MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS | | | • | | | | | |--------|--------------|---------------------|--|--|--|--| | | | Form C-122 | | | | | | | Rev | ised 12-1-55 | | | | | | | | an | | | | | | est | 9- | 9_58 | | | | | | No | | 5-B | | | | | | · | 2 | 176 | | | | | |) | 2 | 152 | | | | | | ır.Pre | r.Press | | | | | | | or (| or G.O. Dual | emp. | t | Duration | | | | | | °F∙ | | of Flow
Hr. | | | | | | | _ | \$ days | <u> </u> | | | | | | | | Rate | e of Flow | | | | | | | Q-1 | MCFPD
5.025 psia | | | | | | | 9 1, | | | | | | | | | 2,931 | Sepa | rate | or Gas | | | | | | כי | _ | Fluid | | | | | | c
2 | 429 | | | | | | | | | .05 | | | | | | Cal. | | Pw | | | | | | F | w | .1539 | | | | | | | | | | | | | | | -+ | Poc | ol Ba | llard | <u> </u> | Fc | rmation | | Metured | Cliffs | _County_ | Sar | Juan | |------------------------------------|--------------------|------------------|---------------------------------|--------------------------|----------------|------------------|---|----------------------|---|----------------|---------------------| | Ini | tial | K | _Annua | 1 | | Spec | ial | | _Date of | Test | 9_9_58 | | Con | ipany so | isti ka l | MION . | GAS CO | MPANY | Lease | MENSO | <u> </u> | Wel | .1 No | 5-B | | Unit Sec | | | | | | | | | | | | | Cas | ing 51" I | Nt15 | <i>51</i> 1. | D | Se | t at | 235' Pe | rf | 96 | То | 2176 | | Tub | ing 1 | Wt | 7#_I. | D . | Se | t at | 1 52 Pe | rf. 2] | .32 | То | 2152 | | Gas | Pay: From | 2096 | To | 2176 | L | x | .G | | | Bar.Pre | ·ss12.0 | | Pro | ducing Thru | : Casi | .ng | | Tu | bing | X | Type We | 11 Sin e | le - Ge | 18 | | Dat | e of Complet | tion: An | rust 2 | 5, 195 | 8 Packe | r <u>Yo</u> | Sin | gle-Brade
Reservo | nhead-G.
ir Temp | G. or G | .0. Dual | | | | | | | | | ED DATA | | | | | | Tes | ted Through | (Durana | (C) | noke) | (Material) | | | | Туре Тар | s | | | | | | ow Dat | | | | Tubing | Data | Casing D | | | | No. | (Prover)
(Line) | (Chok | e)] | | Diff. | Temp. | | Temp. | Press. | | Duration of Flow | | | Size | Siz | ' 1 | psig | h _w | o _F . | psig | °F. | psig | °F∙ | Hr. | | SI | | 3/) | | 234 | | 680 | 6h3 | | 6113 | | - A days | | 1.
2.
3.
4. | | | | | | | 243 | | 23h | | 3 hours | | <i>3</i> •
4• | | | | | | | | | | | | | 5. | | | | | | | | | | | | | 7 | Coeffici | ont 1 | | | | | CULATION | | | | Data of Elec- | | No. | | | / | _ | Fa | | Temp. Gravity Factor | | Factor | | Q-MCFPD | | - | (24-Hou | r) 7 | / h _w p _f | | psia | F. | | Fg | Fpv | | @ 15.025 psia | | 1.
2.
3.
4. | 12,3650 | | | | 16 | 0,9921 | | 0.9463 | 1.01 | - | 2,931 | | 30
40 | | | | | | | | | | | | | 5. | | | | | | | | | | | | | | | | | | PRI | ESSURE C | ALCUIATI | ONS | | | | | | Liquid Hydro | | | | | cf/bbl. | | | | | rator Gas | | | ity of Liqui | - | carbor
(1- | ns
-e ^{-s}) | | deg. | | Speci
Pc | | ty Flow
P2 | ing Fluid
129.02 | | | | | | | | | | | 257 | P _c | 66.05 | | Mo | $P_{\mathbf{w}}$ | P _t . | T _E O | | (B 0)2 | (P | 0)2 | ъ о | P _c -P _w ² | 0.0 | | | No. | Pt (psia) | Pt | F _c Q | ' | $(F_cQ)^2$ | (1 | $\begin{pmatrix} cQ \end{pmatrix}^2 \\ -e^{-s} \end{pmatrix}$ | P _w 2 | Pc-Pw | Ca.
P. | $\frac{P_W}{P_C}$ | | 1.
2.
3.
4. | | | | | | | | 66.05 | 362.97 | | .1539 | | 3. | | | | | | | | | | | | | 4.
5. | | | + | | | | | | | | | | | olute Potent | ial: | • | 278 | | MCFPD: | n | 0 85 | , | | | | COMPANY SOUTHERN WELCH GAS GOMPANY | | | | | | | | | | | | | AGE | NT and TITLE | Dame. | | arming | ton, Re | ir Mercies
er | | | | | | | MI:I,I | NESSED
PANY | | | | | | | | | | | | | | · | | | | REM | ARKS | | | | | | | | | | | | | | | (EPFI) | 10 | | | | | | | | | | | | /////////////////////////////////////// | Arn, | 1 | ## INSTRUCTIONS This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe. The log log paper used for plotting the back pressure curve shall be of at least three inch cycles. ## NOMENCLATURE - Q \equiv Actual rate of flow at end of flow period at W. H. working pressure (P_w). MCF/da. @ 15.025 psia and 60° F. - P_c = 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia - PwI Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia - Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia - Pf Meter pressure, psia. - hw Differential meter pressure, inches water. - Fg Gravity correction factor. - F_t Flowing temperature correction factor. - Fpv Supercompressability factor. - n I Slope of back pressure curve. Note: If $P_{\mathbf{W}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{W}}$ must be calculated by adding the pressure drop due to friction within the flow string to P_{+} . | OIL CONSERVA | TION COMMIS | | | | | | | |-----------------------|------------------|------|--|--|--|--|--| | AZTEC DISTRICT OFFICE | | | | | | | | | No. Copies Received 3 | | | | | | | | | DISTRIBUTION | | | | | | | | | | NO.
FURNISHED | • | | | | | | | t
- Jaker prote | | | | | | | | | S.4012 Fig. | 7 | | | | | | | | Promiser Office | | | | | | | | | i Otse e complication | | | | | | | | | 0.503 | | | | | | | | | Transporter | | | | | | | | | File | | 2000 | | | | | | | | | | | | | | |