Susana Martinez Governor

Ken McQueen Cabinet Secretary

Matthias Saver

Heather Riley, Division Director Oil Conservation Division

Deputy Cabinet Secretary New Mexico Oil Conservation Division approval and conditions listed below are made in accordance with OCD Rule 19.15.7.11 and are in addition to the actions approved by BLM on the following <u>3160-3</u> APD form.

Operator Signature Date: 9/11/2018

Well information; Operator <u>Enduring</u>, Well Name and Number <u>Rincon Und</u> 715H

API# 30-039-31374, Section 21, Township 27 N/S, Range 6 EAW

Conditions of Approval: (See the below checked and handwritten conditions)

- Notify Aztec OCD 24hrs prior to casing & cement.
- Hold C-104 for directional survey & "As Drilled" Plat
- Hold C-104 for NSL, NSP, DHC
- Spacing rule violation. Operator must follow up with change of status notification on other well to be shut in or abandoned
- Regarding the use of a pit, closed loop system or below grade tank, the operator must comply with the following as applicable:
 - A pit requires a complete C-144 be submitted and approved prior to the construction or use of the pit, pursuant to 19.15.17.8.A
 - A closed loop system requires notification prior to use, pursuant to 19.15.17.9.A
 - A below grade tank requires a registration be filed prior to the construction or use of the below grade tank, pursuant to 19.15.17.8.C
- Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string

o Submit Gas Capture Plan form prior to spudding or initiating recompletion operations

- Regarding Hydraulic Fracturing, review EPA Underground Injection Control Guidance 84
- Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.

Well-bore communication is regulated under 19.15.29 NMAC. This requires well-bore Communication to be reported in accordance with 19.15.29.8.

NMOCD Approved by Signature

10-22-2018

Date

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, n of the United States any false, fictitious or fraudulent statements					d <u>ep</u> artme <u>nt or</u> agency	
Application approval does not warrant or certify that the applican applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt holds legal o	or equitable title to the	nose rights	s in the subject lease which	n would entitle the	
Title Field Manager		IINGTON		NMUC	D	
Approved by (Signature)	Name R.	(Printed/Typed) have A F.	- /d	Da	nte OCT 1 2 20	
Title Permitting Specialist						
15. Signature (Electronic Submission)		(Printed/Typed) Granillo / Ph: (505)636-974	13 Da	nte 9/11/2018	
. Well plat certified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office	A	Item 20 above). 5. Operator certific	ation.	ns unless covered by an ex prmation and/or plans as ma		
The following, completed in accordance with the requirements o (as applicable)	f Onshore Oil	and Gas Order No. 1	, and the	Hydraulic Fracturing rule	per 43 CFR 3162.3-3	
6538 leet	24. Attac			30 days		
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 6538 feet	22. Approxi 10/01/2018	mate date work will	start*	23. Estimated duration 30 days		
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Proposed 6518 feet /	and Maria	Sec. 1	I/BIA Bond No. in file MB001492		
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 20 feet	16. No of ac 2558.72	eres in lease	17. Spac 640	ing Unit dedicated to this	well	
 Distance in miles and direction from nearest town or post off 37 miles 	1			12. County or Parish RIO ARRIBA	13. State NM	
At surface NENE / 1152 FNL / 1273 FEL / LAT 36.563 At proposed prod. zone NWNW / 1170 FNL / 500 FWL /	928 / LONG	-107.467888	97693	11. Sec., T. R. M. or Bl SEC 21 / T27N / R6W		
a. Address 1050 17TH ST STE 2500 DENVER CO 80265	(505)386-83		e)	10. Field and Pool, or E BASIN MANCOS / M	ANCOS	
2. Name of Operator ENDURING RESOURCES LLC				9. API Well No. 30-039 - 3	31374	
Ic. Type of Completion: Hydraulic Fracturing S	ingle Zone	Multiple Zone		RINCON UNIT 715H		
APPLICATION FOR PERMIT TO D	RILL OR	REENTER		6. If Indian, Allotee or 7. If Unit or CA Agreer		
DEPARTMENT OF THE I BUREAU OF LAND MAN	NTERIOR	[5. Lease Serial No. NMSF0079366		
June 2015) UNITED STATE:	S			OMB No. 1 Expires: Janua		

DRILLING OPERATIONS AUTHORIZED ARE SUBJECT TO COMPLIANCE WITH ATTACHED "GENERAL REQUIREMENTS" (Continued on page 2)

FR

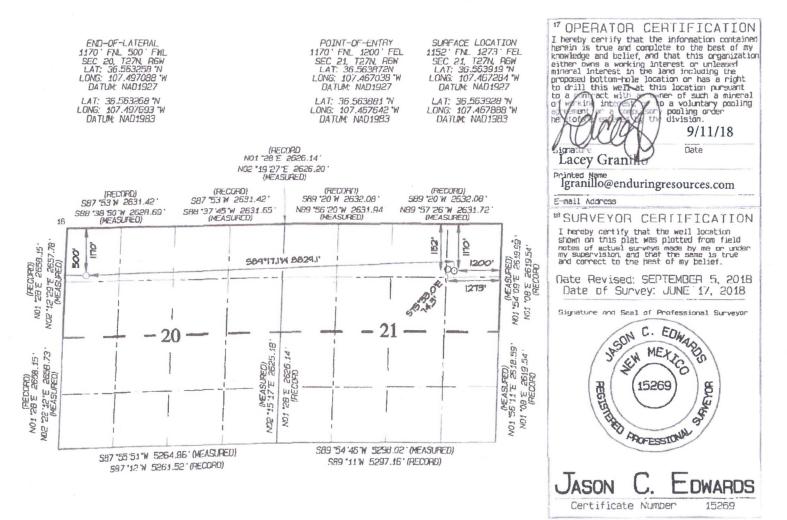
THIS ACTION DOES NOT RELIEVE THE LESSEE AND OPERATOR FROM OBTAINING ANY OTHER AUTHORIZATION REQUIRED FOR OPERATIONS ON FEDERAL AND INDIAN LANDS

This action is subject to technical and procedural review pursuant to 43 CFR 3165.3 and appeal pursuant to 43 CFR 3165.4 pursuant to 43 CFR 3165.4

*(Instructions on page 2)

UISTALL I 1625 N. French Drive, Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First Street, Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-5178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Drive, Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

STATE UT NEW MEXILU Energy, Minerals & Natural Resources Department


Revised August 1, 2011 Submit one copy to Appropriate District Office

OIL CONSERVATION DIVISION 1220 South St. Francis Drive Santa Fe. NM 87505

AMENDED REPORT

			WELL L	OCATI	ON AND	ACREAGE	DEDI	CATION PL	AT		
30-0	API Numbe		9	'Pool Coo 7232	e		Basir	n Mancos	ame		
Property 31995	Code	1				[*] Property Name RINCON UNIT				*Well Number 715H	
	10GRID NO. 372286 END					ator Name RESOURCES	, LLC			*Elevation 6538'	
neen all' () d'hinn i gin an Al-Anna () an Anna i a marainn an Anna () an Anna	1				¹⁰ Surfac	ce Locatio	n				
Ut or lat no.	Section	Township	Range	Lot Idn	Feet from t	he North/Sout	in line	Feet from the	East/West line	County	
А	21	27N	6W		1152	NOR	TH	1273	EAST	RIO ARRIBA	
	L	1	¹ Botto	m Hole	Location	If Diffe	rent	From Surfa	Ce	1	
UL or lot no.	Section	Township	Range	Lot Idn	Feet from i	he North/Sout	th line	Feet from the	East/West line	County	
D	20	27N	БW		1170	NOH	ГH	500	WEST	RIO ARRIBA	
¹² Dedicated Acres 640.00		/2 - Se /2 - Se			¹³ Joint or Infi	11 ¹⁴ Consolidat:	ion Codé	¹⁵ Order No. R	-12984	2 . 	

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OF A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

ENDURING RESOURCES IV, LLC 1050 SEVENTEENTH STREET, SUITE 2500 DENVER, COLORADO 80265

DRILLING PLAN: Drill, complete, and equip single lateral in the Mancos-C formation

WELL INFORMATION	1:
------------------	----

Name:	Rincon Unit 7	715H					
API Number:	30-039-						
State:	New Mexico						
County:	Rio Arriba						
Surface Elevation:	6,538	ft ASL (GL)	6,563	ft ASL (KB)			
Surface Location:	21-27N-06W	Sec-Twn-Rng	1,129	ft FNL	1,241	ft FEL	
	36.563993	° N latitude	107.467778	° W longitude		(NAD 83)	
BH Location:	20-27N-06W	Sec-Twn-Rng	330	ft FNL	500	ft FWL	
	36.565578	° N latitude	107.49762	° W longitude		(NAD 83)	
Driving Directions:	From intersect	tion of US Hwy	64 & US Hwy 5	550 in Bloomfield	d, NM: east o	n Hwy 64 for 36	.8 miles to General
	American Roa	d (GAR) just pa	st MM 101, rig	ht (S) on GAR fo	r 1.2 miles to	fork, continue i	right (SW) on GAR for 3.4
	miles to 4-way	intersection, s	traight (S) on (GAR for 1.1 miles	s to fork, righ	t (SW) along ML	inoz Wash for 4.3 miles to

0 4way intersection, straight (SW) across Carrizo Wash for 0.3 mile to fork, left (SE) onto CR #492 for 0.4 miles to fork, straight (S) on 492 for 1.4 miles to fork, right (N) uphill on existing road for 0.6 miles to fork, left (SW) for 0.8 miles to fork, left (SE) for 0.1 miles to fork, right (SW) to location to staked location which overlaps existing roadway.

GEOLOGIC AND RESERVOIR INFORMATION:

Prognosis:	Formation Tops	TVD (ft ASL)	TVD (ft KB)	MD (ft KB)	O/G/W	Pressure
	Ojo Alamo	4,200	2,363	2,385	W	normal
	Kirtland	3,900	2,663	2,690	W	normal
	Fruitland	3,560	3,003	3,034	G, W	sub
	Pictured Cliffs	3,390	3,173	3,207	G, W	sub
	Lewis	3,150	3,413	3,450	G, W	normal
	Chacra	2,400	4,163	4,211	G, W	normal
	Cliff House	1,715	4,848	4,906	G, W	sub
	Menefee	1,700	4,863	4,921	G, W	normal
	Point Lookout	1,155	5,408	5,474	G, W	normal
	Mancos	725	5,838	5,910	0,G	normal
	Gallup (MNCS. A)	225	6,338	6,448	0, G	normal
	MNCS. C TARGET	-20	6,583	7,025	0,G	normal
	PROJECTED WELL TD	45	6,518	15,870	O,G	normal

Surface:

Oil & Gas Zones: Several gas bearing zones will be encountered; target formation is the Gallup

Pressure: Normal pressure gradient (0.43 psi/ft) anticipated in all formations

	Max. pressure gradient:	0.43	psi/ft	Evacuated hole gradient:	0.22	psi/ft
	Maximum anticipated BH pressu	ire, assum	ning maximum	pressure gradient:	2,840	psi
	Maximum anticipated surface pr	ressure, a	ssuming partia	lly evacuated hole:	1,400	psi
Temperature:	Maximum anticipated BHT is 185	5° For les	2			

Temperature: Maximum anticipated BHT is 185° F or less

H₂S INFORMATION:

H₂S Zones: Encountering hydrogen-sulfide bearing zones is NOT anticipated.

Safety: Sensors and alarms will be placed in the substructure, on the rig floor, above the pits, and at the shakers.

LOGGING, CORING, AND TESTING:

Mud Logs: None planned; remote geo-steering from drill out of 9-5/8" casing to TD; gas chromatograph from drillout of 13-3/8" casing to TD.

MWD / LWD: Gamma Ray from drillout of 13-3/8" casing to TD

Open Hole Logs: None planned

Testing: None planned

Coring: None planned

Cased Hole Logs: CBL on 5-1/2" casing from deepest free-fall depth to surface

DRILLING RIG INFORMATION:

Contractor: Aztec

Rig No.: 1000

Draw Works: E80 AC 1,500 hp

Mast: Hyduke Triple (136 ft, 600,000 lbs, 10 lines)

Top Drive: NOV IDS-350PE (350 ton)

Prime Movers: 4 - GE Jenbacher Natural Gas Generator

Pumps: 2 - RS F-1600 (7,500 psi)

BOPE 1: Cameron double gate ram (13-5/8", 10,000 psi)

BOPE 2: Cameron annular (13-5/8", 5,000 psi)

Choke Cameron (4", 10,000 psi)

KB-GL (ft): 25

BOPE REQUIREMENTS:

See attached diagram for details regarding BOPE specifications and configuration.

- 1) Rig will be equipped with upper and lower kelly cocks with handles available.
- 2) Inside BOP and TIW valves will be available to use on all sizes and threads of drill pipe used while drilling the well.
- 2) BOP accumulator will have enough capacity to open the HCR valve, close all rams and annular preventer, and retain minimum of 200 psi above precharge on the closing manifold without the use of closing pumps. The fluid reservoir capacity shall be at least double the usable fluid volume of the accumulator system capacity, and the fluid level shall be maintained at manufacturer's recommendation. There will be two additional sources of power for the closing pumps (electric and air). Sufficient nitrogen bottles will be available and will be recharged when pressure falls below manufacturer's recommended minimum.
- 3) BOP testing shall be conducted (a) when initially installed, (b) whenever any seal is broken or repaired, (c) if the time since the previous test exceeds 30 days. Tests will be conducted using a test plug. BOP ram preventers will be tested to 3,000 psig for 10 minutes, and the annular preventer will be tested to 1,500 psi for 10 minutes. Ram and annular preventers will be tested to 250 psi for 10 minutes. Additionally, BOP and casing strings will be tested to .22 psi/ft or 1,500 psi, whichever is greater but not exceeding 70% of yield strength of the casing, for 30 minutes, prior to drilling out 13-3/8" and 9-5/8" casing. Rams and hydraulically operated remote choke line valve will be function tested daily at a minimum.
- 4) Remote valve for BOP rams, HCR, and choke shall be placed in a location that is readily available to the driller. The remote BOP valve shall be capable of closing and opening the rams.
- 5) Manual locking devices (hand wheels) shall be intalled on rams. A valve will be installed on the annular preventer's closing line as close as possible to the preventer to act as a locking device. The valve will be maintained in the open position and shall only be closed when the there is no power to the accumulator.

FLUIDS AND SOLIDS CONTROL PROGRAM:

Fluid Measurement:	Pumps shall be equipped with stroke counters with displays in the dog-house. Slow pump speed shall be recorded daily and after mudding up, at a minimum, on the drilling report. A Pit Volume Totalizer will be installed and the
Closed-Loop System:	readout will be displayed in the dog-house. Gas-detecting equipment will be installed at the shakers, and readouts will be available in the dog-house and the in the geologist's work-station (if geologist or mud-logger is on-site). A fully, closed-loop system will be utilized. The system will consist of above-ground piping and above-ground storage tanks and bins. The system will not entail any earthen pits, below-grade storage, or drying pads. All
	equipment will be disassembled and removed from the site when drilling operations cease. The system will be capable of storing all fluids and generated cuttings and of preventing uncontrolled releases of the same. The system will be operated in an efficient manner to allow the recycling and reuse of as much fluid as possible and to minimize the amount of fluids and solids that require disposal.
Fluid Disposal :	Fluids that cannot be reused, recycled, or returned to the supplier will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).
Solids Disposal :	Drilling solids will be stored (until haul-off) on-site in separate containers with no other waste, debris, or garbage products. Waste solids will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).
Fluid Program:	See "Detailed Drilling Plan" section for specifics.

DETAILED DRILLING PLAN:

SURFACE: Dr	ill vertically to casing	setting depth	plus necessary	rathole), run	casing, cement	casing to surface.

0 ft (MD)	to	320 ft (MD)	Hole Section Length:	320 ft
0 ft (TVD)	to	320 ft (TVD)	Casing Required:	320 ft
Note: Surface hole may be d	illed, cased, and	d cemented with a smaller ri	a in advance of the drilling rig.	

Note: Surface hole may be drilled, cased, and ceme	nted with a smaller rig in advance of the drilling rig.
--	---

			FL		YP		
Fluid:	Туре	MW (ppg)	(mL/30 min)	PV (cp)	(lb/100 sqft)	рН	Comments
	Fresh Water	8.4	N/C	2 - 8	2 - 12	9.0	Spud mud
Hole Size:	17-1/2"						

F

Bit / Motor: Mill Tooth or PDC, no motor

MWD / Survey: No MWD, run deviation survey after drilling

Logging: None

							Tens. Body	Tens. Conn
Casing Specs:		Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	(lbs)	(lbs)
Specs	13.375	54.5	J-55	BTC	1,130	2,730	853,000	909,000
Loading					70	1,518	115,209	115,209
Min. S.F.					16.17	1.80	7.40	7.89

Assumptions: Collapse: partially evacuated casing with 8.4 ppg fluid outside casing

Burst: maximum anticipated surface pressure while drilling intermediate hole or test pressure with

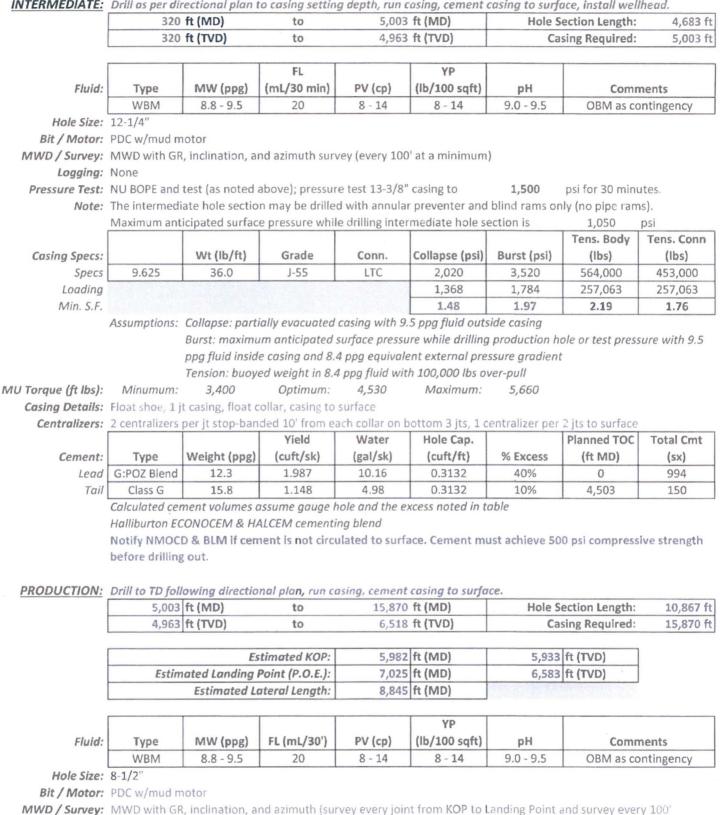
9.5 ppg fluid inside casing and 8.4 ppg equivalent external pressure gradient

Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull

```
MU Torque (ft lbs):
                  Minumum:
                                N/A
                                          Optimum:
                                                       N/A
                                                                 Maximum:
                                                                               N/A
```

Make-up as per API Buttress Connection running procedure.

Casing Details: Float shoe, 1 jt casing, float collar, casing to surface


Centralizers: 2 centralizers per jt stop-banded 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface

			Yield	Water	Hole Cap.	-	Planned TOC	Total Cmt
Cement:	Туре	Weight (ppg)	(cuft/sk)	(gal/sk)	(cuft/ft)	% Excess	(ft MD)	(sx)
a	Class G	15.8	1.174	5.15	0.6946	100%	0	379

Calculated cement volumes assume gauge hole and the excess noted in table

Halliburton HALCEM surface cementing blend

Notify NMOCD & BLM if cement is not circulated to surface. Cement must achieve 500 psi compressive strength before drilling out.

INTERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface, install wellhead.

Logging: GR MWD for entire section, no mud-log or cuttings sampling, no OH WL logs

Pressure Test: NU BOPE and test (as noted above); pressure test 9-5/8" casing to

minimum before KOP and after Landing Point)

psi for 30 minutes. 1,500

							Tens. Body	Tens. Conn						
Casing Specs:	Size (in)	Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	(lbs)	(lbs)						
Specs	5.500	17.0	P-110	LTC	7,460	10,640	546,000	445,000						
Loading					3,220	9,110	332,804	332,804						
Min. S.F.					2.32	1.17	1.64	1.34						
	Assumptions: Collapse: fully evacuated casing with 9.5 ppg fluid in the annulus (floating casing during running)													
	Burst: 8,500 psi maximum surface treating pressure with 10.2 ppg equivalent mud weight sand lader													
	fluid with 8.4 ppg equivalent external pressure gradient													
		Tension: buoye	ed weight in 9.0	0 ppg fluid w	th 100,000 lbs ov	/er-pull								
MU Torque (ft lbs):	Minumum:	3,470	Optimum:	4,620	Maximum:	5,780								
Casing Details:	Float shoe, flo	at collar, 2 jts c	asing, float col	lar, 1 jt casin	g, toe-intitiation	sleeve, 1 jt ca	sing, toe-initiati	on sleeve,						
	casing to KOP	with 20' marke	r joints spaced	evenly in lat	eral every 2,000'	Place Floata	tion Sub at KOP	(+/-).						
	Continue runr	ning casing to su	urface. The toe	-initiation slo	eeves must be po	ositioned INS	DE any unit set	backs.						
Centralizers:	Centralizer co	unt and placem	ent may be ad	justed based	on well condition	ns and os-drill	ed surveys.							
	Lateral: estimated 1 centralizer per joints													
	Curve: estimated 1 centralizer per joint from landing point to KOP													
	Vertical: estimated 1 centralizer per 2 joints from KOP to 9-5/8" shoe, 1 per 3 joints from 9-5/8" shoe to surface													
			Yield	Water	Hole Cap.		Planned TOC	Total Cmt						
Cement:	Туре	Weight (ppg)	(cuft/sk)	(gal/sk)	(cuft/ft)	% Excess	(ft MD)	(sx)						
Lead	G:POZ blend	12.3	1.987	10.16	0.2691	40%	0	1,099						
Tail	G:POZ blend	13.3	1.354	5.94	0.2291	10%	5,933	1,850						
	Calculated cer	ment volumes a	ssume gauge l	hole and the	excess noted in to	able								
	Halliburton EC	CONOCEM & EX	TENDACEM cel	menting blen	d									
	Notify NMOC	D & BLM if cem	ent is not circi	ulated to sur	face.									
Note:	The lateral ma	y be drilled pas	t applicaple se	tback to max	imize the length	of the comple	eted interval an	d to maximize						
	resource reco	very. If the well	is drilled past	the setback,	the toe Initiation	sleeve and al	l perforations w	ill be placed						
	inside the set	back. An unorth	odox location	application is	not required be	cause the con	npleted interval	will be						
	entirely within	the setback as	defined and a	llowed by NN	AC 19.15.16.78	(1). NMAC 19	15.16.14B(2). N	MAC						

19.15.16.15B(2).

FINISH WELL: ND BOP, NU WH with BPV and cap, RDMO.

COMPLETION AND PRODUCTION PLAN:

Frac: Lateral will be fracture-stimulated in approximately 50 plug-and-perf stages with approximately 250,000 bbls slickwater fluid and 16,000,000 lbs of proppant.

Flowback: Depending on well pressures, flow back may be either up 5-1/2" casing or 2-7/8" production tubing. Well will be flowed back until proppant volumes are low enough that the well can safely be produced through permanent production facilities.

Production: Well will produce up production tubing via gas-lift into permanent production and storage facilities.

ESTIMATED START DATES:

Drilling:	11/15/2018
Completion:	1/15/2019
Production:	2/28/2019

Prepared by: Alec Bridge 9/4/2018

Enduring Resources LLC

San Juan Basin - Rincon Unit 613H Pad 715H

Wellbore #1

Plan: Design #1

Standard Planning Report

05 September, 2018

				ADDA OF THE CASE OF THE ADDA					
Database: Company:	EDM Enduring Res	ources LLC			ordinate Refer		Well 715H		Elec)
Project:		sin - Rincon Un	ait	TVD Refe			KB @ 6563.0usf		
lite:	613H Pad	sin - Kincon On	in c	MD Refer			KB @ 6563.0usf	t (Original vvell	Elev)
				North Ref			Grid		
Vell: Vellbore:	715H			Survey Ca	alculation Meth	100:	Minimum Curvati	ure	
	Wellbore #1								
Design:	Design #1								
Project	San Juan Basi	in - Rincon Uni	t		a section of the section of the			en la seconda de la second	7 . 19 -
Map System:	US State Plane			System Dat	tum:	Me	ean Sea Level		
Geo Datum:	North American	Datum 1983							
Map Zone:	New Mexico Cer	ntral Zone							
Site	613H Pad, Rio	Arriba Co., Ne	ew Mexico						
Site Position:			Northing:	2,026	,844.45 usft	Latitude:			36.564026°N
From:	Lat/Long		Easting:	1,282	,809.90 usft	Longitude:			107.467723°W
Position Uncertainty:	-	0.0 usft	Slot Radius:		13-3/16 "	Grid Converg	ence:		-0.73
Well	715H					· Anno anno anno anno anno anno anno anno	and the second second second		
		05 4	N		2 020 800 00	uoft			00 5000000
Well Position	+N/-S	-35.1 usft	Northing:		2,026,809.39		tude:		36.563928°N
	+E/-W	-48.9 usft	Easting:		1,282,760.99		gitude:		107.467888°W
Position Uncertainty		0.0 usft	Wellhead Ele	vation:		Gro	und Level:		6,538.0 usf
Wellbore	Wellbore #1					en de construitementes construite de de construite		na staten andersen a Tradesen andersen and	
Magnetics	Model Nar	me	Sample Date	Declina (°)		Dip A		Field St	
	IGRE	200510	12/31/2009	0	9.91	(°	63.42	(n)	17 .01323355
Design Audit Notes:	Design #1	l Antonio de Constante de Sa	lay panahar dan dan dan sebuah dan dalam karan dari darim karanta		ning and an and a special state of a		ander forstande operationen Inner and Replacement and the second	de gerek die een gewoek suursest tertisk kaars ster	
Version:			Phase:	PROTOTYPE	Tie	On Depth:	(0.0	
Vertical Section:		Depth F	rom (TVD)	+N/-S	+F	/-W	Dire	ction	
			isft)	(usft)		sft)		(°)	
			0.0	0.0				9.16	
			0.0	0.0	0	.0	205	9.10	
Plan Survey Tool Pro Depth From (usft) 1 0.0	Depth To (usft)	Date 9/5/20 Survey (Wellbo Design #1 (We	018 ore)	Tool Name MWD		Remarks	20	9.10	
Depth From (usft)	Depth To (usft)	Survey (Wellb	018 ore)	Tool Name			20	9.10	
Depth From (usft)	Depth To (usft)	Survey (Wellb	018 ore)	Tool Name MWD			20	9.10	
Depth From (usft) 1 0.0	Depth To (usft)	Survey (Wellb	018 ore) Hore #1)	Tool Name MWD			Turn	9.10	
Depth From (usft) 1 0.0 Plan Sections Measured	Depth To (usft)	Survey (Wellb Design #1 (We	018 ore) Hore #1)	Tool Name MWD	- Standard	Remarks		TFO	
Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclir	Depth To (usft) 3 15,869.6	Survey (Wellb Design #1 (We Vertic uth Dep	018 ore) Hore #1) cal th +N/-S	Tool Name MWD OWSG MWD	- Standard Dogleg	Remarks	Turn		Target
Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclin (usft) (Depth To (usft) : 15,869.6 (15,869.6 () nation Azimu	Survey (Wellb Design #1 (We Vertic uth Dep (usf	018 ore) Ilbore #1) cal th +N/-S ft) (usft)	Tool Name MWD OWSG MWD +E/-W (usft)	- Standard Dogleg Rate (°/100usft)	Remarks Build Rate (°/100usft)	Turn Rate	TFO (°)	Target
Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclin (usft) (Depth To (usft) : 15,869.6 (nation Azimu ") (") 0.00	Survey (Wellby Design #1 (We uth Dep (usf 0.00	018 ore) Ilibore #1) cal th +N/-S ft) (usft) 0.0 0	Tool Name MWD OWSG MWD +E/-W (usft)	- Standard Dogleg Rate (°/100usft) 0.00	Remarks Build Rate (°/100usft) 0.00	Turn Rate (°/100usft) 0.00	TFO (°) 0.00	Target
Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclin (usft) (0.0 350.0	Depth To (usft) : 15,869.6 (15,869.6 (15,869.6 (0.00 (0.00 (0.00 (0.00 ()	Survey (Wellb Design #1 (We uth Dep (usf 0.00 0.00	018 ore) Ilbore #1) cal th +N/-S ft) (usft) 0.0 0 350.0 0	Tool Name MWD OWSG MWD +E/-W (usft) .0 0.0 .0 0.0	- Standard Dogleg Rate (°/100usft) 0.00 0.00	Remarks Build Rate (*/100usft) 0.00 0.00	Turn Rate (°/100usft) 0.00 0.00	TFO (°) 0.00 0.00	Target
Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclir (usft) (0.0 350.0 500.0	Depth To (usft) : 15,869.6 (15,869.6 (0.00 0.00 0.00 0.00	Survey (Wellb) Design #1 (We uth Vertic Dep (usf 0.00 0.00 0.00	018 ore) Ilbore #1) cal th +N/-S ft) (usft) 0.0 0 350.0 0 500.0 0	Tool Name MWD OWSG MWD +E/-W (usft) 0 0.0 .0 0.0 .0 0.0	- Standard Dogleg Rate (°/100usft) 0.00 0.00 0.00	Remarks Build Rate (*/100usft) 0.00 0.00 0.00	Turn Rate (°/100usft) 0.00 0.00 0.00	TFO (°) 0.00 0.00 0.00	Target
Depth From (usft) 1 0.0 Plan Sections Inclin (usft) Measured Depth (usft) Inclin (usft) 0.0 350.0 500.0 893.1	Depth To (usft) : 15,869.6 (15,869.6 (0,00 0,00 0,00 7,86	Survey (Wellb) Design #1 (We uth Vertic Dep (usf 0.00 0.00 0.00 90.79	018 ore) Sellbore #1) cal th +N/-S ft) (usft) 0.0 0 350.0 0 500.0 0 891.9 -0	Tool Name MWD OWSG MWD +E/-W (usft) .0 0.0 .0 0.0 .0 0.0 .4 26.9	- Standard Dogleg Rate (°/100usft) 0.00 0.00 0.00 2.00	Remarks Build Rate (°/100usft) 0.00 0.00 0.00 0.00 2.00	Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00	TFO (°) 0.00 0.00 0.00 0.00 90.79	
Depth From (usft) 1 0.0 Plan Sections Inclin (usft) Measured Depth (usft) Inclin (usft) 0.0 350.0 500.0 893.1 5,982.1 5,982.1	Depth To (usft) : 15,869.6 (15,869.6 (0.00 0.00 0.00 0.00 7.86 7.86	Survey (Wellb) Design #1 (We uth Vertic Dep (usf 0.00 0.00 0.00 90.79 5,	018 ore) Sellbore #1) cal th +N/-S ft) (usft) 0.0 0 350.0 0 500.0 0 891.9 -0 933.0 -10	Tool Name MWD OWSG MWD +E/-W (usft) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 4 26.9 0 723.0	- Standard Dogleg Rate (°/100usft) 0.00 0.00 0.00 2.00 0.00	Remarks Build Rate (°/100usft) 0.00 0.00 0.00 2.00 0.00	Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	TFO (*) 0.00 0.00 0.00 90.79 0.00 7	Target
Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclin (usft) (0.0 350.0 500.0 893.1	Depth To (usft) : 15,869.6 (15,869.6 (0.00 0.00 0.00 0.00 7.86 7.86	Survey (Wellb) Design #1 (We uth Vertic Dep (usf 0.00 0.00 0.00 90.79 5,	018 ore) Sellbore #1) cal th +N/-S ft) (usft) 0.0 0 350.0 0 500.0 0 891.9 -0	Tool Name MWD OWSG MWD +E/-W (usft) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 3 231.3	- Standard Dogleg Rate (°/100usft) 0.00 0.00 0.00 2.00	Remarks Build Rate (°/100usft) 0.00 0.00 0.00 0.00 2.00	Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00	TFO (°) 0.00 0.00 0.00 0.00 90.79	
Depth From (usft) 1 0.0 Plan Sections Inclin (usft) Measured Depth (usft) Inclin (usft) 0.0 350.0 500.0 893.1 5,982.1 5,982.1	Depth To (usft) : 15,869.6 (15,869.6 (0.00 0.00 0.00 0.00 7.86 7.86 82.87 2	Survey (Wellb) Design #1 (We uth Dep (usf 0.00 0.00 0.00 90.79 90.79 5, 69.48 6,	018 ore) Sellbore #1) cal th +N/-S ft) (usft) 0.0 0 350.0 0 500.0 0 891.9 -0 933.0 -10	Tool Name MWD OWSG MWD +E/-W (usft) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 3 231.3	- Standard Dogleg Rate (°/100usft) 0.00 0.00 0.00 2.00 0.00	Remarks Build Rate (°/100usft) 0.00 0.00 0.00 2.00 0.00	Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	TFO (*) 0.00 0.00 90.79 0.00 7 178.69	

1

Database:	EDM	Local Co-ordinate Reference:	Well 715H
Company:	Enduring Resources LLC	TVD Reference:	KB @ 6563.0usft (Original Well Elev)
Project:	San Juan Basin - Rincon Unit	MD Reference:	KB @ 6563.0usft (Original Well Elev)
Site:	613H Pad	North Reference:	Grid
Well:	715H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
350.0	0.00	0.00	350.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0 500.0	0.00	0.00	400.0 500.0	0.0 0.0	0.0 0.0	0.0	0.00 0.00	0.00 0.00	0.00
600.0	2.00	90.79	600.0	0.0	1.7	-1.7	2.00	2.00	0.00
700.0	4.00	90.79	699.8	-0.1	7.0	-7.0	2.00	2.00	0.00
800.0	6.00	90.79	799.5	-0.2	15.7	-15.7	2.00	2.00	0.00
893.1	7.86	90.79	891.9	-0.4	26.9	-26.9	2.00	2.00	0.00
900.0	7.86	90.79	898.7	-0.4	27.9	-27.9	0.00	0.00	0.00
1,000.0	7.86	90.79	997.8	-0.6	41.5	-41.5	0.00	0.00	0.00
1,100.0	7.86	90.79	1,096.8	-0.8	55.2	-55.2	0.00	0.00	0.00
1,200.0	7.86	90.79	1,195.9	-1.0	68.9	-68.9	0.00	0.00	0.00
1,300.0	7.86	90,79	1,294,9	-1.1	82.6	-82.6	0.00	0.00	0.00
1,400.0	7.86	90.79	1,394.0	-1.3	96.3	-96.2	0.00	0.00	0.00
1,500.0	7.86	90.79	1,493.1	-1.5	109.9	-109.9	0.00	0.00	0.00
1,600.0	7.86	90.79	1,592.1	-1.7	123.6	-123.6	0.00	0.00	0.00
1,700.0	7.86	90.79	1,691.2	-1.9	137.3	-137.3	0.00	0.00	0.00
1,800.0	7.86	90.79	1,790.2	-2.1	151.0	-150.9	0.00	0.00	0.00
1,900.0	7.86	90.79	1,889.3	-2.3	164.7	-164.6	0.00	0.00	0.00
2,000.0	7.86	90.79	1,988.4	-2.5	178.3	-178.3	0.00	0.00	0.00
2,100.0	7.86	90.79	2,087.4	-2.7	192.0	-191.9	0.00	0.00	0.00
2,200.0	7.86	90.79	2,186.5	-2.8	205.7	-205.6	0.00	0.00	0.00
2,300.0	7.86	90.79	2,285.5	-3.0	219.4	-219.3	0.00	0.00	0.00
2,400.0	7.86	90.79	2,384.6	-3.2	233.0	-233.0	0.00	0.00	0.00
2,500.0	7.86	90.79	2,483.7	-3.4	246.7	-246.6	0.00	0.00	0.00
2,600.0	7.86	90.79	2,582.7	-3.6	260.4	-260.3	0.00	0.00	0.00
2,700.0	7.86	90.79	2,681.8	-3.8	274.1	-274.0	0.00	0.00	0.00
2,800.0	7.86	90,79	2,780.8	-4.0	287.8	-287.7	0.00	0.00	0.00
2,900.0	7.86	90.79	2,879.9	-4.2	301.4	-301.3	0.00	0.00	0.00
3,000.0	7.86	90.79	2,979.0	-4.4	315.1	-315.0	0.00	0.00	0.00
3,100.0	7.86	90.79	3,078.0	-4.4	328.8	-328.7	0.00	0.00	0.00
3,200.0	7.86	90.79	3,177.1	-4.7	342.5	-342.4	0.00	0.00	0.00
3,300.0	7.86	90.79	3,276.1	-4.9	356.1	-356.0	0.00	0.00	0.00
3,400.0	7.86	90.79	3,375.2	-5.1	369.8	-369.7	0.00	0.00	0.00
3,500.0	7.86	90.79	3,474.3	-5.3	383.5	-383.4	0.00	0.00	0.00
3,600.0	7.86	90.79	3,573.3	-5.5	397.2	-397.1	0.00	0.00	. 0.00
3,700.0	7.86	90.79	3,672.4	-5.7	410.9	-410.7	0.00	0.00	0.00
3,800.0	7.86	90.79	3,771.4	-5.9	424.5	-424.4	0.00	0.00	0.00
3,900.0	7.86	90.79	3,870.5	-6.1	438.2	-438.1	0.00	0.00	0.00
4,000.0	7.86	90.79	3,969.6	-6.3	451.9	-451.8	0.00	0.00	0.00
4,100.0	7.86	90.79	4,068.6	-6.4	465.6	-465.4	0.00	0.00	0.00
4,200.0	7.86	90.79	4,167.7	-6.6	479.2	-479.1	0.00	0.00	0.00
4,300.0	7.86	90.79	4,266.7	-6.8	492.9	-492.8	0.00	0.00	0.00
124									
4,400.0	7.86	90.79	4,365.8	-7.0	506.6	-506.4	0.00	0.00	0.00.
4,500.0	7.86	90.79	4,464.9	-7.2	520.3	-520.1	0.00	0.00	0.00
4,600.0	7.86	90.79	4,563.9	-7.4	534.0	-533.8	0.00	0.00	0.00
4,700.0	7.86	90.79	4,663.0	-7.6	547.6	-547.5	0.00	0.00	0.00
4,800.0	7.86	90.79	4,762.0	-7.8	561.3	-561.1	0.00	0.00	0.00
4,900.0	7.86	90.79	4,861.1	-8.0	575.0	-574.8	0.00	0.00	0.00
5,000.0	7.86	90.79	4,960.2	-8.1	588.7	-588.5	0.00	0.00	0.00
-,		90.79	5.059.2				0.00	0.00	

Database: EDM Local Co-ordinate Reference: Well 715H Company: Enduring Resources LLC TVD Reference: KB @ 6563.0usft (Original Well Elev) Project: San Juan Basin - Rincon Unit MD Reference: KB @ 6563.0usft (Original Well Elev) 613H Pad Site: North Reference: Grid Well: 715H Survey Calculation Method: Minimum Curvature Wellbore #1 Wellbore: Design #1 Design:

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
5,200.0	7.86	90.79	5,158.3	-8.5	616.0	-615.8	0.00	0.00	0.00
5,300.0	7.86	90,79	5,257.3	-8.7	629.7	-629.5	0.00	0.00	0.00
5,400.0	7.86	90.79	5,356.4	-8.9	643.4	-643.2	0.00	0.00	0.00
5,500.0	7.86	90.79	5,455.5	-9.1	657.1	-656.9	0.00	0.00	0.00
5,600.0	7.86	90.79	5,554.5	-9.3	670.7	-670.5	0.00	0.00	0.00
5,700.0	7.86	90.79	5,653.6	-9.5	684.4	-684.2	0.00	0.00	0.00
5,700.0	7.00	50.75	5,055.0	-0.0	004.4	-004.2	0.00	0.00	0.00
5,800.0	7.86	90.79	5,752.6	-9.7	698.1	-697.9	0.00	0.00	0.00
5,900.0	7.86	90.79	5,851.7	-9.8	711.8	-711.6	0.00	0.00	0.00
5,982.1	7.86	90.79	5,933.0	-10.0	723.0	-722.8	0.00	0.00	0.00
6,000.0	6.05	91.18	5,950.8	-10.0	725.2	-724.9	10.10	-10.09	2.18
6,100.0	4.05	266.97	6,050.7	-10.3	726.9	-726.7	10.10	-2.00	175.79
6 200 0	14 45	268 70	C 140 2	10.9	744.4	710.0	10.10	10.00	1.01
6,200.0	14.15	268.79	6,149.3	-10.8	711.1	-710.9	10.10	10.09	1.81
6,300.0	24.24	269.10	6,243.6	-11.4	678.3	-678.1	10.10	10.10	0.31
6,400.0	34.34	269.24	6,330.7	-12.1	629.5	-629.2	10.10	10.10	0.14
6,500.0	44.44	269.32	6,407.9	-12.9	566.1	-565.8	10.10	10.10	0.08
6,600.0	54.53	269.37	6,472.8	-13.7	490.2	-489.9	10.10	10.10	0.05
6,700,0	64.63	269.41	6,523.3	-14.6	404.0	-403.8	10.10	10.10	0.04
6,800.0	74.73	269.45	6,558.0	-15.6	310.4	-310.1	10.10	10.10	0.04
6,880.7	82.87	269.48	6,573.7	-16.3	231.3	-231.1	10.10	10.10	0.03
6,900.0	83.78	269.45	6,575.9	-16.5	212.1	-211.9	4.73	4.73	-0.12
7,000.0	88.51	269.33	6,582.6	-17.5	112.4	-112.1	4.73	4.73	-0.12
7,040.4	90.42	269.29	6,583.0	-18.0	72.0	-71.8	4.73	4.73	-0.12
7,100.0	90.42	269.29	6,582.6	-18.8	12.4	-12.1	0.00	0.00	0.00
7,200.0	90.42	269.29	6,581.8	-20.0	-87.6	87.9	0.00	0.00	0.00
7,300.0	90.42	269.29	6,581.1	-21.3	-187.6	187.9	0.00	0.00	0.00
7,400.0	90.42	269.29	6,580.4	-22.5	-287.6	287.9	0.00	0.00	0.00
7,500.0	90.42	269.29	6,579.6	-23.8	-387.6	387.9	0.00	0.00	0.00
a grander and									
7,600.0	90.42	269.29	6,578.9	-25.0	-487.5	487.9	0.00	0.00	0.00
7,700.0	90.42	269.29	6,578.1	-26.2	-587.5	587.9	0.00	0.00	0.00
7,800.0	90.42	269.29	6,577.4	-27.5	-687.5	687.8	0.00	0.00	0.00
7,900.0	90.42	269.29	6,576.7	-28.7	-787.5	787.8	0.00	0.00	0.00
8,000.0	90.42	269.29	6,575.9	-30.0	-887.5	887.8	0.00	0.00	0.00
8,100.0	90.42	269.29	6,575.2	-31.2	-987.5	987.8	0.00	0.00	0.00
8,200.0	90.42	269.29	6,574.5	-32.5	-1,087.5	1,087.8	0.00	0.00	0.00
8,300.0	90.42	269.29	6,573.7	-33.7	-1,187.5	1,187.8	0.00	0.00	0.00
8,400.0	90.42	269.29	6,573.0	-35.0	-1,287.5	1,287.8	0.00	0.00	0.00
8,500.0	90.42	269.29	6,572.3	-36.2	-1,387.4	1,387.8	0.00	0.00	0.00
8,600.0	90.42	269.29	6,571.5	-37.5	-1,487.4	1,487.8	0.00	0.00	0.00
8,700.0	90.42	269.29	6,570.8		-1,587.4	1,587.8	0.00	0.00	0.00
8,800.0	90.42	269.29	6,570.0	-40.0	-1,687.4	1,687.8	0.00	0.00	0.00
8,900.0	90.42	269.29	6,569.3	-41.2	-1,787.4	1,787.8	0.00	0.00	0.00
9,000.0	90.42	269.29	6,568.6	-42.4	-1,887.4	1,887.8	0.00	0.00	0.00
9,100.0	90.42	269.29	6.567.8	-43.7	-1,987.4	1,987.8	0.00	0.00	0.00
9,200.0	90.42	269.29	6,567.1	-44.9	-2,087.4	2,087.8	0.00	0.00	0.00
9,300.0	90.42	269.29	6,566.4	-46.2	-2,087.4	2,087.8	0.00	0.00	0.00
9,300.0	90.42	269.29	6,565.6	-40.2	-2,187.4	2,187.8	0.00	0.00	0.00
3,400.0	90.42	209.29	0,000.0	-4/.4	-2,201.4	2,201.0	0.00	0.00	0.00
9,500.0	90.42	269.29	6,564.9	-48.7	-2,387.3	2,387.8	0.00	0.00	0.00
9,600.0	90.42	269.29	6,564.2	-49.9	-2,487.3	2,487.8	0.00	0.00	0.00
9,700.0	90.42	269.29	6,563.4	-51.2	-2,587.3	2,587.8	0.00	0.00	0.00
9,800.0	90.42	269.29	6,562.7	-52.4	-2,687.3	2,687.8	0.00	0.00	0.00
9,900.0	90.42	269.29	6,561.9	-53.7	-2,787.3	2,787.8	0.00	0.00	0.00
10,000.0	90.42	269.29	6,561.2	-54.9	-2,887.3	2,887.8	0.00	0.00	0.00
10,100.0	90.42	269.29	6,560.5	-56.2	-2,987.3	2,987.8	0.00	0.00	0.00
10,200.0	90.42	269.29	6,559.7	-57.4	-3,087.3	3,087.8	0.00	0.00	0.00

Database:	EDM	Local Co-ordinate Reference:	Well 715H
Company:	Enduring Resources LLC	TVD Reference:	KB @ 6563.0usft (Original Well Elev)
Project:	San Juan Basin - Rincon Unit	MD Reference:	KB @ 6563.0usft (Original Well Elev)
Site:	613H Pad	North Reference:	Grid
Well:	715H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

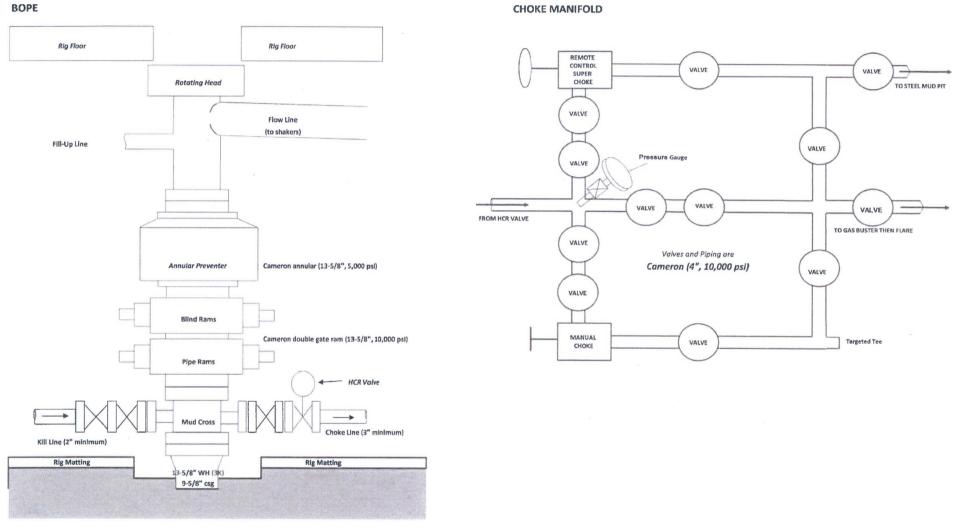
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	
10,300.0	90.42	269.29	6,559.0	-58.7	-3.187.3	3,187.8	0.00	0.00	0.00	
10,400.0	90.42	269.29	6,558.3	-59.9	-3,287.2	3,287.8	0.00	0.00	0.00	
10,500.0	90.42	269.29	6,557.5	-61.1	-3,387.2	3,387.8	0.00	0.00	0.00	
10,600.0	90.42	269.29	6,556.8	-62.4	-3,487.2	3,487.8	0.00	0.00	0.00	
10,700.0	90.42	269.29	6,556.1	-63.6	-3,587.2	3,587.8	0.00	0.00	0.00	
10,800.0	90.42	269.29	6,555.3	-64.9	-3,687.2	3,687.8	0.00	0.00	0.00	
10,900.0	90.42	269.29	6,554.6	-66.1	-3,787.2	3,787.8	0.00	0.00	0.00	
11,000.0	90:42	269.29	6,553.8	-67.4	-3,887.2	3,887.8	0.00	0.00	0.00	
11,100.0	90.42	269.29	6,553.1	-68.6	-3,987.2	3,987.8	0.00	0.00	0.00	
11,200.0	90.42	269.29	6,552.4	-69.9	-4,087.2	4,087.7	0.00	0.00	0.00	
11,300.0	90.42	269.29	6,551.6	-71.1	-4,187.2	4,187.7	0.00	0.00	0.00	
11,400.0	90.42	269.29	6,550.9	-72.4	-4,287.1	4,287.7	0.00	0.00	0.00	
11,500.0	90.42	269.29	6,550.2	-73.6	-4,387.1	4,387.7	0.00	0.00	0.00	
11,600.0	90.42	269.29	6,549.4	-74.9	-4,487.1	4,487.7	0.00	0.00	0.00	
11,700.0	90.42	269.29	6,548.7	-76.1	-4,587.1	4,587.7	0.00	0.00	0.00	
11,800.0	90.42	269.29	6,548.0	-77.3	-4,687.1	4,687.7	0.00	0.00	0.00	
11,900.0	90.42	269.29	6,547.2	-78.6	-4,787.1	4,787.7	0.00	0.00	0.00	
12,000.0	90.42	269.29	6,546.5	-79.8	-4,887.1	4,887.7	0.00	0.00	0.00	
12,100.0	90.42	269.29	6,545.8	-81.1	-4,987.1	4,987.7	0.00	0.00	0.00	
12,200.0	90.42	269.29	6,545.0	-82.3	-5,087.1	5,087.7	0.00	0.00	0.00	
12,300.0	90.42	269.29	6,544.3	-83.6	-5,187.0	5,187.7	0.00	0.00	0.00	
12,400.0	90.42	269.29	6,543.5	-84.8	-5,287.0	5,287.7	0.00	0.00	0.00	
12,500.0	90.42	269.29	6,542.8	-86.1	-5,387.0	5,387.7	0.00	0.00	0.00	
12,600.0	90.42	269.29	6,542.1	-87.3	-5,487.0	5,487.7	0.00	0.00	0.00	
12,700.0	90.42	269.29	6,541.3	-88.6	-5,587.0	5,587.7	0.00	0.00	0.00	
12,800.0	90.42	269.29	6,540.6	-89.8	-5,687.0	5,687.7	0.00	0.00	0.00	
12,900.0	90.42	269.29	6,539.9	-91.1	-5,787.0	5,787.7	0.00	0.00	0.00	
13,000.0	90.42	269.29	6,539.1	-92.3	-5,887.0	5,887.7	0.00	0.00	0.00	
13,100.0	90.42	269.29	6,538.4	-93.5	-5,987.0	5,987.7	0.00	0.00	0.00	
13,200.0	90.42	269.29	6,537.7	-94.8	-6,087.0	6,087.7	0.00	0.00	0.00	
13,300.0	90.42	269.29	6,536.9	-96.0	-6,186.9	6,187.7	0.00	0.00	0.00	
13,400.0	90.42	269.29	6,536.2	-97.3	-6,286.9	6,287.7	0.00	0.00	0.00	
13,500.0	90.42	269.29	6,535.4	-98.5	-6,386.9	6,387.7	0.00	0.00	0.00	
13,600.0	90.42	269.29	6,534.7	-99.8	-6,486.9	6,487.7	0.00	0.00	0.00	
13,700.0	90.42	269.29	6,534.0	-101.0	-6,586.9	6,587.7	0.00	0.00	0.00	
13,800.0	90.42	269.29	6,533.2	-102.3	-6,686.9	6,687.7	0.00	0.00	0.00	
13,900.0	90.42	269.29	6,532.5	-103.5	-6,786.9	6,787.7	0.00	0.00	0.00	
14,000.0	90.42	269.29	6,531.8	-104.8	-6,886.9	6,887.7	0.00	0.00	0.00	
14,100.0	90.42	269.29	6,531.0	-106.0	-6,986.9	6,987.7	0.00	0.00	0.00	
14,200.0	90.42	269.29	6,530.3	-107.3	-7,086.8	7,087.7	0.00	0.00	0.00	
14,300.0	90.42	269.29	6,529.6	-108.5	-7,186.8	7,187.7	0.00	0.00	0.00	
14,400.0	90.42	269.29	6,528.8	-109.8	-7,286.8	7,287.7	0.00	0.00	0.00	
14,500.0	90.42	269.29	6,528.1	-111.0	-7,386.8	7,387.7	0.00	0.00	0.00	
14,600.0	90.42	269.29	6,527.3	-112.2	-7,486.8	7,487.6	0.00	0.00	0.00	
14,700.0	90.42	269.29	6,526.6	-113.5	-7,586.8	7,587.6	0.00	0.00	0.00	
14,800.0	90.42	269.29	6,525.9	-114.7	-7,686.8	7,687.6	0.00	0.00	0.00	
14,900.0	90.42	269.29	6,525.1	-116.0	-7,786.8	7,787.6	0.00	0.00	0.00	
15,000.0	90.42	269.29	6,524.4	-117.2	-7,886.8	7,887.6	0.00	0.00	0.00	
15,100.0	90.42	269.29	6,523.7	-118.5	-7,986.8	7,987.6	0.00	0.00	0.00	
15,200.0	90.42	269.29	6,522.9	-119.7	-8,086.7	8,087.6	0.00	0.00	0.00	
15,300.0	90.42	269.29	6,522.2	-121.0	-8,186.7	8,187.6	0.00	0.00	0.00	
15,400.0	90.42	269.29	6,521.5	-122.2	-8,286.7	8,287.6	0.00	0.00	0.00	
15,500.0	90.42	269.29	6,520.7	-123.5	-8,386.7	8,387.6	0.00	0.00	0.00	
15,600.0	90.42	269.29	6,520.0	-124.7	-8,486.7	8,487.6	0.00	0.00	0.00	

Database:	EDM	Local Co-ordinate Reference:	Well 715H
Company:	Enduring Resources LLC	TVD Reference:	KB @ 6563.0usft (Original Well Elev)
Project:	San Juan Basin - Rincon Unit	MD Reference:	KB @ 6563.0usft (Original Well Elev)
Site:	613H Pad	North Reference:	Grid
Well:	715H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
15,700.0	90.42	269.29	6,519.2	-126.0	-8,586.7	8,587.6	0.00	0.00	0.00
15,800.0	90.42	269.29	6,518.5	-127.2	-8,686.7	8,687.6	0.00	0.00	0.00
15,869,6	90.42	269.29	6.518.0	-128.1	-8,756,3	8,757,3	0.00	0.00	0.00

Design Targets


Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
715H - KOP - plan hits target cente - Point	0.00 er	360.00	5,933.0	-10.0	723.0	2,026,799.39	1,283,483.99	36.563926°N	107.465426°W
715H - BHL - plan hits target cente - Point	0.00 er	360.00	6,518.0	-128.1	-8,756.3	2,026,681.32	1,274,004.68	36.563268°N	107.497693°W
715H - POE - plan hits target cente - Point	0.00 er	360.00	6,583.0	-18.0	72.0	2,026,791.36	1,282,833.02	36.563881°N	107.467642°W

Casing Points

Measured Depth (usft)	Vertical Depth (usft)		Name	Casing Diameter ('')	Hole Diameter ('')	
320.0	320.0	13 3/8"		13-3/8	17-1/2	
5,002.9	4,963.0	9 5/8"		9-5/8	12-1/4	

rmations					
	Measured Depth (usft)	Vertical Depth (usft)	Name	Dip D Lithology (°)	Dip irection (°)
	2,378.2	2,363.0	Ojo Alamo	0.00	
	2,681.0	2,663.0	Kirtland	0.00	
	3,024.3	3,003.0	Fruitland	0.00	
	3,195.9	3,173.0	Pictured Cliffs	0.00	
	3,438.2	3,413.0	Lewis	0.00	
	4,195.3	4,163.0	Chacra	0.00	
	4,886.8	4,848.0	Cliff House	0.00	
	4,901.9	4,863.0	Menefee	0.00	
	5,452.1	5,408.0	Point Lookout	0.00	
	5,886.2	5,838.0	Mancos	0.00	
	6,408.9	6,338.0	Gallup (MNCS_A)	0.00	
	7,040.4	6,583.0	MNCS_C TARGET	0.00	

BOPE & CHOKE MANIFOLD DIAGRAMS

CHOKE MANIFOLD

Directions from the Intersection of US Hwy 550 & US Hwy 64

in Bloomfield, NM to Enduring Resources, LLC Rincon Unit #715H

1152' FNL & 1273' FEL, Section 21, T27N, R6W, N.M.P.M., Rio Arriba County, NM

Latitude: 36.563928°N Longitude: 107.467888°W Datum: NAD1983

From the intersection of US Hwy 550 & US Hwy 64 in Bloomfield, NM, travel Easterly on US Hwy 64 for 36.8 miles to General American Road just beyond Gobernador School at Mile Marker 101;

Go Right (Southerly) on General American Road for 1.2 miles to fork in roadway;

Go Right (South-westerly) continuing on General American Road for 3.4 miles to 4-way intersection;

Go Straight (Southerly) continuing on General American Road for 1.1 miles to fork in roadway;

Go Right (South-westerly) along Munoz Wash for 4.3 miles to 4-way intersection;

Go Straight (South-westerly) continuing across Carrizo Wash for 0.3 miles to fork in roadway;

Go Left (South-easterly) which is straight onto County Road #492 for 0.4 miles to fork in roadway;

Go Right (Southerly) continuing on County Road #492 for 1.4 miles to fork in roadway;

Go Right (Northerly) exiting County Road #492 continuing uphill on existing roadway for 0.6 miles to fork in roadway;

Go Left (South-westerly) for 0.8 miles to fork in roadway;

Go Left (South-easterly) for 0.1 mile to fork in roadway;

Go Right (South-westerly) to staked Rincon Unit #715H which overlaps existing roadway.