Unocal North American Oil & Gas Division Unocal Corporation 3300 North Butler Avenue Suite 200 Farmington, New Mexico 87401 Telephone (505) 326-7600 Fax: (505) 326-6145 ## **UNOCAL** August 17, 1992 Farmington District - C. New Mexico Oil Conservation Division 1000 Rio Brazos Rd. Aztec, New Mexico 87410 Attn: Frank Chavez SUBJECT: Requesting Approval for Surface Commingling of Condensate Production from Rincon Unit, Well No. 135-E Sec 29, T-27-N, R-6-W Rio Arriba County, New Mexico Attached is a copy of the application sent to David Catanach for his approval; this copy is for your information. Very truly yours, Union Oil Company of California dba Unocal Glen O. Papp District Production Engineer Unocal North American Oil & Gas Division Unocal Corporation 3300 North Butler Avenue Suite 200 Farmington, New Mexico 87401 Telephone (505) 326-7600 Fax: (505) 326-6145 # **UNOCAL**® August 17, 1992 CERTIFIED RETURN RECEIPT FarmingBr-1667al-272-443 AUG118 1992 OIL CON. DIV. New Mexico Oil Conservation Division 310 Old Santa Fe Trail, Box 2088 Santa Fe, NM 87504-2088 Attn: David Catanach #### SUBJECT: Requesting Approval for Surface Commingling of Condensate Production from Rincon Unit, Well No. 135-E Sec 29, T-27-N, R-6-W Rio Arriba County, New Mexico Union Oil Company of California, dba Unocal, requests permission to surface commingle condensate from its Rincon Unit, Well No. 135-E, Rio Arriba County, New Mexico. The following describes and demonstrates how Unocal proposes to allocate production under the context of BLM Onshore Oil and Gas orders for commingling, and under the New Mexico Oil Conservation Commission Manual for the Installation and Operation of Commingling Facilities. The Rincon Unit No. 135-E well is a development gas well scheduled to be drilled by Unocal. The well is to be completed as a dual Dakota/Gallup producer; and it is anticipated that it will be ready for pipeline deliveries September 28, 1992. Unocal is proposing to surface commingle produced fluids from individual separators into a common stock tank (Exhibit No. 1). Royalties will be paid on the liquid volumes sold from the tank. The proposed location is within existing Dakota and Mesa Verde participating areas within the Rincon Unit (Exhibit No. 2). The lease is a federal lease and it is described in Exhibit No. 3. The royalty in the two formations is the same. Unocal is requesting from the New Mexico Oil Conservation Division, approval for surface commingling of the produced condensate and the following method for allocating production. Unocal will conduct initial condensate production tests of equivalent time frames for each of the two zones. The condensate produced during the test period from each pool will be used to calculate an average daily rate (Exhibit No. 4, Part 1). Each month this rate will be multiplied by the days on production, to yield a volume produced for the month (Exhibit No. 4, Part 3). The corrected volumes will be allocated as per Exhibit 4, Part 5. To ensure the accuracy of the allocation factor, Unocal will retest the zones every six months after the initial test. Should you have any questions or need any additional information to process this request, please feel free to contact me at the above letterhead address or phone. Very truly yours, Union Oil Company of California dba Unocal Glen O. Papp District Production Engineer pmh cc:NMOCD Aztec Office--Frank Chavez BLM--Ken Townsend # EXHIBIT No. 1 UNOCAL ® CONDENSATE ACCOUNTING SCHEMATIC RIO ARRIBA COUNTY, NEW MEXICO RINCON UNIT #135-E Rio Arriba County, New Mexico # EXHIBIT NO #3 LEASE DISCRIPTION | FEDERAL LEASE | # ACRES | DESCRIPTION | |---------------|---------|------------------------| | SF - 079364 | 2605.33 | SEC.s 28, 29, 30, & 31 | | | | | #### OTHER WELLS ON LEASE # SF - 079364 | WELL # | PRODUCING
ZONE | LOCATION | WELL STATUS | |--------|-------------------|-----------------------------|--------------| | 1 | DK | 990' FSL. 990' FEL Sec. 30 | Producing | | 4 | PC | 1529' FSL 990' FEL Sec. 30 | Producing | | 9 | PC | 1495' FNL 1640' FWL Sec. 31 | Producing | | 19 | PC | 1650' FNL 990' FWL Sec. 30 | Producing | | 28 | PC | 1080" FNL 1650" FEL Sec. 29 | P & A | | 48 | PC | 800' FNL 1500' FEL Sec. 30 | Producing | | 49 | PC | 1050' FNL 1650' FEL Sec. 31 | Producing | | 50 | PC | 620' FSL 990' FWL Sec. 31 | Producing | | 61 | PC | 1058' FNL 1088' FEL Sec. 30 | Producing | | 62 | PC | 1024' FSL 990' FEL Sec. 28 | Producing | | 127 | DK | 1190' FNL 890' FEL Sec. 28 | Producing | | 128 | DK | 1600' FSL 990' FWL Sec. 28 | Producing | | 128 | MV | 1600' FSL 990' FWL Sec. 28 | Producing | | 129 | DK | 1650' FSL 1840' FWL Sec. 29 | Producing | | 129 | MV | 1650" FSL 1840" FWL Sec. 29 | Producing | | 135-A | DK | 1840' FNL 870' FWL Sec. 29 | Producing | | 135-A | PC | 1840' FNL 870' FWL Sec. 29 | Producing | | 135 | DK | 1160' FNL 1750' FEL Sec. 29 | Producing | | 135 | MV | 1160' FNL 1750' FEL Sec. 29 | Producing | | 145 | TD | 1650' FSL 1040' FEL Sec. 27 | Disconnected | | 149 | DK | 1100" FSL 1750" FWL Sec. 30 | Producing | | 149 | MV | 1100' FSL 1750' FWL Sec. 30 | Producing | | 153 | PC | 890' FNL 890' FEL Sec. 28 | Producing | | 154 | PC | 1190" FSL 1750" FEL Sec. 30 | Producing | | 163 | PC | 1180' FSL 800' FWL Sec. 29 | Producing | | 176 | DK | 990' FNL 1180' FEL Sec. 31 | Producing | | 183 | DK | 1697" FSL 1460" FWL Sec. 31 | Producing | | 197 | PC | 1460' FSL 1760' FWL Sec. 28 | Producing | | 251 | FC | 605' FNL 2385' FWL Sec. 28 | Producing | | 258 | FC | 1505' FNL 915' FEL Sec. 17 | Producing | | 265 | DK | 1380' FNL 1842' FEL Sec. 30 | Producing | ### **EXHIBIT No. 4** # CONDENSATE ALLOCATION CALCULATIONS 1) Production Test completed on both zones, yields: Mesa Verde Test Rate = R₁ (BPD) Dakota Test Rate = R_2 (BPD) - 2) Days On / MonthMesa Verde Days On = ADakota Days On = B - 3) i) Actual Total Monthly Gauge Volume: G (BPM) - ii) Calculated Individual Volumes: Mesa Verde = $R_1 \times A$ Dakota = $R_2 \times B$ Total Volume = $R_1(A) + R_2(B)$ 4) Allocation Factor (AF): $$AF = \frac{G}{R_1(A) + R_2(B)}$$ 5) Corrected Allocation Volumes: Mesa Verde = AF x R₁(A) Dakota = AF x R₂(B)