EL PASO NATURAL GAS COMPANY

OPEN FLOW TEST DATA

DATE _____1/5/73

Operator EL PASO NATURAL GAS COMPANY		Vaughn #18 (PC)			
Location 1090/N, 990/W	, Sec. 29, T26N, R6W	County Rio Arriba	State NM		
Formation Pictured Cliffs		Pool South Blanco			
Casing: Diameter	Set At: Feet 3077	Tubing: Diameter No tubing	Set At: Feet		
Pay Zone: From 2980	T• 2995	Total Depth: 3982	Shut In 12/15/72		
Stimulation Method SWF		Flow Through Casing X	Flow Through Tubing		

Choke Size, Inches		Choke Constant: C 12.365		Tubingless Completion			
Shut-In Pressure, Casing,	PSIG	+ 12 = PSIA 722	Days Shut-In 21	Shut-In Pressure, Tubing No tubing	PSIG	+ 12 = PSIA	
Flowing Pressure: P	PSIG	+ 12 = PSIA 127		Working Pressure: Pw Calculated	PSIG	+ 12 = PSIA 160	
Temperature:	F+= 1.000	.85		Fpv (From Tables) 1.012		Gravity .675	Fg= .9427

CHOKE VOLUME = Q = C × P, × F, × F, × F, × F, v
$$= 1498$$
 MCF/D

OPEN FLOW = Aof = Q
$$\begin{pmatrix} \frac{2}{P_c} \\ \frac{P_c}{P_c} \\ P_c \end{pmatrix}$$

Aof = Q
$$\left(\frac{521284}{495684}\right)^{n}$$
 = $(1498)(1.0516)^{n}$ = $(1498)(1.0437)$ (1.0437)

Aof = 1564 MCF/D

NOTE: Well produced a light mist of water throughout test.

TESTED BY _____ J. Jones

WITNESSED BY_____

J. A. Jones Well Test Engineer