WELL REPORT
ANDERSON OIL COMPANY
EL NORTE #2
SAN JUAN COUNTY, NEW MEXICO

Market Market

Marketine Company of the

· • _ 1

the control of the co

 $\mathbf{C}_{i}^{(n)}$ and $\mathbf{C}_{i}^{(n)}$ and $\mathbf{C}_{i}^{(n)}$ and $\mathbf{C}_{i}^{(n)}$

Araban da ang kalang kanang kanang atau pada kanang katanan Masalan.

SP CR COLLEGE A

Well of the second of the seco

 $\frac{3}{3} \cdot \frac{5}{3} \cdot \frac{87}{3} = \frac{3}{3} \cdot \frac{1147}{3} \cdot \frac{11}{3} \cdot \frac{11}{3}$

Production of the control of the con

<u>One was</u>		
	No. Europe Es	
$\frac{\partial \Phi}{\partial x} = \frac{\partial \Phi}{\partial x} + $		
The second of th		
Carling The State of		

FORMATION TOPS - CONTINUED

Cretaceous	Depth	KB Datum
Dakota "B" (Kdb) Dakota "D" (Kdd) Dakota Burro Canyon (Kdbc) Jurassic	4524' 4612' 4670'	+2050 +1962 +1904
Morrison (Jm) Total Depth (Logger) Total Depth (Driller)	4751' 4760' 4765'	+1823 +1814

WELL CUTTINGS

30' samples from 3000' to 4200'

10' samples from 4200' to 4765' (Driller TD)

Samples described below from 4200' to 4765' (Driller TD)

SAMPLE DESCRIPTION

4200-40	100%	sh,	dk	gy,	gу	brn,	carb:	Tr	s1tstn,	gy,	hd,	calc.	shv	
---------	------	-----	----	-----	----	------	-------	----	---------	-----	-----	-------	-----	--

4240-60 90% sh, as above: 10% sltstn, as above

4260-4310 80% sh, as above: 20% s1tstn, as above

4310-30 90% sh, as above: 10% sltstn, as above

TOP GREENHORN 4336' LOGS

4330-60 80% sh, as above: 20% s1tstn, as above

4360-70 100% sh, as above: Tr sltstn, as above

TOP GRANEROS 4386' LOGS

4370-90 100% sh, gy brn, s1/calc: Tr s1tstn, as above

4390-4400 90% sh, as above: 10% 1s, gy brn, v/f-xln, shy, Tr sltstn, as above

TOP DAKOTA "A" 4406' LOGS

4400-10 90% sh, as above: Tr sh, dk gy, platy: 10% 1s, as above

4410-20 100% sh, dk gy, gy brn: Tr 1s, as above: Tr s1tstn, as above

100% sh, dk gy, platy, bcm silty, sdy in part: Tr ss, gy, v-f-f-g, SA-SR, arkosic, abt intstl clay, N-S

4430-40 90% sh, as above: 10% ss, uncons, f-g, SA-SR, arkosic, N-S

SAMPLE DES	CRIPTION - CONTINUED
4440-70	100% sh, as above: Tr ss, 1t gy, f-g, arkosic, SA-SR, calc, tite, $\underline{N-S}$
4470-80	50% ss, wht, v-f-f-g, SA-SR, arkosic, por \S friable, N-S: 50% sh, as above
4480-90	50% ss, as above, bcm shy in part: 50% sh, as above
4490-4500	50% ss, as above, domin uncons, N-S: 50% sh, as above
4500-10	90% sh, as above: 10% ss, as above, $N-S$
4510-20	80% sh, as above: 10% ss, gy, $v-f-f-g$, as above, silty calc, N-S: 10% sltstn, gy, hd, calc, sdy in part
	TOP DAKOTA "B" 4524' LOGS
4520-30	70% sh, as above: 30% sltstn, as above
4530-40	100% sh, dk gy, platy: Tr sltstn, as above
4540-60	100% sh, as above: Tr sltstn, as above: Tr ss, dk gy, v-f-g, shy, glauc, $\underline{N-S}$
4560-70	70% ss, wht, v-f-f-g, SA-SR, arkosic, por & friable, $N-S$: 30% sh, as above
4570-80	70% sh, as above: 30% ss, as above
	TOP DAKOTA "D" 4612' LOGS
4580-4620	100% sh, as above: Tr ss, as above
Core #1	4620-62
4662-70	100% sh, dk gy, as above: Tr ss, dk gy, v-f-g, shy, tite, $\underline{\text{N-S}}$
	TOP DAKOTA BURRO CANYON 4670' LOGS
4670-90	100% sh, dk gy, platy, silty in part: Tr ss, as above: Tr sltstn, gy, calc, shy
4690-4700	100% sh, as above: Tr ss, wht, f-m-g, SA-SR, por & friable, N-S: Tr sh, grn, wxy
4700-20	50% ss, wht-1t gy, f-m-g, domin f-g, arkosic, SA-SR, por ξ friable in part, silic ξ tite in part, N-S: 50% sh, as above: Abt coal

门

1

SAMPLE DESCRIPTION - CONTINUED

TOP MORRISON 4751' LOGS

4720-65 20% ss, as above: 10% ss, uncons, f-c-g, A-R, congl, N-S: 60% sh, dk gy, as above: 10% sh, grn, wxy, sdy in part

4765 TD Driller

4760 TD Logger

DRILLING TIME

Five foot drilling time from 4200' to 4765' (Driller TD) is listed below

05-10-15-20-25-30-35-40-45-50-55-60-65-70-75-80-85-90-95-100

```
4200-4300
10-14-12-11-11-11-14-10-9-12-12-11-11-11-12-12-12-12-10-11
4300-4400
12-12-16-14-14-14-14-11-12-15-18-15-19-16-12-9-13-13-13-13-13
4400-4500
11-14-13-12-7-8-11-11-12-4-4-8-9-9-11-10-8-14-11-13
4500-4600
14-13-13-13-20-17-15-5-6-6-8-12-19-19-18-15-16-30-23
4600-4700
21-24-17-15- Core #1
26-26-17-6-11-13-6
4700-4765
```

CORING TIME

One foot coring time (4620-62) is listed below.

CHRONOLOGICAL LOG

Drlg (2 3/4 hrs)

Drlg (19 3/4 hrs) Trips (3 1/4 hrs) Service rig (1/2 hr) Rig repair (1/2 hr)

Drlg (15 hrs) Trips (5 1/2 hrs) Service Rig (1/4 hr) Rig repair (3 1/4 hrs)

CHRONOLOGICAL LOG - CONTINUED

11-13-71 ø 3860' w/Bit #5 Bit #4: OSCIG - 439' - 14 1/2 hrs

Mud Properties: Wt: 9.1; Vis: 36; WL: 10.6

Drlg (20 1/2 hrs) Trips (3 1/4 hrs) Service rig (1/4 hr)

Mud Properties: Wt: 9.2; Vis: 37; WL: 8.8

Drlg (19 3/4 hrs) Trips (4 hrs) Rig service (1/4 hr)

11-15-71 Coring 4662' Bit #6: S-88 - 558' - 23 1/2 hrs

Mud Properties: Wt: 9.4+; Vis: 51; WL: 4.2

Drlg (11 hrs) Trip (5 3/4 hrs) Service Rig (1/4 hr) Condition mud & circ (2 hrs) Coring (5 hrs)

11-16-71 TD 4765' - Circ for logs Core #1: 42' - 5 hrs Bit #8: RR - 103' - 5 hrs

Mud Properties: Wt: 9.4; Vis: 62; WL: 6.2

Drlg (5 hrs) Trips (5 hrs) Cond mud (1/4 hr) Rig repair (1 1/4 hrs) Drillstem Test (8 hrs) Lay down core & test tools, WO tester (4 1/2 hrs)

11-17-71 TD 4760' Logger: Rng Csg

BIT RECORD

No.	<u>Make</u>	<u>Size</u>	Type	From	To	Footage	Hours Run
1 2 3 4 5 6 7 8	Hughes Hughes Hughes Hughes Hughes Hughes Hughes Christensen Hughes	7 7/8 7 7/8 7 7/8 7 7/8 7 7/8 7 7/8 Core #1 7 7/8	OSC-3 OSCIG OSCIG OSCIG OSCIG S-88	73' 1634' 2555' 3202' 3641' 4062' 4620' 4662'	1634' 2555' 3202' 3641' 4062' 4620' 4662' 4765'	1561' 921' 647' 439' 421' 558' 42' 103'	10 1/4 13 12 1/4 14 1/2 15 1/2 23 1/2 5

TOTAL ROTATING HOURS - 99

, ,

DEVIATION RECORD

No.	Degree	<u>Depth</u>	Date
1	1/40	500'	11-11-71
2	1/40	1000'	11-11-71
3	1/40	1634'	11-11-71
4	1-1/4° 2-1/4°	2100 ° 2555 °	11-12-71 11-12-71
6	1-3/40	3202 '	11-12-71
7	3/40	3641'	11-13-71
8	3/40	4062'	11-14-71

ELECTRICAL SURVEY CALCULATIONS

Formation	Depth	Por Densilog	osity Acoustilog	Rw	Water Saturation	<u>Q</u>
Dakota "D"	4642-46	16%	16%	. 7	57%	
Dakota "D"	4638-42	20%	18%	. 7	45%	
Dakota "D"	4636-38	19%	18%	. 7	47%	
Dakota "D"	4634-36	19%	18%	. 7	50%	
Dakota "D"	4626-30	17%	17%	. 7	50%	
Dakota "D"	4616-20	19%	15%	. 3	47%	- -
Dakota "D"	4612-16	17%	13%	. 3	62%	. '
Dakota "B"	4553-57	12%	12%	. 3	100%	
Dakota "B"	4534-38	17%	19%	. 3	100%	.103
Dakota "A"	4432-42	17%	17%	. 3	100%	

Rw's calculated from SP.

CORE RECORD

Core #1: 4620-4662 Recovered 32.5' (4613-55 Adjusted to logs)

Feet	Depth	Description
8.0	4620-28	ss, wht, f-g, arkosic, SA-SR, por, faint gas odor, no fluor
1.5	4628-29.5	ss, as above, less porous
2.0	4629.5-31.5	sh, dk gy-blk carb
1.5	4631.5-33	ss, tan, f-g, arkosic, SA-SR, carb inclusions, porous, $\underline{N-S}$

CORE RECORD - CONTINUED

Feet	Depth	Description
7.0	4633-40	ss, buff, f-g, arkosic, SA-SR, porous, $\underline{N-S}$
4.0	4640-44	ss, as above, carb inclus, N-S
1.0	4644-45	ss, 1t gy, f-m-g, arkosic, SA-SR, porous, $\underline{N-S}$
2.0	4645-47	ss, as above, domin f-g, carb inclus
1.0	4647-48	ss, tan, f-g, SA-SR, arkosic, porous, oil sat, excell. blue grn fluor, excell. cut
3.0	4648-51	ss, tan, f-m-g, as above
1.5	4651-52.5	ss, 1t gy, v-f-g, SA-SR, arkosic, s1/glauc, calc, tite, $N-S$
32.5		

CA-20

CORE LABORATORIES. INC. Petroleum Reservoir Engineering DALLAS. TEXAS

Page	No	1
------	----	---

CORE ANALYSIS RESULTS

Com	Pany ANDERSON OI	L COMPANY	F	ormation_	DAKC	TA		File RP-3-2	507
Well	` ' MAD MAD AL	DERAL NO. 2	C	ore Type_	DI AM	iond ци		Date Report_11-15-	71
Field	UNDESIGNATE	D			uid_WATE	R BASE MUD		Analysts RG	
Cour	CAN IIIAN	State NEW MEX.						•	
	··/ /								
ŠAND-	SD DOLOMITE- DOL	ANHYDRITE - ANHY	PULLT	_	Abbreviat	CAYOTALLINE XLN	BROWN - BRN	PRACTURED - PRAC	######################################
SHALE LIME-	-BM CHERT-GH	CONGLOMERATE - CONG FOSSILIFEROUS - FOSS	BHALY-BH	Y MED	IUM - MED	GRAIN - GRN Granular - Grnl	BRAY - BY VUGGY - VGY	LAMINATION - LAM STYLOLITIC - STY	VERY -V/ WITH - W/
			POROSITY		ATURATION	T	·	PLE DESCRIPTION	·
IMPLE	DEPTH PEET	MILLIDARCYS (KA)	PER CENT	OIL	TOTAL	-		AND REMARKS	
	<u>'</u>	, (ХД)	'		WATER	<u></u>		· · · · · · · · · · · · · · · · · · ·	
1	(0	ONVENTIONAL AND	LYSIS)					`	
1	4620-21	86	17.9	0.0	37.4	Sd Lt Gy I	n Grn	•	
່ 2	21-22	57	18.7	0.0	40.6	Sd Lt Gy I	n Grn		
1 3	22-23	62	17.8	0.0	33.7	Sd Lt Gy I	n Grn		Frac
1	23-24	Ц8	17.9	0.0	47.5	Sd Lt Gy I	n Grn		
' 5 1 6	24-25	66	17.8	0.0	35.4	Sd Lt Gy 1	n Grn		Frac
	25 - 26	79	18.0	- 0.0	37.2	Sd Lt Gy 1			Frac
7	26-27	65	18.0	0.0	38.3	Sd Lt Gy 1			Frac
' 8	27-28	. 50	15.6	0.0	34.6	Sd Lt Gy 1		4.	
ı 9	28-29	29	15.5	0.0	38.7	Sd Lt Gy 1	n Grn C	arb	
1			HALE					,	
10	4631.5 -32	5.8	17.9	0.6	57.0	Sd Tn-Gy		L/Shy	•
, 11	32 - 33	32	14.3	0.0	45.3	Sd Tn-Gy 1		4	
12	33-34	93	20.2	0.0	47.5			rn Sl/Clay	Frac
13	34-35	37	20.3	0.0	52.7	Sd In-Gy			
14	35-36	39	21.0	0.0	54.3	Sd Tn-Gy 1		•	
15	36-37	67	17.8.	0.0	55.0	Sd Tn-Gy 1			
16	37-38	. 60	20.2	0.0	56.5	Sd Tn-Gy			
17	38-39	3.7	18.3	0.0	51.9			Lay Carb Strks	- .
18	39-40	31	18.4	0.0	61.4			Lay Carb Strks	Frac
19	10-11	27	16.3	0.0	52.1	•		Lay Carb Strks	Frac
20	41-42	8 <u>4</u>	19.1	0.0	48.6	Sd Lt Gy			
21	42-43	96	19.2	0.0	54.1			m Clay Sl/Shy	
22	ft3-ftft	717	19.0	0.0	50.5			m Clay Sl/Shy	
23	141-115	112	18.2	0.0	52.7			Clay Carb Strks	
2lı	45-46	205	19.8	0.0	45.9	Sd Gy Med			`
25.	46-47	160 365	20.6	0.0	42.7 42.8	Sd Gy Med			Dece
26	47 - 48	165 185	17.5	0.6	46.5	Sd Gy Med		,	Frac
·27 28	ц8-ц9 ц9-50	255	20.4 19.2	6.4 6.8	42.6	Sd Gy Med Sd Gy Med			Pros
29	49 - 50 50 - 51	195	20.2	6.5	45.5	Sd Gy Med			Frac
30	51 - 52	40.1	5.4	0.0	72.1	Sd Drk Gy		silte	
31	52 - 52 . 5	∅. 1	4.8	0.0	72.9	Sd Drk Gy			

DRILLSTEM TEST RECORD

4617-29 (Dakota "D") (4610-22 Adjusted to logs) SP DST #1:

Open 15 minutes: strong blow G-T-S 4", ggd 1274 MCF in 15 minutes

Snut	1 n	30 minute	es:				
Open	60	minutes:	ggd	371 MC	F 1 p:	si 1½	ck
	10	minutes	ggd	1824 MC			ck
			ggd	2200 MC	F 24 ps	si 1½	ck
		minutes	ggd	2503 MC	F 29 ps	si 1½	ck
	40	minutes	ggd	2737 MC	F 33 ps	si 1½	ck
	50	minutes	ggd	2737 MC	F 33 ps		ck
	60	minutes	ggd	2737 MCI			ck

Recovered: 45' distillate, Grav. 54, corr $60^{\circ}F$

Initial hydrostatic pressure	2360 psi
Final hydrostatic pressure	2299 psi
Initial flow pressure (1)	146 psi'
Final flow pressure (1)	293 psi
Initial flow pressure (2)	310 psi
Final flow pressure (2)	517 psi
Initial shut in pressure	1930 psi
Final shut in pressure	1912 psi

Bottom Hole Temperature:

Bottom Hole Sampler:

175 psi 12.7 cu. ft. gas

No Dist.

SUMMAT I ON

This well was spudded November 8, 1971 and $5\frac{1}{2}$ " casing was set to total depth November 17, 1971. The well was drilled to a total depth of 4760' Logger: 4765' Driller, in the Morrison formation of Jurassic age. A total of 99 rotating hours were required for the drilling of this test.

All formations from 4200' to 4765' (Driller TD) were evaluated by (1) careful examination of rotary cuttings by a geologist in the field; (2) the entire stratigraphic section was evaluated by quantitative and qualitative analysis of the electrical surveys. A core was cut in the Dakota "D" zone (4620-62). Examination of the core revealed faint gas odor in the top of the Dakota "D" zone (4620-29). A drillstem test was run 4617' - 29'. Gas flowed at the rate of 2,737 MCF. The pressures and detailed drillstem test data are recorded in the text of the report. Core analysis and electrical surveys indicate another zone of interest in the lower Dakota "D" zone 4640-44, adjusted to logs.

The well ran structurally 5' lower than the Davis Oil Company: Snake Eyes #1, located in Section 20, Township 21 North, Range 8 West, San Juan County, New Mexico, on top of the Dakota "D" zone.

Rotary samples were saved from 3000' to total depth and shipped to the Four Corners Sample Cut in Farmington, New Mexico. The core was analized by Core Lab and a preliminary report is included in the text of the report. An Induction Electrolog and Densilog were run from surface to total depth. An acoustilog was run over a selected interval.

Nan In Thomas &

Dave M. Thomas, Jr. CPG 914