imize the length he toe Initiation not required bed	nts from 9-5/4 % Excess 40% 10% ble of the comple sleeve and all cause the com	B" shoe to surface Planned TOC (ft MD) 0 3,850 ted interval and perforations wi pleted interval of the surface ted interval and ted	to maximize will be entire
Cement: Lead Tail Note:	Vertical: 1 cen Type G:POZ blend G:POZ blend <i>Calculated cen</i> <i>Halliburton EC</i> Notify NMOCI The lateral maresource recover inside the settle within the settle	Weight (ppg) 12.3 13.3 ment volumes a: CONOCEM & EXT D & BLM if cem by be drilled pas very. If the well back. An unorth back as defined	joints from KOI Yield (cuft/sk) 1.987 1.354 ssume gauge he TENDACEM cen ent is not circu t applicaple set is drilled past t odox location a and allowed by	P to 9-5/8" sl Water (gal/sk) 10.16 5.94 ole and the enting blend lated to surf back to max he setback, t upplication is y NMAC 19.1	hoe, 1 every 3 joi Hole Cap. (cuft/ft) 0.2691 0.2291 excess noted in tag ace. imize the length he toe Initiation not required bec 5.16.7B(1), NMA	nts from 9-5/4 % Excess 40% 10% ble of the comple sleeve and all cause the com C 19.15.16.14	8" shoe to surface Planned TOC (ft MD) 0 3,850 ted interval and perforations wi pleted interval wi B(2), NMAC 19.1	to maximized will be entired 15.16.15B(2)
Cement: Lead Tail Note:	Vertical: 1 cen Type G:POZ blend G:POZ blend Calculated cen Halliburton EC Notify NMOCI The lateral mar resource recov inside the setto within the setto Order number	tralizer every 2 Weight (ppg) 12.3 13.3 ment volumes a: ONOCEM & EXT D & BLM if cem by be drilled pas very. If the well back. An unorth back as defined for Kimbeto W	joints from KOI Yield (cuft/sk) 1.987 1.354 ssume gauge har TENDACEM cent ent is not circu t applicaple set is drilled past t odox location a and allowed by fash Unit is R-14	P to 9-5/8" sl Water (gal/sk) 10.16 5.94 ole and the enerting blend lated to surf back to max he setback, t ipplication is y NMAC 19.1 1084.	hoe, 1 every 3 joi Hole Cap. (cuft/ft) 0.2691 0.2291 excess noted in tag ace. imize the length he toe Initiation not required beo 5.16.7B(1), NMA	nts from 9-5/4 % Excess 40% 10% ble of the comple sleeve and all cause the com C 19.15.16.14	 B" shoe to surface Planned TOC (ft MD) 0 3,850 ted interval and perforations will pleted interval MB(2), NMAC 19.1 	to maximized will be entired 15.16.15B(2)
Cement: Lead Tail Note:	Vertical: 1 cen Type G:POZ blend G:POZ blend Calculated cen Halliburton EC Notify NMOCI The lateral ma resource recov inside the sett within the sett Order number	tralizer every 2 Weight (ppg) 12.3 13.3 ment volumes a: CONOCEM & EXT D & BLM if cem by be drilled pas very. If the well back. An unorth back as defined for Kimbeto W	joints from KOI Yield (cuft/sk) 1.987 1.354 ssume gauge he TENDACEM cen ent is not circu t applicaple set is drilled past t odox location a and allowed by tash Unit is R-14	P to 9-5/8" sl Water (gal/sk) 10.16 5.94 ole and the ementing blend lated to surf back to max he setback, t opplication is y NMAC 19.1 4084.	hoe, 1 every 3 joi Hole Cap. (cuft/ft) 0.2691 0.2291 excess noted in tag ace. imize the length he toe Initiation not required bec 5.16.7B(1), NMA	nts from 9-5/4 % Excess 40% 10% ble of the comple sleeve and all sause the com C 19.15.16.14	B" shoe to surface Planned TOC (ft MD) 0 3,850 ted interval and perforations wi pleted interval wi B(2), NMAC 19.1	to maximize libe placed will be entire 15.16.15B(2)
Cement: Lead Tail Note:	Vertical: 1 cen Type G:POZ blend G:POZ blend Calculated cen Halliburton EC Notify NMOCI The lateral maresource recov inside the sette within the sette Order number	tralizer every 2 Weight (ppg) 12.3 13.3 ment volumes a: CONOCEM & EXT D & BLM if cem by be drilled pas very. If the well back. An unorth back as defined for Kimbeto W	joints from KOI Yield (cuft/sk) 1.987 1.354 ssume gauge hi TENDACEM cent ent is not circu t applicaple set is drilled past t odox location a and allowed by ash Unit is R-14	P to 9-5/8" sl Water (gal/sk) 10.16 5.94 ole and the e henting blend lated to surf back to max he setback, t pplication is y NMAC 19.1 4084.	Hole Cap. (cuft/ft) 0.2691 0.2291 excess noted in tag ace. imize the length he toe Initiation not required beo 5.16.7B(1), NMA	nts from 9-5/4 % Excess 40% 10% ble of the comple sleeve and all sause the com C 19.15.16.14	B" shoe to surface Planned TOC (ft MD) 0 3,850 ted interval and perforations wi pleted interval will B(2), NMAC 19.2	to maximized libe placed will be entired
Cement: Lead Tail Note: <u>FINISH WELL:</u>	Vertical: 1 cen Type G:POZ blend G:POZ blend Calculated cen Halliburton EC Notify NMOCI The lateral ma resource recov inside the sett within the sett Order number ND BOP, NU V	tralizer every 2 Weight (ppg) 12.3 13.3 ment volumes a CONOCEM & EXT D & BLM if cem by be drilled pas very. If the well back. An unorth back as defined for Kimbeto W WH with BPV an	joints from KOI Yield (cuft/sk) 1.987 1.354 ssume gauge hi TENDACEM cent ent is not circu t applicaple set is drilled past t odox location a and allowed by ash Unit is R-14 hd cap, RDMO.	P to 9-5/8" sl Water (gal/sk) 10.16 5.94 ole and the e henting blend lated to surf back to max he setback, t pplication is 7 NMAC 19.1 4084.	Hole Cap. (cuft/ft) 0.2691 0.2291 excess noted in tag ace. imize the length he toe Initiation not required bec 5.16.7B(1), NMA	nts from 9-5/4 % Excess 40% 10% ble of the comple sleeve and all ause the com C 19.15.16.14	B" shoe to surface Planned TOC (ft MD) 0 3,850 ted interval and perforations wi pleted interval will B(2), NMAC 19.2	to maximized will be entired 15.16.15B(2)
Cement: Lead Tail Note: <u>FINISH WELL:</u>	Vertical: 1 cen Type G:POZ blend G:POZ blend Calculated cen Halliburton EC Notify NMOCI The lateral ma resource recov inside the sett within the sett Order number ND BOP, NU V	Weight (ppg) 12.3 13.3 ment volumes a: CONOCEM & EXT D & BLM if cem by be drilled pas very. If the well back. An unorth back as defined for Kimbeto W WH with BPV and	joints from KOI Yield (cuft/sk) 1.987 1.354 ssume gauge ha TENDACEM cen ent is not circu t applicaple set is drilled past t odox location a and allowed by ash Unit is R-14 ad cap, RDMO.	P to 9-5/8" sl Water (gal/sk) 10.16 5.94 ole and the enerting blend lated to surf back to max he setback, t pplication is y NMAC 19.1	hoe, 1 every 3 joi Hole Cap. (cuft/ft) 0.2691 0.2291 excess noted in to d ace. imize the length he toe Initiation not required beo 5.16.7B(1), NMA	nts from 9-5/4 % Excess 40% 10% ble of the comple sleeve and all ause the com C 19.15.16.14	 ^{3"} shoe to surface Planned TOC (ft MD) 0 3,850 ted interval and perforations with pleted interval with pleted interv	to maximize libe placed will be entire 15.16.15B(2)
Cement: Lead Tail Note: <u>FINISH WELL:</u>	Vertical: 1 cen Type G:POZ blend G:POZ blend G:POZ blend Calculated cen Halliburton EC Notify NMOCO The lateral ma resource recov inside the sett within the sett Order number ND BOP, NU V PRODUCTION	tralizer every 2 Weight (ppg) 12.3 13.3 ment volumes a: CONOCEM & EXT D & BLM if cem by be drilled pas very. If the well back. An unorth back as defined for Kimbeto W WH with BPV an PLAN:	joints from KOI Yield (cuft/sk) 1.987 1.354 ssume gauge ha TENDACEM cen ent is not circu t applicaple set is drilled past t odox location a and allowed by tash Unit is R-14 ad cap, RDMO.	P to 9-5/8" sl Water (gal/sk) 10.16 5.94 ole and the enting blend lated to surf back to max he setback, t ipplication is / NMAC 19.1	hoe, 1 every 3 joi Hole Cap. (cuft/ft) 0.2691 0.2291 excess noted in tag ace. imize the length he toe Initiation not required beo 5.16.7B(1), NMA	nts from 9-5/4 % Excess 40% 10% ble of the comple sleeve and all ause the com C 19.15.16.14	 ^{3"} shoe to surface Planned TOC (ft MD) 0 3,850 ted interval and perforations will pleted interval MB(2), NMAC 19.13 	to ma ll be p will be 15.16.

Frac: Lateral will be fracture-stimulated in approximately 25 plug-and-perf stages with approximately 125,000 bbls slickwater fluid and 9,000,000 lbs of proppant.

Flowback: Depending on well pressures, flow back may be either up 5-1/2" casing or 2-7/8" production tubing. Well will be flowed back until proppant volumes are low enough that the well can safely be produced through permanent production facilities.

Production: Well will produce up production tubing via gas-lift into permanent production and storage facilities.

ESTIMATED START DATES:

Drilling:	9/1/2018
Completion:	11/1/2018
Production:	12/15/2018

Prepared by: Alec Bridge 7/11/2018

Enduring Resources IV, LLC

Enduring Resources LLC

San Juan Basin - Kimbeto Wash Unit 771H pad 767H

Wellbore #1

Plan: Design #1

Standard Planning Report

13 July, 2018

Project . Map System:	San Juan Bas US State Plane	in - Kimbeto W	ash Unit	System Da	itum:	Mean Sea Lev	el	
Geo Datum: Map Zone:	North American New Mexico Ce	Datum 1983 entral Zone						
Site	771H pad, Sa	n Juan Co., Ne	w Mexico					
Site Position:			Northing:	1,903	3,230.79 usft Latit	ude:		36.220539°N
From: Position Uncertainty	Lat/Long	0.0 usft	Easting: Slot Radius:	1,18	1,117.63 usft Long 13-3/16 " Grid	gitude: Convergence:		107.807116°W -0.92 °
Well	767H							
Well Position	+N/-S	73.9 usft	Northing:		1,903,304.72 usft	Latitude:		36.220745°N
	+E/-W	67.3 usft	Easting:		1,181,184.91 usft	Longitude:		107.806892°W
Position Uncertainty		0.0 usft	Wellhead E	levation:		Ground Level:		6,561.0 usft
Wellbore	Wellbore #1							
Magnetics	Model Na	me	Sample Date	Declin (°)	ation	Dip Angle (°)	Field S (*	Strength nT)
	IGRF	200510	12/31/200	9	10.01	63.05	5 50,6	03.10447629
Design	Design #1						1	
Audit Notes:								
Version:			Phase:	PROTOTYPE	Tie On D	Depth:	0.0	
Vertical Section:		Depth F (ເ	rom (TVD) isft)	+N/-S (usft)	+E/-W (usft)		Direction (°)	
the reaction one transferring was good and		(0.0	0.0	0.0	and the second	327.57	ning in the control of the state of the second states of the
Plan Survey Tool Pr	ogram	Date 7/13/2	2018					
Depth From	Depth To							
(usft)	(usft)	Survey (Wellb	ore)	Tool Name	Re	marks		
1 0.0	10,357.0	Design #1 (We	llbore #1)	MWD				
				OWSG MWD	- Standard			
Plan Sections								
Measured		Vertic	al		Dogleg P	Build Turn		
Depth Incli (usft)	nation Azim (°) (°	uth Dep) (usf	th +N/-S (usft)	+E/-W (usft)	Rate F (°/100usft) (°/1	Rate Rate 00usft) (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0 0.0	0.00	0.00 0.0	0.00	

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
240.0	0.00	0.00	240.0	0.0	0.0	0.00	0.00	0.00	0.00	
500.0	0.00	0.00	500.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,483.3	19.67	78.69	1,464.1	32.8	163.9	2.00	2.00	0.00	78.69	
4,017.0	19.67	78.69	3,850.0	200.0	1,000.0	0.00	0.00	0.00	0.00	767H KOP
4,940.7	82.19	321.56	4,489.3	699.5	830.3	9.89	6.77	-12.68	-118.12	
5,062.1	89.62	316.05	4,498.0	790.5	750.6	7.61	6.12	-4.54	-36.70	767H POE
10,357.3	89.62	316.05	4,533.0	4,602.7	-2,924.3	0.00	0.00	0.00	0.00	767H BHL

Planned Survey			a se du an						
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
240.0	0.00	0.00	240.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	2.00	78.69	600.0	0.3	1.7	-0.6	2.00	2.00	0.00
700.0	4.00	78.69	699.8	1.4	6.8	-2.5	2.00	2.00	0.00
800.0	6.00	78.69	799.5	3.1	15.4	-5.7	2.00	2.00	0.00
900.0	8.00	78.69	898.7	5.5	27.3	-10.0	2.00	2.00	0.00
1,000.0	10.00	78.69	997.5	8.5	42.7	-15.7	2.00	2.00	0.00
1,100.0	12.00	78.69	1,095.6	12.3	61.4	-22.6	2.00	2.00	0.00
1,200.0	14.00	78.69	1,193.1	16.7	83.4	-30.7	2.00	2.00	0.00
1,300.0	16.00	78.69	1,289.6	21.8	108.8	-40.0	2.00	2.00	0.00
1,400.0	18.00	78.69	1,385.3	27.5	137.5	-50.5	2.00	2.00	0.00
1,483.3	19.67	78.69	1,464.1	32.8	163.9	-60.2	2.00	2.00	0.00
1,500.0	19.67	78.69	1,479.8	33.9	169.4	-62.2	0.00	0.00	0.00
1,600.0	19.67	78.69	1,574.0	40.5	202.4	-74.4	0.00	0.00	0.00
1,700.0	19.67	78.69	1,668.2	47.1	235.4	-86.5	0.00	0.00	0.00
1,800.0	19.67	78.69	1,762.3	53.7	268.4	-98.6	0.00	0.00	0.00
1,900.0	19.67	78.69	1,856.5	60.3	301.4	-110.7	0.00	0.00	0.00
2,000.0	19.67	78.69	1,950.7	66.9	334.4	-122.9	0.00	0.00	0.00
2,100.0	19.67	78.69	2,044.8	73.5	367.4	-135.0	0.00	0.00	0.00
2,200.0	19.67	78.69	2,139.0	80.1	400.4	-147.1	0.00	0.00	0.00
2,300.0	19.67	78.69	2,233.2	86.7	433.4	-159.2	0.00	0.00	0.00
2,400.0	19.67	78.69	2,327.3	93.3	466.4	-171.4	0.00	0.00	0.00
2,500.0	19.67	78.69	2,421.5	99.9	499.4	-183.5	0.00	0.00	0.00
2,600.0	19.67	78.69	2,515.7	106.5	532.4	-195.6	0.00	0.00	0.00
2,700.0	19.67	78.69	2,609.8	113.1	565.4	-207.8	0.00	0.00	0.00
2,800.0	19.67	78.69	2,704.0	119.7	598.4	-219.9	0.00	0.00	0.00
2,900.0	19.67	78.69	2,798.2	126.3	631.4	-232.0	0.00	0.00	0.00
3,000.0	19.67	78.69	2,892.3	132.9	664.4	-244.1	0.00	0.00	0.00
3,100.0	19.67	78.69	2,986.5	139.5	697.4	-256.3	0.00	0.00	0.00
3,200.0	19.67	78.69	3,080.7	146.1	730.4	-268.4	0.00	0.00	0.00
3,300.0	19.67	78.69	3,174.8	152.7	763.4	-280.5	0.00	0.00	0.00
3,400.0	19.67	78.69	3,269.0	159.3	796.4	-292.6	0.00	0.00	0.00
3,500.0	19.67	78.69	3,363.2	165.9	829.4	-304.8	0.00	0.00	0.00
3,600.0	19.67	78.69	3,457.3	172.5	862.4	-316.9	0.00	0.00	0.00
3,700.0	19.67	78.69	3,551.5	179.1	895.4	-329.0	0.00	0.00	0.00
3,800.0	19.67	78.69	3,645.7	185.7	928.4	-341.1	0.00	0.00	0.00
3,900.0	19.67	78.69	3,739.8	192.3	961.4	-353.3	0.00	0.00	0.00
4,000.0	19.67	78.69	3,834.0	198.9	994.4	-365.4	0.00	0.00	0.00
4,017.0	19.67	78.69	3,850.0	200.0	1,000.0	-367.5	0.00	0.00	0.00
4,100.0	17.32	53.65	3,928.8	210.1	1,023.7	-3/1./	9.69	-2.03	-30,16
4,200.0	19.21	22.27	4,024.0	234.2	1,042.0	-361.1	9.89	1.89	-31.38
4,300.0	25.05	0.80	4,116.8	270.7	1,048.5	-333.8	9.89	5.84	-21.47
4,400.0	32.80	347.95	4,204.3	318.4	1,043.1	-290.6	9.89	7.75	-12.85
4,500.0	41.39	339.76	4,284.1	376.1	1,026.0	-232.8	9.89	8.59	-8.19
4,600.0	50.39	334.02	4,353.6	441.9	997.6	-162.0	9.89	9.00	-5.75
4,700.0	59.60	329.62	4,410.9	513.9	958.8	-80.4	9.89	9.22	-4.40
4,800.0	68.94	325.99	4,454.3	590.0	910.8	9.5	9.89	9.34	-3.63
4,900.0	78.35	322.79	4,482.4	667.8	854.9	105.2	9.89	9.41	-3.20
4,940.7	82.19	321.56	4,489.3	699.5	830.3	145.1	9.89	9.43	-3.02
5,000.0	85.81	318.85	4,495.5	/44.8	/92.6	203.6	7.61	6.11	-4.56
5,062.1	89.62	316.05	4,498.0	790.5	750.6	264.7	7.61	6.13	-4.51
5,100.0	89.62	316.05	4,498.3	817.8	724.4	301.8	0.00	0.00	0.00
5,200.0	89.62	316.05	4,498.9	889.8	655.0	399.8	0.00	0.00	0.00
5,300.0	89.62	316.05	4,499.6	961.8	585.5	497.8	0.00	0.00	0.00
5,400.0	89.62	316.05	4,500.2	1,033.8	516.1	595.8	0.00	0.00	0.00
5,500.0	89.62	316.05	4,500.9	1,105.8	446.7	693.7	0.00	0.00	0.00
5,600.0	89.62	316.05	4,501.6	1,177.8	377.3	. 791.7	0.00	0.00	0.00
5,700.0	89.62	316.05	4,502.2	1,249.8	307.9	889.7	0.00	0.00	0.00
5,800.0	89.62	316.05	4,502.9	1,321.7	238.5	987.7	0.00	0.00	0.00
5,900.0	89.62	316.05	4,503.5	1,393.7	169.1	1,085.7	0.00	0.00	0.00
6 000 0	89.62	316.05	4 504.2	1.465.7	99.7	1,183.7	0.00	0.00	0.00

Planned Survey				Desil Provide					and the second second
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
6,100.0	89.62	316.05	4,504,9	1.537.7	30.3	1.281.6	0.00	0.00	0.00
6 200 0	89.62	316.05	4 505 5	1,609,7	-39.1	1.379.6	0.00	0.00	0.00
6 300 0	89.62	316.05	4,506,2	1.681.7	-108.5	1,477,6	0.00	0.00	0.00
6,400.0	89.62	316.05	4,506.8	1,753.7	-177.9	1,575.6	0.00	0.00	0.00
6.500.0	89.62	316.05	4,507,5	1.825.7	-247.3	1.673.6	0.00	0.00	0.00
6,600,0	89.62	316.05	4,508,2	1.897.7	-316.7	1,771.6	0.00	0.00	0.00
6 700 0	89.62	316.05	4,508,8	1,969,7	-386.1	1.869.5	0.00	0.00	0.00
6,800,0	89.62	316.05	4 509 5	2 041 7	-455.5	1 967 5	0.00	0.00	0.00
6,900.0	89.62	316.05	4,510.1	2,113.7	-524.9	2,065.5	0.00	0.00	0.00
7 000 0	89.62	316.05	4 510 8	2 185 7	-594.3	2 163 5	0.00	0.00	0.00
7,000.0	89.62	316.05	4,511,5	2 257 6	-663.7	2 261 5	0.00	0.00	0.00
7,100.0	89.62	316.05	4,512.1	2 329 6	-733 1	2 359 5	0.00	0.00	0.00
7,200.0	80.62	316.05	4,512.1	2,323.0	-802.5	2,000.0	0.00	0.00	0.00
7,300.0	89.62	316.05	4,512.0	2,401.6	-871.9	2,457.4	0.00	0.00	0.00
7,500,0	80.02	210.05	4 5 4 4 4	0.545.0	041.2	2,652,4	0.00	0.00	0.00
7,500.0	89.62	316.05	4,514.1	2,545.0	-941.3	2,053.4	0.00	0.00	0.00
7,600.0	89.62	316.05	4,514.8	2,617.6	-1,010.7	2,751.4	0.00	0.00	0.00
7,700.0	89.62	316.05	4,515.4	2,689.6	-1,080.1	2,849.4	0.00	0.00	0.00
7,800.0	89.62	316.05	4,516.1	2,761.6	-1,149.5	2,947.4	0.00	0.00	0.00
7,900.0	89.62	316.05	4,516.8	2,833.6	-1,218.9	3,045.3	0.00	0.00	0.00
8,000.0	89.62	316.05	4,517.4	2,905.6	-1,288.3	3,143.3	0.00	0.00	0.00
8,100.0	89.62	316.05	4,518.1	2,977.6	-1,357.7	3,241.3	0.00	0.00	0.00
8,200.0	89.62	316.05	4,518.7	3,049.6	-1,427.1	3,339.3	0.00	0.00	0.00
8,300.0	89.62	316.05	4,519.4	3,121.6	-1,496.5	3,437.3	0.00	0.00	0.00
8,400.0	89.62	316.05	4,520.1	3,193.5	-1,565.9	3,535,3	0.00	0.00	0.00
8,500.0	89.62	316.05	4,520.7	3,265.5	-1,635.3	3,633.2	0.00	0.00	0.00
8,600.0	89.62	316.05	4,521.4	3,337.5	-1,704.7	3,731.2	0.00	0.00	0.00
8,700.0	89.62	316.05	4,522.0	3,409.5	-1,774.1	3,829.2	0.00	0.00	0.00
8,800.0	89.62	316.05	4,522.7	3,481.5	-1,843.5	3,927.2	0.00	0.00	0.00
8,900.0	89.62	316.05	4,523.4	3,553.5	-1,912.9	4,025.2	0.00	0.00	0.00
9,000.0	89.62	316.05	4,524.0	3,625.5	-1,982.3	4,123.2	0.00	0.00	0.00
9,100.0	89.62	316.05	4,524.7	3,697.5	-2,051.7	4,221.1	0.00	0.00	0.00
9,200.0	89.62	316.05	4,525.4	3,769.5	-2,121.1	4,319.1	0.00	0.00	0.00
9,300.0	89.62	316.05	4,526.0	3,841.5	-2,190.5	4,417.1	0.00	0.00	0.00
9,400.0	89.62	316.05	4,526.7	3,913.5	-2,259.9	4,515.1	0.00	0.00	0.00
9,500.0	89.62	316.05	4,527,3	3,985,5	-2.329.3	4,613,1	0.00	0.00	0.00
9 600 0	89.62	316.05	4 528.0	4.057.5	-2.398.8	4,711,1	0.00	0.00	0.00
9 700 0	89.62	316.05	4 528 7	4 129 4	-2 468 2	4 809.0	0.00	0.00	0.00
9 800 0	89.62	316.05	4 529 3	4 201 4	-2 537 6	4 907 0	0.00	0.00	0.00
9,900.0	89.62	316.05	4,530.0	4,273.4	-2,607.0	5,005.0	0.00	0.00	0.00
10,000,0	89.62	316.05	4 530 6	4 345 4	-2 676 4	5 103 0	0.00	0.00	0.00
10,000.0	80.62	316.05	4 531 3	4 417 4	-2 745 8	5 201 0	0.00	0.00	0.00
10,100.0	89.62	316.05	4,532.0	4 489 4	-2,145.0	5 299 0	0.00	0.00	0.00
10,200.0	89.62	316.05	4,532.0	4,403.4	-2,013.2	5 396 9	0.00	0.00	0.00
10,300.0	80.62	316.05	4,532.0	4,001.4	-2,004.0	5 453 1	0.00	0.00	0.00
10,357.3	09.02	310.05	4,533.0	4,002.7	-2,924.3	5,455.1	0.00	0.00	0.00

-				-		10.	
104	ASI	a	n	1a	ra	P	TS.
-		9.	•		• 9	-	~~

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
767H KOP - plan hits target cent - Point	0.00 er	360.00	3,850.0	200.0	1,000.0	1,903,504.72	1,182,184.91	36.221338°N	107.803514°W
767H POE - plan hits target cent - Point	0.00 er	360.00	4,498.0	790.5	750.6	1,904,095.26	1,181,935.54	36.222949°N	107.804391°W
767H BHL - plan hits target cent - Point	0.00 er	0.00	4,533.0	4,602.7	-2,924.3	1,907,907.38	1,178,260.57	36.233255°N	107.817055°W

Casing Points	in a second and						
	Measured Depth (usft)	Vertical Depth (usft)		Name	Casing Diameter ('')	Hole Diameter ('')	
	220.0	220.0	13 3/8"		13-3/8	17-1/2	
	2,383.7	2,312.0	9 5/8"		9-5/8	12-1/4	

Formations

i onnations					
	Measured Depth (usft)	Vertical Depth (usft)	Name	Dip Dip Direction Lithology (°) (°)	
	145.0	145.0	Ojo Alamo	0.00	
	242.0	242.0	Kirtland	0.00	
	502.0	502.0	Fruitland	0.00	
	852.9	852.0	Pictured Cliffs	0.00	
	1,060.6	1,057.0	Lewis	0.00	
	1,250.6	1,242.0	Chacra	0.00	
	2,314.7	2,247.0	Cliff House	0.00	
	2,330.6	2,262.0	Menefee	0.00	
	3,381.9	3,252.0	Point Lookout	0.00	
	3,679.3	3,532.0	Mancos	0.00	
	3,918.2	3,757.0	Gallup (MNCS. A)	0.00	
	5,062.1	4,498.0	Gallup (Target)	0.00	

BOPE & CHOKE MANIFOLD DIAGRAMS

CHOKE MANIFOLD

