<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S St Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Release Notification and Corrective Action

Submit 2 Copies to appropriate District Office in accordance

Revised October 10, 2003

Form C-141

with Rule 116 on back side of form

HI# 30-045-24987 **OPERATOR Initial Report** Name of Company: Energen Resources, Inc. Contact: Ed Hasely Address: 2010 Afton Place, Farmington, NM 87401 **Telephone No: 505-324-4131** Facility Name: City of Farmington #1E Facility Type: Oil/Gas Well Site Surface Owner: Fee Mineral Owner: Fee Lease No. Fee LOCATION OF RELEASE North/South Line Feet from the East/West Line Unit Letter Section Township Range Feet from the County 1120 1685 0 South East San Juan Latitude 36.76561 Longitude -108.17142 NATURE OF RELEASE Volume of Release: Unknown Volume Recovered: 0 bbls Type of Release: Produced Fluids Source of Release: Production Pit Tank Date and Hour of Occurrence: Date and Hour of Discovery: Unknown Was Immediate Notice Given? If YES, To Whom? ☐ Yes ☐ Not Required By Whom? NA Date and Hour: NA If YES, Volume Impacting the Watercourse. NA Was a Watercourse Reached? ☐ Yes ☒ No RCVD SEP 22 '08 OIL COMS. DIV. If a Watercourse was Impacted, Describe Fully.* NA DIST. 3 Describe Cause of Problem and Remedial Action Taken.* Sampling underneath the tank during the below-grade tank closure showed TPH (Method 418.1) results of 309 ppm. According to the Pit Rule, any result over 100 ppm is an indication of a release. Describe Area Affected and Cleanup Action Taken.* A risk ranking of the location revealed that the lab results are below remediation levels per Rule 116 and the "Guidelines for Remediation of Leaks, Spills and Releases". Depth to water is greater than 100 feet, distance to surface water is between 200 and 1000 feet, and it is not in a Wellhead Protection Area --- Total Ranking Score of 10, which gives a remediation level of 1000 ppm for TPH. No remediation required. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Approved by District Supervisor: Printed Name: Ed Hasely Approval Date: 9/22/08 **Expiration Date:** Title: Sr. Environmental Engineer E-mail Address: ed.hasely@energen.com Conditions of Approval: Attached Phone: 505-324-4131 / 505-330-3584(cell)

* Attach Additional Sheets If Necessary

Incident # 1RMD 0928149496

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Energen Res	Project #:	03022-0001
Sample ID:	City of Farmington #1E	Date Reported:	09-09-08
Laboratory Number:	47017	Date Sampled:	09-02-08
Chain of Custody:	5183	Date Received:	09-02-08
Sample Matrix:	Soil	Date Analyzed:	09-09-08
Preservative:	Cool	Date Extracted:	09-08-08
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Limit (ug/Kg)	
Benzene	1.3	0.9	*
Toluene	2.6	1.0	
Ethylbenzene	2.5	1.0	
p,m-Xylene	14.0	1.2	
o-Xylene	5.8	0.9	
Total BTEX	26.2		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	99.0 %
	1,4-difluorobenzene	99.0 %
	Bromochlorobenzene	99.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

City of Farmington #1E

Analyst

Review Westers

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client: Sample ID:	N/A 09-09-BT QA/QC	Project #: Date Reported:	N/A 09-09-08
Laboratory Number:	47017	Date Neported:	N/A
Sample Matrix:	Soil	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	09-09-08
Condition:	N/A	Analysis:	BTEX

Calibration and Detection Limits (ug/L)	l-Cal/RF:	G-CallRF: Accept Rand	%Diff: (e:0 - 15%		Detect:
The state of the s	na. Cr. na, armende le cr. nate in berneten in riter tri act entreterioritation L. no. 2000 i L. copiese "Ad. 100 Ali. 10 Ali. 10 Ali.	Control of the Contro	and the said stated and the wife for the s		Land of the control o
Benzene	7.4922E+007	7.5072E+007	0.2%	ND	0.1
Toluene	5.3517E+007	5.3624E+007	0.2%	ND	0.1
Ethylbenzene	4.2797E+007	4.2883E+007	0.2%	ND	0.1
p,m-Xylene	8.9921E+007	9.0101E+007	0.2%	ND	0.1
o-Xylene	4 1934E+007	4.2018E+007	0.2%	ND	0.1

Duplicate Conc. (ug/Kg)	Sample: D	uplicate	%Diff.	Accept Range	Detect Limit
Benzene	1.3	1.4	7.7%	0 - 30%	0.9
Toluene	2.6	2.9	11.5%	0 - 30%	1.0
Ethylbenzene	2.5	2.7	8.0%	0 - 30%	1.0
p,m-Xylene	14.0	14.1	0.7%	0 - 30%	1.2
o-Xylene	5.8	6.0	3.4%	0 - 30%	0.9

Spike Conc. (ug/Kg)	Sample Amo	unt Spiked Spik	ked Sample	%:Recovery	Accept Range
Benzene	1.3	50.0	50.9	99.2%	39 - 150
Toluene	2.6	50.0	50.6	96.2%	46 - 148
Ethylbenzene	2.5	50.0	49.5	94.3%	· 32 - 160
p,m-Xylene	14.0	100	109	95.6%	46 - 148
o-Xylene	5.8	50.0	50.8	91.0%	46 - 148

ND - Parameter not detected at the stated detection limit.

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments: QA/QC for Samples 47017 - 47020 and 47051 - 47052.

Analyst Re

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:	Energen Res	Project #:	03022-0001
Sample ID:	City of Farmington #1E	Date Reported:	09-11-08
Laboratory Number:	47017	Date Sampled:	09-02-08
Chain of Custody No:	5183	Date Received:	09-02-08
Sample Matrix:	Soil	Date Extracted:	09-09-08
Preservative:	Cool	Date Analyzed:	09-09-08
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

309

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

City of Farmington #1E.

Analyst

Mustinem Wallis Review

EPA METHOD 418.1 TOTAL PETROLEUM HYROCARBONS QUALITY ASSURANCE REPORT

Client: Sample ID: Laboratory Number: Sample Matrix: Preservative: Condition:		QA/QC QA/QC 09-05-TPH.QA/Q Freon-113 N/A N/A	QC 46985	Project #: Date Reported Date Sampled: Date Analyzed Date Extracted Analysis Need	: : l:	N/A 09-11-08 N/A 09-09-08 09-09-08 TPH
Calibration	i-Cal Date 08-22-08	C-Cal Date 09-09-08	I-Cal RF: 1,680	C-Cal RF: 1,590	% Difference 5.4%	Accept. Range +/- 10%
Blank Conc. (mg TPH	ı/Kg)		Concentration ND		Detection Lim	it
Duplicate Conc. TPH	(mg/Kg)		Sample 309	Duplicate 329	% Difference 6.5%	Accept. Range +/- 30%
Spike Conc. (mg	/Kg)	Sample 309	Spike Added 2,000	Spike Result 2,150	% Recovery 93.1%	Accept Range 80 - 120%

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of. Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

QA/QC for Samples 47017 - 47020, 47052 and 47097.

Analyst

Chloride

Client:	Energen Res	Project #:	03022-0001
Sample ID:	City of Farmington #1E	Date Reported:	09-11-08
Lab ID#:	47017	Date Sampled:	09-02-08
Sample Matrix:	Soil	Date Received:	09-02-08
Preservative:	Cool	Date Analyzed:	09-10-08
Condition:	Intact	Chain of Custody:	5183

Parameter	Concentration (mg/Kg)

Total Chloride 29.0

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: City of Farmington #1E.

nalyst (Mustum Waters and Cathers Review

CHAIN OF CUSTODY RECORD

Client: Project Name / Location Energen Res City of Farm Client Address: Sampler Name:					1	# IF	ANALYSIS / PARAMETERS																
Client Address:		s	ampler Name:	arm	ing ton	11-			_	F		T	Ι	l	<u> </u>							Т	
Jason Peace					0				TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	,			 -								
Client Phone No.: Client No.:								gg	poq	po	etal	noi		H.		=	(11			-		į	
325-6800 63022-000					>				Aeth	(Met	Meth	. ₩	/Ar		with		418.	CHLORIDE				Sample Intact	
Sample No./	Sample	Sample	Lab No.	Sample		No./Volume Preservative			Ī	Ж	ပ္ထ	RCRA 8 Metals	Cation / Anion	5	TCLP with H/P	Į	TPH (418.1)	ᅙ		Ì			<u>i</u>
Identification	Date	Time			Matrix	of Containers	HgCl,	HCI	<u> </u>	PT B	8	<u> E</u>	_ පී_	RCI	먇	PAH	<u> </u>	ㅎ				8 8	
#1E City of Farmington	9-2-08	12pm	47017	Solid	Sludge Aqueous	1-40E				X							X	X			/	(X	-
•				Soil Solid	Sludge Aqueous																		
				Solid Solid	Sludge Aqueous																		
				Soil Solid	Sludge Aqueous																		
1/2				Soil Solid	Sludge Aqueous																		
		-		Soil Solid	Sludge																		
				Soil	Aqueous																		1
				Solid Soil	Aqueous Sludge																		-
				Solid Soil	Aqueous Sludge																		1
			***************************************	Solid	Aqueous Sludge					-													-
			4×4×	Solid	Aqueous	Ļ				L,		<u> </u>		L,							_		_
Relinquished by: (Signature)					Date 9-2-08	Time 4:04	Received by: (Signature) Dat										6/ /oy	Time 4:0					
Fugene Burbank Relinquished by: (Signature)					1200	1	F	Received by: (Signature)															
	·····				ļ ·		ļ_			(O:	_ i												
Relinquished by: (Signature)							F	Receiv	ea by:	(Sign	ature))											
Send to Ed	Hasl	ey	,		ENVI	ROT		C		n	C.					• .							
		1		Ì	,		535	75 G 5			¥.												
			5796 U.	S. High	way 64 •	Farming	ton	, NM	8740)1 •	Tel	505-	632-	0615	;								

September 12, 2008

New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, New Mexico 87410 Attn: Brandon Powell

City of Farmington #1E Re:

C-141 Submittal

Below Grade Tank Closure - Release Notification

Dear Mr. Powell:

Enclosed is the final C-141 Form for the possible release identified during a Below-Grade Tank closure on the subject well location.

If there are any questions or concerns with this submittal, please contact me at 505-324-4131.

Sincerely,

Ed Hasely

Sr. Environmental Engineer

Energen Resources

Attachments: Final C-141

Lab Reports Торо Мар

Cc: **HSE File**

> Facility File Correspondence