NEW MEXICO OIL CONSERVATION COMMISSION GAS WELL TEST DATA SHEET - - SAN JUAN BASIN | | | | | Man Vente | C t | Son Jiron | | |--|--|---|--|-------------------------|---|--|--| | ool | Blanco | | | | County_ | | | | ırchasing Pi | peline El Pa | so Matural G | | Date 7 | Test Filed | | | | pergtor R1 | Paso Natural | Gas I | -cuse | Schwerdtfeger | | l No 14-A | (M) | | m m | Sec. 8 | Two. 27 | Bae. 8 | Pay Zone: From_ | 5154 | To 5272 | | | | 5-1/2 WT | 15.5 Set At | 5349 | _Tubing: OD 2 ** | WT4.7 | T. Perf | 5 239 | | asing: OD_ | , C-in- | Tubir | ла х | Gas Gravity: Meası | ured | Estimated | ii | | roduced Inro | ougn: Casing | | 9/7/58 | * Date S.I.P. Measure | ed | 5/15/ 5 8 | | | ate of Flow | lest: From | Orifi | co Sizo | Type (| Chart | Type Taps | | | eter Run Siz | e | Omi | | | | | | | | | | | ED DATA | . 12 = | Di | sia (o | | owing casing | pressure (Dwt) | | | psig + | 12 = | P | sia (k | | owing tubing | pressure (Dwt) | | | psig + | 12 = | p | sia (c | | | (+di | when Dut meas | surement take | n: | | | | | | | | | psig + | - 12 = | p | sia (c | | | |) ~ x spring c | ± | | = | p | si (e | | | - (d) or (d) - (c)
Flowing column to me | ter: | _ | | | | | | (b) - (c) Flo | w through tubing: (a) | - (c) Flow through | | | = | р | si (i | | | age static meter pres | | nart): | neig | + 12 = | P | sia (| | Normal char | t average reading
chart average reading | 4 6 90 \2 × | en const | | = | here? | sia (| | Square root | chart average reading
even day avge, meter | press (ps) (g) + (e | sp. const | | = | | sia | | | even day avge. meter | bress, (bl.) (d) . (| -, | | = | 47 6 | sia (| | t = (h) + (f) | 1 11 | | | meia. | . 10 - | - | sia (| | eliveaa casin | g shut-in pressure (D | wt) | | | + 12 = | 7.0Ch | | | ellhead tubin | g shut-in pressure (D | wt) | | | + 12 = | 1054 | osia (| | ellhead tubin | g shut-in pressure (D
g shut-in pressure (D
whichever well flowe | wt)
d through | | 1042 psig | | 1054 |) pisa
() pisa | | ellhead tubind
c = (j) or (k) v
lowing Temp. | g shut-in pressure (D
whichever well flowe
(Meter Run) | wt) | | 1042 psig | | 1054
1054
526 | osia (
osia (
Abs (| | ellhead tubino
c = (j) or (k) | g shut-in pressure (D
whichever well flowe
(Meter Run) | wt)
d through | | 1042 psig | | 1054
1054
526 | osia (
osia (
Abs (| | ellhead tubind
c = (j) or (k) v
lowing Temp. | g shut-in pressure (D
whichever well flowe
(Meter Run) | wt)d through66 | 5 °F+4 | 1042 psig | | 1054
1054
526 | osia (
osia (
Abs (| | ellhead tubind
c = (j) or (k) v
lowing Temp. | g shut-in pressure (D
whichever well flowe
(Meter Run) | wt)d through66 | 5 °F+4 | 1042 psig | | 1054
1054
526
527 | osia (
osia (
Abs (
osia (| | ellhead tubino
$_{C}$ = (j) or (k) volume Temp.
$_{d}$ = $\frac{1}{2}$ P $_{C}$ = $\frac{1}{2}$ | g shut-in pressure (D
whichever well flowe
(Meter Run)
(1) | wt)d through66 | 5 °F+4 | 1042 psig | | 1054
1054
526
527 | osia (
osia (
Abs (| | ellhead tubind
c = (j) or (k) v
lowing Temp. | g shut-in pressure (D
whichever well flowe
(Meter Run)
(1) | wt) | 5 °F+4 | 1042 psig | | 1054
1054
526
527 | osia (
osia (
Abs (
osia (| | ellhead tubino $_{C}$ = (j) or (k) $_{C}$ lowing Temp. $_{d}$ = $\frac{1}{2}$ P $_{C}$ = $\frac{1}{2}$ | g shut-in pressure (D
whichever well flowe
(Meter Run)
(1) | wt) | 5 °F+4 | 1042 psig | | 1054
1054
526
527 | osia (
osia (
Abs (
osia (| | ellhead tubino $_{C}$ = (j) or (k) $_{C}$ lowing Temp. $_{d}$ = $\frac{1}{2}$ P $_{C}$ = $\frac{1}{2}$ | g shut-in pressure (D
whichever well flowe
(Meter Run)
(1) | wt) | 5°F + 4 | 1042psig | | 1054
1054
526
527 | osia (
osia (
Abs (
osia (| | ellhead tubino $_{C}$ = (j) or (k) $_{C}$ lowing Temp. $_{d}$ = $\frac{1}{2}$ P $_{C}$ = $\frac{1}{2}$ | g shut-in pressure (D
whichever well flowe
(Meter Run)
(1)
X | wt) | S °F + 4 W RATE CAL = EVERABILIT | 1042 psig | | 1054
1054
526
527 | osia (
osia (
Abs (
osia (| | ellhead tubino
c = (j) or (k) v
lowing Temp.
d = ½ Pc = ½ | g shut-in pressure (D
whichever well flowe
(Meter Run)
(1)
X | wt) | S °F + 4 W RATE CAL = EVERABILIT | 1042 psig | + 12 = = = = | 1054
1054
526
527
931 | osia (osia (osia (osia (osia (osia (| | ellhead tubino $_{C}$ = (j) or (k) $_{C}$ lowing Temp. $_{d}$ = $\frac{1}{2}$ P $_{C}$ = $\frac{1}{2}$ | g shut-in pressure (D
whichever well flowe
(Meter Run)
(1)
X | wt) | S °F + 4 W RATE CAL = EVERABILIT | 1042 psig | + 12 = = = = | 1054
1054
526
527 | osia (osia (osia (osia (osia (osia (| | ellhead tubino
c = (j) or (k) v
lowing Temp.
d = ½ Pc = ½ | g shut-in pressure (D
whichever well flowe
(Meter Run)
(1)
X | wt) | S °F + 4 W RATE CAL = EVERABILIT | 1042 psig | + 12 = = = = | 1054
1054
526
527
931 | osia (osia (osia (osia (osia (osia (| | ellhead tubino
c = (j) or (k) v
lowing Temp.
d = ½ Pc = ½ | g shut-in pressure (D
whichever well flowe
(Meter Run)
(1)
X | wt) | S °F + 4 W RATE CAL = EVERABILIT | 1042 psig | + 12 = = = = | 1054
1054
526
527
931 | osia (osia (osia (osia (osia (osia (| | ellhead tubino
c = (j) or (k) v
lowing Temp.
d = ½ Pc = ½ | g shut-in pressure (D whichever well flowe (Meter Run) (1) X ed) | wt) $\frac{\text{fLOV}}{\text{d through}} = \frac{66}{8}$ $\frac{\text{FLOV}}{\text{V(d)}}$ $\frac{\text{DELI}}{\text{DEC}}$ $\frac{\text{Pc}^2 - \text{Pd}^2}{\text{c}^2 - \text{Pw}^2} = \frac{8}{8}$ | F + 4
W RATE CAI
= | 1042 psig | + 12 = = | 1054
1054
526
527
931 | osia (osia (osia (osia (osia (osia (| | ellhead tubino c = (j) or (k) v lowing Temp. d = ½ Pc = ½ [integrate] = Q | g shut-in pressure (D whichever well flowe (Meter Run) (1) ARY 1054 | wt) $\frac{\text{d through}}{\text{d through}} = \frac{66}{66}$ $\frac{\text{FLOV}}{\text{V(c)}}$ $\frac{\text{V(d)}}{\text{DELI}}$ $\frac{\text{P.2 - P.2 d.}}{\text{P.2 - P.2 w.}} = \frac{8}{8}$ | S - °F + 4 W RATE CAI VERABILIT 33187 65723 | 1042 psig | + 12 = = = = = | 1054
1054
526
527
931 | osia (osia (osia (osia (osia (osia (| | ellhead tubing c = (j) or (k) lowing Temp. d = ½ Pc = ½ = (integrate) SUMM | g shut-in pressure (D whichever well flowe (Meter Run) (1) ARY 1054 | wt) $\frac{\text{d through}}{\text{d through}} = \frac{66}{66}$ $\frac{\text{FLOV}}{\text{V(d)}}$ $\frac{\text{DELI}}{\text{DELI}}$ $\frac{\text{P.2 P.2.}}{\text{P.2 P.w.}} = \frac{8}{8}$ | S°F + 4 W RATE CAI W RATE CAI WERABILIT 33187 65723 psiamcf/day | 1042 psig | + 12 = = = = = | 1054
1054
526
527
931
905 | osia (osia (osia (osia (osia (osia (| | ellhead tubing c = (j) or (k) lowing Temp. d = ½ Pc = ½ = (integrate) SUMM c = | g shut-in pressure (D whichever well flowe (Meter Run) (1) ARY 1054 931 | wt) $\frac{\text{d through}}{\text{d through}} = \frac{66}{66}$ $\frac{\text{FLOV}}{\text{V(c)}}$ $\frac{\text{V(d)}}{\text{DELI}}$ $\frac{\text{P.2 - P.2 d.}}{\text{P.2 - P.2 w.}} = \frac{8}{8}$ | S°F + 4 W RATE CAI W RATE CAI WERABILIT 33187 65723 psiamcf/day | 1042 psig | + 12 =
=
=
=
L Paso Nature
Original Signature | 1054
1054
526
527
931
905 | osia (osia (osia (osia (osia (osia (| | ellhead tubing c = (j) or (k) lowing Temp. d = ½ Pc = ½ = (integrate) SUMM | g shut-in pressure (D whichever well flowe (Meter Run) (1) ARY 1054 931 495 527 | wt) $\frac{\text{d through}}{\text{d through}} = \frac{66}{66}$ $\frac{\text{FLOV}}{\text{V(d)}}$ $\frac{\text{V(d)}}{\text{DELI}}$ $\frac{\text{P.2 - P.2}}{\text{P.2 - P.2}} = \frac{8}{8}$ | N RATE CAI W RATE CAI WERABILIT 33187 65723 — psiα — Mcf/day — psiα | psig | + 12 =
=
=
E Paso Nature
Original Signature
Harold L. Ke | 1054
1054
526
527
931
905 | osia (osia (osia (osia (osia (osia (| | ellhead tubino c = (j) or (k) lowing Temp. d = ½ Pc = ½ [integrate] SUMM c = | g shut-in pressure (D whichever well flowe (Meter Run) (1) L ARY 1054 931 495 527 905 | wt) $\frac{\text{d through}}{\text{d through}} = \frac{66}{66}$ $\frac{\text{FLOV}}{\text{V(d)}}$ $\frac{\text{V(d)}}{\text{DELI}}$ $\frac{\text{P.2 - P.2}}{\text{P.2 - P.2}} = \frac{8}{8}$ | N RATE CAI W RATE CAI WERABILIT 33187 65723 — psiα — Mcf/day — psiα — psiα — psiα | psig | + 12 =
=
=
E Paso Nature
Original Signature
Harold L. Ke | 1054
1054
526
527
931
905 | osia (osia (osia (osia (osia (osia (| | ellhead tubing c = (j) or (k) lowing Temp. d = ½ Pc = ½ (integrate) SUMM c = d = This is date | g shut-in pressure (D whichever well flowe (Meter Run) (1) ARY 1054 931 495 527 | wt) $d \text{ through} = \frac{66}{66}$ $\sqrt{(d)}$ $\sqrt{(d)}$ $\frac{DEL1}{2^2 - P_w^2} = \frac{8}{8}$ | V RATE CAL VERABILIT STATE VERABILIT Mef/day psia psia psia Mef/day | 1042 psig | + 12 =
=
=
=
L Paso Natu
Original Sig
Harold L. Ke | 1054
1054
526
527
931
905 | osia (osia (osia (osia (osia (osia (| | ellhead tubing c = (j) or (k) lowing Temp. d = ½ Pc = ½ (integrate) SUMM c = d = This is date | g shut-in pressure (D whichever well flowe (Meter Run) (1) ARY 1054 931 495 527 905 of completion test. | wt) $d \text{ through} = \frac{66}{66}$ $\sqrt{(d)}$ $\sqrt{(d)}$ $\frac{DEL1}{2^2 - P_w^2} = \frac{8}{8}$ | VRATE CALL VERABILIT STATE VERABILIT META ME | 1042 psig | + 12 = | 1054
1054
526
527
931
905 | osia (osia (osia (osia (osia (osia (| | ellhead tubing c = (j) or (k) lowing Temp. d = ½ Pc = ½ (integrate = Q | g shut-in pressure (D whichever well flowe (Meter Run) (1) ARY 1054 931 495 527 905 of completion test. | wt) $\frac{\text{f LOV}}{\text{V(d)}}$ $\frac{\text{FLOV}}{\text{V(d)}}$ $\frac{\text{DELI}}{\text{DEC}}$ $\frac{\text{2} - \text{P}_d^2}{\text{2} - \text{P}_w^2} = \frac{8}{8}$ | VRATE CALL VERABILIT STATE VERABILIT META ME | 1042 psig | + 12 =
=
=
=
L Paso Natu
Original Sig
Harold L. Ke | 1054
1054
526
527
931
905 | osia (os | | ellhead tubing c = (j) or (k) lowing Temp. d = ½ Pc = ½ (integrate) SUMM c = d = This is date | g shut-in pressure (D whichever well flowe (Meter Run) (1) ARY 1054 931 495 527 905 of completion test. | wt) $d \text{ through} = \frac{66}{66}$ $\sqrt{(d)}$ $\sqrt{(d)}$ $\frac{DEL1}{2^2 - P_w^2} = \frac{8}{8}$ | VRATE CALL VERABILIT STATE VERABILIT META ME | 1042 psig | + 12 = | 1054
1054
526
527
931
905 | osia (os | | ellhead tubing c = (j) or (k) lowing Temp. d = ½ Pc = ½ (integrate = Q | g shut-in pressure (D whichever well flowe (Meter Run) (1) ARY 1054 931 495 527 905 of completion test. | wt) $\frac{\text{f LOV}}{\text{V(d)}}$ $\frac{\text{FLOV}}{\text{V(d)}}$ $\frac{\text{DELI}}{\text{DEC}}$ $\frac{\text{2} - \text{P}_d^2}{\text{2} - \text{P}_w^2} = \frac{8}{8}$ | V RATE CALL VERABILIT STATE VERABILIT Mof/day psia psia psia Mof/day psia psia Mof/day RKS OR FRIC | psig | + 12 = | 1054
1054
526
527
931
905 | osia (os | D at 500 = 903