EL PASO NATURAL GAS COMPANY ## OPEN FLOW TEST DATA DATE _____1/5/73 | Operator
EL PASO NATURAL GAS COMPANY | | Vaughn #18 (PC) | | | | |---|----------------------|----------------------------|---------------------|--|--| | Location
1090/N, 990/W | , Sec. 29, T26N, R6W | County
Rio Arriba | State
NM | | | | Formation Pictured Cliffs | | Pool South Blanco | | | | | Casing: Diameter | Set At: Feet
3077 | Tubing: Diameter No tubing | Set At: Feet | | | | Pay Zone: From
2980 | T• 2995 | Total Depth:
3982 | Shut In
12/15/72 | | | | Stimulation Method SWF | | Flow Through Casing X | Flow Through Tubing | | | | Choke Size, Inches | | Choke Constant: C
12.365 | | Tubingless Completion | | | | |---------------------------|-----------|-----------------------------|--------------------|------------------------------------|------|--------------------|-----------| | Shut-In Pressure, Casing, | PSIG | + 12 = PSIA
722 | Days Shut-In
21 | Shut-In Pressure, Tubing No tubing | PSIG | + 12 = PSIA | | | Flowing Pressure: P | PSIG | + 12 = PSIA
127 | | Working Pressure: Pw
Calculated | PSIG | + 12 = PSIA
160 | | | Temperature: | F+= 1.000 | .85 | | Fpv (From Tables)
1.012 | | Gravity
.675 | Fg= .9427 | CHOKE VOLUME = Q = C × P, × F, × F, × F, × F, v $$= 1498$$ MCF/D OPEN FLOW = Aof = Q $$\begin{pmatrix} \frac{2}{P_c} \\ \frac{P_c}{P_c} \\ P_c \end{pmatrix}$$ Aof = Q $$\left(\frac{521284}{495684}\right)^{n}$$ = $(1498)(1.0516)^{n}$ = $(1498)(1.0437)$ (1.0437) Aof = 1564 MCF/D NOTE: Well produced a light mist of water throughout test. TESTED BY _____ J. Jones WITNESSED BY_____ J. A. Jones Well Test Engineer