No.

No.

NEW MEXICO OIL CONSERVATION COMMISSION

MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS

				MULTI-	POINT BA	CK PRES	SURE TE	ST FOR GA	s wells		Revised 12-1-	
ool	TAPACIT	<u>10</u>		Fo	rmation_	PICTOR	ED CLII	778	County	RIG AI	IRIBA	
niti	ial		_Annua	.1		Spec	ial	· · · · · · · · · · · · · · · · · · ·	Date of	Test_1	10V 7, 1963	
ompa	any Kata	T PROD	UCTIO	CORP.	I	.ease_ "#	<u> </u>		Wel	ll No.	12-6	
nit	S	ec. <u></u>	Twp	_ 26 H	Rge	. 47	Pur	chaser	Not counc	eted		
sir	ng 5 W	t. 11.5	I.	D. 4.8	Set	at 4100	P	erf. 397 1	.	To 30 4	NS	
ıbir	ng 1-1/4 W	t. 2.3	I.	D, 1.30	© Set	at 3000	P	erf. 397 0)	To 30	ið_	
							est.				ess.	
t.e	of Complet	ion. 1	0-25-4	29	Packer	Na.	Si	ngle-Brade	enhead-G.	G. or	G.O. Dual	
ste	(Prover) (Line) Size	F1 (Chok	ow Da	ta		OBSERVE	Tubin	g Data Temp.	Type Tar Casing I Press. psig)ąta	<u> </u>	
\pm				PULB	W		660	 ''	669	+	SI	
E												
		3/4					233	80	498	ļ	3 hrs	
			二十					<u> </u>				
					F	LOW CALC	ULATIO	NS_				
•	Coefficient (24-Hour)		<i></i>		ssure Flow Te Facto Sia Ft		or	Gravity Factor ^F g	Compress. Factor F _{pv}		Rate of Flow Q-MCFPD @ 15.025 psia	
\perp												
	12,365				164	1.0000		0,9606	1.03	6	3,004	
	quid Hydroc						LCUI AT	Speci			arator Gas	
	y of Liquid	и пу сто	(1.	ns -e ^{-s})		deg.		Pc—	fic Gravi		ving Fluid	
Ì	P _w	$P_{\mathbf{t}}^2$	Fc	3	(F _c Q) ²	(F _C	Q) ² e ^{-s})	P _w 2	$P_c^2 - P_w^2$	Ca I	Pw Pc	
	107							57.040	306,713		2,2435	

<u> </u>	12,365			244	1,0006	0,9606	1.636		004
} • 5 •									
				PRES	SURE CALCULA	TIONS			
av	Liquid Hydroc ity of Liquid				f/bbl. _deg.	Spec	ific Gravity ific Gravity	Flowing	Fluid
٥.	P _w Pt (psia)	$P_{\mathbf{t}}^2$	F _c Q	$(F_cQ)^2$	(F _c Q) ² (1-e ^{-s})	P _w 2	$P_c^2 - P_w^2$	Cal.	P _W P _C
	807					257,040	206,712		2,2435
\exists					 		 i		* 6 m a
ed MC		meet 1	MEDIC FIE	CORPORATION OF THE PROPERTY OF		5/1.9073			
GE	RESS P. 6 NT and TITLE NESSED			VEL TRITE				ATT N	
	PANY						10		
					REMARKS		1 6		, ilas

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q = Actual rate of flow at end of flow period at W. H. working pressure (Pw). MCF/da. @ 15.025 psia and 600 F.
- P_c = 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- PwT Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt- Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- Pf Meter pressure, psia.
- hw Differential meter pressure, inches water.
- FgI Gravity correction factor.
- F_t Flowing temperature correction factor.
- F_{nv} Supercompressability factor.
- n I Slope of back pressure curve.
- Note: If $P_{\mathbf{W}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{W}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$.