NEW MEXICO OIL CONSERVATION COMMISSION GAS WELL TEST DATA SHEET - - SAN JUAN BASIN ## (TO BE USED FOR FRUITLAND, PICTURED CLIFFS, MESAVERDE, & ALL DAKOTA 72-205 EXCEPT BARKER DOME STORAGE AREA) | Pool | Blanco | | | Formation | n Mesa Verd | e | County_ | Rio Arri | De. | | |---|--|---|--|--|---|---|--|---------------------------------------|------------------------|----------------| | Purchasing F | Pipeline | Paso Natur | al Gas | | | Date Test | Filed | | | | | Operator | Kl Paso Nat | ural Ges | Ι ο | ase | Rincon Ur | it | Well | 101 | L | | | Operator | Sec. | 1 Twp | | | ,
Pay Zone: 1 | 5022 | | To 5156 | | | | OIHt | E 7/0 | 1 Mb | _Set At | 5275 | Pdy Zone:
Tubing: OD_ | 10111 | WT. 4.7 | | 51.6 | 59 | | Casing: OD. | | | | ₩ | | | 774 | | | | | | rough: Casing | | | | Gas Gravity:
* Date S.I.P. M | | | | ea | | | | v Test: From_ | | | | | | | | | | | Meter Run Si | ze | | Orifice | Size | | Type Chart | | Туре Тар | s | | | | | | | OBSERV | /ED DATA | | | | | | | | | | | | | | | | | (a) | | | | | | | | | | | | (b) | | | pressure (Dwt) _
pressure (meter | | | | en: | .psig + 12 = | ···· | | psia | (c) | | Normal cha | irt reading | | =, | | | psig + 12 = | | ,,,** | psia | (d) | | | |) ² x | spring cons | | | | | | | (d) | | | - (d) or (d) - (c)
Flowing column | to meter: | | ± | | | | · | psi | (e) | | · · | ow through tubin | | through co | asing | | = | | | psi | (f) | | Niamumi mba | rage static meter
ort average readin | · · | | | | _psig + 12 = | | | psiα | (g) | | Square root | t chart average redati | eading (7.10 |) 2 x sp | . const | 10 | = | | 504 | psia | (g) | | Corrected s | seven day avge. 1 | | | | | = | | 504
504 | psia | (h | | $P_t = (h) + (f)$ | | (D | | | 1086 | =
= psiq + 12 | | 1098 | psia | (i) | | | ng shut-in pressu
ng shut-in pressu | | | | 792 | _psig + 12 =
_psig + 12 = | | 804 | .psia
.psia | (j)
(k | | | | | | | | | | | | | | | whichever well i | | | | | = | | 804 | .psia | (1) | | P _c = (j) or (k)
Flowing Temp | whichever well i | | 72 | °F+4 | 60 | = | | 532 | .psia
•Abs | (l)
(m | | P _c = (j) or (k)
Flowing Temp | whichever well i | | | | 60 | = | | 804 | - | (m | | P _c = (j) or (k)
Flowing Temp | whichever well i | flowed through | 72 | °F + 4 | | ======================================= | | 532 | °Abs | (m | | | whichever well i | flowed through | 72 | °F + 4 | LCULATION | ======================================= | * | 532
402 | °Abs | | | $P_c = (j) \text{ or } (k)$ Flowing Temp $P_d = \frac{1}{2} P_c = \frac{1}{2}$ $Q = \underline{\hspace{1cm}}$ | whichever well in the | flowed through | 72 | °F + 4 | | ======================================= | * = | 532 | °Abs | (m
(n | | $P_c = (j) \text{ or } (k)$ Flowing Temp $P_d = \frac{1}{2} P_c = \frac{1}{2}$ | whichever well in the | flowed through | 72 FLOW R | °F + 4 | | ======================================= | * = | 532
402 | °Abs
psia | (m
(n | | $P_c = (j) \text{ or } (k)$ Flowing Temp $P_d = \frac{1}{2} P_c = \frac{1}{2}$ $Q = \underline{\hspace{1cm}}$ | whichever well in the | flowed through | 72 FLOW R V(c) V(d) | °F + 4 | LCULATION
= | ======================================= | * | 532
402 | °Abs
psia | (m
(n | | $P_c = (j) \text{ or } (k)$ Flowing Temp $P_d = \frac{1}{2} P_c = \frac{1}{2}$ $Q = \underline{\hspace{1cm}}$ | whichever well in the control of | L X | FLOW R V(c) V(d) DELIVE | PF + 4 | LCULATION = | ======================================= | * = | 532
402 | °Abs
psia | (m
(n | | P _C = (j) or (k) Flowing Temp P _d = ½ P _C = ½ | whichever well in the control of | L X | FLOW R V(c) V(d) DELIVE | PF + 4 | LCULATION = | =
=
=
NO | * = | 155
189 | °Abs
psia
_MCF/c | (m
(n | | P _C = (j) or (k) Flowing Temp P _d = ½ P _C = ½ | whichever well in the control of | L X | FLOW R V(c) V(d) DELIVE | PF + 4 | LCULATION = | =
=
=
NO | | 155
189 | °Abs
psia | (m
(n | | P _C = (j) or (k) Flowing Temp P _d = ½ P _C = ½ | whichever well in the control of | flowed through | FLOW R V(c) V(d) DELIVE | PF + 4 | LCULATION = | =
=
=
NO | | 155
189 | °Abs
psia
_MCF/c | (m
(n | | P _C = (j) or (k) Flowing Temp P _d = ½ P _C = ½ Q = | whichever well in the control of | L X | FLOW R V(c) V(d) DELIVE | PF + 4 | LCULATION = | =
=
=
=
ON
55
20 | | 155
182 | °Abs
psia
_MCF/c | (m
(n | | P _C = (j) or (k) Flowing Temp P _d = ½ P _C = ½ Q = | whichever well in the control of | L X | 72 FLOW R V(a) DELIVE 48481 39240 | PF + 4 | Company | ====================================== | * = | 155
182
182 | °Abs
psia
_MCF/c | (m
(n | | P _C = (j) or (k) Flowing Temp P _d = ½ P _C = ½ Q = | whichever well in the control of | L X | 72 FLOW R V(a) DELIVE 48481 39244 | ATE CAL | CompanyBy | 55
20
El Pa | *
=
=
so Natur | 155
155
182 | °Abs
psia
_MCF/c | (m
(n | | $P_c = (j)$ or (k) Flowing Temp $P_d = \frac{1}{2} P_c = \frac{1}{2}$ $Q = \frac{1}{2} P_c = \frac{1}{2} P_c$ SUMN $P_c = \frac{1}{2} P_c = \frac{1}{2} P_c = \frac{1}{2} P_c$ | whichever well in the control of | L X | 72 FLOW R V(d) DELIVE 48483 39240 | ATE CAL | Company | 55
20
E1 Pa | * = iso Natur iginal Signal Signal L. Ke | 155
155
182 | °Abs
psia
_MCF/c | (m
(n | | P _C = (j) or (k) Flowing Temp P _d = ½ P _C = ½ Q = | whichever well in the control of | L X | 72 FLOW R V(c) V(d) DELIVE 48481 39244 | ATE CAL RATE CAL RABILIT RA | Company Company Title | DN 55 20 El Pa | * = | 155
155
182 | °Abs
psia
_MCF/c | (m
(n | | $P_c = (j) \text{ or } (k)$ Flowing Temp $P_d = \frac{1}{2} P_c = \frac{1}{2}$ $Q = \frac{1}{2} P_c $ | whichever well in the control of the completion tell in the control of cont | Allowed through $ \begin{bmatrix} P_{c}^{2} - P_{d}^{2} \\ P_{c}^{2} - P_{w}^{2} \end{bmatrix} = \begin{bmatrix} P$ | 72 FLOW R V(c) V(d) DELIVE 48481 39244 | RATE CA | Company Company Title Witnessed by | DN 55 20 El Pa | * = | 155
155
182 | °Abs
psia
_MCF/c | (m
(n | | $P_c = (j)$ or (k) Flowing Temp $P_d = \frac{1}{2} P_c = \frac{1}{2}$ $Q = \frac{1}{2} P_c = \frac{1}{2} P_c$ SUMN $P_c = \frac{1}{2} P_c = \frac{1}{2} P_c$ * This is date | whichever well in the control of | flowed through $ \begin{array}{c} $ | 72 FLOW R V(c) V(d) DELIVE 48481 39240 | ATE CAL CRABILIT CRABILI | COMPANY Company By Title Witnessed by Company | 55
20
E1 Pa | * = | 155
155
182 | °Abs
psia
_MCF/c | (m
(n | | P _C = (j) or (k) Flowing Temp P _d = ½ P _C = ½ Q = | whichever well in the confection factor | flowed through $ \begin{array}{c} $ | FLOW R V(c) V(d) DELIVE 48481 39240 | ATE CAL CRABILIT CRABILI | COMPANY COMPANY By Title Witnessed by Company | 55
20
E1 Pa | * = | 155
182
182
real Gas
gned | MCF/do | (m
(n
da | | P _C = (j) or (k) Flowing Temp P _d = ½ P _C = ½ Q = | whichever well in the control of the completion tell in the control of cont | flowed through $ \begin{array}{c} $ | FLOW R V(c) V(d) DELIVE 48481 39240 | RATE CAI | COMPANY COMPANY By Title Witnessed by Company | 55 20 E1 Pa | *
=
so Naturiginal Signal Signal L. Ke | 155
155
182 | -MCF/d | (m
(n
da | | P _C = (j) or (k) Flowing Temp P _d = ½ P _C = ½ Q = | whichever well in the confection factor | flowed through $ \begin{array}{c} $ | FLOW R V(c) V(d) DELIVE 48481 39240 | RATE CAI | COULATION TY CALCULATION Company By Title Witnessed by Company FION CALCULATION (1-e-s) | 55 20 E1 Pa | * = iginal Signal L. Ke | 155
182
182
real Gas
gned | MCF/do | (m
(n
da | D at 500 = 153