District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

DISTRICT

Release Notification

Responsible Party

Responsible Party: LOGOS Operating, LLC	OGRID: 289408
Contact Name: Larissa Farrell	Contact Telephone: (505) 787-2027
Contact email: lfarrell@logosresourcesllc.com	Incident # (assigned by OCD) nVF1820751135
Contact mailing address 2010 Afton Place Farmington, NM 87401	

Location of Release Source

Latitude 36.237710___

[NAD 83 in decimal degrees to 5 decimal places]

Site Name Heros 2307 09L Com 002H	Site Type: Well
Date Release Discovered 7/25/2018	API# (if applicable)30-045-35687

Unit Letter	Section	Township	Range	County	NER O C D
L	09	23N	08W	San Juan County	WWI U G D
					OCT 2 5 2018

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)				
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)		
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)		
	Is the concentration of dissolved chloride in the	Yes No		
	produced water >10,000 mg/l?			
Condensate	Volume Released (bbls)	Volume Recovered (bbls)		
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)		
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)		
Flowback Fluid	120 BBLS	<1BBL		
Cause of Release: Water truck slipped off of the road and rolled into arroyo after leaving location. The back latch was broken off and				

Cause of Release: Water truck slipped off of the road and rolled into arroyo after leaving location. The back latch was broken off and 120 BBLS of flowback fluid was released into arroyo. The arroyo was not flowing at the time of incident. There was not standing water in arroyo when the incident took place. Hydrovac was on location to pull up as much as possible. Crews were laying soaker pads, are building 3 berms and hand-digging the contaminated soil and hauling off.

Form	C-141

Page 2

State of New Mexico	
Oil Conservation Division	n

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?		
19.15.29.7(A) NMAC?	The amount of fluids released is greater than 25 BBLS and located in the adjacent arroyo.		
🛛 Yes 🗌 No			
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? Yes. Larissa			
Farrell called and spoke with Vanessa Fields with NMOCD at 8:34am and Emmanuel Adeloye with BLM at 9:44am on July 25, 2018.			
She reported the details of the incident and submitted initial C-141 on 7/26/2018.			

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \boxtimes The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Darissa Farrell	Title: _Environmental/Regulatory Technician		
Signature:	Date:7/26/2018		
email: _lfarrell@logosresourcesllc.com	Telephone:(505) 787-2027		
OCD Only	/		
Received by:	Date:		

Form C-141 Page 3 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

W	is the shallowest depth to groundwater beneath the area affected by the release?	<u>_630</u> (ft bgs)
Did this release impact groundwater or surface water?		🗌 Yes 🛛 No
Are wate	the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant ercourse?	🛛 Yes 🗌 No
Are ordi	the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the nary high-water mark)?	🗌 Yes 🛛 No
Are or c	the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, hurch?	🗌 Yes 🛛 No
Are by l	the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used ess than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are	the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are wat	the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh er well field?	🗌 Yes 🛛 No
Are	the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are	the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are	the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are	the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did	the release impact areas not on an exploration, development, production, or storage site?	🛛 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

 \boxtimes Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

Field data

Data table of soil contaminant concentration data

Depth to water determination

Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release

Boring or excavation logs

Photographs including date and GIS information

Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation

1. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141	State of New Mexico		Incident ID	
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
I hereby certify that the inforegulations all operators are public health or the enviror failed to adequately investi addition, OCD acceptance and/or regulations. Printed Name:	Farrell worksilo.com	e best of my knowledge a tifications and perform co OCD does not relieve the reat to groundwater, surfa f responsibility for compl Title: _Environme Date: _10/24/2018_ Telephone: (505) 787	nd understand that pursu prrective actions for relea e operator of liability sho ice water, human health liance with any other fed ental/Regulatory Techt	aant to OCD rules and ases which may endanger buld their operations have or the environment. In deral, state, or local laws nician
OCD Only				
Received by:		Date:		

Form C-141 Page 5 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.								
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 								
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.								
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.								
Extents of contamination must be fully delineated.								
Contamination does not cause an imminent risk to human health, the environment, or groundwater.								
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.								
Printed Name: Carissa Farrell Title: Environmental/Regulatory Technician Signature: Date: 10/24/2018								
email: _lfarrell@logosresourcesllc.com Telephone:(505) 787-2027								
OCD Only Received by: Cnosse Fields Date: 1012512018 Approved Approved with Attached Conditions of Approval Denied Date: 11512018								

Fields, Vanessa, EMNRD

From:	Fields, Vanessa, EMNRD
Sent:	Monday, November 5, 2018 10:42 AM
То:	Larissa Farrell
Cc:	Tamra Sessions; Smith, Cory, EMNRD; 'Leigh Thomas'; aadeloye@blm.gov
Subject:	Hero's 2307 09L Com 002H Inc# nVF1820751135 Remediation Plan COA

Larissa,

The OCD has approved the Remediation plan for the Heros 2307 09L Com 002H Inc# nVF1820751135 with the following conditions of approval.

- Remediation and closure of the Hero's 2307 09L Com 002H will need to be completed by December 5, 2018.
- Logos will need to submit a request for additional time to complete remediation per 19.15.29.12 B.(2)
- Logos must provide 48 hour business notification prior to confirmation sampling.

Please let me know if you should have any questions.

Thank you, Vanessa Fields Environmental Specialist Oil Conservation Division Energy, Minerals, & Natural Resources 1000 Rio Brazos, Aztec, NM 87410 (505)334-6178 ext 119 Cell: (505) 419-0463 vanessa.fields@state.nm.us

LT Environmental, Inc.

848 East Second Avenue Durango, Colorado 81301 970.385.1096

October 24, 2018

Ms. Vanessa Fields Environmental Specialist New Mexico Oil Conservation Division 1000 Rio Brazos Aztec, New Mexico 87410

RE: Remediation Work Plan Heros 23 08 09L COM 2H Release Response NVS# 1820751135 LOGOS Resources II, LLC San Juan County, New Mexico

Dear Ms. Fields:

LT Environmental, Inc. (LTE), on behalf of LOGOS Resources II, LLC (LOGOS) presents the following Remediation Work Plan to address petroleum hydrocarbon impacted soil associated with the Heros 23 08 09L Com 2H production well (Site). The Site is located on the Nacimiento Formation outcrop southeast of Kimbeto Wash in the northwest quarter of the southwest quarter of Section 9, Township 23 North, Range 8 West, San Juan County, New Mexico, approximately 3.2 miles southeast of Nageezi, New Mexico (Figure 1).

BACKGROUND

On July 25, 2018, a water truck carrying flowback fluids slid off the access road to the Heros 23 08 09L Com 2H well pad and overturned in an adjacent wash. Approximately 120 barrels of liquid were released from the truck and traveled approximately 2,300 feet down the wash. LOGOS controlled the release by installing berms in three different areas within the wash. Less than one barrel of liquid was recovered with a vacuum truck and emergency response excavation activities ensued. Excavation activities included hand digging and using a skid steer to remove impacted soil within the wash. Approximately 284 cubic yards of impacted soil were removed.

Because the release occurred prior to August 14, 2018, the Site was ranked a 20 pursuant to the New Mexico Oil Conservation Division (NMOCD) 1993 *Guidelines for Remediation of Leaks, Spills and Releases.* The nearest permitted water well is approximately 2.6 miles west. Depth to water in the water well is 630 feet below ground surface (bgs). The release is located within a significant water feature. Based on these observations, the remediation action levels applied to the Site were 100 milligrams per kilogram (mg/kg) total petroleum hydrocarbons (TPH), 10

mg/kg benzene, and 50 mg/kg total for the sum of benzene, toluene, ethylbenzene, and total xylenes (BTEX).

SITE CHARACTERIZATION

On August 1, 2018, and on September 12, 2018, LTE, on behalf of LOGOS, collected soil samples to identify remaining areas of non-compliance. As indicated on the attached Figure 2, the release footprint was segregated into representative 100-foot and 150-foot segments from which one 5-point composite soil sample was collected from 0 to 6 inches bgs from each segment to characterize each segment. The segments were designated as SS01 through SS27. All samples were analyzed for BTEX according to United States Environmental Protection Agency (USEPA) Method 8021, TPH by USEPA Method 8015, and chloride by USEPA 300. Samples collected were placed on ice and sealed in a cooler for delivery to Hall Environmental Analysis Laboratory, Inc. (HEAL) of Albuquerque, New Mexico, for analysis. Soil samples were labeled with the date and time of collection, sample name, sample collector's name, and parameters to be analyzed. Strict chain-of-custody protocol was documented including the date and time sampled, sample number, type of sample, sample collector's name and signature, preservative used, and analyses required.

Laboratory analytical results are presented on Table 1 and indicated that 17 of the segments had soil impacted with TPH concentrations exceeding the NMOCD Remediation Action Level of 100 mg/kg during the August 2018 sampling event. Benzene, BTEX, and chloride were in compliance with remediation action levels.

Additional discrete soil samples were collected on September 12, 2018, to delineate impacted soil identified in areas that were determined to be inaccessible for excavation due to physical site conditions (e.g., narrow incised channels and undercut channel banks). These areas are located within segments SS07, SS11, and SS13. Discrete samples were collected in the locations presented on Figure 3. The soil samples were collected and handled as previously described and analyzed for BTEX according to USEPA Method 8021, TPH by USEPA Method 8015, and chloride by USEPA 300. Laboratory analytical results for the delineation event are presented in Table 2. Delineation results indicated that impacted soil remains in segment SS07 at sample location SS7A and SS7E; however, impacted soil does not extend beyond SS7B and SS7C (Figure 3). Delineation results indicated that impacted soil remains in segment SS11 at sample location SS11C, but impacted soil does not extend beyond SS11B and SS11D (Figure 3). Due to the safety concerns and physical limitations for sampling the entirety of segment SS13, it is assumed that impacted soil remains between SS13A and SS13B although no impacts were observed in samples collected at SS13A and SS13B.

REMEDIATION WORK PLAN

LTE and LOGOS have prepared this Remediation Work Plan to achieve compliance with NMOCD Remediation Action Levels and to be protective of the public health and environment. Excavation activities will continue in the areas where impacted soil remains (SS01, SS05, SS07, SS08, SS09, SS10, SS11, SS13, SS14, SS15, SS16, SS18, SS19, SS21, SS22, SS23 and SS26) until source removal indicates compliance with cleanup goals. In addition to excavation, some areas of the Site are inaccessible to excavation equipment or unsafe for hand digging and will necessitate implementing an alternative remediation technology. These locations include areas between SS7B and SS7C, areas between SS11B and SS11D, and the area between SS13A and SS13B (Figure 3).

For these areas, LTE and LOGOS propose to apply Microblaze[®], a USEPA emergency responseapproved proprietary blend of wetting agents, nutrients, and non-pathogenic bacteria, to the impacted soil via mechanical spray application. The biological amendment will work in harmony with the native conditions to enhance natural degradation, using oxygen from the ambient air, natural microbes, supplemental microbes, and supplemental electron acceptors. The microbes will promote hydrocarbon degradation and site remediation through metabolic processes, where the microbes oxidize organic compounds to release energy, build cellular material, and promote cellular processes. The amendment will allow the petroleum hydrocarbons to release from the sorbed state in the soil pore matrix, to be broken down into smaller species, to dissolve in the amendment and supplemental water, and will promote a biological oxidation reaction until there are no petroleum hydrocarbons remaining in the soil.

PERFORMANCE AND CONFIRMATION SAMPLING

Work will continue until all areas demonstrate compliance with NMOCD Remediation Action Levels.

The amendment will be applied two weeks after approval of this Remediation Work Plan. Performance sampling in the designated areas will be conducted 1-month post-application and then in 1-month intervals thereafter as necessary. Performance sampling will consist of collecting one composite sample from each area where amendment was applied. NMOCD will be given notice of the sampling events at least 48 hours prior to sampling activities.

Confirmation sampling will include collection of five-point composite samples from the previously designated 100-foot and 150-foot segments where results from previous sampling events indicated that additional excavation was required (Table 1). Additional excavation activities will be completed by November 1, 2018. Confirmation soil samples will be collected after excavated activities are complete and once performance sampling indicates impacted soil in areas where amendment was applied have been remediated. NMOCD will be given notice of the sampling events at least 48 hours prior to sampling activities.

Fields, V. Page 4

REPORTING

Once confirmation sampling activities are completed and laboratory analytical results are received, LOGOS will provide the NMOCD with a summary report that will include the field screening and laboratory analytical results from each sampling event. The report will include a summary of performance monitoring sampling conducted in the areas where amendment was applied. When analytical results from sampling activities indicate soil has been remediated, LOGOS will provide the NMOCD with a final closure request.

LTE appreciates the opportunity to provide this Remediation Work Plan to the NMOCD. If you have any questions or comments regarding this Remediation Work Plan, do not hesitate to contact us at (970) 385-1096 or via electronic mail at <u>dhencmann@ltenv.com</u> or Larissa Farrell at (505) 787-2027 or at <u>lfarrell@logosresourcesllc.com</u>.

Sincerely,

LT ENVIRONMENTAL, INC.

Sen ga

Devin Hencmann Project Geologist

Ashley L. ager

Ashley L. Ager, P.G. Senior Geologist

cc: Whitney Thomas (<u>l1thomas@blm.gov</u>)

Abiodun Adeloye (aadeloye@blm.gov)

Attachments:

Figure 1 – Site Location Map Figure 2 – Site Map Figure 3 – Delineation Map Table 1 – Analytical Results Table 2 – Analytical Results (Delineation Results)

FIGURES

TABLES

TABLE 1 SOIL ANALYTICAL RESULTS

HERO 23 08 09L COM 2H RELEASE RESPONSE SAN JUAN COUNTY, NEW MEXICO LOGOS RESOURCES II, LLC

| NMOCD Remediatic | SS27 8/1/2 | | SS26 8/1/2 | SS25 8/1/2
SS26 8/1/2 | SS24 8/1/2
SS25 8/1/2
SS26 8/1/2 | SS23 8/1/2
SS24 8/1/2
SS25 8/1/2
SS26 8/1/2 | SS22 8/1/2
SS23 8/1/2
SS24 8/1/2
SS25 8/1/2
SS25 8/1/2
SS26 8/1/2 | SS21 8/1/2
SS22 8/1/2
SS23 8/1/2
SS24 8/1/2
SS25 8/1/2
SS26 8/1/2 | SS20 8/1/2
SS21 8/1/2
SS22 8/1/2
SS23 8/1/2
SS23 8/1/2
SS24 8/1/2
SS25 8/1/2
SS25 8/1/2 | SS19
SS20
SS20
SS21
SS22
SS22
SS23
SS24
SS24
SS25
SS25
SS25
SS25
SS25
SS26
SS26
SS26 | SS18 8/1/2 SS20 8/1/2 SS21 8/1/2 SS221 8/1/2 SS223 8/1/2 SS23 8/1/2 SS24 8/1/2 SS25 8/1/2 SS24 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 | SS18 8/1/2 SS19 8/1/2 SS19 8/1/2 SS20 8/1/2 SS21 8/1/2 SS22 8/1/2 SS23 8/1/2 SS24 8/1/2 SS25 8/1/2 SS25 8/1/2 SS25 8/1/2 SS25 8/1/2 SS25 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 SS26 8/1/2 | SS17 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS22 8/1/2 SS23 8/1/2 SS23 8/1/2 SS25 8/1/2 SS25 8/1/2 SS25 8/1/2 SS25 8/1/2 SS26 8/1/2
 | SS15 8/1/2 SS17 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS22 8/1/2 SS23 8/1/2 SS24 8/1/2 SS25 8/1/2 SS25 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 | SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS20 8/1/2 SS21 8/1/2 SS21 8/1/2 SS22 8/1/2 SS23 8/1/2 SS24 8/1/2 SS25 8/1/2 SS26 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 | SS14 8/1/2 SS15 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS19 8/1/2 SS19 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS22 8/1/2 SS23 8/1/2 SS25 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 | SS13 8/1/2 SS13 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS19 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS22 8/1/2 SS23 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 | SS11 8/1/2 SS13 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS19 8/1/2 SS21 8/1/2 SS22 8/1/2 SS24 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2
 | SS110 8/1/2 SS111 8/1/2 SS12 8/1/2 SS13 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS19 8/1/2 SS19 8/1/2 SS19 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS22 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 | SS09 8/1/2 SS11 8/1/2 SS11 8/1/2 SS12 8/1/2 SS13 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS19 8/1/2 SS19 8/1/2 SS19 8/1/2 SS19 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS22 8/1/2 SS23 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 | SS08 8/1/2 SS10 8/1/2 SS11 8/1/2 SS11 8/1/2 SS13 8/1/2 SS14 8/1/2 SS15 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS19 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS22 8/1/2 SS23 8/1/2 SS24 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 | SS07 8/1/2 SS08 8/1/2 SS09 8/1/2 SS10 8/1/2 SS11 8/1/2 SS12 8/1/2 SS13 8/1/2 SS14 8/1/2 SS15 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS19 8/1/2 SS19 8/1/2 SS19 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS22 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 SS26 8/1/2 | SS06 8/1/2 SS08 8/1/2 SS08 8/1/2 SS09 8/1/2 SS09 8/1/2 SS10 8/1/2 SS11 8/1/2 SS12 8/1/2 SS14 8/1/2 SS15 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS18 8/1/2 SS19 8/1/2 SS19 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS21 8/1/2 SS22 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2
 | SS05 8/1/2 SS07 8/1/2 SS07 8/1/2 SS08 8/1/2 SS09 8/1/2 SS10 8/1/2 SS11 8/1/2 SS12 8/1/2 SS13 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS11 8/1/2 SS12 8/1/2 SS13 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS21 8/1/2 SS21 8/1/2 SS22 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 | SS04 8/1/2 SS06 8/1/2 SS06 8/1/2 SS07 8/1/2 SS08 8/1/2 SS09 8/1/2 SS10 8/1/2 SS11 8/1/2 SS12 8/1/2 SS13 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS11 8/1/2 SS12 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS20 8/1/2 SS21 8/1/2 SS22 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2
 | SS03 8/1/2 SS05 8/1/2 SS06 8/1/2 SS06 8/1/2 SS06 8/1/2 SS07 8/1/2 SS08 8/1/2 SS09 8/1/2 SS09 8/1/2 SS10 8/1/2 SS11 8/1/2 SS12 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS11 8/1/2 SS12 8/1/2 SS13 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS21 8/1/2 SS22 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 | SS02 8/1/2 SS04 8/1/2 SS05 8/1/2 SS06 8/1/2 SS07 8/1/2 SS08 8/1/2 SS09 8/1/2 SS09 8/1/2 SS09 8/1/2 SS09
 8/1/2 SS09 8/1/2 SS10 8/1/2 SS11 8/1/2 SS12 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS11 8/1/2 SS12 8/1/2 SS13 8/1/2 SS14 8/1/2 SS15 8/1/2 SS21 8/1/2 SS21 8/1/2 SS22 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 | SS01 8/1/2 SS03 8/1/2 SS04 8/1/2 SS05 8/1/2 SS06 8/1/2 SS06 8/1/2 SS06 8/1/2 SS06 8/1/2 SS07 8/1/2 SS08 8/1/2 SS09 8/1/2 SS10 8/1/2 SS11 8/1/2 SS12 8/1/2 SS13 8/1/2 SS14 8/1/2 SS15 8/1/2 SS16 8/1/2 SS17 8/1/2 SS18 8/1/2 SS19 8/1/2 SS19 8/1/2 SS19 8/1/2 SS19 8/1/2 SS20 8/1/2 SS21 8/1/2 SS22 8/1/2 SS23 8/1/2 SS24 8/1/2 SS25 8/1/2 SS26 8/1/2 SS26 8/1/2 </th |
|------------------|------------|---------|------------|--------------------------|--|--|---|---|---|--|---|--
---|---|--|--|---
--|--|---|--
--|---|--
--
--|--
---|
| | 8/1/2018 1 | 0117/10 | 8/1/2018 | 8/1/2018 1 | 8/1/2018
8/1/2018
8/1/2018 | 8/1/2018
8/1/2018
8/1/2018
8/1/2018 | 8/1/2018 2
8/1/2018 2
8/1000 2
8/10000 2
8/100000000000000000 | 8/1/2018 2
8/1/2018 2
8/10 2
8/1000 2
8/1000 2
8/1000000000000000000000000000000000000 | 8/1/2018 2
8/1/2018 2
8/100 2
8/1000 2
8/1000 2
8/1000 2
8/1000 2
8/1000 2
8/1000 2
8/10 | 8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018 | 8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018 | 8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018 | 8/1/2018 2
8/1/2018 5
8/1/2018 5
8/1/2018 5
8/1/2018 2
8/1/2018 2
8/18 2
8/10 2
8/10 2
8/10 2
8/10 2
8/10 2
8/10 2
8/10 2
8/10 2
8/1 | 8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018 | 8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018 | 8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018 | 8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018 | 8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018 | 8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/18
8/1/2018
8/18
8/18
8/18
8/18
8/18
8/18
8/18
8/18
8/ | 8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018 | 8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018 | 8/1/2018 1
8/1/2018 8
8/1/2018 8
8/1/2018 8
8/1/2018 1
8/1/2018 1
8/1/2018 1
8/1/2018 2
8/1/2018 2
8/18 2
8/1/2018 2
8/1/2018 2
8/1/2018 2
8/1/2018 2
8/1/2018 2
8/1/ | 8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/18
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/201 | 8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018 | 8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/18
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/201 | 8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1/2018
8,1 | 8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018
8,1/1/2018 | 8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/2018
8/1/20 |
| 18 1.8 | | 1.5 | | 1.9 | 18 2.4
18 1.9 | 118 2.8
118 2.4
118 1.9 | 118 27.4
118 2.8
118 2.4
118 1.9 | 118 26.1
118 27.4
118 2.8
118 2.4
118 2.4
118 1.9 | 118 2.3
118 26.1
118 27.4
118 2.8
118 2.4
118 2.4
118 1.9 | 118 7.3
118 2.3
118 26.1
118 27.4
118 2.8
118 2.4
118 2.4
119 1.9 | 11.8 51.4
11.8 7.3
11.8 2.3
11.18 26.1
11.18 27.4
11.18 2.7.4
11.18 2.7.4
11.18 2.7.4
11.18 2.4
11.18 2.4
11.18 2.4 | 11.8 4.7
11.8 51.4
11.8 7.3
11.8 2.3
11.8 2.5
11.8 2.6.1
11.8 2.7.4
11.8 2.7.4
11.8 2.7
11.8 2.4
11.9 2.4
11.9 2.4 | 118 23.2 118 4.7 118 51.4 118 7.3 118 2.3 118 2.6 118 27.4 118 27.4 118 2.2 118 2.6 118 2.4 118 2.4
 | 118 2.7 118 23.2 118 4.7 118 51.4 118 2.3 1118 2.3 1118 2.1 1118 2.3 1118 2.1 1118 2.1 1118 2.1 1118 2.1 1118 2.2 1118 2.2 1118 2.1 1118 2.1 1118 2.1 1118 2.1 1118 2.1 1118 2.1 1118 2.1 1118 2.1 1118 2.1 1118 2.1 1118 2.1 1118 2.1 1118 2.1 | 11.8 27.8 11.8 2.7 11.8 23.2 11.8 4.7 11.8 51.4 11.8 2.3 11.8 2.1 11.8 2.3 11.8 2.3 11.8 2.3 11.8 2.3 11.8 2.3 11.8 2.3 11.8 2.3 11.8 2.4 11.8 2.4 11.8 2.4 11.8 2.4 11.8 2.4 11.8 2.4 | 11.8 27.3 11.8 27.7 11.8 2.7 11.8 2.7 11.8 2.7 11.8 2.7 11.8 2.7 11.8 2.3 11.8 51.4 11.8 7.3 11.8 7.3 11.8 2.3 11.8 2.3 11.8 2.3 11.8 2.3 11.8 2.3 11.8 2.4 11.8 2.4 11.8 2.4 11.8 2.4 11.8 2.4 11.8 2.4 | 11.18 7.7 11.18 47.3 11.18 27.8 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.1.7 11.18 2.1.4 11.18 2.1.3 11.18 2.1.3 11.18 2.1.3 11.18 2.1.3 11.18 2.1.3 11.18 2.2.3 11.18 2.2.3 11.18 2.2.4 11.18 2.7.4 11.18 2.7.4 11.18 2.7.4 11.18 2.4 11.18 2.4 11.18 2.4 11.18 2.4 11.18 2.4 | 113 12.6 118 7.7 118 27.8 118 2.7 118 2.7 118 2.7 118 2.7 118 2.7 118 2.7 118 2.7 118 2.7 118 2.7 118 2.7 118 2.7 118 2.7 118 2.7 118 2.7 118 2.1 118 2.3 118 2.3 118 2.1 118 2.1 118 2.1 118 2.1 118 2.1 118 2.1 118 2.1 118 2.1 118 2.1 118 2.1 118 2.1 118 2.1 118 2.1 118
 | 11.8 59.2 11.8 12.6 11.8 7.7 11.8 2.7.8 11.8 2.7.8 11.8 2.7.8 11.8 2.7.8 11.8 2.7.1 11.8 2.7.2 11.8 2.7.2 11.8 2.7.2 11.8 2.7.2 11.8 2.7.2 11.8 2.7.2 11.8 7.3 11.8 7.3 11.8 7.3 11.8 7.3 11.8 2.2.3 11.8 2.2.4 11.8 2.7.4 11.8 2.7.4 11.8 2.4 11.8 2.4 11.8 2.4 11.8 2.4 | 1118 8.8 1118 59.2 1128 12.6 1128 12.7 1128 27.7 1128 2.7 1128 2.7 1128 2.7.7 1128 2.7.7 1128 2.7.7 1128 2.7.7 1128 2.7.7 1128 2.7.7 1128 2.7.7 1128 2.7.3 1128 2.7.3 1128 2.7.3 1128 2.2.3 1128 2.2.4 1128 2.7.4 1128 2.7.4 1128 2.7.4 1128 2.7.4 1128 2.7.4 1128 2.7.4 1128 2.4 1138 2.4 | 11.8 32.3 11.8 8.8 11.8 59.2 11.8 12.6 11.8 7.7 11.8 27.8 11.8 27.8 11.8 23.2 11.8 23.2 11.8 23.2 11.8 21.4 11.8 21.4 11.8 2.13 11.8 2.14 11.8 2.14 11.8 2.14 11.8 2.14 11.8 2.14 11.8 2.14 11.8 2.7.4 11.8 2.7.4 11.8 2.14 11.8 2.14 11.8 2.4 11.8 2.4 11.8 2.4 | 11.8 32.3 11.8 32.3 11.8 32.4 11.8 59.2 11.8 12.6 11.8 12.7 11.8 2.7.8 11.8 2.7.8 11.8 2.7.8 11.8 2.7.1 11.8 2.7.2 11.8 2.7.2 11.8 2.7.2 11.8 2.7.2 11.8 2.7.2 11.8 2.7.2 11.8 2.7.2 11.8 2.7.2 11.8 2.7.2 11.8 2.2.3 11.8 7.3 11.8 2.2.3 11.8 2.2.4 11.8 2.7.4 11.8 2.4 11.8 2.4 11.8 2.4 | 11.18 4.1 11.18 12.4 11.18 59.2 11.18 59.2 11.18 12.6 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.7 11.18 2.2 11.18 2.2 11.18 2.2 11.18 2.2 11.18 2.2 11.18 2.2 11.18 2.2 11.18
 2.2 11.18 2.2 11.18 2.2 11. | 11.8 3.0 11.8 4.1 11.8 15.4 11.8 32.3 11.8 59.2 11.8 12.6 11.8 12.6 11.8 12.6 11.8 27.7 11.8 27.7 11.8 27.7 11.8 27.7 11.8 27.7 11.8 27.7 11.8 27.7 11.8 27.7 11.8 27.4 11.8 27.4 11.8 27.4 11.8 27.4 11.8 27.4 11.8 27.4 11.8 27.4 11.8 27.4 11.8 27.4 11.8 27.4 11.8 27.4 11.8 27.4 | 1118 0.8 1118 3.1 1118 4.1 1118 3.1 1118 3.2.3 1118 3.2.3 1118 59.2 1118 1.2.6 1118 1.2.6 1118 2.7.8 1118 2.7.8 1118 2.7.8 1118 2.7.1 1118 2.7.2 1118 2.7.2 1118 2.7.2 1118 2.7.2 1118 2.7.2 1118 2.7.2 1118 2.7.2 1118 2.1.2 1118 2.2.3 1118 2.2.3 1118 2.2.4 1118 2.7.4 1118 2.7.4 1118 2.4 1118 2.4 1118 2.4
 | 1118 0.6 1118 3.0 1118 3.0 1118 3.0 1118 3.0 1118 3.0 1118 3.0 1118 3.15.4 1118 3.2.3 1118 5.9.2 1118 1.2.6 1118 7.7 1118 2.7.8 1118 2.7.7 1118 2.7.7 1118 2.7.7 1118 2.7.7 1118 2.7.7 1118 2.7.7 1118 2.7.7 1118 2.7.7 1118 2.7.7 1118 2.7.7 1118 2.7.7 1118 2.7.7 1118 2.7.7 1118 2.7.7 1118 2.7.7 1118 2.7.8 1118 2.2.3 1118 2.2.4 1118 2.7.4 | 11.8 0.5 11.8 0.6 11.8 0.8 11.8 3.0 11.8 3.1 11.8 3.2 11.8 32.3 11.8 32.3 11.8 32.3 11.8 32.3
 11.8 32.4 11.8 32.5 11.8 32.7 11.8 12.6 11.8 2.7.8 11.8 2.7.7 11.8 2.7.7 11.8 2.7.7 11.8 2.7.7 11.8 2.7.7 11.8 2.7.7 11.8 2.7.7 11.8 2.7.7 11.8 2.7.7 11.8 2.7.7 11.8 2.7.7 11.8 2.7.4 11.8 2.7.4 11.8 2.7.4 11.8 2.7.4 11.8 2.7.4 11.8 2.7.4 | 118 6.1 118 0.5 118 0.6 118 3.0 118 3.1 118 3.2 118 3.2.3 118 3.2.3 118 3.2.3 118 3.2.3 118 3.2.3 118 3.2.3 118 3.2.3 118 3.2.3 118 2.7.8 118 2.7.8 118 2.7.7 118 2.7.7 118 2.7.8 118 2.7.7 118 2.7.8 118 2.7.8 118 2.7.14 118 2.7.2 118 2.7.3 118 7.3 118 2.2.3 118 2.2.4 118 2.7.4 118 2.4 118 2.4 |
<0.023		<0.023	<0.024		<0.023	<0.023	<0.024 <0.023 <0.023	<0.024 <0.024 <0.023	<0.024 <0.024 <0.024 <0.023 <0.023	<0.023 <0.024 <0.024 <0.024 <0.023 <0.023	<0.023 <0.023 <0.024 <0.024 <0.024 <0.023 <0.023	<0.025 <0.023 <0.023 <0.024 <0.024 <0.024 <0.024 <0.023	<0.025 <0.025 <0.023 <0.023 <0.024 <0.024 <0.024 <0.023	<0.024 <0.025 <0.025 <0.023 <0.023 <0.023 <0.024 <0.024 <0.024 <0.024	 <0.024 <0.025 <0.025 <0.023 <0.023 <0.024 <0.02	 <0.024 <0.024 <0.025 <0.023 <0.023 <0.024 <0.023 <0.023 <0.024 <0.02	 40.025 40.024 40.024 40.024 40.025 40.025 40.025 40.023 40.024 	 40.022 40.024 40.024 40.024 40.024 40.025 40.025 40.023 40.023 40.024 40.023 40.024 40.023 	 <a>c) 0.025 <a>c) 0.024 <a>c) 0.024 <a>c) 0.024 <a>c) 0.024 <a>c) 0.024 <a>c) 0.024 <a>c) 0.025 <a>c) 0.025 <a>c) 0.023 <a>c) 0.024 <a>c) 0.023 <a>c) 0.024 <a>c) 0.023 <a>c) 0.024 <a>c) 0.024 <a>c) 0.025 <a>c) 0.024 	 	 40.025 40.025 40.025 40.025 40.025 40.025 40.024 40.024 40.025 40.02	 <0.024 <0.025 <0.025 <0.025 <0.024 <0.02	 40.025 40.025 40.025 40.025 40.025 40.024 40.024 40.024 40.025 	 40.022 40.023 40.024 40.025 40.025 40.025 40.025 40.025 40.025 40.025 40.024 40.025 40.02	 40.025 40.025 40.025 40.025 40.025 40.025 40.025 40.024 40.025 40.024 40.025 40.024 40.025 40.025 40.024 40.025 40.025 40.024 40.023 40.024 40.023 40.024 	 40.025 40.025 40.025 40.025 40.025 40.024 40.024 40.025 40.024 40.024 40.024 40.024 40.025 40.023 40.023 40.024 40.02	 40.025 	 40.023 40.025 40.025 40.025 40.025 40.025 40.024 40.025 40.02
<0.047	<0.047		<0.047	<0.047		<0.046	<0.048	<0.048 <0.048	<0.047 <0.048 <0.048 <0.046	<0.047 <0.047 <0.048 <0.048 <0.046	<0.047 <0.047 <0.047 <0.048 <0.048 <0.048 <0.046	<0.049 <0.047 <0.047 <0.047 <0.048 <0.048 <0.048	<0.050 <0.049 <0.047 <0.047 <0.047 <0.048 <0.048 <0.046	<0.049 <0.050 <0.049 <0.047 <0.047 <0.047 <0.047 <0.047 <0.048 <0.048 <0.048	<0.047 <0.069 <0.050 <0.047 <0.047 <0.047 <0.047 <0.048 <0.048 <0.048	<0.048 <0.047 <0.049 <0.050 <0.049 <0.049 <0.047 <0.047 <0.047 <0.047 <0.048 <0.048 <0.048	<0.049 <0.047 <0.047 <0.050 <0.049 <0.049 <0.047 <0.047 <0.047 <0.047 <0.047 <0.047 <0.048 <0.048	<0.047 <0.049 <0.048 <0.048 <0.049 <0.049 <0.059 <0.049 <0.049 <0.047 <0.047 <0.047 <0.047 <0.047 <0.047 <0.048 <0.048 <0.048	 4.0.049 4.0.049 4.0.048 4.0.049 4.0.047 4.0.048 4.0.048 4.0.048 	 -0.050 -0.049 -0.049 -0.049 -0.049 -0.048 -0.049 -0.049 -0.049 -0.049 -0.049 -0.049 -0.049 -0.047 -0.049 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.048 -0.048 -0.048 -0.048 -0.048 	 40.048 40.049 40.049	 -0.048 -0.049 -0.049	 -0.050 -0.048 -0.048 -0.049 -0.047 -0.047 -0.047 -0.048 	 40.047 40.048 40.048 40.048 40.049 40.047 40.04	 CO CSO CO CSO	 40.049 40.049 40.048 40.048 40.048 40.048 40.048 40.049 40.048 	 40.049 40.050 40.050 40.050 40.050 40.050 40.048 40.048 40.049 40.047 40.047 40.047 40.047 40.047 40.047 40.047 40.048 40.048 40.048 40.048 40.048 40.048 	 40.047 40.049 40.050 40.050 40.050 40.050 40.050 40.050 40.048 40.048 40.048 40.048 40.049 40.04
<0.047	<0.047	10.011	<0.047	<0.047	<0.046		<0.048	<0.048	<0.047 <0.048 <0.048	<0.047 <0.047 <0.048 <0.048	<0.047 <0.047 <0.047 <0.048 <0.048	<0.049 <0.047 <0.047 <0.047 <0.048 <0.048	<0.050 <0.049 <0.047 <0.047 <0.047 <0.048 <0.048	<0.049 <0.050 <0.049 <0.047 <0.047 <0.047 <0.048 <0.048	<0.047 <0.049 <0.050 <0.049 <0.049 <0.047 <0.047 <0.047 <0.048	<0.048 <0.049 <0.049 <0.049 <0.049 <0.047 <0.047 <0.047 <0.047 <0.047 <0.048	<0.049 <0.048 <0.047 <0.050 <0.049 <0.049 <0.047 <0.047 <0.047 <0.047 <0.047	<0.047 <0.049 <0.049 <0.049 <0.049 <0.049 <0.049 <0.049 <0.049 <0.047 <0.047 <0.047 <0.047 <0.047 <0.047	<0.049 <0.049 <0.048 <0.048 <0.048 <0.049 <0.049 <0.049 <0.049 <0.049 <0.049 <0.047 <0.047 <0.047 <0.047 <0.047	 <0.050 <0.049 <0.047 <0.048 	 <0.048 <0.049 <0.047 <0.047 <0.047 <0.047 <0.047 <0.047 <0.047 <0.047 <0.047 <0.048 	<0.048 <0.049 <0.049 <0.049 <0.049 <0.049 <0.049 <0.049 <0.049 <0.049 <0.049 <0.047 <0.047 <0.047 <0.047 <0.047 <0.047 <0.048	 <0.050 <0.048 <0.049 <0.044 <0.049 <0.048 	 <0.047 <0.048 <0.048 <0.048 <0.049 <0.047 <0.047 <0.047 <0.047 <0.048 <0.048 <0.044 	 <0.050 <0.048 <0.048 <0.048 <0.048 <0.049 <0.049 <0.047 <0.048 	 <0.049 <0.047 <0.048 <0.048 <0.048 <0.049 <0.047 <0.049 <0.049 <0.049 <0.049 <0.049 <0.049 <0.049 <0.041 <0.04	 < 0.049 < 0.049 < 0.047 < 0.048 < 0.048 < 0.048 < 0.049 < 0.041 < 0.048 < 0.048 < 0.048 	 <0.047 <0.049 <0.050 <0.040 <0.041 <0.042 <0.042 <0.043 <0.043 <0.043 <0.044 <0.04
<0.094	<0.094		<0.095	<0.094	<0.093		<0.097	<0.097	<0.094	<0.094 <0.094 <0.097	<0.093 <0.094 <0.094 <0.097	<0.098 <0.093 <0.094 <0.094 <0.097 <0.097	<0.10 <0.098 <0.093 <0.094 <0.094 <0.097 <0.097															
 | <0.097
<0.10
<0.098
<0.093
<0.094
<0.094
<0.094
<0.097 | <0.095
<0.097
<0.097
<0.098
<0.093
<0.094
<0.094
<0.097 | <0.097
<0.095
<0.097
<0.10
<0.098
<0.098
<0.094
<0.094
<0.094
<0.097
<0.097 | <0.099
<0.097
<0.097
<0.097
<0.10
<0.097
<0.098
<0.093
<0.094
<0.094
<0.097
<0.097 | <0.095 <0.097 <0.097 <0.097 <0.097 <0.097 <0.098 <0.098 <0.094 <0.09 | <c><0.098</c> <c><0.097</c> <c><0.097</c> <c><0.097</c> <<p><c><0.097</c></p> <<p><<p><<p><<p><<p><<p><<p><<p><<p< td=""><td> <0.10 <0.098 <0.098 <0.099 <0.097 <0.097 <0.097 <0.097 <0.098 <0.098 <0.093 <0.094 <0.097 <0.097 <0.094 <0.097 <0.097 <0.097 <0.097 <0.097 <0.097 <0.097 <0.097 <0.094 <0.097 <0.097 <0.097 <0.097 <0.097 <0.097 <0.097 </td><td> <c).095< p=""></c).095<> </td><td> 40.095 40.095 40.109 40.098 40.098 40.097 40.097 40.097 40.098 </td><td> <0.10 <0.095 <0.095 <0.095 <0.098 <0.098 <0.099 <0.099 <0.099 <0.097 <0.094 <0.097 <0.094 <0.097 </td><td> <0.095</td></p<></p> <0.095</p> <0.095</p> <0.095</p> <0.095</p> <0.098</p> <0.097</p> <0.097</p> <0.097 <0.098 <0.093 <0.094 <0.097 <0.097 <0.094
 | <0.10 <0.098 <0.098 <0.099 <0.097 <0.097 <0.097 <0.097 <0.098 <0.098 <0.093 <0.094 <0.097 <0.097 <0.094 <0.097 <0.097 <0.097 <0.097 <0.097 <0.097 <0.097 <0.097 <0.094 <0.097 <0.097 <0.097 <0.097 <0.097 <0.097 <0.097 | <c).095< p=""></c).095<> | 40.095 40.095 40.109 40.098 40.098 40.097 40.097 40.097 40.098 | <0.10 <0.095 <0.095 <0.095 <0.098 <0.098 <0.099 <0.099 <0.099 <0.097 <0.094 <0.097 <0.094 <0.097 | <0.095
 | 40.099 40.095 40.105 40.1095 40.095 40.095 40.095 40.095 40.097 40.097 40.093 40.093 40.094 40.094 40.094 40.094
 | <0.098 <0.095 <0.094 <0.097 <0.094 <0.097 <0.094 | 40.098 40.098 40.095 40.096 40.096 40.094 40.097 40.097 | <0.094 <0.098 <0.098 <0.099 <0.095 <0.094 <0.097 <0.097
 |
| <0.210 | | <0.211 | <0.213 | <0.211 | <0.208 | | <0.217 | <0.217 | <0.212
<0.217
<0.217 | <0.211
<0.212
<0.217
<0.217 | <0.210
<0.211
<0.212
<0.212
<0.217 | <0.221
<0.210
<0.211
<0.212
<0.212
<0.217 | <0.225
<0.221
<0.210
<0.211
<0.211
<0.212
<0.217
<0.217 | <0.219
<0.225
<0.221
<0.210
<0.211
<0.211
<0.212
<0.217
<0.217 | <0.213
<0.219
<0.221
<0.221
<0.210
<0.211
<0.211
<0.211
<0.217
<0.217 | <0.217
<0.213
<0.225
<0.221
<0.221
<0.210
<0.211
<0.211
<0.217
<0.217 | <0.222 <0.213 <0.213 <0.215 <0.221 <0.210 <0.211 <0.211 <0.211 <0.211 <0.211 <0.211 <0.211 <0.211 | 0.213 0.212 0.213 0.213 0.214 0.214 0.215 0.225 0.221 0.211 | 60.221 60.222 60.213 60.213 60.214 60.214 60.215 60.215 60.216 60.211 | 40.225 40.223 40.213 40.212 40.213 40.213 40.214 40.215 40.215 40.216 40.211 40.211 40.211 40.211 40.211 40.212 40.212 40.211 40.211 40.212 40.212 40.211 40.211 40.211 40.212 40.211 40.211 40.211 40.211 40.211 40.211 40.212 40.212 40.211 40.211 | 60.215
60.225
60.223
60.223
60.222
60.213
60.213
60.213
60.219
60.225
60.225
60.225
60.221
60.221
60.211
60.211
60.211
60.213 | 40.215 40.225 40.225 40.221 40.2221 40.2221 40.2217 40.217 40.225 40.221 40.221 40.221 40.221 40.221 40.221 40.221 40.211 | 40.225 40.225 40.215 40.213 40.213 40.213 40.2121 40.214 40.214 40.215 40.214 40.214 | 60.213
60.215
60.215
60.225
60.225
60.221
60.223
60.221
60.212
60.213
60.213
60.213
60.215
60.215
60.215
60.215
60.213
60.213
60.213
60.213
60.213
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60.215
60 | 40.224 40.223 40.215 40.215 40.225 40.221 40.211 40.211 40.211 40.211 40.211 40.211 40.211 40.211 40.211 | 40.221 40.223 40.225 40.225 40.225 40.225 40.221 40.221 40.212 40.213 40.213 40.214 | 40.2211 40.2211 40.223 40.213 40.214 40.215 40.211 40.217 40. | 40.2111
40.221
40.221
40.2224
40.223
40.225
40.225
40.225
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.221
40.2210 |
| <9.9 | 5 | 120 | <9.8 | 39 | 96 | 110 | 210 | 250 | 65
250 | 170
65
250 | 640
170
250 | 51
640
170
65
250 | 230
51
170
65
250
 | 320
230
51
170
55
250 | 860
320
51
640
170
65
65
250 | 1,400
320
230
51
640
170
65
250
250 | 98
1,400
320
230
51
640
170
65
250
250 | 1,200
98
1,400
860
220
230
230
51
640
170
65
250
250
 | 1,300
1,200
9
860
320
320
51
640
51
65
170
65
2250 | 420
1,300
98
1,400
860
320
230
230
51
640
170
65
52
51 | 440
420
1,300
1,200
98
1,400
860
860
230
230
230
230
230
51
51
51
51
51
51
51
51
51
51 | 770
420
1,300
1,200
98
98
1,400
230
230
230
230
230
230
51
51
51
51
51
51
51
51
51
51
51
51
51 | 72
770
420
420
1,300
1,200
1,200
98
1,400
880
320
220
51
51
640
65
51
51
51
65
51
65
51
 | 95
72
770
4400
420
1,300
1,200
1,200
98
98
230
230
230
230
51
640
51
65
51
51
65
51
51
65 | <pre><9.9 95 72 72 770 420 420 1,300 1,200 1,200 1,200 230 51 51 51 51 51 51 51 51 51 51 51 51 51</pre>
 | <10 <210 <29.9 <25 <2770 <2770 <2770 <2770 <2700 <2 | 14
<10
<9.9
772
770
4400
1,200
1,200
1,200
1,200
1,200
51
51
51
51
51
51
51
51
51
51
51
51
51 |
14
<10
<9.9
95
72
770
770
4200
4200
4200
4200
4200
420 |
| <4./ | 1 | <4.7 | <4.7 | <4.7 | <4.6 | 8.7 | | 19 | <4.7
19 | <4.7
<4.7
19 | 24
<4.7
<4.7
19 | 8.0
24
<4.7
<4.7
19 | 7.0
8.0
24
<4.7
4.7
19 | <4.9
7.0
8.0
24
<4.7
19 | 13
<4.9
7.0
8.0
24
<4.7
<4.7
19 | 18
4.9
7.0
8.0
8.0
24
24
24.7
19 | <4.9
18
7.0
8.0
8.0
24
24
24.7
19 | 16
4.9
13
7.0
8.0
8.0
24
24
24
24
24
21
19 | 20
4.9
13
4.9
7.0
7.0
8.0
24.7
24.7
24.7
24.7
24.7
21
9 | <pre><5.0 20 16 <4.9 18 13 44.9 7.0 8.0 8.0 8.0 44.7 24 19 19 19 19</pre> | 12
5.0
20
16
16
4.9
18
18
13
7.0
8.0
7.0
8.0
7.0
8.0
7.0
8.0
7.0
8.0
7.0
8.0
7.0
8.0
7.0
8.0
7.0
7.0
8.0
7.0
8.0
7.0
8.0
7.0
8.0
8.0
8.0
7.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | 18
20
20
20
20
20
20
20
20
20
21
13
24
24
24
24
24
24
24
24
24
24 | 4.5.0 4.5.0 4.6 4.6 4.6 4.6 4.7 4.7 4.7 19 | <4.7 12 12 20 20 20 20 20 20 20 21 24 24 | <5.0 <4.7 <5.0 <5.0<td> <4.9 <5.0 <5.7 <5.7 <5.7 <5.7 <5.0 <5.0<td> <4.9 <5.0 <5.0 <5.0 <5.0 12 12 <6.9 16 <16 <17.0 <6.9 <18 <13 <13 <13 <14.7 <4.7 <4.7 <4.7 <4.7 </td><td> <4.7 <4.9 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 20 20 21 118 119 <110 <1</td></td> | <4.9 <5.0 <5.7 <5.7 <5.7 <5.7 <5.0 <5.0<td> <4.9 <5.0 <5.0 <5.0 <5.0 12 12 <6.9 16 <16 <17.0 <6.9 <18 <13 <13 <13 <14.7 <4.7 <4.7 <4.7 <4.7 </td><td> <4.7 <4.9 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 20 20 21 118 119 <110 <1</td> | <4.9 <5.0 <5.0 <5.0 <5.0 12 12 <6.9 16 <16 <17.0 <6.9 <18 <13 <13 <13 <14.7 <4.7 <4.7 <4.7 <4.7 | <4.7 <4.9 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 20 20 21 118 119 <110 <1 |
| <50 | | 70 | <49 | <50 | 57 | 170 | | 140 | <49
140 | 100
<49
140 | 330
100
<49
140 | <48
100
140 | 130
<48
330
100
<49 | 170
130
<48
330
100
<49 | 520
170
48
330
100
449
140 | 560
520
130
<48
330
100
100
140 | <20
560
170
130
<48
330
100
100
140 | 600
<50
520
170
130
330
330
100
100
140 | 600
<50
520
170
130
330
448
140 | 230
600
560
560
170
130
330
448
449 | 2240
600
600
520
520
520
170
170
170
130
330
448
330 | 430
240
600
520
520
170
120
330
448 | <250 243 600 600 600 600 520 520 520 130 130 130 130 140 | 52
430
600
600
520
520
520
520
1170
1100
1100
1100
449 | <50 52 430 600 600 600 500 520 < | <50 52 52 52 600 <li< td=""><td> <20 <20 <20 <210 <210</td><td> 100 <20 <20</td></li<> | <20 <20 <20 <210 <210 | 100 <20 <20 |
| <65 | | 190 | <64 | 39 | 153 | 488.7 | 409 | | 65 | 270
65 | 994
270
65 | 59
994
65 | 367
59
994
270
65
 | 490
367
59
994
270
65 | 1,393
490
367
59
994
270
65 | 1,978
1,393
367
59
994
270
65 | 98
1,978
1,393
367
367
59
59
270
65 | 1,816
98
1,978
1,393
490
367
59
367
59
270
65
 | 1,920
98
1,978
1,393
490
367
59
59
59
59
59
59
59
59
59 | 650
1,920
1,816
98
1,978
1,393
490
367
59
59
59
59
59
59
59
59
59
59
59
59 | 692
650
1,920
98
1,816
1,978
1,393
1,393
367
367
367
367
367
59
994
270
65 | 1,218
692
650
1,920
1,920
1,816
98
1,978
1,393
367
59
367
59
367
59
59
490
490
59
59
59
55
55 | 1,212
650
650
1,920
1,920
1,816
98
1,978
1,393
367
367
367
59
994
270
65
 | 147
72
1,218
652
652
1,218
650
1,920
1,920
1,920
1,920
1,928
1,933
367
367
367
367
59
985
59
59
59
55 | <pre><c4.9 1,218="" 1,920="" 147="" 59="" 59<="" 650="" 72="" td=""><td> <64.9 <147 147 121 147 121 121 652 650 1,920 367 367 367 367 367 59 59 59 59 59 55 55 </td><td> 54 54 54 54 54 50 147 72 74 74 74 75 76 76</td><td>140
244.9
264.9
147
72
1,218
650
1,920
1,920
1,920
1,920
1,920
1,920
1,920
1,920
1,920
1,920
1,920
1,920
1,920
5,9
367
5,9
367
5,9
367
5,9
367
5,9
5,9
5,9
5,9
5,9
5,9
5,9
5,9</td></c4.9></pre>
 | <64.9 <147 147 121 147 121 121 652 650 1,920 367 367 367 367 367 59 59 59 59 59 55 55 | 54 54 54 54 54 50 147 72 74 74 74 75 76 76 | 140
244.9
264.9
147
72
1,218
650
1,920
1,920
1,920
1,920
1,920
1,920
1,920
1,920
1,920
1,920
1,920
1,920
1,920
5,9
367
5,9
367
5,9
367
5,9
367
5,9
5,9
5,9
5,9
5,9
5,9
5,9
5,9
 |
| <30 | - | 260 | 31 | 320 | 37 | 59 | 48 | | 73 | 250
73 | 33
250
73 | 83
33
250
73 | 120
83
33
250
73
 | 98
120
83
33
250
73 | 350
98
120
83
33
250
73 | 70
350
98
120
83
33
250
73 | 42
70
98
120
83
33
250
73 | 140
42
98
120
120
83
33
250
73
 | 47
140
350
98
120
83
33
250
73 | 140
47
42
350
98
120
83
83
250
250
73 | 120
47
42
350
383
120
83
33
250
73 | 130
140
140
47
70
350
350
98
83
120
83
250
250
250 | 99
130
140
47
140
47
140
42
350
320
320
33
33
33
250
250
73
 | 240
99
120
140
140
47
140
42
70
350
383
120
83
83
33
250
73 | 240
240
99
130
140
47
70
42
70
98
120
98
120
350
98
120
350
250
73
 | 52
160
240
130
120
140
47
47
140
42
350
350
350
32
83
33
250
250
73 | 150
52
240
99
130
130
140
140
140
47
140
47
250
350
350
350
33
37
250
250
 | 35
150
52
160
240
250
130
140
140
140
47
140
350
350
350
350
350
350
350
350
73
350
73 |

Notes: BTLX benzene, toluene, ethylbenzene, xylenes (total) DRO - diesel range organics GRO - gasoline range organics mg/Vg - milligram per kilogram MRO - motor oli range organics PID - photoionization detector ppm - parts per million TPH - total petroleum hydrocarbons BOLD - indicates result exceeds applicable standard < - indicates results is below laboratory detection limit

Hero 23 08 09L Com 1H Release Response - Soil Results

TABLE 2 SOIL ANALYTICAL RESULTS (DELINEATION RESULTS)

HERO 23 08 09L COM 2H RELEASE RESPONSE SAN JUAN COUNTY, NEW MEXICO LOGOS RESOURCES II, LLC

Sample ID	Date	PID Reading (ppm)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzne (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH-DRO (mg/kg)	TPH-GRO (mg/kg)	TPH-MRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
SS7A @ 6"	9/12/2018	1.7	<0.023	< 0.046	< 0.046	< 0.093	<0.208	120	<4.6	84	204	<30
SS7A @ 3'	9/12/2018	NM	< 0.024	< 0.047	< 0.047	< 0.095	<0.213	<9.9	<4.7	<50	<64.6	<30
SS7D@6"	9/12/2018	0.2	< 0.025	< 0.049	< 0.049	< 0.099	<0.222	20	<4.9	<49	20	150
SS7D @ 2'	9/12/2018	0.8	< 0.023	< 0.047	< 0.047	< 0.093	<0.210	<9.9	<4.7	<49	<63.6	<30
SS7E @ 6"	9/12/2018	6.2	< 0.025	< 0.049	< 0.049	< 0.099	<0.222	44	<4.9	<50	44	31
SS11B @ 6"	9/12/2018	0.0	< 0.025	< 0.050	< 0.050	<0.10	<0.225	<9.9	<5.0	<50	<64.9	<30
SS11B @ 2'	9/12/2018	0.2	< 0.024	<0.048	<0.048	< 0.095	<0.215	<9.8	<4.8	<49	<63.6	<30
SS11C @ 6"	9/12/2018	104	<0.024	< 0.049	< 0.049	<0.098	<0.220	170	<4.9	110	280	<30
SS13A @ 6"	9/12/2018	0.6	< 0.025	< 0.049	< 0.049	<0.098	<0.221	<10	<4.9	<50	<64.9	38
SS13A @ 3'	9/12/2018	0.3	< 0.024	<0.048	<0.048	<0.098	<0.215	<9.9	<4.8	<49	<63.7	48
SS13B@6"	9/12/2018	4.2	<0.024	<0.049	<0.049	<0.095	<0.220	48	<4.9	<50	48	64
NMOCD Rei	mediation Acti	on Standard	10	NA	NA	NA	50	NA	NA	NA	100	600

Notes:

BTEX - benzene, toluene, ethylbenzene, xylenes (total)

DRO - diesel range organics

GRO - gasoline range organics

mg/kg - milligram per kilogram

MRO - motor oil range organics

NM - not measured

PID - photoionization detector

ppm - parts per million

TPH - total petroleum hydrocarbons

BOLD - indicates result exceeds applicable standard

< - indicates results is below laboratory detection limit

Hero 23 08 09L Com 1H Release Response - Soil Results

ATTACHMENT 1: LABORATORY ANALYTICAL REPORTS

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

August 14, 2018

Devin Hencmann LTE 848 East 2nd Avenue Durango, CO 81301 TEL: (970) 946-1093 FAX

RE: Heros 23 08 09L

OrderNo.: 1808128

Dear Devin Hencmann:

Hall Environmental Analysis Laboratory received 27 sample(s) on 8/2/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: SS01 Heros 23 08 09L **Project:** Collection Date: 8/1/2018 11:25:00 AM Lab ID: 1808128-001 Matrix: SOIL Received Date: 8/2/2018 7:00:00 AM Analyses Result PQL Qual Units DF **Date Analyzed**

EPA METHOD 8015M/D: DIESEL RANGE ORGAN	NICS					Analyst: Irm
Diesel Range Organics (DRO)	210	9.9		mg/Kg	1	8/3/2018 5:42:06 PM
Motor Oil Range Organics (MRO)	100	50		mg/Kg	1	8/3/2018 5:42:06 PM
Surr: DNOP	97.1	50.6-138		%Rec	1	8/3/2018 5:42:06 PM
EPA METHOD 300.0: ANIONS						Analyst: MRA
Chloride	35	30)	mg/Kg	20	8/6/2018 11:30:07 AM
EPA METHOD 8260B: VOLATILES SHORT LIST						Analyst: AG
Benzene	ND	0.023		mg/Kg	1	8/3/2018 6:20:44 PM
Toluene	ND	0.047		mg/Kg	1	8/3/2018 6:20:44 PM
Ethylbenzene	ND	0.047		mg/Kg	1	8/3/2018 6:20:44 PM
Xylenes, Total	ND	0.094	1	mg/Kg	1	8/3/2018 6:20:44 PM
Surr: 4-Bromofluorobenzene	137	70-130	S	%Rec	1	8/3/2018 6:20:44 PM
Surr: Toluene-d8	97.4	70-130		%Rec	1	8/3/2018 6:20:44 PM
EPA METHOD 8015D MOD: GASOLINE RANGE						Analyst: AG
Gasoline Range Organics (GRO)	ND	4.7		mg/Kg	1	8/3/2018 6:20:44 PM
Surr: BFB	122	70-130		%Rec	1	8/3/2018 6:20:44 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Quali	fiers:
-------	--------

*

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 35 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

8/3/2018 6:43:59 PM

Analyst: AG

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	LTE		Client Sample ID: SS02										
Project:	Heros 23 08 09L		Collection Date: 8/1/2018 11:30:00 AM										
Lab ID:	1808128-002	Matrix: SOIL	Received Date: 8/2/2018 7:00:00 AM										
Analyses		Result	PQL Qua	al Units	DF	Date Analyzed							
EPA MET	THOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: Irm							
Diesel R	ange Organics (DRO)	14	10	mg/Kg	1	8/3/2018 6:04:18 PM							
Motor O	il Range Organics (MRO)	ND	50	mg/Kg	1	8/3/2018 6:04:18 PM							
Surr:	DNOP	98.4	50.6-138	%Rec	1	8/3/2018 6:04:18 PM							
EPA MET	THOD 300.0: ANIONS					Analyst: MRA							
Chloride		150	30	mg/Kg	20	8/6/2018 12:32:10 PM							
EPA MET	THOD 8260B: VOLATILES S	HORT LIST				Analyst: AG							
Benzene	9	ND	0.025	mg/Kg	1	8/3/2018 6:43:59 PM							

ND

ND

ND

122

97.9

ND

109

0.049

0.049

0.098

70-130

70-130

70-130

4.9

mg/Kg

mg/Kg

mg/Kg

%Rec

%Rec

mg/Kg

%Rec

1

1

1

1

1

1

1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

110 201
IICIN.

*

Toluene

Ethylbenzene

Xylenes, Total

Surr: BFB

Surr: Toluene-d8

Surr: 4-Bromofluorobenzene

Gasoline Range Organics (GRO)

EPA METHOD 8015D MOD: GASOLINE RANGE

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 8/14/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	: LTE		Client Sample ID: SS03									
Project:	Heros 23 08 09L		C	ollectio	on Date:	Date: 8/1/2018 11:35:00 AM						
Lab ID:	1808128-003	Matrix: SOIL	F	Receiv	ed Date:	8/2/20)18 7:00:00 AM					
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed					
EPA ME	THOD 8015M/D: DIESEL RA	ANGE ORGANICS					Analyst: Irm					
Diesel R	Range Organics (DRO)	ND	10		mg/Kg	1	8/3/2018 6:26:34 PM					
Motor O	il Range Organics (MRO)	ND	50		mg/Kg	1	8/3/2018 6:26:34 PM					
Surr:	DNOP	91.7	50.6-138		%Rec	1	8/3/2018 6:26:34 PM					
EPA ME	THOD 300.0: ANIONS						Analyst: MRA					
Chloride	9	52	30		mg/Kg	20	8/6/2018 12:44:35 PM					
EPA ME	THOD 8260B: VOLATILES	SHORT LIST					Analyst: AG					
Benzene	e	ND	0.025		mg/Kg	1	8/3/2018 7:07:17 PM					
Toluene	2	ND	0.049		mg/Kg	1	8/3/2018 7:07:17 PM					
Ethylber	nzene	ND	0.049		mg/Kg	1	8/3/2018 7:07:17 PM					
Xylenes	, Total	ND	0.098		mg/Kg	1	8/3/2018 7:07:17 PM					
Surr:	4-Bromofluorobenzene	130	70-130	S	%Rec	1	8/3/2018 7:07:17 PM					
Surr:	Toluene-d8	97.7	70-130		%Rec	1	8/3/2018 7:07:17 PM					
EPA ME	THOD 8015D MOD: GASOL	INE RANGE					Analyst: AG					

ND

116

4.9

70-130

mg/Kg

%Rec

1

1

8/3/2018 7:07:17 PM

8/3/2018 7:07:17 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

Gasoline Range Organics (GRO)

Surr: BFB

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 8/14/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	LTE	Client Sample ID: SS04										
Project:	Heros 23 08 09L	Collection Date: 8/1/2018 11:40:00 AM										
Lab ID:	1808128-004	Matrix: SOIL	Rec	Received Date: 8/2/2018 7:00:00 AM								
Analyses		Result	PQL Qu	ual Units	DF	Date Analyzed						
EPA MET	THOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: Irm						
Diesel R	ange Organics (DRO)	ND	9.9	mg/Kg	1	8/3/2018 6:48:43 PM						
Motor O	I Range Organics (MRO)	ND	50	mg/Kg	1	8/3/2018 6:48:43 PM						
Surr:	DNOP	98.0	50.6-138	%Rec	1	8/3/2018 6:48:43 PM						
EPA ME	THOD 300.0: ANIONS					Analyst: MRA						
Chloride		160	30	mg/Kg	20	8/6/2018 12:56:59 PM						
EPA ME	THOD 8260B: VOLATILES S	HORT LIST				Analyst: AG						
Benzene	9	ND	0.025	mg/Kg	1	8/3/2018 7:30:34 PM						
Toluene		ND	0.050	mg/Kg	1	8/3/2018 7:30:34 PM						
Ethylber	izene	ND	0.050	mg/Kg	1	8/3/2018 7:30:34 PM						
Xylenes.	, Total	ND	0.099	mg/Kg	1	8/3/2018 7:30:34 PM						
Surr:	4-Bromofluorobenzene	129	70-130	%Rec	1	8/3/2018 7:30:34 PM						
Surr:	Toluene-d8	98.1	70-130	%Rec	1	8/3/2018 7:30:34 PM						
EPA ME	THOD 8015D MOD: GASOLI	NE RANGE				Analyst: AG						
Gasoline	e Range Organics (GRO)	ND	5.0	mg/Kg	1	8/3/2018 7:30:34 PM						
Surr:	BFB	115	70-130	%Rec	1	8/3/2018 7:30:34 PM						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 8/14/2018

8/3/2018 7:10:57 PM

8/6/2018 1:09:24 PM

8/3/2018 7:53:46 PM

Analyst: AG

Analyst: MRA

Analyst: AG

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	LTE		Client Sample ID: SS05					
Project:	Heros 23 08 09L	Collection Date: 8/1/2018 11:45:00 Matrix: SOIL Received Date: 8/2/2018 7:00:00 A						
Lab ID:	1808128-005							
Analyses		Result	PQL Qual	Units	DF	Date Analyzed		
EPA MET	THOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: Irm		
Diesel R	ange Organics (DRO)	95	9.9	mg/Kg	1	8/3/2018 7:10:57 PM		
Motor Oi	I Range Organics (MRO)	52	49	mg/Kg	1	8/3/2018 7:10:57 PM		

103

240

ND

ND

ND

ND

125

94.5

ND

111

30

0.024

0.047

0.047

0.095

70-130

70-130

70-130

4.7

50.6-138

%Rec

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

%Rec

%Rec

mg/Kg

%Rec

1

20

1

1

1

1

1

1

1

1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qual	ifiers:	
------	---------	--

*

Surr: DNOP

Chloride

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Surr: BFB

Surr: Toluene-d8

EPA METHOD 300.0: ANIONS

Surr: 4-Bromofluorobenzene

Gasoline Range Organics (GRO)

EPA METHOD 8260B: VOLATILES SHORT LIST

EPA METHOD 8015D MOD: GASOLINE RANGE

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- Analyte detected below quantitation limits Page 5 of 35 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1808128 Date Reported: 8/14/2018

CLIENT: LTE	Client Sample ID: SS06								
Project: Heros 23 08 09L		Collection Date: 8/1/2018 11:50:00 AM							
Lab ID: 1808128-006	Matrix: SOIL	Recei	ved Date:	8/2/20	18 7:00:00 AM				
Analyses	Result	PQL Qua	l Units	DF	Date Analyzed				
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: Irm				
Diesel Range Organics (DRO)	72	9.9	mg/Kg	1	8/3/2018 7:33:03 PM				
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	8/3/2018 7:33:03 PM				
Surr: DNOP	102	50.6-138	%Rec	1	8/3/2018 7:33:03 PM				
EPA METHOD 300.0: ANIONS					Analyst: MRA				
Chloride	99	30	mg/Kg	20	8/6/2018 1:21:49 PM				
EPA METHOD 8260B: VOLATILES SH	ORT LIST				Analyst: AG				
Benzene	ND	0.025	mg/Kg	1	8/3/2018 8:16:51 PM				
Toluene	ND	0.050	mg/Kg	1	8/3/2018 8:16:51 PM				
Ethylbenzene	ND	0.050	mg/Kg	1	8/3/2018 8:16:51 PM				
Xylenes, Total	ND	0.10	mg/Kg	1	8/3/2018 8:16:51 PM				
Surr: 4-Bromofluorobenzene	123	70-130	%Rec	1	8/3/2018 8:16:51 PM				
Surr: Toluene-d8	96.3	70-130	%Rec	1	8/3/2018 8:16:51 PM				
EPA METHOD 8015D MOD: GASOLIN	E RANGE				Analyst: AG				
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	8/3/2018 8:16:51 PM				
Surr: BFB	110	70-130	%Rec	1	8/3/2018 8:16:51 PM				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- Sample Diluted Due to Matrix D
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- Analyte detected below quantitation limits Page 6 of 35 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT	: LTE		Clien	nt Sample ID:	SS07	
Project:	Heros 23 08 09L		Col	llection Date:	8/1/20	018 11:55:00 AM
Lab ID:	1808128-007	Matrix: SOIL	R	eceived Date:	8/2/20	018 7:00:00 AM
Analyses		Result	PQL O	Qual Units	DF	Date Analyzed
EPA ME	THOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: Irm
Diesel F	Range Organics (DRO)	770	9.9	mg/Kg	1	8/3/2018 7:55:16 PM
Motor O	il Range Organics (MRO)	430	50	mg/Kg	1	8/3/2018 7:55:16 PM
Surr:	DNOP	113	50.6-138	%Rec	1	8/3/2018 7:55:16 PM
EPA ME	THOD 300.0: ANIONS					Analyst: MRA
Chloride	9	130	30	mg/Kg	20	8/6/2018 1:34:13 PM
EPA ME	THOD 8260B: VOLATILES	SHORT LIST				Analyst: AG
Benzen	e	ND	0.024	mg/Kg	1	8/3/2018 8:40:06 PM
Toluene	2	ND	0.048	mg/Kg	1	8/3/2018 8:40:06 PM
Ethylber	nzene	ND	0.048	mg/Kg	1	8/3/2018 8:40:06 PM
Xylenes	, Total	ND	0.095	mg/Kg	1	8/3/2018 8:40:06 PM
Surr:	4-Bromofluorobenzene	144	70-130	S %Rec	1	8/3/2018 8:40:06 PM
Surr	Toluene-d8	97.4	70-130	%Rec	1	8/3/2018 8:40:06 PM

EPA METHOD 8015D MOD: GASOLINE RANGE						Analyst: AG
Gasoline Range Organics (GRO)	18	4.8		mg/Kg	1	8/3/2018 8:40:06 PM
Surr: BFB	130	70-130	S	%Rec	1	8/3/2018 8:40:06 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

0		1:	£::	~	-	
v	ua	11	11	e	1.2	

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- Analyte detected below quantitation limits Page 7 of 35 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 8/14/2018

Hall Environmental Analysis Laboratory, Inc.

Analyses	Result	PQL Qual Units	DF	Date Analyzed		
Lab ID: 1808128-008	Matrix: SOIL Received Date: 8/2/2018 7:00:00 AM					
Project: Heros 23 08 09L		Collection Date: 8	8/1/20	18 12:00:00 PM		
CLIENT: LTE						

EPA METHOD 8015M/D: DIESEL RANGE ORGANIC	CS					Analyst: Irm
Diesel Range Organics (DRO)	440	9.9	n	ng/Kg	1	8/3/2018 9:01:50 PM
Motor Oil Range Organics (MRO)	240	50	n	ng/Kg	1	8/3/2018 9:01:50 PM
Surr: DNOP	123	50.6-138	%	Rec	1	8/3/2018 9:01:50 PM
EPA METHOD 300.0: ANIONS						Analyst: MRA
Chloride	120	30	n	ng/Kg	20	8/6/2018 1:46:37 PM
EPA METHOD 8260B: VOLATILES SHORT LIST						Analyst: AG
Benzene	ND	0.024	n	ng/Kg	1	8/3/2018 9:03:12 PM
Toluene	ND	0.048	m	ng/Kg	1	8/3/2018 9:03:12 PM
Ethylbenzene	ND	0.048	n	ng/Kg	1	8/3/2018 9:03:12 PM
Xylenes, Total	ND	0.095	n	ng/Kg	1	8/3/2018 9:03:12 PM
Surr: 4-Bromofluorobenzene	141	70-130	S %	Rec	1	8/3/2018 9:03:12 PM
Surr: Toluene-d8	101	70-130	%	Rec	1	8/3/2018 9:03:12 PM
EPA METHOD 8015D MOD: GASOLINE RANGE						Analyst: AG
Gasoline Range Organics (GRO)	12	4.8	n	ng/Kg	1	8/3/2018 9:03:12 PM
Surr: BFB	126	70-130	%	Rec	1	8/3/2018 9:03:12 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 8 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Analyst: MRA

Analyst: AG

8/6/2018 1:59:02 PM

8/3/2018 9:49:26 PM

Analyst: AG

20

1

1

1

1

1

1

1

1

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

%Rec

%Rec

mg/Kg

%Rec

Hall Environmental Analysis Laboratory, Inc.

EPA METHOD 300.0: ANIONS

Surr: 4-Bromofluorobenzene

Gasoline Range Organics (GRO)

EPA METHOD 8260B: VOLATILES SHORT LIST

EPA METHOD 8015D MOD: GASOLINE RANGE

Chloride

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Surr: BFB

Surr: Toluene-d8

CLIENT:	LTE	Client Sample ID: SS09					
Project:	Heros 23 08 09L		Collection Date: 8/1/2018 12:05:00 PM				
Lab ID:	1808128-009	Matrix: SOIL Received Date: 8/2/2018 7:00:00 AM					
Analyses		Result	PQL Qual	Units	DF	Date Analyzed	
EPA MET	HOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: Irm	
Diesel Ra	ange Organics (DRO)	420	10	mg/Kg	1	8/3/2018 10:08:23 PM	
Motor Oil	Range Organics (MRO)	230	50	mg/Kg	1	8/3/2018 10:08:23 PM	
Surr: D	DNOP	122	50.6-138	%Rec	1	8/3/2018 10:08:23 PM	

140

ND

ND

ND

ND

135

98.2

ND

120

30

0.025

0.050

0.050

0.10

S

70-130

70-130

70-130

5.0

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

0	 ~
1 110	 10 201
Qua	 IICIN.
×	

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 9 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Analyses		Result	POL Qual Units DF Date Analyzed
Lab ID:	1808128-010	Matrix: SOIL	Received Date: 8/2/2018 7:00:00 AM
Project:	Heros 23 08 09L		Collection Date: 8/1/2018 12:10:00 PM
CLIENT:	LTE		Client Sample ID: SS10

· mary occ			×	emre	~ .	2
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS					Analyst: Irm
Diesel Range Organics (DRO)	1300	97		mg/Kg	10	8/6/2018 11:36:45 AM
Motor Oil Range Organics (MRO)	600	480		mg/Kg	10	8/6/2018 11:36:45 AM
Surr: DNOP	0	50.6-138	S	%Rec	10	8/6/2018 11:36:45 AM
EPA METHOD 300.0: ANIONS						Analyst: MRA
Chloride	47	30		mg/Kg	20	8/6/2018 2:36:16 PM
EPA METHOD 8260B: VOLATILES SHORT LIST	т					Analyst: AG
Benzene	ND	0.025		mg/Kg	1	8/3/2018 10:12:32 PM
Toluene	ND	0.049		mg/Kg	1	8/3/2018 10:12:32 PM
Ethylbenzene	ND	0.049		mg/Kg	1	8/3/2018 10:12:32 PM
Xylenes, Total	ND	0.098		mg/Kg	1	8/3/2018 10:12:32 PM
Surr: 4-Bromofluorobenzene	139	70-130	S	%Rec	1	8/3/2018 10:12:32 PM
Surr: Toluene-d8	97.7	70-130		%Rec	1	8/3/2018 10:12:32 PM
EPA METHOD 8015D MOD: GASOLINE RANGE						Analyst: AG
Gasoline Range Organics (GRO)	20	4.9		mg/Kg	1	8/3/2018 10:12:32 PM
Surr: BFB	124	70-130		%Rec	1	8/3/2018 10:12:32 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qua	lit	fie	rs:
-----	-----	-----	-----

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 10 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Analyses		Result	POL Oual	Units	DF	Date Analyzed
Lab ID:	1808128-011	Matrix: SOIL	Receive	d Date:	8/2/20	18 7:00:00 AM
Project:	Heros 23 08 09L		Collectio	n Date:	8/1/20	18 12:15:00 PM
CLIENT:	LTE		Client Sam	ple ID:	:SS11	

			•	2.2023/07	
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: Irm
Diesel Range Organics (DRO)	1200	99	mg/	Kg 10	8/6/2018 12:25:55 PM
Motor Oil Range Organics (MRO)	600	500	mg/	Kg 10	8/6/2018 12:25:55 PM
Surr: DNOP	0	50.6-138	S %Re	ec 10	8/6/2018 12:25:55 PM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	140	30	mg/	Kg 20	8/6/2018 2:48:40 PM
EPA METHOD 8260B: VOLATILES SHORT LI	ST				Analyst: AG
Benzene	ND	0.024	mg/	Kg 1	8/3/2018 10:35:42 PM
Toluene	ND	0.047	mg/	Kg 1	8/3/2018 10:35:42 PM
Ethylbenzene	ND	0.047	mg/	Kg 1	8/3/2018 10:35:42 PM
Xylenes, Total	ND	0.095	mg/	<g 1<="" td=""><td>8/3/2018 10:35:42 PM</td></g>	8/3/2018 10:35:42 PM
Surr: 4-Bromofluorobenzene	133	70-130	S %Re	ec 1	8/3/2018 10:35:42 PM
Surr: Toluene-d8	96.5	70-130	%Re	ec 1	8/3/2018 10:35:42 PM
EPA METHOD 8015D MOD: GASOLINE RANG	GE				Analyst: AG
Gasoline Range Organics (GRO)	16	4.7	mg/	Kg 1	8/3/2018 10:35:42 PM
Surr: BFB	122	70-130	%Re	ec 1	8/3/2018 10:35:42 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 11 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: SS12								
Project:	Heros 23 08 09L	08 09L Collection Date: 8/1/2018 1						
Lab ID:	1808128-012	Matrix: SOIL	Reco	eived Date:	8/2/20	18 7:00:00 AM		
Analyses		Result	PQL Qu	al Units	DF	Date Analyzed		
EPA ME	THOD 8015M/D: DIESEL R	ANGE ORGANICS				Analyst: Irm		
Diesel F	Range Organics (DRO)	98	10	mg/Kg	1	8/4/2018 2:11:55 AM		
Motor C	il Range Organics (MRO)	ND	50	mg/Kg	1	8/4/2018 2:11:55 AM		
Surr:	DNOP	105	50.6-138	%Rec	1	8/4/2018 2:11:55 AM		
EPA ME	THOD 300.0: ANIONS					Analyst: MRA		
Chloride	e	42	30	mg/Kg	20	8/6/2018 3:01:04 PM		
EPA ME	THOD 8260B: VOLATILES	SHORT LIST				Analyst: AG		
Benzen	e	ND	0.025	mg/Kg	1	8/3/2018 11:22:03 PM		
Toluene	9	ND	0.049	mg/Kg	1	8/3/2018 11:22:03 PM		
Ethylbe	nzene	ND	0.049	mg/Kg	1	8/3/2018 11:22:03 PM		
Xylenes	s, Total	ND	0.099	mg/Kg	1	8/3/2018 11:22:03 PM		
Surr:	4-Bromofluorobenzene	125	70-130	%Rec	1	8/3/2018 11:22:03 PM		

Sull: 4-Biomondorobenzene	120	70-130	10Rec	1	0/3/2010 11.22.03 FW
Surr: Toluene-d8	96.1	70-130	%Rec	1	8/3/2018 11:22:03 PM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: AG
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/7/2018 5:23:12 PM
Surr: BFB	114	70-130	%Rec	1	8/7/2018 5:23:12 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 12 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Analyses		Result	POL Qual Units	DF	Date Analyzed			
Lab ID:	1808128-013	Matrix: SOIL	Received Date:	8/2/20	18 7:00:00 AM			
Project:	Heros 23 08 09L		Collection Date:	8/1/20	18 12:25:00 PM			
CLIENT	: LTE	Client Sample ID: SS13						

, mary ses	recourt		×	emito		2000
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS					Analyst: Irm
Diesel Range Organics (DRO)	1400	98		mg/Kg	10	8/4/2018 3:18:38 AM
Motor Oil Range Organics (MRO)	560	490		mg/Kg	10	8/4/2018 3:18:38 AM
Surr: DNOP	0	50.6-138	S	%Rec	10	8/4/2018 3:18:38 AM
EPA METHOD 300.0: ANIONS						Analyst: MRA
Chloride	70	30		mg/Kg	20	8/6/2018 3:13:28 PM
EPA METHOD 8260B: VOLATILES SHORT LIST	г					Analyst: AG
Benzene	ND	0.024		mg/Kg	1	8/4/2018 1:40:27 AM
Toluene	ND	0.048		mg/Kg	1	8/4/2018 1:40:27 AM
Ethylbenzene	ND	0.048		mg/Kg	1	8/4/2018 1:40:27 AM
Xylenes, Total	ND	0.097		mg/Kg	1	8/4/2018 1:40:27 AM
Surr: 4-Bromofluorobenzene	137	70-130	S	%Rec	1	8/4/2018 1:40:27 AM
Surr: Toluene-d8	94.1	70-130		%Rec	1	8/4/2018 1:40:27 AM
EPA METHOD 8015D MOD: GASOLINE RANGE						Analyst: AG
Gasoline Range Organics (GRO)	18	4.8		mg/Kg	1	8/4/2018 1:40:27 AM
Surr: BFB	123	70-130		%Rec	1	8/4/2018 1:40:27 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 13 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	LTE	Client Sample ID: SS14						
Project:	Heros 23 08 09L		18 12:30:00 PM					
Lab ID:	1808128-014	Matrix: SOIL	18 7:00:00 AM					
Analyses		Result	PQL Qual	Units	DF	Date Analyzed		
EPA ME	THOD 8015M/D: DIESEL F	ANGE ORGANICS				Analyst: Irr		
Dissol F	ange Organies (DDO)	960	0.0	malka	1	9/6/2019 1.15.44 DM		

000	0.0		ing/isg		0/0/2010 1.10.1111
520	49		mg/Kg	1	8/6/2018 1:15:44 PM
120	50.6-138		%Rec	1	8/6/2018 1:15:44 PM
					Analyst: MRA
350	30		mg/Kg	20	8/6/2018 3:25:53 PM
					Analyst: AG
ND	0.024		mg/Kg	1	8/4/2018 2:03:37 AM
ND	0.047		mg/Kg	1	8/4/2018 2:03:37 AM
ND	0.047		mg/Kg	1	8/4/2018 2:03:37 AM
ND	0.095		mg/Kg	1	8/4/2018 2:03:37 AM
136	70-130	S	%Rec	1	8/4/2018 2:03:37 AM
99.0	70-130		%Rec	1	8/4/2018 2:03:37 AM
					Analyst: AG
13	4.7		mg/Kg	1	8/4/2018 2:03:37 AM
120	70-130		%Rec	1	8/4/2018 2:03:37 AM
	520 120 350 ND ND ND 136 99.0 13 120	520 49 120 50.6-138 350 30 ND 0.024 ND 0.047 ND 0.047 ND 0.095 136 70-130 99.0 70-130 13 4.7 120 70-130	520 49 120 50.6-138 350 30 ND 0.024 ND 0.047 ND 0.047 ND 0.095 136 70-130 13 4.7 120 70-130	500 49 mg/Kg 520 49 mg/Kg 120 50.6-138 %Rec 350 30 mg/Kg ND 0.024 mg/Kg ND 0.047 mg/Kg ND 0.047 mg/Kg ND 0.047 mg/Kg 13 70-130 %Rec 13 4.7 mg/Kg 120 70-130 %Rec	520 49 mg/Kg 1 120 50.6-138 %Rec 1 350 30 mg/Kg 20 ND 0.024 mg/Kg 1 ND 0.047 mg/Kg 1 ND 0.047 mg/Kg 1 ND 0.047 mg/Kg 1 ND 0.047 mg/Kg 1 136 70-130 S %Rec 1 13 4.7 mg/Kg 1 120 70-130 %Rec 1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 14 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Lab ID:	1808128-015	Matrix: SOIL	Received Date:	8/2/20	18 7:00:00 AM
Project:	Heros 23 08 09L		Collection Date:	8/1/20	18 12:35:00 PM
CLIENT:	LTE		Client Sample ID:	SS15	

-					
EPA METHOD 8015M/D: DIESEL RANGE ORGAN	ICS				Analyst: Irm
Diesel Range Organics (DRO)	320	9.8	mg/Kg	1	8/4/2018 5:31:50 AM
Motor Oil Range Organics (MRO)	170	49	mg/Kg	1	8/4/2018 5:31:50 AM
Surr: DNOP	105	50.6-138	%Rec	1	8/4/2018 5:31:50 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	98	30	mg/Kg	20	8/6/2018 3:38:18 PM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: AG
Benzene	ND	0.024	mg/Kg	1	8/4/2018 2:26:39 AM
Toluene	ND	0.049	mg/Kg	1	8/4/2018 2:26:39 AM
Ethylbenzene	ND	0.049	mg/Kg	1	8/4/2018 2:26:39 AM
Xylenes, Total	ND	0.097	mg/Kg	1	8/4/2018 2:26:39 AM
Surr: 4-Bromofluorobenzene	130	70-130	%Rec	1	8/4/2018 2:26:39 AM
Surr: Toluene-d8	99.5	70-130	%Rec	1	8/4/2018 2:26:39 AM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: AG
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/4/2018 2:26:39 AM
Surr: BFB	116	70-130	%Rec	1	8/4/2018 2:26:39 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 15 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analyst: AG

8/4/2018 2:49:32 AM

8/4/2018 2:49:32 AM

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE		Client Sample ID: SS16					
Project: Heros 23 08 09L	Collection Date: 8/1/2018 12:40:00 PM						
Lab ID: 1808128-016	Matrix: SOIL	Re	ceived Date:	8/2/20	018 7:00:00 AM		
Analyses	Result	PQL Q	Qual Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst: Irm		
Diesel Range Organics (DRO)	230	9.7	mg/Kg	1	8/6/2018 2:32:58 PM		
Motor Oil Range Organics (MRO)	130	48	mg/Kg	1	8/6/2018 2:32:58 PM		
Surr: DNOP	101	50.6-138	%Rec	1	8/6/2018 2:32:58 PM		
EPA METHOD 300.0: ANIONS					Analyst: MRA		
Chloride	120	30	mg/Kg	20	8/7/2018 1:56:37 PM		
EPA METHOD 8260B: VOLATILES SHO	RT LIST				Analyst: AG		
Benzene	ND	0.025	mg/Kg	1	8/4/2018 2:49:32 AM		
Toluene	ND	0.050	mg/Kg	1	8/4/2018 2:49:32 AM		
Ethylbenzene	ND	0.050	mg/Kg	1	8/4/2018 2:49:32 AM		
Xylenes, Total	ND	0.10	mg/Kg	1	8/4/2018 2:49:32 AM		
Surr: 4-Bromofluorobenzene	133	70-130	S %Rec	1	8/4/2018 2:49:32 AM		
Surr: Toluene-d8	98.2	70-130	%Rec	1	8/4/2018 2:49:32 AM		

7.0

119

5.0

70-130

mg/Kg

%Rec

1

1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

EPA METHOD 8015D MOD: GASOLINE RANGE

Gasoline Range Organics (GRO)

Surr: BFB

- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 16 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Analyses		Result	PQL Qual U	Jnits	DF	Date Analyzed			
Lab ID:	1808128-017	Matrix: SOIL	Received	Date:	8/2/201	8 7:00:00 AM			
Project:	Heros 23 08 09L		Collection	Date:	8/1/201	8 12:45:00 PM			
CLIENT:	LTE	Client Sample ID: SS17							

EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Analyst: Irm								
Diesel Range Organics (DRO)	51	9.7	n	ng/Kg	1	8/6/2018 4:57:01 PM		
Motor Oil Range Organics (MRO)	ND	48	n	ng/Kg	1	8/6/2018 4:57:01 PM		
Surr: DNOP	98.9	50.6-138	9	6Rec	1	8/6/2018 4:57:01 PM		
EPA METHOD 300.0: ANIONS						Analyst: MRA		
Chloride	83	30	n	ng/Kg	20	8/7/2018 2:33:50 PM		
EPA METHOD 8260B: VOLATILES SHORT LIST						Analyst: AG		
Benzene	ND	0.025	n	ng/Kg	1	8/4/2018 3:35:40 AM		
Toluene	ND	0.049	n	ng/Kg	1	8/4/2018 3:35:40 AM		
Ethylbenzene	ND	0.049	n	ng/Kg	1	8/4/2018 3:35:40 AM		
Xylenes, Total	ND	0.098	n	ng/Kg	1	8/4/2018 3:35:40 AM		
Surr: 4-Bromofluorobenzene	134	70-130	S %	6Rec	1	8/4/2018 3:35:40 AM		
Surr: Toluene-d8	96.3	70-130	9	6Rec	1	8/4/2018 3:35:40 AM		
EPA METHOD 8015D MOD: GASOLINE RANGE						Analyst: AG		
Gasoline Range Organics (GRO)	8.0	4.9	n	ng/Kg	1	8/4/2018 3:35:40 AM		
Surr: BFB	121	70-130	9	6Rec	1	8/4/2018 3:35:40 AM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 17 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
8/6/2018 6:27:51 PM

Analyst: AG 8/6/2018 6:27:51 PM

Hall Environmental Analysis Laboratory, Inc.

CLIENT	: LTE		Client Sample ID: SS18						
Project:	Heros 23 08 09L		Collection Date: 8/1/2018 12:50:00 PM						
Lab ID:	1808128-018	Matrix: SOIL Received Date: 8/2/20)18 7:00:00 AM			
Analyses		Result	PQL 0	Qual Units	DF	Date Analyzed			
EPA ME	THOD 8015M/D: DIESEL R	ANGE ORGANICS				Analyst: Irm			
Diesel F	Range Organics (DRO)	640	9.8	mg/Kg	1	8/6/2018 6:11:25 PM			
Motor O	il Range Organics (MRO)	330	49	mg/Kg	1	8/6/2018 6:11:25 PM			
Surr:	DNOP	113	50.6-138	%Rec	1	8/6/2018 6:11:25 PM			
EPA ME	THOD 300.0: ANIONS					Analyst: MRA			
Chloride		33	30	mg/Kg	20	8/7/2018 3:11:05 PM			
EPA ME	THOD 8260B: VOLATILES	SHORT LIST				Analyst: AG			

ND

ND

ND

ND

139

98.6

24

126

0.023

0.047

0.047

0.093

70-130

70-130

70-130

4.7

S

mg/Kg

mg/Kg

mg/Kg

mg/Kg

%Rec

%Rec

mg/Kg

%Rec

1

1

1

1

1

1

1

1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

Benzene

Toluene Ethylbenzene

Xylenes, Total

Surr: BFB

Surr: Toluene-d8

Surr: 4-Bromofluorobenzene

Gasoline Range Organics (GRO)

EPA METHOD 8015D MOD: GASOLINE RANGE

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 18 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report

Lab Order 1808128

Date Reported: 8/14/2018

Hall Environmental Analysis Laboratory, Inc.

Analyses		Result	PQL Qual Units	DF Date Analyzed
Lab ID:	1808128-019	Matrix: SOIL	Received Date: 8/	/2/2018 7:00:00 AM
Project:	Heros 23 08 09L		Collection Date: 8/	/1/2018 12:55:00 PM
CLIENT:	LTE		Client Sample ID: S	S19

EPA METHOD 8015M/D: DIESEL RANGE ORGAN	NICS				Analyst: Irm
Diesel Range Organics (DRO)	170	9.8	mg/Kg	1	8/7/2018 1:00:42 PM
Motor Oil Range Organics (MRO)	100	49	mg/Kg	1	8/7/2018 1:00:42 PM
Surr: DNOP	88.8	50.6-138	%Rec	1	8/7/2018 1:00:42 PM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	250	30	mg/Kg	20	8/7/2018 3:23:30 PM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: AG
Benzene	ND	0.023	mg/Kg	1	8/6/2018 2:34:33 PM
Toluene	ND	0.047	mg/Kg	1	8/6/2018 2:34:33 PM
Ethylbenzene	ND	0.047	mg/Kg	1	8/6/2018 2:34:33 PM
Xylenes, Total	ND	0.094	mg/Kg	1	8/6/2018 2:34:33 PM
Surr: 4-Bromofluorobenzene	127	70-130	%Rec	1	8/6/2018 2:34:33 PM
Surr: Toluene-d8	96.9	70-130	%Rec	1	8/6/2018 2:34:33 PM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: AG
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	8/6/2018 11:53:35 PM
Surr: BFB	115	70-130	%Rec	1	8/6/2018 11:53:35 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 19 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

8/6/2018 7:25:57 PM

8/6/2018 7:25:57 PM

8/6/2018 7:25:57 PM

8/7/2018 3:35:54 PM

8/4/2018 5:53:57 AM

Analyst: MRA

Analyst: AG

Analyst: AG

Hall Environmental Analysis Laboratory, Inc.

Diesel Range Organics (DRO)

Surr: DNOP

Chloride

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Surr: BFB

Surr: Toluene-d8

Motor Oil Range Organics (MRO)

EPA METHOD 300.0: ANIONS

Surr: 4-Bromofluorobenzene

Gasoline Range Organics (GRO)

EPA METHOD 8260B: VOLATILES SHORT LIST

EPA METHOD 8015D MOD: GASOLINE RANGE

EPA ME	THOD 8015M/D: DIESEL R	ANGE ORGANICS			Analyst: Ir	rm		
Analyses		Result	PQL Qual Unit	s DF	Date Analyzed			
Lab ID:	1808128-020	Matrix: SOIL	Matrix: SOIL Received Date: 8/2/2018 7:00:00 AM					
Project:	Heros 23 08 09L	V8 09L Collection Date: 8/1						
CLIENT:	LTE	Client Sample ID: SS20						

65

ND

104

73

ND

ND

ND

ND

127

104

ND

114

9.9

49

30

0.024

0.047

0.047

0.094

70-130

70-130

70-130

4.7

50.6-138

mg/Kg

mg/Kg

%Rec

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

%Rec

%Rec

mg/Kg

%Rec

1

1

1

20

1

1

1

1

1

1

1

1

Refer to the QC Summary report and	sample login checklist for flagged (QC data and preservation information.

Qualifiers:	
-------------	--

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 20 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report Lab Order 1808128

Date Reported: 8/14/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE		Client	Sample ID:	SS21			
Project: Heros 23 08 09L		Collection Date: 8/1/2018 1:05:00 PM					
Lab ID: 1808128-021	Matrix: SOIL	Rec	eived Date:	8/2/20	18 7:00:00 AM		
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RAM	IGE ORGANICS				Analyst: Irm		
Diesel Range Organics (DRO)	250	9.9	mg/Kg	1	8/7/2018 2:19:57 PM		
Motor Oil Range Organics (MRO)	140	49	mg/Kg	1	8/7/2018 2:19:57 PM		
Surr: DNOP	98.1	50.6-138	%Rec	1	8/7/2018 2:19:57 PM		
EPA METHOD 300.0: ANIONS					Analyst: MRA		
Chloride	48	30	mg/Kg	20	8/7/2018 3:48:19 PM		
EPA METHOD 8260B: VOLATILES SH	HORT LIST				Analyst: AG		
Benzene	ND	0.024	mg/Kg	1	8/6/2018 2:57:50 PM		
Toluene	ND	0.048	mg/Kg	1	8/6/2018 2:57:50 PM		
Ethylbenzene	ND	0.048	mg/Kg	1	8/6/2018 2:57:50 PM		
Xylenes, Total	ND	0.097	mg/Kg	1	8/6/2018 2:57:50 PM		
Surr: 4-Bromofluorobenzene	141	70-130	S %Rec	1	8/6/2018 2:57:50 PM		
Surr: Toluene-d8	98.5	70-130	%Rec	1	8/6/2018 2:57:50 PM		
EPA METHOD 8015D MOD: GASOLIN	E RANGE				Analyst: AG		
Gasoline Range Organics (GRO)	19	4.8	mg/Kg	1	8/6/2018 2:57:50 PM		
Surr: BFB	127	70-130	%Rec	1	8/6/2018 2:57:50 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limitsPage 21 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

EPA ME	HOD 8015M/D: DIESEL B	ANGE ORGANICS			Analyst			
Analyses		Result	PQL Qual Unit	s DF	Date Analyzed			
Lab ID:	1808128-022	Matrix: SOIL	Received Da	te: 8/2/20	18 7:00:00 AM			
Project:	Heros 23 08 09L		Collection Da	te: 8/1/20	18 1:10:00 PM			
CLIENT:	LTE	Client Sample ID: SS22						

EPA METHOD 8015M/D: DIESEL RANGE ORGAN	ICS					Analyst: Irm
Diesel Range Organics (DRO)	310	9.9		mg/Kg	1	8/6/2018 8:40:19 PM
Motor Oil Range Organics (MRO)	170	50		mg/Kg	1	8/6/2018 8:40:19 PM
Surr: DNOP	110	50.6-138		%Rec	1	8/6/2018 8:40:19 PM
EPA METHOD 300.0: ANIONS						Analyst: MRA
Chloride	59	30		mg/Kg	20	8/7/2018 4:00:43 PM
EPA METHOD 8260B: VOLATILES SHORT LIST						Analyst: AG
Benzene	ND	0.024		mg/Kg	1	8/4/2018 6:17:05 AM
Toluene	ND	0.048		mg/Kg	1	8/4/2018 6:17:05 AM
Ethylbenzene	ND	0.048		mg/Kg	1	8/4/2018 6:17:05 AM
Xylenes, Total	ND	0.097		mg/Kg	1	8/4/2018 6:17:05 AM
Surr: 4-Bromofluorobenzene	140	70-130	S	%Rec	1	8/4/2018 6:17:05 AM
Surr: Toluene-d8	92.6	70-130		%Rec	1	8/4/2018 6:17:05 AM
EPA METHOD 8015D MOD: GASOLINE RANGE						Analyst: AG
Gasoline Range Organics (GRO)	8.7	4.8		mg/Kg	1	8/4/2018 6:17:05 AM
Surr: BFB	127	70-130		%Rec	1	8/4/2018 6:17:05 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qual	li	fie	rs	:
-				

*

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- Analyte detected below quantitation limit Page 22 of 35 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Hall Environmental Analysis Laboratory, Inc.

Analyses		Result	PQL Qual Units	DF	Date Analyzed		
Lab ID:	1808128-023	Matrix: SOIL	Received Date: 8/2/2018 7:00:				
Project:	Heros 23 08 09L		Collection Date:	8/1/20	18 1:15:00 PM		
CLIENT:	: LTE	Client Sample ID: SS23					

					-
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS				Analyst: Irm
Diesel Range Organics (DRO)	96	9.9	mg/Kg	1	8/6/2018 9:54:34 PM
Motor Oil Range Organics (MRO)	57	50	mg/Kg	1	8/6/2018 9:54:34 PM
Surr: DNOP	100	50.6-138	%Rec	1	8/6/2018 9:54:34 PM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	37	30	mg/Kg	20	8/7/2018 4:13:08 PM
EPA METHOD 8260B: VOLATILES SHORT LIST	г				Analyst: AG
Benzene	ND	0.023	mg/Kg	1	8/4/2018 6:40:07 AM
Toluene	ND	0.046	mg/Kg	1	8/4/2018 6:40:07 AM
Ethylbenzene	ND	0.046	mg/Kg	1	8/4/2018 6:40:07 AM
Xylenes, Total	ND	0.093	mg/Kg	1	8/4/2018 6:40:07 AM
Surr: 4-Bromofluorobenzene	132	70-130	S %Rec	1	8/4/2018 6:40:07 AM
Surr: Toluene-d8	97.3	70-130	%Rec	1	8/4/2018 6:40:07 AM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: AG
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	8/4/2018 6:40:07 AM
Surr: BFB	118	70-130	%Rec	1	8/4/2018 6:40:07 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 23 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

FPA MET	HOD 8015M/D. DIESEL F	ANGE ORGANICS				Analyst In	'n
Analyses		Result	PQL Qual	Units	DF	Date Analyzed	
Lab ID:	1808128-024	Matrix: SOIL	Receive	ed Date:	8/2/20	18 7:00:00 AM	
Project:	Heros 23 08 09L		Collectio	on Date	: 8/1/20	18 1:20:00 PM	
CLIENT:	LTE		Client Sar	nple ID	: SS24		

EPA METHOD 8015M/D: DIESEL RANGE ORGAN	IICS					Analyst: Irm
Diesel Range Organics (DRO)	39	10		mg/Kg	1	8/6/2018 11:08:21 PM
Motor Oil Range Organics (MRO)	ND	50		mg/Kg	1	8/6/2018 11:08:21 PM
Surr: DNOP	100	50.6-138		%Rec	1	8/6/2018 11:08:21 PM
EPA METHOD 300.0: ANIONS						Analyst: MRA
Chloride	320	30		mg/Kg	20	8/7/2018 6:29:37 PM
EPA METHOD 8260B: VOLATILES SHORT LIST						Analyst: AG
Benzene	ND	0.023		mg/Kg	1	8/4/2018 7:03:10 AM
Toluene	ND	0.047		mg/Kg	1	8/4/2018 7:03:10 AM
Ethylbenzene	ND	0.047		mg/Kg	1	8/4/2018 7:03:10 AM
Xylenes, Total	ND	0.094		mg/Kg	1	8/4/2018 7:03:10 AM
Surr: 4-Bromofluorobenzene	133	70-130	S	%Rec	1	8/4/2018 7:03:10 AM
Surr: Toluene-d8	98.6	70-130		%Rec	1	8/4/2018 7:03:10 AM
EPA METHOD 8015D MOD: GASOLINE RANGE						Analyst: AG
Gasoline Range Organics (GRO)	ND	4.7		mg/Kg	1	8/4/2018 7:03:10 AM
Surr: BFB	118	70-130		%Rec	1	8/4/2018 7:03:10 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limitsPage 24 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

8/7/2018 3:09:18 PM

8/7/2018 3:09:18 PM

8/7/2018 3:09:18 PM

8/7/2018 6:42:02 PM

8/6/2018 3:21:08 PM

Analyst: MRA

Analyst: AG 8/6/2018 3:21:08 PM

Analyst: AG 8/6/2018 3:21:08 PM

Hall Environmental Analysis Laboratory, Inc.

Diesel Range Organics (DRO)

Surr: DNOP

Chloride

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Surr: BFB

Surr: Toluene-d8

Motor Oil Range Organics (MRO)

EPA METHOD 300.0: ANIONS

Surr: 4-Bromofluorobenzene

Gasoline Range Organics (GRO)

EPA METHOD 8260B: VOLATILES SHORT LIST

EPA METHOD 8015D MOD: GASOLINE RANGE

	HOD 8015M/D: DIESEL R	ANGE ORGANICS		Analyst: Irm
Analyses		Result	PQL Qual Units DF	Date Analyzed
Lab ID:	1808128-025	Matrix: SOIL	Received Date: 8/2/20	18 7:00:00 AM
Project:	Heros 23 08 09L		Collection Date: 8/1/20	18 1:25:00 PM
CLIENT:	LTE		Client Sample ID: SS25	

ND

ND

89.4

31

ND

ND

ND

ND

125

103

ND

108

9.8

49

30

0.024

0.047

0.047

0.095

70-130

70-130

70-130

4.7

50.6-138

mg/Kg

mg/Kg

%Rec

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

%Rec

%Rec

mg/Kg

%Rec

1

1

1

20

1

1

1

1

1

1

1

1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limit Page 25 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	LTE		Client S	ample ID:	SS26	
Project:	Heros 23 08 09L		Collec	tion Date:	8/1/20	18 1:30:00 PM
Lab ID:	1808128-026	Matrix: SOIL	Rece	ived Date:	8/2/20	18 7:00:00 AM
Analyses		Result	PQL Qua	al Units	DF	Date Analyzed
EPA ME	THOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: Irm
Diesel R	ange Organics (DRO)	120	9.7	mg/Kg	1	8/7/2018 12:22:40 AM
Motor O	il Range Organics (MRO)	70	49	mg/Kg	1	8/7/2018 12:22:40 AM
Surr:	DNOP	97.2	50.6-138	%Rec	1	8/7/2018 12:22:40 AM
EPA ME	THOD 300.0: ANIONS					Analyst: MRA
Chloride		260	30	mg/Kg	20	8/7/2018 6:54:26 PM
EPA ME	THOD 8260B: VOLATILES S	HORT LIST				Analyst: AG
Benzene	9	ND	0.023	mg/Kg	1	8/4/2018 7:26:12 AM
Toluene		ND	0.047	mg/Kg	1	8/4/2018 7:26:12 AM
Ethylber	nzene	ND	0.047	mg/Kg	1	8/4/2018 7:26:12 AM
Xylenes	, Total	ND	0.094	mg/Kg	1	8/4/2018 7:26:12 AM
Surr:	4-Bromofluorobenzene	129	70-130	%Rec	1	8/4/2018 7:26:12 AM
Surr:	Toluene-d8	97.1	70-130	%Rec	1	8/4/2018 7:26:12 AM
EPA ME	THOD 8015D MOD: GASOLI	NE RANGE				Analyst: AG
Gasoline	e Range Organics (GRO)	ND	4.7	mg/Kg	1	8/4/2018 7:26:12 AM
Surr:	BFB	114	70-130	%Rec	1	8/4/2018 7:26:12 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 26 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

128-027	Matrix: SOIL	Received Dat	e: 8/2/20	18 7:00:00 AM
s 23 08 09L		Collection Dat	e: 8/1/20	18 1:35:00 PM
		Client Sample I	D: SS27	
	- 22 08 001	- 22.08.001	Client Sample I	Client Sample ID: SS27

•					
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS				Analyst: Irm
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	8/7/2018 1:36:38 AM
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	8/7/2018 1:36:38 AM
Surr: DNOP	99.5	50.6-138	%Rec	1	8/7/2018 1:36:38 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	ND	30	mg/Kg	20	8/7/2018 7:06:51 PM
EPA METHOD 8260B: VOLATILES SHORT LIST	г				Analyst: AG
Benzene	ND	0.023	mg/Kg	1	8/4/2018 7:49:18 AM
Toluene	ND	0.047	mg/Kg	1	8/4/2018 7:49:18 AM
Ethylbenzene	ND	0.047	mg/Kg	1	8/4/2018 7:49:18 AM
Xylenes, Total	ND	0.093	mg/Kg	1	8/4/2018 7:49:18 AM
Surr: 4-Bromofluorobenzene	125	70-130	%Rec	1	8/4/2018 7:49:18 AM
Surr: Toluene-d8	96.9	70-130	%Rec	1	8/4/2018 7:49:18 AM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: AG
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	8/4/2018 7:49:18 AM
Surr: BFB	112	70-130	%Rec	1	8/4/2018 7:49:18 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 27 of 35
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

14-Aug-18

Client: LTE Heros 23 08 09L **Project:** Sample ID MB-39600 SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PRS Batch ID: 39600 RunNo: 53230 Prep Date: 8/6/2018 Analysis Date: 8/6/2018 SeqNo: 1753102 Units: mg/Kg Analyte SPK value SPK Ref Val %REC LowLimit %RPD RPDLimit Qual Result PQL HighLimit ND Chloride 15 Sample ID LCS-39600 SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: RunNo: 53230 LCSS Batch ID: 39600 Prep Date: 8/6/2018 Analysis Date: 8/6/2018 SeaNo: 1753103 Units: mg/Kg Result SPK value SPK Ref Val %REC %RPD RPDLimit Qual Analyte PQL LowLimit HighLimit Chloride 14 15 15 00 0 92 1 90 110 Sample ID MB-39629 SampType: mblk TestCode: EPA Method 300.0: Anions Client ID: PBS Batch ID: 39629 RunNo: 53285 Prep Date: 8/7/2018 Analysis Date: 8/7/2018 SeqNo: 1754250 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND Chloride 1.5 Sample ID LCS-39629 SampType: Ics TestCode: EPA Method 300.0: Anions Client ID: LCSS Batch ID: 39629 RunNo: 53285 Prep Date: 8/7/2018 Analysis Date: 8/7/2018 SegNo: 1754251 Units: ma/Ka SPK value SPK Ref Val HighLimit %RPD **RPDLimit** Analyte Result PQL %REC I owl imit Qual Chloride 15 1.5 15.00 0 97 9 90 110 Sample ID MB-39649 SampType: mblk TestCode: EPA Method 300.0: Anions Client ID: PBS Batch ID: 39649 RunNo: 53285 Prep Date: 8/7/2018 Analysis Date: 8/7/2018 SeqNo: 1754280 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Chloride ND 1.5 Sample ID LCS-39649 TestCode: EPA Method 300.0: Anions SampType: Ics Client ID: LCSS Batch ID: 39649 RunNo: 53285 Prep Date: 8/7/2018 Analysis Date: 8/7/2018 SeqNo: 1754281 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual LowLimit Chloride 14 1.5 15.00 0 96.4 90 110

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 28 of 35

WO#: 1808128

14-Aug-18

Client: LTE										
Project: Heros 23	08 09L									
Sample ID MB-39571	SampTy	/pe: ME	BLK	Tes	tCode: E	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batch	ID: 39	571	F	RunNo: 5	53193				
Prep Date: 8/2/2018	Analysis Da	ate: 8/	3/2018	5	SeqNo: 1	750580	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	8.6		10.00		86.3	50.6	138			
Sample ID LCS-39571	SampTy	/pe: LC	S	Tes	tCode: E	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCSS	Batch	ID: 39	571	F	RunNo: 5	53193				
Prep Date: 8/2/2018	Analysis Da	ate: 8/	3/2018	S	SeqNo: 1	750710	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	51	10	50.00	0	102	70	130			
Surr: DNOP	4.2		5.000		83.7	50.6	138			
Sample ID MB-39582	SampTy	/pe: ME	BLK	Tes	tCode: E	PA Method	8015M/D: Di	esel Rano	e Organics	
Client ID: PBS	Batch	ID. 39	582	F	RunNo: 5	3228			· J	
Pren Date: 8/3/2018		ato: 8/	6/2018			751772	Unite: ma/k	(0		
1 1ep Date. 0/3/2010	Analysis De	ate. 0 /	0/2010	,	bequito. I	131112	onits. mg/r	v 9		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50	10.00		00.0	50.0	400			
Sun. DNOP	0.2		10.00		62.0	0.00	130			
Sample ID LCS-39582	SampTy	pe: LC	S	Tes	tCode: E	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCSS	Batch	ID: 39	582	F	RunNo: 5	53228				
Prep Date: 8/3/2018	Analysis Da	ate: 8/	6/2018	5	SeqNo: 1	751774	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	48	10	50.00	0	95.3	70	130			
Surr: DNOP	4.1		5.000		81.4	50.6	138			
Sample ID 1808128-016AMS	SampTy	/pe: MS	3	Tes	tCode: E	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: SS16	Batch	ID: 39	582	F	RunNo: 5	53228				
Prep Date: 8/3/2018	Analysis Da	ate: 8/	6/2018	S	SeqNo: 1	751832	Units: mg/k	۲g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	270	9.6	48.12	225.8	85.9	53.5	126			
Surr: DNOP	5.1		4,812		107	50.6	138			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 29 of 35

WO#: 1808128

14-Aug-18

Client: LTE

Project: Heros 23 08 09L

Sample ID 1808128-016AMS		vne MS	30	Tes	tCode: El	PA Method	8015M/D: Di	osol Rang	Organics	
	Dampi	ypc. mc		163		Amethou	0010W/D. DI	eser Nang	e organics	
Client ID: SS16	Batch	n ID: 39	582	F	RunNo: 5	3228				
Prep Date: 8/3/2018	Analysis D	ate: 8/	6/2018	5	SeqNo: 1	751835	Units: mg/l	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	330	9.7	48.31	225.8	225	53.5	126	22.4	21.7	RS
Surr: DNOP	5.2		4.831		107	50.6	138	0	0	
Sample ID MB-39604	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batch	n ID: 39	604	F	RunNo: 5	3261				
Prep Date: 8/6/2018	Analysis D	ate: 8/	7/2018	S	SeqNo: 1	753037	Units: mg/l	۲g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	8.7		10.00		87.2	50.6	138			
Sample ID LCS-39604	SampT	vpe: LC	s	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
	Pater	D: 20	504			2064		overnang	e e guinee	
Client ID. LCSS	Dalci	10. 39	504	r	CULINO. 3	3201				
Prep Date: 8/6/2018	Analysis D	ate: 8/	7/2018	S	SeqNo: 1	753038	Units: mg/l	۲g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	43	10	50.00	0	86.6	70	130			
Surr: DNOP	4.2		5.000		84.0	50.6	138			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 30 of 35

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

14-Aug-18

Client: LTE Heros 23 08 09L

Proj	ect:	
,		

Sample ID Ics-39572 SampType: LCS4 TestCode: EPA Method 8260B: Volatiles Short List Client ID: BatchQC Batch ID: 39572 RunNo: 53199 RunNo: 53199 RunNo: 53199 RunNo: 53199 RunNo: 53199	Qual
Client ID: BatchQC Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750609 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Benzene 0.91 0.025 1.000 0 91.1 80 120 Toluene 0.94 0.050 1.000 0 93.5 80 120 Ethylbenzene 0.96 0.050 1.000 0 96.0 80 120 Surr: 7.01an 3.0 0.10 3.000 0 100 80 120 Surr: 7.01an 3.0 0.10 3.000 0 100 80 120 Surr: Toluene-d8 0.49 0.5000 98.1 70 130 130 Sample ID mb-39572 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Short List Client ID: PBS Batc	Qual
Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750609 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Benzene 0.91 0.025 1.000 0 91.1 80 120 Toluene 0.94 0.050 1.000 0 93.5 80 120 Ethylbenzene 0.96 0.050 1.000 0 96.0 80 120 Xylenes, Total 3.0 0.10 3.000 0 100 80 120 Surr: Toluene-d8 0.49 0.5000 111 70 130 130 Sample ID mb-39572 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Short List Client ID: PBS Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750610 Units: mg/Kg	Qual
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Benzene 0.91 0.025 1.000 0 91.1 80 120 Toluene 0.94 0.050 1.000 0 93.5 80 120 Ethylbenzene 0.96 0.050 1.000 0 96.0 80 120 Xylenes, Total 3.0 0.10 3.000 0 100 80 120 Surr: 4-Bromofluorobenzene 0.56 0.5000 111 70 130 130 Surr: Toluene-d8 0.49 0.5000 98.1 70 130 130 Sample ID mb-39572 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Short List 150 Client ID: PBS Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750610 Units: mg/Kg <td>Qual</td>	Qual
Benzene 0.91 0.025 1.000 0 91.1 80 120 Toluene 0.94 0.050 1.000 0 93.5 80 120 Ethylbenzene 0.96 0.050 1.000 0 96.0 80 120 Xylenes, Total 3.0 0.10 3.000 0 100 80 120 Surr: 4-Bromofluorobenzene 0.56 0.5000 111 70 130 Surr: Toluene-d8 0.49 0.5000 98.1 70 130 Sample ID mb-39572 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Short List Client ID: PBS Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750610 Units: mg/Kg	
Toluene 0.94 0.050 1.000 0 93.5 80 120 Ethylbenzene 0.96 0.050 1.000 0 96.0 80 120 Xylenes, Total 3.0 0.10 3.000 0 100 80 120 Surr: 4-Bromofluorobenzene 0.56 0.5000 111 70 130 Surr: Toluene-d8 0.49 0.5000 98.1 70 130 Sample ID mb-39572 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Short List Client ID: PBS Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750610 Units: mg/Kg	
Ethylbenzene 0.96 0.050 1.000 0 96.0 80 120 Xylenes, Total 3.0 0.10 3.000 0 100 80 120 Surr: 4-Bromofluorobenzene 0.56 0.5000 111 70 130 Surr: Toluene-d8 0.49 0.5000 98.1 70 130 Sample ID mb-39572 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Short List Client ID: PBS Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750610 Units: mg/Kg	
Xylenes, Total 3.0 0.10 3.000 0 100 80 120 Surr: 4-Bromofluorobenzene 0.56 0.5000 111 70 130 Surr: Toluene-d8 0.49 0.5000 98.1 70 130 Sample ID mb-39572 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Short List Client ID: PBS Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750610 Units: mg/Kg	
Surr: 4-Bromofluorobenzene Surr: Toluene-d8 0.56 0.49 0.5000 111 98.1 70 130 Sample ID mb-39572 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Short List Client ID: PBS Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750610 Units: mg/Kg	
Surr: Toluene-d8 0.49 0.5000 98.1 70 130 Sample ID mb-39572 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Short List Client ID: PBS Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750610 Units: mg/Kg	
Sample ID mb-39572 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Short List Client ID: PBS Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750610 Units: mg/Kg	
Sample ID mb-39572 Samp Type: MBLK TestCode: EPA Method 8260B: Volatiles Short List Client ID: PBS Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750610 Units: mg/Kg	
Client ID: PBS Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750610 Units: mg/Kg	
Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750610 Units: mg/Kg	
Analyte Result PQL SPK value SPK Ret Val %REC LowLimit HighLimit %RPD RPDLimit	Qual
Benzene ND 0.025	
Toluene ND 0.050	
Ethylbenzene ND 0.050	
Xylenes, Total ND 0.10	
Surr: 4-Bromofluorobenzene 0.62 0.5000 124 70 130	
Surr: Toluene-d8 0.50 0.5000 100 70 130	
Sample ID, 4009429, 047ama SampTuper MD4 TestCoder EDA Mathed 0000Dr Valatillas Dhart List	
Sample ID 1608126-017ams Samplype. MS4 TestCode: EPA Method 8260B: Volatiles Short List	
Client ID: SS17 Batch ID: 39572 Runno: 53199	
Prep Date: 8/2/2018 Analysis Date: 8/4/2018 SeqNo: 1751121 Units: mg/Kg	
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual
Benzene 0.87 0.023 0.9183 0 95.2 80 120	
Toluene 0.98 0.046 0.9183 0.005815 106 80 120	
Toluene 0.98 0.046 0.9183 0.005815 106 80 120 Ethylbenzene 1.1 0.046 0.9183 0.009136 115 82 121	
Toluene 0.98 0.046 0.9183 0.005815 106 80 120 Ethylbenzene 1.1 0.046 0.9183 0.009136 115 82 121 Xylenes, Total 3.2 0.092 2.755 0 117 80.2 120	
Toluene 0.98 0.046 0.9183 0.005815 106 80 120 Ethylbenzene 1.1 0.046 0.9183 0.009136 115 82 121 Xylenes, Total 3.2 0.092 2.755 0 117 80.2 120 Surr: 4-Bromofluorobenzene 0.57 0.4591 125 70 130	
Toluene 0.98 0.046 0.9183 0.005815 106 80 120 Ethylbenzene 1.1 0.046 0.9183 0.009136 115 82 121 Xylenes, Total 3.2 0.092 2.755 0 117 80.2 120 Surr: 4-Bromofluorobenzene 0.57 0.4591 125 70 130 Surr: Toluene-d8 0.44 0.4591 95.4 70 130	
Toluene 0.98 0.046 0.9183 0.005815 106 80 120 Ethylbenzene 1.1 0.046 0.9183 0.009136 115 82 121 Xylenes, Total 3.2 0.092 2.755 0 117 80.2 120 Surr: 4-Bromofluorobenzene 0.57 0.4591 125 70 130 Surr: Toluene-d8 0.44 0.4591 95.4 70 130 Sample ID 1808128-017amsd SampType: MSD4 TestCode: EPA Method 8260B: Volatiles Short List	
Toluene 0.98 0.046 0.9183 0.005815 106 80 120 Ethylbenzene 1.1 0.046 0.9183 0.009136 115 82 121 Xylenes, Total 3.2 0.092 2.755 0 117 80.2 120 Surr: 4-Bromofluorobenzene 0.57 0.4591 125 70 130 Surr: Toluene-d8 0.44 0.4591 95.4 70 130 Sample ID 1808128-017amsd SampType: MSD4 TestCode: EPA Method 8260B: Volatiles Short List Client ID: SS17 Batch ID: 39572 RunNo: 53199	
Toluene 0.98 0.046 0.9183 0.005815 106 80 120 Ethylbenzene 1.1 0.046 0.9183 0.009136 115 82 121 Xylenes, Total 3.2 0.092 2.755 0 117 80.2 120 Surr: 4-Bromofluorobenzene 0.57 0.4591 125 70 130 Surr: Toluene-d8 0.44 0.4591 95.4 70 130 Sample ID 1808128-017amsd SampType: MSD4 TestCode: EPA Method 8260B: Volatiles Short List Client ID: SS17 Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/4/2018 SeqNo: 1751122 Units: mg/Kg	
Toluene 0.98 0.046 0.9183 0.005815 106 80 120 Ethylbenzene 1.1 0.046 0.9183 0.009136 115 82 121 Xylenes, Total 3.2 0.092 2.755 0 117 80.2 120 Surr: 4-Bromofluorobenzene 0.57 0.4591 125 70 130 Surr: Toluene-d8 0.44 0.4591 95.4 70 130 Sample ID 1808128-017amsd SampType: MSD4 TestCode: EPA Method 8260B: Volatiles Short List Client ID: SS17 Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/4/2018 SeqNo: 1751122 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual
Toluene 0.98 0.046 0.9183 0.005815 106 80 120 Ethylbenzene 1.1 0.046 0.9183 0.009136 115 82 121 Xylenes, Total 3.2 0.092 2.755 0 117 80.2 120 Surr: 4-Bromofluorobenzene 0.57 0.4591 125 70 130 Surr: Toluene-d8 0.44 0.4591 95.4 70 130 Sample ID 1808128-017amsd SampType: MSD4 TestCode: EPA Method 8260B: Volatiles Short List Client ID: SS17 Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/4/2018 SeqNo: 1751122 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Benzene 1.0 0.025 0.9901 0 101 80 120 13.6 20	Qual
Toluene 0.98 0.046 0.9183 0.005815 106 80 120 Ethylbenzene 1.1 0.046 0.9183 0.009136 115 82 121 Xylenes, Total 3.2 0.092 2.755 0 117 80.2 120 Surr: 4-Bromofluorobenzene 0.57 0.4591 125 70 130 Surr: Toluene-d8 0.44 0.4591 95.4 70 130 Sample ID 1808128-017amsd SampType: MSD4 TestCode: EPA Method 8260B: Volatiles Short List Client ID: SS17 Batch ID: 39572 RunNo: 53199 Vistor Vistor Prep Date: 8/2/2018 Analysis Date: 8/4/2018 SeqNo: 1751122 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Benzene 1.0 0.025 0.9901 0 101 80 120 13.6 20 Toluene 1.1 0.050 0.9901	Qual
Toluene 0.98 0.046 0.9183 0.005815 106 80 120 Ethylbenzene 1.1 0.046 0.9183 0.009136 115 82 121 Xylenes, Total 3.2 0.092 2.755 0 117 80.2 120 Surr: 4-Bromofluorobenzene 0.57 0.4591 125 70 130 Surr: Toluene-d8 0.44 0.4591 95.4 70 130 Sample ID 1808128-017amsd SampType: MSD4 TestCode: EPA Method 8260B: Volatiles Short List Client ID: SS17 Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/4/2018 SeqNo: 1751122 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Benzene 1.0 0.025 0.9901 0 101 80 120 13.6 20 Toluene 1.1 0.050 0.9901 0.005815 110 80 120	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Page 31 of 35

- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

WO#: 1808128

14-Aug-18

Client:

LTE

Project: Heros 23 08 09L

Sample ID 1808128-017amso	I Samp1	ype: MS	D4	Test	tCode: El	PA Method	8260B: Vola	tiles Short	List	
Client ID: SS17	Batcl	n ID: 39	572	R	RunNo: 5	3199				
Prep Date: 8/2/2018	Analysis [)ate: 8/	4/2018	S	SeqNo: 1	751122	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	0.61		0.4950		123	70	130	0	0	
Surr: Toluene-d8	0.49		0.4950		98.2	70	130	0	0	
-										
Sample ID Ics-39567	Sampl	ype: LC	S4	Test	tCode: El	PA Method	8260B: Vola	tiles Short	List	
Client ID: BatchQC	Batc	n ID: 39	567	R	RunNo: 5	3199				
Prep Date: 8/2/2018	Analysis [Date: 8/	3/2018	S	SeqNo: 1	751160	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.93	0.025	1.000	0	92.9	80	120			
Toluene	0.94	0.050	1.000	0	94.2	80	120			
Ethylbenzene	0.94	0.050	1.000	0	94.1	80	120			
Xylenes, Total	3.0	0.10	3.000	0	101	80	120			
Surr: 4-Bromofluorobenzene	0.53		0.5000		107	70	130			
Surr: Toluene-d8	0.48		0.5000		95.4	70	130			
				-						
Sample ID mb-39567	Samp	ype: ME	SLK	les	tCode: El	PA Method	8260B: Vola	tiles Short	List	
Client ID: PBS	Batc	h ID: 39	567	F	RunNo: 5	3199				
Client ID: PBS Prep Date: 8/2/2018	Batc Analysis [h ID: 39 Date: 8 /	567 3/2018	R	RunNo: 5 SeqNo: 1	3199 751161	Units: mg/ł	(g		
Client ID: PBS Prep Date: 8/2/2018 Analyte	Batc Analysis [Result	h ID: 39 Date: 8/ PQL	567 3/2018 SPK value	R S SPK Ref Val	RunNo: 5 SeqNo: 1 %REC	3199 751161 LowLimit	Units: mg/ł HighLimit	(g %RPD	RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene	Batc Analysis I Result ND	h ID: 39 Date: 8/ PQL 0.025	567 3/2018 SPK value	R SPK Ref Val	RunNo: 5 SeqNo: 1 %REC	3199 751161 LowLimit	Units: mg/ł HighLimit	⟨g %RPD	RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene	Batc Analysis I Result ND ND	h ID: 39 Date: 8 PQL 0.025 0.050	567 3/2018 SPK value	R SPK Ref Val	RunNo: 5 SeqNo: 1 %REC	3199 751161 LowLimit	Units: mg/ł HighLimit	(g %RPD	RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene Ethylbenzene	Batc Analysis I Result ND ND ND	h ID: 39 Date: 8/ PQL 0.025 0.050 0.050	567 3/2018 SPK value	R SPK Ref Val	RunNo: 5 SeqNo: 1 %REC	3199 751161 LowLimit	Units: mg/ł HighLimit	(g %RPD	RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total	Batcl Analysis I Result ND ND ND ND	Date: 8/ PQL 0.025 0.050 0.050 0.10	567 3/2018 SPK value	F SPK Ref Val	RunNo: 5 SeqNo: 1 %REC	3199 751161 LowLimit	Units: mg/F HighLimit	(g %RPD	RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene	Batcl Analysis I Result ND ND ND 0.64	n ID: 39 Date: 8/ PQL 0.025 0.050 0.050 0.10	567 3/2018 SPK value 0.5000	F SPK Ref Val	RunNo: 5 SeqNo: 1 %REC 128	3199 751161 LowLimit 70	Units: mg/F HighLimit 130	(g %RPD	RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Surr: Toluene-d8	Batcl Analysis I Result ND ND ND 0.64 0.50	h ID: 39 Date: 8 / PQL 0.025 0.050 0.050 0.10	567 3/2018 SPK value 0.5000 0.5000	R S SPK Ref Val	RunNo: 5 SeqNo: 1' <u>%REC</u> 128 99.1	3199 751161 LowLimit 70 70	Units: mg/k HighLimit 130 130	(g %RPD	RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Surr: Toluene-d8 Sample ID Ics-39589	Batcl Analysis I Result ND ND ND 0.64 0.50	h ID: 39: Date: 8/ PQL 0.025 0.050 0.050 0.050 0.10	567 3/2018 SPK value 0.5000 0.5000	F SPK Ref Val	RunNo: 5 SeqNo: 1 %REC 128 99.1 tCode: El	3199 751161 LowLimit 70 70 PA Method	Units: mg/k HighLimit 130 130 8260B: Vola	(g %RPD	RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Surr: Toluene-d8 Sample ID Ics-39589 Client ID: BatchQC	Batcl Analysis I Result ND ND ND 0.64 0.50 Samp ^T Batc	h ID: 39: Date: 8/ PQL 0.025 0.050 0.050 0.050 0.10	567 3/2018 SPK value 0.5000 0.5000 S84 589	F SPK Ref Val	RunNo: 5 SeqNo: 1 %REC 128 99.1 tCode: E RunNo: 5	3199 751161 LowLimit 70 70 PA Method 3243	Units: mg/k HighLimit 130 130 8260B: Vola	(g %RPD tiles Short	RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Surr: Toluene-d8 Sample ID Ics-39589 Client ID: BatchQC Prep Date: 8/3/2018	Batcl Analysis I Result ND ND ND 0.64 0.50 Samp Batcl Analysis I	h ID: 39: Date: 8/ PQL 0.025 0.050 0.050 0.050 0.10 Fype: LC h ID: 39: Date: 8/	567 3/2018 SPK value 0.5000 0.5000 S4 589 6/2018	F SPK Ref Val Tes F S	RunNo: 5 SeqNo: 1 %REC 128 99.1 tCode: El RunNo: 5 SeqNo: 1	3199 751161 LowLimit 70 70 PA Method 3243 752198	Units: mg/k HighLimit 130 130 8260B: Vola Units: mg/k	(g %RPD tiles Short	RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Surr: Toluene-d8 Sample ID Ics-39589 Client ID: BatchQC Prep Date: 8/3/2018 Analyte	Batcl Analysis I ND ND ND 0.64 0.50 Samp Batcl Analysis I Result	h ID: 39: Date: 8/ PQL 0.025 0.050 0.050 0.050 0.10 Fype: LC h ID: 39: Date: 8/ PQL	567 3/2018 SPK value 0.5000 0.5000 S4 589 6/2018 SPK value	F SPK Ref Val Tes F SPK Ref Val	RunNo: 5 SeqNo: 1 %REC 128 99.1 tCode: El RunNo: 5 SeqNo: 1 %REC	3199 751161 LowLimit 70 70 PA Method 3243 752198 LowLimit	Units: mg/k HighLimit 130 130 8260B: Vola Units: mg/k HighLimit	(g %RPD tiles Short (g %RPD	RPDLimit : List	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Surr: Toluene-d8 Sample ID Ics-39589 Client ID: BatchQC Prep Date: 8/3/2018 Analyte Benzene	Batcl Analysis I ND ND ND 0.64 0.50 Samp Batcl Analysis I Result 0.93	h ID: 39: Date: 8/ PQL 0.025 0.050 0.050 0.050 0.10 Fype: LC h ID: 39: Date: 8/ PQL 0.025	567 3/2018 SPK value 0.5000 0.5000 S4 589 6/2018 SPK value 1.000	F SPK Ref Val Tes F SPK Ref Val 0	RunNo: 5 SeqNo: 1 %REC 128 99.1 tCode: El RunNo: 5 SeqNo: 1 %REC 92.8	3199 751161 LowLimit 70 70 PA Method 3243 752198 LowLimit 80	Units: mg/k HighLimit 130 130 8260B: Vola Units: mg/k HighLimit 120	(g %RPD tiles Short (g %RPD	RPDLimit : List RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Surr: Toluene-d8 Sample ID Ics-39589 Client ID: BatchQC Prep Date: 8/3/2018 Analyte Benzene Toluene	Batcl Analysis I Result ND ND 0.64 0.50 Samp Batcl Analysis I Result 0.93 0.95	h ID: 39: Date: 8/ PQL 0.025 0.050 0.050 0.10 Fype: LC h ID: 39: Date: 8/ PQL 0.025 0.050	567 3/2018 SPK value 0.5000 0.5000 S4 589 6/2018 SPK value 1.000 1.000	F SPK Ref Val	RunNo: 5 SeqNo: 1 %REC 128 99.1 tCode: El RunNo: 5 SeqNo: 1 %REC 92.8 95.5	3199 751161 LowLimit 70 70 70 PA Method 3243 752198 LowLimit 80 80	Units: mg/k HighLimit 130 130 8260B: Vola Units: mg/k HighLimit 120 120	(g %RPD tiles Short (g %RPD	RPDLimit : List RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Surr: Toluene-d8 Sample ID Ics-39589 Client ID: BatchQC Prep Date: 8/3/2018 Analyte Benzene Toluene Ethylbenzene	Batcl Analysis I Result ND ND 0.64 0.50 Samp Batcl Analysis I Result 0.93 0.95 1.0	h ID: 39: Date: 8/ PQL 0.025 0.050 0.050 0.10 Fype: LC h ID: 39: Date: 8/ PQL 0.025 0.050 0.050	567 3/2018 SPK value 0.5000 0.5000 S4 589 6/2018 SPK value 1.000 1.000 1.000	F SPK Ref Val	RunNo: 5 SeqNo: 1 %REC 128 99.1 tCode: El RunNo: 5 SeqNo: 1 %REC 92.8 95.5 101	3199 751161 LowLimit 70 70 70 PA Method 3243 752198 LowLimit 80 80 80	Units: mg/k HighLimit 130 130 8260B: Vola Units: mg/k HighLimit 120 120 120	(g %RPD tiles Short (g %RPD	RPDLimit : List RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Surr: Toluene-d8 Sample ID Ics-39589 Client ID: BatchQC Prep Date: 8/3/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total	Batcl Analysis I Result ND ND ND 0.64 0.50 Samp Batcl Analysis I Result 0.93 0.95 1.0 3.0	h ID: 39: Date: 8/ PQL 0.025 0.050 0.050 0.10 Fype: LC h ID: 39: Date: 8/ PQL 0.025 0.050 0.050 0.050 0.050	567 3/2018 SPK value 0.5000 0.5000 584 589 6/2018 SPK value 1.000 1.000 1.000 3.000	F SPK Ref Val	RunNo: 5 SeqNo: 1 %REC 128 99.1 tCode: El RunNo: 5 SeqNo: 1 %REC 92.8 95.5 101 100	3199 751161 LowLimit 70 70 PA Method 3243 752198 LowLimit 80 80 80 80 80	Units: mg/k HighLimit 130 130 8260B: Vola Units: mg/k HighLimit 120 120 120 120	(g %RPD tiles Short (g %RPD	RPDLimit	Qual
Client ID: PBS Prep Date: 8/2/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Surr: Toluene-d8 Sample ID Ics-39589 Client ID: BatchQC Prep Date: 8/3/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene	Batcl Analysis I Result ND ND ND 0.64 0.50 Samp Batcl Analysis I Result 0.93 0.95 1.0 3.0 0.56	h ID: 39: Date: 8/ PQL 0.025 0.050 0.050 0.10 Fype: LC h ID: 39: Date: 8/ PQL 0.025 0.050 0.050 0.050 0.050	567 3/2018 SPK value 0.5000 0.5000 S84 589 6/2018 SPK value 1.000 1.000 1.000 3.000 0.5000	Find Section 2015 SPK Ref Val Tes SPK Ref Val 0 0 0 0 0 0 0 0 0 0	RunNo: 5 SeqNo: 1 %REC 128 99.1 tCode: El RunNo: 5 SeqNo: 1 %REC 92.8 95.5 101 100 111	3199 751161 LowLimit 70 70 PA Method 3243 752198 LowLimit 80 80 80 80 80 80 70	Units: mg/k HighLimit 130 130 8260B: Vola Units: mg/k HighLimit 120 120 120 120 120 120	(g %RPD tiles Short (g %RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Page 32 of 35

- Р Sample pH Not In Range RL
- Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Client:

Project: Heros 23 08 09L

LTE

Sample ID mb-39589	SampT	уре: М	BLK	Tes	tCode: El	PA Method	8260B: Vola	tiles Short	t List	
Client ID: PBS	Batch	h ID: 39	589	F	RunNo: 5	3243				
Prep Date: 8/3/2018	Analysis D	Date: 8/	6/2018	S	SeqNo: 1	752199	Units: mg/M	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.63		0.5000		125	70	130			
Surr: Toluene-d8	0.47		0.5000		94.3	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

WO#: **1808128** *14-Aug-18*

Page 33 of 35

14-Aug-18

Client: I TF Heros 23 08 09L **Project:** Sample ID Ics-39572 SampType: LCS TestCode: EPA Method 8015D Mod: Gasoline Range Client ID: LCSS Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750597 Units: mg/Kg SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual Gasoline Range Organics (GRO) 26 5.0 25.00 0 103 70 130 Surr: BFB 530 500.0 106 70 130 Sample ID mb-39572 SampType: MBLK TestCode: EPA Method 8015D Mod: Gasoline Range Client ID: PBS Batch ID: 39572 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1750598 Units: mg/Kg SPK value SPK Ref Val %REC %RPD **RPDLimit** Result PQL LowLimit HighLimit Qual Analyte Gasoline Range Organics (GRO) ND 50 Surr: BFB 550 500.0 110 70 130 Sample ID Ics-39567 SampType: LCS TestCode: EPA Method 8015D Mod: Gasoline Range Client ID: LCSS Batch ID: 39567 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1751079 Units: mg/Kg SPK value SPK Ref Val %REC %RPD Analyte Result PQL LowLimit HighLimit RPDLimit Qual Gasoline Range Organics (GRO) 5.0 25.00 98.6 25 0 70 130 Surr: BFB 510 500.0 102 70 130 TestCode: EPA Method 8015D Mod: Gasoline Range Sample ID mb-39567 SampType: MBLK Client ID: PBS Batch ID: 39567 RunNo: 53199 Prep Date: 8/2/2018 Analysis Date: 8/3/2018 SeqNo: 1751080 Units: mg/Kg SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte Result PQL HighLimit Qual Gasoline Range Organics (GRO) ND 5.0 Surr: BFB 570 500.0 70 130 114 Sample ID 1808128-018ams SampType: MS TestCode: EPA Method 8015D Mod: Gasoline Range Client ID: **SS18** Batch ID: 39572 RunNo: 53243 Prep Date: 8/2/2018 Analysis Date: 8/6/2018 SeqNo: 1752041 Units: mg/Kg PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte Result LowLimit Gasoline Range Organics (GRO) 86 4.8 24.02 24.29 258 64.7 142 S S Surr: BFB 630 480.3 131 70 130 Sample ID 1808128-018amsd SampType: MSD TestCode: EPA Method 8015D Mod: Gasoline Range Client ID: **SS18** Batch ID: 39572 RunNo: 53243 Prep Date: 8/2/2018 Analysis Date: 8/6/2018 SeqNo: 1752042 Units: mg/Kg SPK value SPK Ref Val %REC HighLimit %RPD RPDLimit Result PQL Analyte LowLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Page 34 of 35

- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

WO#: 1808128

14-Aug-18

Client: LTE

Project: Heros 23 08 09L

Sample ID 1808128-018ams	d SampType: N	ISD	Tes	tCode: E	PA Method	8015D Mod:	Gasoline	Range	
Client ID: SS18	Batch ID: 3	9572	F	RunNo: 5	3243				
Prep Date: 8/2/2018	Analysis Date:	8/6/2018	5	SeqNo: 1	752042	Units: mg/k	٢g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	61 4.7	23.41	24.29	157	64.7	142	34.2	20	RS
Surr: BFB	580	468.2		124	70	130	0	0	
Sample ID Ics-39589	SampType: L	CS	Tes	tCode: E	PA Method	8015D Mod:	Gasoline	Range	
Client ID: LCSS	Batch ID: 3	9589	F	RunNo: 5	3243				
Prep Date: 8/3/2018	Analysis Date: 1	8/6/2018	5	SeqNo: 1	752062	Units: mg/k	٢g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	27 5.0	25.00	0	110	70	130			
Surr: BFB	530	500.0		106	70	130			
Sample ID mb-39589	SampType: N	IBLK	Tes	tCode: E	PA Method	8015D Mod:	Gasoline	Range	
Client ID: PBS	Batch ID: 3	9589	F	RunNo: 5	3243				
Prep Date: 8/3/2018	Analysis Date:	8/6/2018	5	SeqNo: 1	752063	Units: mg/h	٢g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 5.0)							
Surr: BFB	560	500.0		112	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 35 of 35

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Albu Albu TEL: 505-345-3975 Website: www.hal	Analysis Laborator 4901 Hawkins N querque, NM 8710 FAX: 505-345-410 llenvironmental.com	7 19 17 17 17	nple Log-In Check List	
Client Name: LTE	Work Order Number:	1808128		RcptNo: 1	
Received By: Anne Thome 8	/2/2018 7:00:00 AM		anne Am	~	
Completed By: Anne Thome 8/ Reviewed By: ENH 8/	/2/2018 12:14:34 PM		anne An		
Chain of Custody	18				
1. Is Chain of Custody complete?		Yes 🖌	No 🗌	Not Present	
2. How was the sample delivered?		Courier			
Log In 3. Was an attempt made to cool the samples?		Yes 🗸	No 🗌	NA 🗌	
4. Were all samples received at a temperature of	>0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗌	
5. Sample(s) in proper container(s)?		Yes 🖌	No 🗌		
6. Sufficient sample volume for indicated test(s)?		Yes 🖌	No 🗌		
7. Are samples (except VOA and ONG) properly pr	reserved?	Yes 🗹	No		
8. Was preservative added to bottles?		Yes 🗌	No 🗹	NA 🗌	
9. VOA vials have zero headspace?		Yes	No 🗆	No VOA Vials 🗹	
10. Were any sample containers received broken?		Yes	No 🗹	# of preserved	1.C
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	No 🗆	for pH: (<2 or >12 unless) hered)	2/10
12. Are matrices correctly identified on Chain of Cus	stody?	Yes 🗹	No 🗆	Adjusted?	
13. Is it clear what analyses were requested?		Yes 🖌	No 🗌	ETAD	
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗌	Checked by:	
Special Handling (if applicable)			/		
15. Was client notified of all discrepancies with this	order?	Yes	No	NA 🗹	
Person Notified:	Date		COLORADOR COLORADOR		
By Whom:	Via:	eMail Pho	ne 🗌 Fax	In Person	
Regarding:	Landar Martine Contractor Contractor Contractor	INFRITZANALISIAN I BURGUNALISIA			
Client Instructions:	Electric description and the second secon			n de se presentante en antique en	
16. Additional remarks:					
17. Cooler Information					
Cooler No Temp C Condition Seal	Intact Seal No Seal No	eal Date Si	gned By		
1 1.1 Good Yes			······	3	
2 1.1 Good Yes					

C	hain-	of-Cu	stody Record	Turn-Around	Time:				a la	н	A1		FN	v	TE	20		ИЕ	NT	A I	
Client:	LT	Envil	conmental	Standard	🗆 Rush			A designed		A	NA		YS	IS	5 L	AE	30	RA	ТО	RY	
				Project Name	e:				Sec.	v		halle	envi	ronn	nent	al co	m				
Mailing	Address	\$4	SE21 AAR	HEIDS	23 0	38 091		490)1 H	awkir	ns NI	= _	Albi	ique	arout		M 87	109			
0.	Fans	0 (2 81301	Project #:				Te	1.50	5-34	5-39	75	F	ax f	505-	345-	410	7			
Phone #	#: #:	970	- 385 - 1096	0	76218	3010	140					An	aly	sis l	Req	uest					
email or	r Fax#:	dhenc	emann@Itenv.com	Project Mana	ager:)	nly)	RO)					O4)				0			
QA/QC F	Package:			0	11		802	as o	/ WI			(S)		04.S	CB'S			õ			
B ⇒Stan	dard		Level 4 (Full Validation)	Deuil	n Hencr	ann	S.	(C)	RO			SIIS		2,PC	2 P			X			
Accredit	tation AP	□ Othe	r	Sampler: D	XYes	ς FT Νσ	I	TPF	0/0	8.1)	4.1)	8270		3,NO	/ 808		(7	1			L N
EDD	(Type)	POI	F	Sample Tem	perature 2./-	(F-10=1.)		Ш	(GR	d 41	d 50	LO (tals	NO.	des	2	10	0			٥ ک
						Zcoolers		MT	15B	etho	etho	831(3 Me	E,C	estic	107	emi	0			oles
Date	Time	Matrix	Sample Request ID	Type and #	Preservative Type	HEAL No.	+ X	+ X	1 80	W)	N N	H's (SA 8	Suc	1 Pe	0B (0 (S	4			Bubt
					.,,-	1808128	BTE	BTE	년 년	TP		PA	RC	Anic	808	826	827	0			Air
81-18	1125	Soil	5501	14402	Cool	-001	X		X									K			
1	1130	1	5502 "			502	X		¥									X			
	1135		5503			703	X		X									X			
	1140		5504			704	X		X									X			
	1145		5505			705	Y	_	¥									X			
	1150		5506			-240	X		8								37	K			
	1155		5507			707	X		Y									X		× .	•
	200		5508			208	X		$\left X \right $									$ \lambda $			
	1205		5509			209	¥		Y									X			
	1210		5510			-010	Ķ		X									X			
	1215		551	4	14	110-	К		Y									X			
	1220	*	5512		V	-012	C		٢									\times			
Date:	Time:	Relingoishe	ed by	Received by:	ibal	Date Time	Ren	narks C	c	0	bu	rn	3	\bigcirc	1+	en	V. (OM			
///(f	Time:	Relinguishe	ed by:	Received by	pliet	Dete Time								c							
8/110	1217	MA	where he alles	Y U	kon -	08/02/18			F	ag	e	1	04	5	3						
118	1011		witted to Hall Environmental may be subc	ontracted to other a	ccredited laboratori	es. This serves as notice of this	possit	oility. A		b-contra	acted	lata w	ill be (clearty	v nota	ted on	the ar	nalvtica	Ireport]

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

С	hain-	of-Cu	stody Record	Turn-Around	Time:				100	ы			- 11	/ТЕ	20			ATT 4		
Client:	ITE,	1. Corr	mental	Standard	□ Rush]					C 1 1 L			DA	TO	DV	
				Project Name):			ł.	1 C				viron		tal or	m	NA	10		
Mailing	Address:	120	RHREDIA	HEROE	22 08	5 091		400	14 14	vv	VV VV .I		Ihuau	nen		1.07	100			
	0.0	70	10 Concerve	Project #:	0.00	0(2		490		5 245	207	- A	Fau	FOF	245	410	7			
Phone	4.	ango,	10 8101				101	ie	1. 50	0-040	-397	ə Ana	Ivsis	Rea	uest	410	55		1 h	85
email or	Fax#:			Project Mana	aer:			<u>(</u>)	6	6. SE			4)							
QA/QC F	Package:				90		021)	s on	MR				s,	B's			0			
□ Stan	dard		□ Level 4 (Full Validation)	Devin	Hencma	nn	s (8)	(Ga	20/				PO	PC			0.			
Accredi	tation			Sampler: Da	nr + Bui	15		Hd	JD 1	=		2	N02	3082			R			2
	4P	□ Othe	r	On Ice:	XYes .	□ No		+	RO	418.	500	010	0.03	s / 8		(A)				or
	(Type)			Sample Tem	perature 2.1.	CF1.021.	1.11	TBE	B (G	por			CI'N	icide	(A)	-ir				s (Y
	T '	Markin	Comple Demuset ID	Container	Preservative		图	∑ +	015	Meth		(03 A A	s (F,	Pest	S	Sen	9			bble
Date	Time	Matrix	Sample Request ID	Type and #	Туре	HEAL NO.	LEX	ШЩ	H 8	H			ion	81 1	60E	270 (3			r Bu
	10.05]	CC 12		(I	1808128	'n	B	E	Fi		i a	A	80	82	8	10		+	Ā
8-1-18	1225	50.1	57(2	18702	6661	013	K		K		_	_					X		+	
	1230	1	5514			-04	X		X		_	_					x		\square	
	1235		5515			-215	X		X								8			
	1240		5516			-06	8		$\left \right\rangle$								¥			
	1245		5517			- 27	x		X								8			
	1250		5518			718	x		x								K			
	1255	/	5519			219	X		8								×			
	1300		5520			-020	8		8								X			
	1305		5521			-021	8		x								Y			
	1310		5522			- 022	K		K								X			
	1315		5523			-023	8		X								×			
y	1320	V	5524	b	¥	-724	×		×								4	1		
Date:	Time:	Relinquishe	editoy	Received by:	. 0	Date Time	Ren	narks	5:	11			~		41	I	·	t	1	
8/1/18)6n	D	42-	/ Must	Wat	8/1/18 1612		CC		99	ur	۸S	(α)	140	nv	I.C	oM			
Date:	Time:	Relinquishe	ed by:	Received by:	\mathcal{I}	Date Time			,	P		2	_	Ŧ	3					
8/1/18	1817	1 cha	stable	$V \downarrow$	1mm -	ph 0700				100)e	1	~ 0	ł	/					
H	necessary,	amples subr	nitted to Hall Environmental may be subo	ontracted to other ad	ccredited laboratorie	es. This serves as notice of this	possil	bility. A	Any su	b-contra	cted d	ata will	be clea	rly nota	ated on	the ar	nalytical	report.		

С	hain-	of-Cu	stody Record	Turn-Around	Time:					100					13.71						
Client:	-TE	NUITOI	nmental	Standard Project Name	C Rush	l					A			/S	IS			DR/		RY	
Mailing	Address	· Ch	r c and A	Hara	, 12 /	18 191						www.	.halle	enviro	onm	enta	.com				
	N	84	SEL AVE	Project #		000	-		49	01 H	awki	ns NI	E - /	Albu	quer	que,	NM	37109	1		
	Duri	rgo,		1 10,000 #.				e dest	Te	el. 50	5-34	5-39	75 An	Fa	x 5	05-34	45-41	07	A. PET C.	SSTEP	per l'
Phone #	Eav#	170	285 1076	Project Mana	dor:			- 6.0		121	100	H.		arys		equi	251				
					yer. Upin	1 mann		21)	luo	MRG					SO	3's					
	ackage.		□ Level 4 (Full Validation)	Den	m rich	Cardina		(80	Gas	NO			WS	1	0 ⁴	DG		0			
Accredit	ation			Sampler:	Danny 1	Burns		THE S	H	/g			S O S		0 ^{2,1}	082		00			
	٩P	Othe	r	On Ice:	VYes			A +	₩ +	102	18.1	04.1	827		3°N	\$ / 8(1	m			Z N
	(Type)			Sample Temp	perature: 2. (-CF-10=	11	瑶	BE	Q	d 4	od 5	0 or	etals	N'N	ides	(A)	2			ž
				Cantainar	Dragonustivo	Zcode	Start 1	2	MT	15B	letho	letho	831		L L	estic	NO I	FIC			ples
Date	Time	Matrix	Sample Request ID	Type and #	Type	HEAL	No.	X	X	H 80	≥ T	B B	H's	KA	ons	D	AUG A	1-0			Bub
						1808128	5	BTI	BTB	TP	1 L	ĒD	PAI	RC	An	808	928	JU			Air
8-1-18	1325	Soll	SS25	1-402	cocl	-	025	\times		\times								X			
1	1330	Ì	SS26	1		-	026	\times		\ge								\times			
\checkmark	1335	V	SS 27	X	\checkmark		027	\times		X								X			
			\land			6				-							1				
						/				X					1	1	1				
										/			1	1		Λ					\square
									\square			X				\square				11	
											X				1						
								/										X			
	/																X				
	/															Ý	-				
															1						
Date:	Time:	Relinduishe	ed by:	Received by:	2	Date	Time	Ren	nark	s:		<u> </u>			-	~			I		-
8/10	163	H		Mortes	Walt	8/1/18	1613		C	C:		99) u	rn	S	(α)	14	-en	V. e	m	
Date:	Time:	Relinquish	ed by:	Received by:		Date Date	Time					D		-	7	1	2 2	2			
8/1/18	1817	have	tubaets !	1 Ch	$\sim - +$	2 or peter	mar					100	ge	Ċ	>	01	5	7			
l lf	necessary,	samples subr	nitted to Hall Environmental may be subc	ontracted to other ad	ccredited laboratorie	es. This serves as	notice of this	possit	oility.	Any su	b-cont	racted	data w	ll be c	learly	notate	d on the	e analyti	cal report.		

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 26, 2018

Devin Hencmann LTE 848 East 2nd Avenue Durango, CO 81301 TEL: (970) 946-1093 FAX

OrderNo.: 1809896

Dear Devin Hencmann:

RE: Heros 23 08 09L

Hall Environmental Analysis Laboratory received 13 sample(s) on 9/14/2018 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued September 26, 2018.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Lab Order 1809896

Date Reported: 9/26/2018

Hall Environmental Analysis Laboratory, Inc.

Analyses	6	Result	PQL Qual Units DF Date Analyzed	Batch			
Lab ID:	D: 1809896-001 Matrix: SOIL Received Date: 9/14/2018 7:00:00						
Project:	Heros 23 08 09L		Collection Date: 9/12/2018 10:00:00 A	M			
CLIENT:	LTE		Client Sample ID: SS7A @ 6"				

			4			
EPA METHOD 300.0: ANIONS	ND	30	ma/Ka	20	Analyst: 9/22/2018 7:45:26 PM	: MRA 40516
EPA METHOD 8015D MOD. GASOLINE RANGE	110	00			Analyst	AG
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	9/18/2018 5:42:45 PM	40389
Surr: BFB	103	70-130	%Rec	1	9/18/2018 5:42:45 PM	40389
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst	Irm
Diesel Range Organics (DRO)	120	9.9	mg/Kg	1	9/19/2018 1:21:52 PM	40408
Motor Oil Range Organics (MRO)	84	49	mg/Kg	1	9/19/2018 1:21:52 PM	40408
Surr: DNOP	124	50.6-138	%Rec	1	9/19/2018 1:21:52 PM	40408
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst	AG
Benzene	ND	0.023	mg/Kg	1	9/18/2018 5:42:45 PM	40389
Toluene	ND	0.046	mg/Kg	1	9/18/2018 5:42:45 PM	40389
Ethylbenzene	ND	0.046	mg/Kg	1	9/18/2018 5:42:45 PM	40389
Xylenes, Total	ND	0.093	mg/Kg	1	9/18/2018 5:42:45 PM	40389
Surr: 4-Bromofluorobenzene	116	70-130	%Rec	1	9/18/2018 5:42:45 PM	40389
Surr: Toluene-d8	95.8	70-130	%Rec	1	9/18/2018 5:42:45 PM	40389

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report
Lab Order 1809896
Date Reported: 9/26/2018

Analyses	5	Result	POL Qual Units	DF Date Analyzed	Batch
Lab ID:	1809896-002	Matrix: SOIL	Received Dat	e: 9/14/2018 7:00:00 AM	
Project:	Heros 23 08 09L		Collection Dat	e: 9/12/2018 10:15:00 AM	E,
CLIENT	: LTE		Client Sample II	D: SS7A @ 3'	

Amaryses	nesun	TQL	Quai Chits	DI	Date Maryzeu	Dutten
EPA METHOD 300.0: ANIONS	ND	30	ma/Ka	20	Analyst: 9/22/2018 8:22:41 PM	MRA
EPA METHOD 8015D MOD: GASOLINE RANGE	iii b	00	ing/itg	20	Analyst:	AG
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	9/18/2018 6:05:56 PM	40389
Surr: BFB	93.4	70-130	%Rec	1	9/18/2018 6:05:56 PM	40389
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst:	Irm
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	9/19/2018 2:33:59 PM	40408
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/19/2018 2:33:59 PM	40408
Surr: DNOP	121	50.6-138	%Rec	1	9/19/2018 2:33:59 PM	40408
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst:	AG
Benzene	ND	0.024	mg/Kg	1	9/18/2018 6:05:56 PM	40389
Toluene	ND	0.047	mg/Kg	1	9/18/2018 6:05:56 PM	40389
Ethylbenzene	ND	0.047	mg/Kg	1	9/18/2018 6:05:56 PM	40389
Xylenes, Total	ND	0.095	mg/Kg	1	9/18/2018 6:05:56 PM	40389
Surr: 4-Bromofluorobenzene	105	70-130	%Rec	1	9/18/2018 6:05:56 PM	40389
Surr: Toluene-d8	91.8	70-130	%Rec	1	9/18/2018 6:05:56 PM	40389

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix
	Н	Holding times for preparation or analysis exceeded
	ND	Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 14
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report							
Lab Order 1809896							
Date Reported: 9/26/2018							

Analyses		Result	POL Qual Units DF Date Analyzed
Lab ID:	1809896-004	Matrix: SOIL	Received Date: 9/14/2018 7:00:00 AM
Project:	Heros 23 08 09L		Collection Date: 9/12/2018 11:20:00 AM
CLIENT:	LTE		Client Sample ID: SS7D @ 2'

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	ND	30	mg/Kg	20	9/22/2018 8:35:06 PM	40516
EPA METHOD 8015D MOD: GASOLINE RANG	E				Analyst	AG
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	9/18/2018 6:29:14 PM	40389
Surr: BFB	99.3	70-130	%Rec	1	9/18/2018 6:29:14 PM	40389
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	Irm
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	9/19/2018 2:56:05 PM	40408
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/19/2018 2:56:05 PM	40408
Surr: DNOP	118	50.6-138	%Rec	1	9/19/2018 2:56:05 PM	40408
EPA METHOD 8260B: VOLATILES SHORT LIS	ът				Analyst	AG
Benzene	ND	0.023	mg/Kg	1	9/18/2018 6:29:14 PM	40389
Toluene	ND	0.047	mg/Kg	1	9/18/2018 6:29:14 PM	40389
Ethylbenzene	ND	0.047	mg/Kg	1	9/18/2018 6:29:14 PM	40389
Xylenes, Total	ND	0.093	mg/Kg	1	9/18/2018 6:29:14 PM	40389
Surr: 4-Bromofluorobenzene	111	70-130	%Rec	1	9/18/2018 6:29:14 PM	40389
Surr: Toluene-d8	92.7	70-130	%Rec	1	9/18/2018 6:29:14 PM	40389

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report						
Lab Order 1809896						
Date Reported: 9/26/2018						

CLIENT: LTE

Lab ID:

Project: Heros 23 08 09L

1809896-005

 Client Sample ID: SS7E @ 6"

 Collection Date: 9/12/2018 11:30:00 AM

 Matrix: SOIL
 Received Date: 9/14/2018 7:00:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	31	30	mg/Kg	20	9/22/2018 8:47:30 PM	40516
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst	AG
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/18/2018 6:52:32 PM	40389
Surr: BFB	107	70-130	%Rec	1	9/18/2018 6:52:32 PM	40389
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst	Irm
Diesel Range Organics (DRO)	44	10	mg/Kg	1	9/19/2018 3:18:32 PM	40408
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/19/2018 3:18:32 PM	40408
Surr: DNOP	119	50.6-138	%Rec	1	9/19/2018 3:18:32 PM	40408
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst	AG
Benzene	ND	0.025	mg/Kg	1	9/18/2018 6:52:32 PM	40389
Toluene	ND	0.049	mg/Kg	1	9/18/2018 6:52:32 PM	40389
Ethylbenzene	ND	0.049	mg/Kg	1	9/18/2018 6:52:32 PM	40389
Xylenes, Total	ND	0.099	mg/Kg	1	9/18/2018 6:52:32 PM	40389
Surr: 4-Bromofluorobenzene	120	70-130	%Rec	1	9/18/2018 6:52:32 PM	40389
Surr: Toluene-d8	97.1	70-130	%Rec	1	9/18/2018 6:52:32 PM	40389

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report							
Lab Order 1809896							
Date Reported: 9/26/2018							

2

6		
Matrix: SOIL	Received Date: 9/14/2018 7:00:00 AM	
	Collection Date: 9/12/2018 11:45:00 AM	
	Client Sample ID: SS11B @ 6"	
)8 09L	98 09L	Client Sample ID: SS11B @ 6" 08 09L Collection Date: 9/12/2018 11:45:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	ND	30	mg/Kg	20	9/22/2018 8:59:55 PM	40516
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst:	AG
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/18/2018 7:15:47 PM	40389
Surr: BFB	97.2	70-130	%Rec	1	9/18/2018 7:15:47 PM	40389
EPA METHOD 8015M/D: DIESEL RANGE ORGAN	NICS				Analyst:	Irm
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	9/19/2018 3:40:34 PM	40408
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/19/2018 3:40:34 PM	40408
Surr: DNOP	107	50.6-138	%Rec	1	9/19/2018 3:40:34 PM	40408
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst:	AG
Benzene	ND	0.025	mg/Kg	1	9/18/2018 7:15:47 PM	40389
Toluene	ND	0.050	mg/Kg	1	9/18/2018 7:15:47 PM	40389
Ethylbenzene	ND	0.050	mg/Kg	1	9/18/2018 7:15:47 PM	40389
Xylenes, Total	ND	0.10	mg/Kg	1	9/18/2018 7:15:47 PM	40389
Surr: 4-Bromofluorobenzene	110	70-130	%Rec	1	9/18/2018 7:15:47 PM	40389
Surr: Toluene-d8	93.7	70-130	%Rec	1	9/18/2018 7:15:47 PM	40389

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	H Holding times for preparation or analysis exceededND Not Detected at the Reporting Limit		J	Analyte detected below quantitation limits Page 5 of 14
			Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL Reporting Detection Limit	
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report
Lab Order 1809896
Date Reported: 9/26/2018

,

Analyses		Result	POL Qual Units DF Date Analyzed
Lab ID:	1809896-007	Matrix: SOIL	Received Date: 9/14/2018 7:00:00 AM
Project:	Heros 23 08 09L		Collection Date: 9/12/2018 12:00:00 PM
CLIENT:	LTE		Client Sample ID: SS11B @ 2'

Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	ND	30	mg/Kg	20	9/22/2018 9:12:20 PM	40516
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst:	AG
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	9/18/2018 7:38:58 PM	40389
Surr: BFB	98.6	70-130	%Rec	1	9/18/2018 7:38:58 PM	40389
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst:	Irm
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	9/19/2018 4:28:16 PM	40408
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/19/2018 4:28:16 PM	40408
Surr: DNOP	113	50.6-138	%Rec	1	9/19/2018 4:28:16 PM	40408
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst	AG
Benzene	ND	0.024	mg/Kg	1	9/18/2018 7:38:58 PM	40389
Toluene	ND	0.048	mg/Kg	1	9/18/2018 7:38:58 PM	40389
Ethylbenzene	ND	0.048	mg/Kg	1	9/18/2018 7:38:58 PM	40389
Xylenes, Total	ND	0.095	mg/Kg	1	9/18/2018 7:38:58 PM	40389
Surr: 4-Bromofluorobenzene	110	70-130	%Rec	1	9/18/2018 7:38:58 PM	40389
Surr: Toluene-d8	93.1	70-130	%Rec	1	9/18/2018 7:38:58 PM	40389

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 6 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report
Lab Order 1809896
Date Reported: 9/26/2018

Analyses	5	Result	PQL Qual Units	DF Date Analyzed	Batch
Lab ID:	1809896-008	Matrix: SOIL	Received Dat	e: 9/14/2018 7:00:00 AM	
Project:	Heros 23 08 09L		Collection Dat	e: 9/12/2018 12:15:00 PN	1
CLIENT:	LTE		Client Sample II	D: SS11C @ 6"	

EPA METHOD 300.0: ANIONS					Analyst:	MRA
Chloride	ND	30	mg/Kg	20	9/22/2018 9:49:34 PM	40516
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst:	AG
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/18/2018 8:02:10 PM	40389
Surr: BFB	109	70-130	%Rec	1	9/18/2018 8:02:10 PM	40389
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst	Irm
Diesel Range Organics (DRO)	170	9.9	mg/Kg	1	9/19/2018 4:50:23 PM	40408
Motor Oil Range Organics (MRO)	110	49	mg/Kg	1	9/19/2018 4:50:23 PM	40408
Surr: DNOP	122	50.6-138	%Rec	1	9/19/2018 4:50:23 PM	40408
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst:	AG
Benzene	ND	0.024	mg/Kg	1	9/18/2018 8:02:10 PM	40389
Toluene	ND	0.049	mg/Kg	1	9/18/2018 8:02:10 PM	40389
Ethylbenzene	ND	0.049	mg/Kg	1	9/18/2018 8:02:10 PM	40389
Xylenes, Total	ND	0.098	mg/Kg	1	9/18/2018 8:02:10 PM	40389
Surr: 4-Bromofluorobenzene	122	70-130	%Rec	1	9/18/2018 8:02:10 PM	40389
Surr: Toluene-d8	94.2	70-130	%Rec	1	9/18/2018 8:02:10 PM	40389

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 7 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report
Lab Order 1809896
Date Reported: 9/26/2018

Darrelt	
Matrix: SOI	OIL Received Date: 9/14/2018 7:00:00 AM
)9L	Collection Date: 9/12/2018 12:30:00 PM
	Client Sample ID: SS13A @ 6"

	The second s		the set of a set of the set of th			the second s
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	38	30	mg/Kg	20	9/22/2018 10:01:59 PM	40516
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst	AG
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/18/2018 9:57:29 PM	40389
Surr: BFB	105	70-130	%Rec	1	9/18/2018 9:57:29 PM	40389
EPA METHOD 8015M/D: DIESEL RANGE ORGAN	lics				Analyst	Irm
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	9/19/2018 5:12:30 PM	40408
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/19/2018 5:12:30 PM	40408
Surr: DNOP	120	50.6-138	%Rec	1	9/19/2018 5:12:30 PM	40408
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst	AG
Benzene	ND	0.025	mg/Kg	1	9/18/2018 9:57:29 PM	40389
Toluene	ND	0.049	mg/Kg	1	9/18/2018 9:57:29 PM	40389
Ethylbenzene	ND	0.049	mg/Kg	1	9/18/2018 9:57:29 PM	40389
Xylenes, Total	ND	0.098	mg/Kg	1	9/18/2018 9:57:29 PM	40389
Surr: 4-Bromofluorobenzene	118	70-130	%Rec	1	9/18/2018 9:57:29 PM	40389
Surr: Toluene-d8	93.1	70-130	%Rec	1	9/18/2018 9:57:29 PM	40389

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 8 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report
Lab Order 1809896
Date Reported: 9/26/2018

 CLIENT: LTE
 Client Sample ID: SS13A @ 3'

 Project:
 Heros 23 08 09L
 Collection Date: 9/12/2018 12:45:00 PM

 Lab ID:
 1809896-010
 Matrix: SOIL
 Received Date: 9/14/2018 7:00:00 AM

Result	PQL Q	Qual Units	DF	Date Analyzed	Batch
				Analyst	smb
48	30	mg/Kg	20	9/23/2018 11:57:27 AM	40520
				Analyst	AG
ND	4.8	mg/Kg	1	9/18/2018 10:20:40 PM	40389
104	70-130	%Rec	1	9/18/2018 10:20:40 PM	40389
NICS				Analyst	Irm
ND	9.9	mg/Kg	1	9/19/2018 5:34:38 PM	40408
ND	49	mg/Kg	1	9/19/2018 5:34:38 PM	40408
127	50.6-138	%Rec	1	9/19/2018 5:34:38 PM	40408
				Analyst	AG
ND	0.024	mg/Kg	1	9/18/2018 10:20:40 PM	40389
ND	0.048	mg/Kg	1	9/18/2018 10:20:40 PM	40389
ND	0.048	mg/Kg	1	9/18/2018 10:20:40 PM	40389
ND	0.095	mg/Kg	1	9/18/2018 10:20:40 PM	40389
116	70-130	%Rec	1	9/18/2018 10:20:40 PM	40389
95.5	70-130	%Rec	1	9/18/2018 10:20:40 PM	40389
	Result 48 ND 104 NICS ND 127 ND ND ND ND ND ND 116 95.5	Result PQL Q 48 30 ND 4.8 104 70-130 NNICS 0.014 ND 4.9 127 50.6-138 ND 0.024 ND 0.048 ND 0.048 ND 0.095 116 70-130 95.5 70-130	Result PQL Qual Units 48 30 mg/Kg ND 4.8 mg/Kg 104 70-130 %Rec ND 9.9 mg/Kg ND 49 mg/Kg ND 49 mg/Kg ND 0.024 mg/Kg ND 0.048 mg/Kg ND 0.095 mg/Kg ND 0.0148 mg/Kg ND 0.024 %Rec	Result PQL Qual Units DF 48 30 mg/Kg 20 ND 4.8 mg/Kg 1 104 70-130 %Rec 1 ND 9.9 mg/Kg 1 ND 49 mg/Kg 1 ND 49 mg/Kg 1 ND 0.024 mg/Kg 1 ND 0.024 mg/Kg 1 ND 0.048 mg/Kg 1 ND 0.095 mg/Kg 1 ND 0.095 mg/Kg 1 ND 0.095 mg/Kg 1 ND 0.095 mg/Kg 1 95.5 70-130 %Rec 1	Result PQL Qual Units DF Date Analyzed 48 30 mg/Kg 20 9/23/2018 11:57:27 AM 48 30 mg/Kg 20 9/23/2018 11:57:27 AM ND 4.8 mg/Kg 1 9/18/2018 10:20:40 PM 104 70-130 %Rec 1 9/18/2018 10:20:40 PM ND 4.8 mg/Kg 1 9/18/2018 10:20:40 PM ND 9.9 mg/Kg 1 9/18/2018 10:20:40 PM ND 9.9 mg/Kg 1 9/19/2018 5:34:38 PM ND 49 mg/Kg 1 9/19/2018 5:34:38 PM 127 50.6-138 %Rec 1 9/19/2018 5:34:38 PM 127 50.6-138 %Rec 1 9/18/2018 10:20:40 PM ND 0.024 mg/Kg 1 9/18/2018 10:20:40 PM ND 0.048 mg/Kg 1 9/18/2018 10:20:40 PM ND 0.095 mg/Kg 1 9/18/2018 10:20:40 PM ND

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 9 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report
Lab Order 1809896
Date Reported: 9/26/2018

Analyses		Resul	lt PQL Qual Units DF Date Analyzed Batch
Lab ID: 1809	9896-011	Matrix: SO	DIL Received Date: 9/14/2018 7:00:00 AM
Project: Here	os 23 08 09L		Collection Date: 9/12/2018 1:00:00 PM
CLIENT: LTE	3		Client Sample ID: SS13B @ 6"

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	smb
Chloride	64	30	mg/Kg	20	9/23/2018 12:09:51 PM	40520
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst	AG
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/18/2018 10:43:43 PM	40389
Surr: BFB	102	70-130	%Rec	1	9/18/2018 10:43:43 PM	40389
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst	Irm
Diesel Range Organics (DRO)	48	10	mg/Kg	1	9/19/2018 5:56:40 PM	40408
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/19/2018 5:56:40 PM	40408
Surr: DNOP	116	50.6-138	%Rec	1	9/19/2018 5:56:40 PM	40408
EPA METHOD 8260B: VOLATILES SHORT LIST	•				Analyst	AG
Benzene	ND	0.024	mg/Kg	1	9/18/2018 10:43:43 PM	40389
Toluene	ND	0.049	mg/Kg	1	9/18/2018 10:43:43 PM	40389
Ethylbenzene	ND	0.049	mg/Kg	1	9/18/2018 10:43:43 PM	40389
Xylenes, Total	ND	0.098	mg/Kg	1	9/18/2018 10:43:43 PM	40389
Surr: 4-Bromofluorobenzene	115	70-130	%Rec	1	9/18/2018 10:43:43 PM	40389
Surr: Toluene-d8	98.4	70-130	%Rec	1	9/18/2018 10:43:43 PM	40389

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limitspace 10 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

WO#: **1809896**

27-Sep-18

Client: LTE

Project: Heros 23 08 09L

Sample ID MB-40516	SampType: mblk	TestCode: EPA Method	300.0: Anions
Client ID: PBS	Batch ID: 40516	RunNo: 54353	
Prep Date: 9/21/2018	Analysis Date: 9/22/2018	SeqNo: 1799403	Units: mg/Kg
Analyte	Result PQL SPK value S	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Chloride	ND 1.5		
Sample ID LCS-40516	SampType: Ics	TestCode: EPA Method	300.0: Anions
Client ID: LCSS	Batch ID: 40516	RunNo: 54353	
Prep Date: 9/21/2018	Analysis Date: 9/22/2018	SeqNo: 1799404	Units: mg/Kg
Analyte	Result PQL SPK value S	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
	44 45 45 00	0 04.4 00	110
Chloride	14 1.5 15.00	0 94.1 90	110
Chloride Sample ID MB-40520	14 1.5 15.00 SampType: mblk	TestCode: EPA Method	300.0: Anions
Chloride Sample ID MB-40520 Client ID: PBS	SampType: mblk Batch ID: 40520	TestCode: EPA Method RunNo: 54364	300.0: Anions
Chloride Sample ID MB-40520 Client ID: PBS Prep Date: 9/22/2018	14 1.5 15.00 SampType: mblk Batch ID: 40520 Analysis Date: 9/23/2018	TestCode: EPA Method RunNo: 54364 SeqNo: 1800846	300.0: Anions Units: mg/Kg
Chloride Sample ID MB-40520 Client ID: PBS Prep Date: 9/22/2018 Analyte	14 1.5 15.00 SampType: mblk Batch ID: 40520 Analysis Date: 9/23/2018 Result PQL	TestCode: EPA Method RunNo: 54364 SeqNo: 1800846	300.0: Anions Units: mg/Kg HighLimit %RPD RPDLimit Qual
Chloride Sample ID MB-40520 Client ID: PBS Prep Date: 9/22/2018 Analyte Chloride	14 1.5 15.00 SampType: mblk Batch ID: 40520 Analysis Date: 9/23/2018 Result PQL SPK value ND 1.5	TestCode: EPA Method RunNo: 54364 SeqNo: 1800846 SPK Ref Val %REC LowLimit	300.0: Anions Units: mg/Kg HighLimit %RPD RPDLimit Qual
Chloride Sample ID MB-40520 Client ID: PBS Prep Date: 9/22/2018 Analyte Chloride	14 1.5 15.00 SampType: mblk Batch ID: 40520 Analysis Date: 9/23/2018 Result PQL ND 1.5 SampType: Ics	U 94.1 90 TestCode: EPA Method RunNo: 54364 SeqNo: 1800846 SPK Ref Val %REC LowLimit TestCode: EPA Method	300.0: Anions Units: mg/Kg HighLimit %RPD RPDLimit Qual 300.0: Anions
Chloride Sample ID MB-40520 Client ID: PBS Prep Date: 9/22/2018 Analyte Chloride Sample ID LCS-40520 Client ID: LCSS	14 1.5 15.00 SampType: mblk Batch ID: 40520 Analysis Date: 9/23/2018 Result PQL SPK value ND 1.5 SampType: Ics Batch ID: 40520	U 94.1 90 TestCode: EPA Method RunNo: 54364 SeqNo: 1800846 SPK Ref Val %REC LowLimit TestCode: EPA Method RunNo: 54364	300.0: Anions Units: mg/Kg HighLimit %RPD RPDLimit Qual 300.0: Anions
Chloride Sample ID MB-40520 Client ID: PBS Prep Date: 9/22/2018 Analyte Chloride Sample ID LCS-40520 Client ID: LCSS Prep Date: 9/22/2018	14 1.5 15.00 SampType: mblk Batch ID: 40520 Analysis Date: 9/23/2018 Result PQL SPK value ND 1.5 SampType: Ics Batch ID: 40520	U 94.1 90 TestCode: EPA Method RunNo: 54364 SeqNo: 1800846 SPK Ref Val %REC LowLimit TestCode: EPA Method RunNo: 54364 SeqNo: 1800847	300.0: Anions Units: mg/Kg HighLimit %RPD RPDLimit Qual 300.0: Anions Units: mg/Kg
Chloride Sample ID MB-40520 Client ID: PBS Prep Date: 9/22/2018 Analyte Chloride Sample ID LCS-40520 Client ID: LCSS Prep Date: 9/22/2018 Analyte 0 Sample ID LCS-40520 Client ID: LCSS Prep Date: 9/22/2018	14 1.5 15.00 SampType: mblk Batch ID: 40520 Analysis Date: 9/23/2018 Result PQL SPK value S ND 1.5 SampType: Ics Batch ID: 40520 Analysis Date: 9/23/2018	U 94.1 90 TestCode: EPA Method RunNo: 54364 SeqNo: 1800846 SPK Ref Val %REC LowLimit TestCode: EPA Method RunNo: 54364 SeqNo: 1800847	300.0: Anions Units: mg/Kg HighLimit %RPD RPDLimit Qual 300.0: Anions Units: mg/Kg HighLimit %RPD RPDLimit Qual
Chloride Sample ID MB-40520 Client ID: PBS Prep Date: 9/22/2018 Analyte Chloride Sample ID LCS-40520 Client ID: LCSS Prep Date: 9/22/2018 Analyte Chloride	14 1.5 15.00 SampType: mblk Batch ID: 40520 Analysis Date: 9/23/2018 Result PQL SPK value ND 1.5 SampType: ICs Batch ID: 40520 Analysis Date: 9/23/2018 Result PQL SPK value Intervention 15	TestCode: EPA Method RunNo: 54364 SeqNo: 1800846 SPK Ref Val %REC LowLimit TestCode: EPA Method RunNo: 54364 SeqNo: 1800847 SPK Ref Val %REC LowLimit	300.0: Anions Units: mg/Kg HighLimit %RPD RPDLimit Qual 300.0: Anions Units: mg/Kg HighLimit %RPD RPDLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 11 of 14

SampType: LCS

Batch ID: 40408

LTE

Heros 23 08 09L

Client:

Project:

Sample ID LCS-40408

Client ID: LCSS

WO#: 1809896 27-Sep-18

Qual

Qual

Prep Date: 9/18/2018	Analysis Date	9/19/	2018	S	eqNo:	1795175	Units: mg/K	g	
Analyte	Result P	QL SI	PK value	SPK Ref Val	%REC	C LowLimit	HighLimit	%RPD	RPDLimit
Diesel Range Organics (DRO)	53	10	50.00	0	10	7 70	130		
Surr: DNOP	5.5		<u>5.000</u>		11	1 50.6	138		
Sample ID MB-40408	SampType	MBL	<	Test	tCode:	EPA Method	8015M/D: Die	sel Range	e Organics
Client ID: PBS	Batch ID	40408	3	R	unNo:	54262			
Prep Date: 9/18/2018	Analysis Date	9/19/	2018	S	eqNo:	1795176	Units: mg/K	g	
Analyte	Result P	QL SI	PK value	SPK Ref Val	%REC	C LowLimit	HighLimit	%RPD	RPDLimit
Diesel Range Organics (DRO)	ND	10							
Motor Oil Range Organics (MRO)	ND	50							
Surr: DNOP	11		10.00		11(0 50.6	138		
Sample ID 1809896-001AMS	SampType	MS		Test	tCode:	EPA Method	8015M/D: Die	sel Range	e Organics
Client ID: SS7A @ 6"	Batch ID	40408	3	R	lunNo:	54262			
Prep Date: 9/18/2018	Analysis Date	9/19/	2018	S	SeqNo:	1795177	Units: mg/K	g	

RunNo: 54262

TestCode: EPA Method 8015M/D: Diesel Range Organics

Prep Date: 9/18/2018	Analysis D	ate: 9/	19/2018	S	eqNo: 1	795177	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	190	9.9	49.46	116.6	144	53.5	126			S
Surr: DNOP	5.4		4.946		110	50.6	138			

Sample ID	1809896-001AMSD	SampType:	MS	D	Test	Code: EF	A Method	8015M/D: Die	esel Range	organics	
Client ID:	SS7A @ 6"	Batch ID:	404	08	R	unNo: 54	1262				
Prep Date:	9/18/2018	Analysis Date:	9/1	9/2018	S	eqNo: 17	795178	Units: mg/K	g		
Analyte		Result PC	QL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Organics (DRO)	160	9.9	49.41	116.6	81.9	53.5	126	17.8	21.7	
Surr: DNOP		5.7		4.941		115	50.6	138	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Page 12 of 14

WO#: 1809896

27-Sep-18

Client:

LTE

Heros 23 08 09L **Project:** Sample ID Ics-40389 SampType: LCS4 ---

Client ID: BatchQC	Batch	n ID: 40	389	R	unNo: 5	4218				
Prep Date: 9/17/2018	Analysis D	ate: 9/	18/2018	S	eqNo: 1	794307	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.92	0.025	1.000	0	92.4	80	120			
Toluene	0.95	0.050	1.000	0	94.9	80	120			
Ethylbenzene	0.99	0.050	1.000	0	98.7	80	120			
Xylenes, Total	3.1	0.10	3.000	0	103	80	120			
Surr: 4-Bromofluorobenzene	0.49		0.5000		98.1	70	130			
Surr: Toluene-d8	0.45		0.5000		89.1	70	130			
Sample ID mb-40389	Samp1	ype: ME	BLK	les	tCode: El	PA Method	8260B: Volat	tiles Short	List	
Sample ID mb-40389 Client ID: PBS	Samp1 Batcl	ype: ME 1D: 40	3LK 389	Tes F	tCode: El RunNo: 5	PA Method 4218	8260B: Volat	tiles Short	List	
Sample ID mb-40389 Client ID: PBS Prep Date: 9/17/2018	Samp1 Batcl Analysis E	ype: ME n ID: 40)ate: 9/	3LK 389 18/2018	Tes F	tCode: El RunNo: 5 SeqNo: 1	PA Method 4218 794308	8260B: Volat Units: mg/K	tiles Short (g	List	
Sample ID mb-40389 Client ID: PBS Prep Date: 9/17/2018 Analyte	Samp1 Batcl Analysis E Result	ype: ME n ID: 40 Date: 9 / PQL	3LK 389 18/2018 SPK value	Tes F S SPK Ref Val	tCode: El RunNo: 5 SeqNo: 1 %REC	PA Method 4218 794308 LowLimit	8260B: Volat Units: mg/K HighLimit	tiles Short (g %RPD	RPDLimit	Qual
Sample ID mb-40389 Client ID: PBS Prep Date: 9/17/2018 Analyte Benzene	Samp1 Batcl Analysis E Result ND	ype: ME n ID: 40 Date: 9/ PQL 0.025	3LK 389 18/2018 SPK value	F SPK Ref Val	Code: El RunNo: 5 GeqNo: 1 %REC	PA Method 4218 794308 LowLimit	8260B: Volat Units: mg/K HighLimit	tiles Short (g %RPD	RPDLimit	Qual
Sample ID mb-40389 Client ID: PBS Prep Date: 9/17/2018 Analyte Benzene Toluene	Samp1 Batcl Analysis E Result ND ND	ype: ME n ID: 40 Date: 9/ PQL 0.025 0.050	3LK 389 18/2018 SPK value	Tes F SPK Ref Val	Code: El RunNo: 5 GeqNo: 1 %REC	PA Method 4218 794308 LowLimit	8260B: Volat Units: mg/K HighLimit	kg %RPD	RPDLimit	Qual
Sample ID mb-40389 Client ID: PBS Prep Date: 9/17/2018 Analyte Benzene Toluene Ethylbenzene	SampT Batcl Analysis E Result ND ND ND	ype: ME n ID: 40 Date: 9/ PQL 0.025 0.050 0.050	3LK 389 18/2018 SPK value	Fes F SPK Ref Val	Code: El RunNo: 5 GeqNo: 1 <u>%REC</u>	PA Method 4218 794308 LowLimit	8260B: Volat Units: mg/K HighLimit	tiles Short (g %RPD	RPDLimit	Qual
Sample ID mb-40389 Client ID: PBS Prep Date: 9/17/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total	Samp1 Batcl Analysis E Result ND ND ND ND	ype: ME n ID: 40 Date: 9/ PQL 0.025 0.050 0.050 0.10	3LK 389 18/2018 SPK value	Fes F SPK Ref Val	tCode: El RunNo: 5 SeqNo: 1 %REC	PA Method 4218 794308 LowLimit	8260B: Volat Units: mg/K HighLimit	siles Short	RPDLimit	Qual
Sample ID mb-40389 Client ID: PBS Prep Date: 9/17/2018 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene	Samp1 Batcl Analysis E Result ND ND ND 0.55	ype: ME n ID: 40 Date: 9/ PQL 0.025 0.050 0.050 0.10	3LK 389 18/2018 SPK value 0.5000	Fes F SPK Ref Val	Code: El RunNo: 5 SeqNo: 1 <u>%REC</u> 110	PA Method 4218 794308 LowLimit 70	8260B: Volat Units: mg/K HighLimit 130	illes Short	RPDLimit	Qual

TestCode: EPA Method 8260B: Volatiles Short List

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- Sample container temperature is out of limit as specified W

Page 13 of 14
WO#: **1809896**

27-Sep-18

Client:

Project: Heros 23 08 09L

LTE

Sample ID Ics-40389 Client ID: LCSS	SampT Batcl	SampType: LCS TestCode: EPA Method 80 Batch ID: 40389 RunNo: 54218							d 8015D Mod: Gasoline Range							
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	Qual							
Gasoline Range Organics (GRO) Surr: BFB	24 450	5.0	25.00 500.0	0	97.0 89.3	70 70	130 130									
	SampType: MBLK TestCode: EPA Method 8015D Mod: Gasoline Range															
Sample ID mb-40389	Samp1 Batcl	ype: ME	3LK	Tes	tCode: El	PA Method	8015D Mod:	Gasoline	Range							
Sample ID mb-40389 Client ID: PBS Prep Date: 9/17/2018	Samp1 Batcl Analysis D	ype: ME n ID: 40: Date: 9/	3LK 389 18/2018	Tes F S	tCode: El RunNo: 5 SeqNo: 1	PA Method 4218 794196	8015D Mod: Units: mg/ł	Gasoline <g< td=""><td>Range</td><td></td></g<>	Range							
Sample ID mb-40389 Client ID: PBS Prep Date: 9/17/2018 Analyte	SampT Batcl Analysis D Result	ype: ME n ID: 40 Date: 9 / PQL	3LK 389 18/2018 SPK value	Tes F S SPK Ref Val	tCode: El RunNo: 5 SeqNo: 1 %REC	PA Method 4218 794196 LowLimit	8015D Mod: Units: mg/ł HighLimit	Gasoline (g %RPD	Range RPDLimit	Qual						

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 14 of 14

HALL ENVIRONMENTAL
ANALYSIS
LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: LTE	Work Order Number:	1809896		RcptNo: 1	
			n ne		
Received By: Anne Thome	9/14/2018 7:00:00 AM		anne Am	-	
Completed By: Michelle Garcia	9/14/2018 3:17:37 PM		Minue G	mun	
Reviewed By: ENM	4/17/18				. 1.
	0			Labeled by, JAB	09/17
Chain of Custody				J	
1. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the sample delivered?		Courier			
1 1					
<u>Log In</u> 3 Was an attempt made to cool the complex?		Voc V	No		
o. Was an allempt made to cool the samples		162			
4. Were all samples received at a temperature	of >0° C to 6 0°C	Ves V	No 🗌		
······					
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
6. Sumicient sample volume for indicated test(s	i)?	Yes M			
7. Are samples (except VOA and ONG) proper	ly preserved?	Yes 🗹			
8. Was preservative added to bottles?		Yes 🗋	No 💌	NA 🗆	
9. VOA vials have zero headspace?		Yes	No 🗌	No VOA Viais 🗹	
10. Were any sample containers received broke	en?	Yes	No 🗹		1
				# of preserved bottles checked	T111
11. Does paperwork match bottle labels?		Yes 🗹	No 🗌	for pH:	1
(Note discrepancies on chain of custody)				(<2 or >12 unfless noted)	
12. Are matrices correctly identified on Chain of	Custody?	Yes 🗹		RAD	
13. Is it clear what analyses were requested?		Yes 🗹		Checked by:	
(If no, notify customer for authorization.)		Yes 🖤			
Created Handling (if applicable)					
<u>Special Handling (if applicable)</u>					
15. Was client notified of all discrepancies with	this order?	Yes	No 🗀		
Person Notified: Dev:n. Her	Cmann Date:	99/17/19			
By Whom: Jazzmier P	ruckhoad Via: P	eMail	Phone 🗌 Fax		
Regarding: Missing s	ample UCBA a	nd extr	a Sample	SSIID PG	
Client Instructions: D: Spase of	extra sample an	2 Aussir	ig sample	is being delivered	
16. Additional remarks:	,		,	\bigcirc	
17. Cooler Information					
Cooler No Temp C Condition S	eal Intact Seal No S	eal Date	Signed By		
2 1.2 Good Ye	S				

Client				Turn-Around	Time:				Arr												
Client:	IT	Enviro	omenta l		□ Rush					r A					/1F			ME		AL	
		L		Project Nam	e:							AL) 13	5 L		50	RA	110	JK	r
Mailing	Address	848	F and Aug	Herr	05 02 0	18 41		400	11	multi	wwv	v.na	nenv	ron	men			7400			
	0	0.0	10 81301	Project #:		0014	{	490		awk					erqu	e, N	N 87	109			
Phone	#. 4"	in - 3	95-1096	076218010					1. 50	10-34	-5-3	975 A	naly	-ax	SUS-	.345- uesi	-410			4	
email or	Fax#:	10_0	0, 10,0	Project Manager:																	
QA/QC F	Package:						021)	s on	MR			()		SO	B's				10		
Stan	dard		Level 4 (Full Validation)	L Ve	evin Her	remann	s (8	(Ga	20/			SIMS		PO	PC			2	T		
Accredi	tation			Sampler:	Josh Ao	lams	IMB	E	0	E	÷	202		NO2	8082			7	0		1
		U Othe	r	On Ice X Yes D No				+	GRO	418	504	or 82	s	10 ₃ ,	es /		(YO)	_	2		1
LIEDU	(Type)_	PI		Sample Temperature Z Coders 1.2				ITB	5B ((hod	pou	310 0	Veta	U,D	ticid	(AO	N-∕	60	0		14
Date	Time	Matrix	Sample Request ID	Container	Preservative	HEAL NO	2+	2+	8015	(Met	(Met	s (83	A 8 M	IS (F	Pes	S S	(Ser	X	120		144.
Duit	,	main	Campio Request IB	Type and #	Туре	INDAGAL	Ē	E	Hd	H	DB	AH	KCR/	nion	081	260	270	TE	2		ă
9-12-18	1000	So:1	SS 7A Cra"	(1) 402	(001	001	<u> </u>	ш	K.	-		-	Ľ.	4	8	8	80	X	x		
	1013		SS7AC3'			COZ			K									x	4		T
	115	_	SSTDEG"			0030	n		X		-							X	X		T
	1120		SS7DC2'			00409	1 Xe	5115	X		-1	-						X	x		+
	1130		SS7FEG"			(2)5	-		X		-	-						X	X	-	t
	1145		SSIIARG"			and			K	-						-		X	X		+
	1200		SSUBRD			(1)7			X	-	-							X	X		T
	1215		SSILCEG"			008			K					-		_		X	8		T
1	1230		SSI 3A eG"		1-1	019			X		-	_						X	X		T
	1245		SSI3AQ3'			010			X		_							X	X		T
1	1300	V	SSIBBEC"	V		OIL			X									×	X		T
			/ /											1							T
Date:	Time:	Relinquishe	doy:	Received by:	1	Date Time	Ren	narks	: A,	naly	·Ze	al	Lh	old	sero	yel	22	Re	Dev	in.	tal
7-13-18	0945	4	a againg	Anst	Halt	113/18 945	_ cc: dherman eltenu.com														
Date: Time: Rel#quished by:				Received by.	/	gate Time 1,09/14/18	. 4			-	-	a	ag	er	0	ter	NU.	Con	2		
113 18	1918	1Nº 1	usin pal	r ((71 pour -	12 0700	Ha	510		137	B	X) (Chl	ori	2					

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be closely national to the subcontracted data will be closely national to the su

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 25, 2018 Devin Hencmann

LTE 2243 Main Ave Suite 3 Durango, CO 81301 TEL: (970) 946-1093 FAX

RE: Heros 23 08 9L

OrderNo.: 1809995

Dear Devin Hencmann:

Hall Environmental Analysis Laboratory received 1 sample(s) on 9/18/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 1809995

Date Reported: 9/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE		Client S	Sample ID:	SS 7D	@ 6"
Project: Heros 23 08 9L		Collec	tion Date:	9/12/2	018 11:15:00 AM
Lab ID: 1809995-001	Matrix: SOIL	Rece	ived Date:	9/18/2	018 6:55:00 AM
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst: Irm
Diesel Range Organics (DRO)	20	9.8	mg/Kg	1	9/19/2018 3:17:10 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/19/2018 3:17:10 PM
Surr: DNOP	93.8	50.6-138	%Rec	1	9/19/2018 3:17:10 PM
EPA METHOD 8015D: GASOLINE RAN	GE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/19/2018 10:45:00 AM
Surr: BFB	97.3	15-316	%Rec	1	9/19/2018 10:45:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	9/19/2018 10:45:00 AM
Toluene	ND	0.049	mg/Kg	1	9/19/2018 10:45:00 AM
Ethylbenzene	ND	0.049	mg/Kg	1	9/19/2018 10:45:00 AM
Xylenes, Total	ND	0.099	mg/Kg	1	9/19/2018 10:45:00 AM
Surr: 4-Bromofluorobenzene	98.6	80-120	%Rec	1	9/19/2018 10:45:00 AM
EPA METHOD 300.0: ANIONS					Analyst: smb
Chloride	150	30	ma/Ka	20	9/23/2018 4:42:49 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Value above quantitation range E
- Analyte detected below quantitation limits Page 1 of 5 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

WO#: **1809995**

Page 2 of 5

25-Sep-18

Client: LTE

Project: Heros 23 08 9L

Sample ID MB-40520	SampType: mblk	TestCode: EPA Method	300.0: Anions
Client ID: PBS	Batch ID: 40520	RunNo: 54364	
Prep Date: 9/22/2018	Analysis Date: 9/23/2018	SeqNo: 1800846	Units: mg/Kg
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Chloride	ND 1.5		
Sample ID LCS-40520	SampType: Ics	TestCode: EPA Method	300.0: Anions
Sample ID LCS-40520 Client ID: LCSS	SampType: Ics Batch ID: 40520	TestCode: EPA Method RunNo: 54364	300.0: Anions
Sample ID LCS-40520 Client ID: LCSS Prep Date: 9/22/2018	SampType: Ics Batch ID: 40520 Analysis Date: 9/23/2018	TestCode: EPA Method RunNo: 54364 SeqNo: 1800847	300.0: Anions Units: mg/Kg
Sample ID LCS-40520 Client ID: LCSS Prep Date: 9/22/2018 Analyte	SampType: Ics Batch ID: 40520 Analysis Date: 9/23/2018 Result PQL SPK value	TestCode: EPA Method RunNo: 54364 SeqNo: 1800847 SPK Ref Val %REC LowLimit	300.0: Anions Units: mg/Kg HighLimit %RPD RPDLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

WO#: 1809995

Page 3 of 5

25-Sep-18

Client:

Project:

LTE

Heros 23 08 9L

Sample ID LCS-40424	SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics												
Client ID: LCSS	Batch	Batch ID: 40424 RunNo: 54250											
Prep Date: 9/18/2018	Analysis D	ate: 9/	19/2018	S	SeqNo: 1	795059	Units: mg/Kg						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Diesel Range Organics (DRO)	46	10	50.00	0	92.3	70	130						
Surr: DNOP	3.6		5.000		71.2	50.6	138						
	Comet			Tee				Den el	Ormaniaa				
Sample ID MB-40424	Sampi	ype. WE	SLK	Tes	icode. El	A Method	8015W/D: Die	eser kange	e Organics				
Client ID: PBS	Batch	n ID: 40	424	F	RunNo: 54	4250							
Prep Date: 9/18/2018	Analysis D	ate: 9/	19/2018	S	SeqNo: 1	795060	Units: mg/K	g					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Diesel Range Organics (DRO)	ND	10											
Motor Oil Range Organics (MRO)	ND	50											
Surr: DNOP	8.5		10.00		85.1	50.6	138						

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit PQL
- % Recovery outside of range due to dilution or matrix S
- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- Analyte detected below quantitation limits J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

LTE

Heros 23 08 9L

25-Sep-18

Sample ID MB-40423	SampType:	MBLK	Test	Code: EPA Met	hod 8015D: Gaso	oline Rang	le	_	
Client ID: PBS	Batch ID:	40423	Ru	unNo: 54264		-			
Prep Date: 9/18/2018	Analysis Date:	9/19/2018	Se	eqNo: 1795309	Units: mg/M	(g			
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC LowLi	mit HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	ND	5.0							
Surr: BFB	960	1000		96.3	15 316				
Sample ID LCS-40423	SampType:	LCS	Test	Code: EPA Met	hod 8015D: Gasc	line Rang	e		
Client ID: LCSS	Batch ID:	40423	Ru	unNo: 54264					
Prep Date: 9/18/2018	Analysis Date:	9/19/2018	Se	eqNo: 1795310	Units: mg/M	(g			
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC LowLi	mit HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	25	5.0 25.00	0	101 7	5.9 131				
Surr: BFB	1100	1000		109	15 316				
Sample ID 1809995-001AMS	SampType:	MS	Test	Code: EPA Met	hod 8015D: Gaso	oline Rang	e		
Client ID: SS 7D @ 6"	Batch ID: 40423 RunNo: 54264								
Prep Date: 9/18/2018	Analysis Date:	9/19/2018	Se	eqNo: 1795314	Units: mg/k	(g			
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC LowLi	mit HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	30	4.7 23.56	0	127 7	7.8 128				
Surr: BFB	1100	942.5		113	15 316				
Sample ID 1809995-001AMS	D SampType:	MSD	Test	Code: EPA Met	hod 8015D: Gaso	line Rang	le		
Client ID: SS 7D @ 6"	Batch ID:	40423	R	unNo: 54264					
Prep Date: 9/18/2018	Analysis Date:	9/19/2018	Se	eqNo: 1795315	Units: mg/k	(g			
Analyte	Result PO	QL SPK value	SPK Ref Val	%REC LowLi	mit HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	30	4.6 23.06	0	129 7	7.8 128	0.237	20	S	
Surr: BFB	1000	922.5		11 <mark>4</mark>	15 316	0	0		
Sample ID MB-40453	SampType	MBLK	Test	Code: EPA Met	hod 8015D: Gaso	oline Rang	le		
Client ID: PBS	Batch ID:	40453	R	unNo: 54282					
Prep Date: 9/19/2018	Analysis Date:	9/20/2018	Se	eqNo: 1796709	Units: %Re	с			
Analyte	Result PO	QL SPK value	SPK Ref Val	%REC LowL	mit HighLimit	%RPD	RPDLimit	Qual	
Surr: BFB	910	1000		91.4	15 316				
Sample ID LCS-40453	SampType	LCS	Test	Code: EPA Met	hod 8015D: Gaso	oline Rang	je		
Client ID: LCSS	Batch ID:	40453	R	unNo: 54282					
Prep Date: 9/19/2018	Analysis Date:	9/20/2018	S	eqNo: 1796710	Units: %Re	с			
Analyte	Result Po	QL SPK value	SPK Ref Val	%REC LowL	imit HighLimit	%RPD	RPDLimit	Qual	

Qualifiers:

Client:

Project:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Page 4 of 5

- P Sample pH Not In RangeRL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1809995

WO#:

Batch ID: 40453

Analysis Date: 9/20/2018

PQL

SPK value SPK Ref Val

1 000

Result

0.99

WO#: 1809995

25-Sep-18

Client:

LTE

Heros 23 08 9L **Project:** Sample ID MB-40423 SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: PRS Batch ID: 40423 RunNo: 54264 Prep Date: 9/18/2018 Analysis Date: 9/19/2018 SeqNo: 1795348 Units: mg/Kg Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte 0.025 Benzene ND Toluene ND 0.050 0.050 Ethylbenzene ND Xylenes, Total ND 0.10 Surr: 4-Bromofluorobenzene 0.98 1.000 98.2 80 120 SampType: LCS Sample ID LCS-40423 TestCode: EPA Method 8021B: Volatiles Client ID: LCSS Batch ID: 40423 RunNo: 54264 Prep Date: 9/18/2018 Analysis Date: 9/19/2018 SeqNo: 1795349 Units: mg/Kg Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte 0.93 1.000 92.7 77.3 128 0.025 0 Benzene 0.97 0.050 1.000 0 97.1 79.2 125 Toluene 0.96 0.050 1.000 0 96.1 80.7 127 Ethylbenzene 129 2.9 0.10 3.000 0 96.6 81.6 Xylenes, Total 0.99 1.000 98.6 80 120 Surr: 4-Bromofluorobenzene SampType: MBLK TestCode: EPA Method 8021B: Volatiles Sample ID MB-40453 Client ID: PBS Batch ID: 40453 RunNo: 54282 Prep Date: 9/19/2018 Analysis Date: 9/20/2018 SeqNo: 1796749 Units: %Rec SPK value SPK Ref Val %REC %RPD **RPDLimit** Qual Analyte Result PQL LowLimit HighLimit 91.5 80 120 0.92 1.000 Surr: 4-Bromofluorobenzene SampType: LCS TestCode: EPA Method 8021B: Volatiles Sample ID LCS-40453

Surr: 4-Bromofluorobenzene

LCSS

9/19/2018

Client ID:

Prep Date:

Analyte

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range

RunNo: 54282

%REC

99.4

SeqNo: 1796750

LowLimit

80

Units: %Rec

120

HighLimit

%RPD

RPDLimit

Page 5 of 5

Qual

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental . Albu TEL: 505-345-3975 Website: www.hau	Analysis I 4901 H querque, FAX: 505 llenvironn	Laboratory awkins NE NM 87109 -345-4107 mental.com	San	nple Log-In C	heck List
Client Name: LTE	Work Order Number:	180999	5		RcptNo:	1
Received By: Anne Thome	9/18/2018 6:55:00 AM		an	u An	_	
Completed By: Anne Thorne	9/18/2018 9:03:15 AM		an	u H-	-	
Reviewed By:	1(18)10					
Labeled by: to OAIRVIR						
Chain of Custody						
1. Is Chain of Custody complete?		Yes 🗸] N(0	Not Present	
2. How was the sample delivered?		Courier				
Log In		-				
3. Was an attempt made to cool the samples?		Yes 🗹	No		NA	
4. Were all samples received at a temperature	of >0° C to 6.0°C	Yes 🔽] No		NA 🗌	
5. Sample(s) in proper container(s)?		Yes 🗸	No			
6. Sufficient sample volume for indicated test(s)?	Yes 🗹	No			
7. Are samples (except VOA and ONG) properl	y preserved?	Yes 🗸	No			
8. Was preservative added to bottles?		Yes 🗌	No		NA 🗌	
9. VOA vials have zero headspace?		Yes 🗌	No		No VOA Vials 🔽	
10. Were any sample containers received broke	n?	Yes	No			
11 Does paperwork match bottle labels?		Voc V	No		# of preserved bottles checked for pH:	
(Note discrepancies on chain of custody)				,	(<2 or	>12 unless noted)
12. Are matrices correctly identified on Chain of	Custody?	Yes 🗹	No		Adjusted?	
13. Is it clear what analyses were requested?		Yes 🗸	No			
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No		Checked by:	
Special Handling (if applicable)						
15. Was client notified of all discrepancies with	this order?	Yes	N	•	NA 🗹	
	Data I	and the second		anananan.		
By Whom:	Via · 「	eMail	Phone C	Fax	In Person	
Regardina:				ax		
Client Instructions:	an a	a a anti-second a cardo	1	Antoni Antoni anno Ina.	al manufacture de la constantion de la	
16. Additional remarks:		anda and		ACK - 40 - 104		
17. Cooler Information						
Cooler No Temp °C Condition Se	eal Intact Seal No S	eal Date	Signed	Ву	4	
1 1.1 Good Yes	3					

Chain-of-Custody Record				Turn-Around	Time:				100						/T r	20	B IT			-	
Client:	L T EV	VIJONN	nental	X Standard	🗆 Rush								Y	ST	51	ΔΙ	RO	D		AL OR	V
				Project Name	9:					-	www	w ha	llenv	viron	men	tal cr	om				
Mailing	Address	848	E. 2nd Ave.	Henos	23 08 9	r.		490	01 H	awk	ins N	VE -	Alt	ouau	erau	e. N	M 8	7109			
	Duran	90 CC	81301	Project #:					el. 50	5-34	15-3	975	I	Fax	505-	-345	-410)7			
Phone	#: (976	385-	1096	076	218010							A	nal	ysis	Req	uest	t				
email o	r Fax#: 。	thencm	iann & Itenv.com	Project Manager:				(ylu	(Q)					0 ₄)							Τ
QA/QC	Package:			Devin Hencmann				as o	WWW			IS))4,S(CB's						
□ Stan	dard		Level 4 (Full Validation)	Samplar Tai Al			3's (Ű)	RO			SIN		2,PC	N D				0		
Accred	itation AP	Othe	r	Sampler: Josh Adams On Ice: XYes: No			TME	T P	0/0	8.1)	4.1)	3270		NON.	/ 808		()	1	20		í.
	(Type)		· · · · · · · · · · · · · · · · · · ·	On Ice: X Yes I No Sample Temperature: 2.1-CF-10=1.1			н ЭЕ	+ Ж	(GR	d 41	d 50) or 8	tals	NON,	des	2	VOA	000	3		V or
Date	Time	Matrix	Sample Request ID	Sample Temperature 2 1-cf-10=1.1 Container Preservative Type HEAL No RA9993				BTEX + MTB	TPH 8015B	TPH (Metho	EDB (Metho	PAH's (8310	RCRA 8 Me	Anions (F,CI	8081 Pestici	8260B (VOA	8270 (Semi-	BTEX (9	Chiloride		Air Bubbles
9/12/18	1115	Soil	55 7D @ 6"	(1)402	Cool	-201			X									X	X		
-						-															
																					-
																					+
																					+
																				-	+
																					+
																					+
			2																		+
Date:	Time: /330	Relinquish	er la	Received by: Date Time			Ren	narks	s:									·			
Date:	Time:	Relinquish	the libel by	Received by	m	Date Time 09/17/18												1.4			

If necessary samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.