DISTRICT I
1625 N. French Dr., Hobbs, NM 88240
DISTRICT II
811 South First St., Artesia, NM 88210
DISTRICT III
1000 Rio Brazos Rd, Aztec, NM 87410
DISTRICT IV

TYPE OR PRINT NAME

DAN T. VOECKS

## State of New Mexico Energy, Minerals and Natural Resources Department

# OIL CONSERVATION DIVISION

2040 S. Pacheco Santa Fe, New Mexico 87505-6429

APPLICATION FOR DOWNHOLE COMMINGLING

Form C-107-A Revised August 1999 APPROVAL PROCESS:

\_\_Administrative \_\_\_Hearing

EXISTING WELLBORE

\_\_\_ YES \_\_X\_ NO

#### PO BOX 4289, FARMINGTON, NM 87499 **BURLINGTON RESOURCES OIL & GAS COMPANY** Address Operator **RIO ARRIBA** O 27-28N-06W 149M SAN JUAN 28-6 UNIT Unit Ltr. - Sec - Twp - Rge Spacing Unit Lease Types: (check 1 or more) Federal X , State , (and/or) Fee API NO.\_ 30-039-XXXXX 7462 Property Code OGRID NO. 14538 Intermediate Zone Lower Zone The following facts are submitted in support of downhole commingling: ar: BASIN DAKOTA - 71599 BLANCO MESAVERDE - 72319 Pool Name and Pool Code WILL BE SUPPLIED UPON COMPLETION WILL BE SUPPLIED UPON COMPLETION 2. Top and Bottom of Pay Section (Perforations) Type of production (Oil or Gas) لازن **FLOWING** Method of Production (Flowing or Artificial Lift) **FLOWING** a. (Current) a. (Current) 5. Bottomhole Pressure 1063 psi (see attachment) Oil Zones - Artificial Lift: Estimated Current 522 psi (see attachment) Gas & Oil - Flowing: Measured Current b. (Oriiginal) b. (Oriiginal) All Gas Zones: Estimated Or Measured Original 3237 psi (see attachment) 1291 psi (see attachment) BTU 1073 6. Oil Gravity (EAPI) or Gas BTU Content BTU 1213 SHUT-IN SHUT-IN 7. Producing or Shut-In? Production Marginal? (yes or no) Date: N/A Date: N/A Date: N/A Rates Rates: Rates: If Shut-In, give date and oil/gas/ water rates of last production For new zones with no production history, ant shall be required to attach production ites and supporting data Date: N/A Date: N/A Rates: Rates: Rates: If Producing, give date andoil/gas/ water rates of recent test (within 60 days) Oil: Gas: 8. Fixed Percentage Allocation Formula -% for each zone (total of %'s to equal 100%) % % WILL BE SUPPLIED UPON COMPLETION WILL BE SUPPLIED UPON COMPLETION If allocation formula is based upon something other than current or past production, or is based upon some other method, submit attachments with supporting data and/or explaining method and providing rate projections or other required data. 10. Are all working, overriding, and royalty interests identical in all commingled zones? If not, have all working, overriding, and royalty interests been notified by certified mail? Yes \_X\_No res \_X\_No Yes Vill cross-flow occur? \_\_X\_Yes \_\_\_ No \_\_ If yes, are fluids compatible, will the formations not be damaged, will any cross-flowed production be recovered, and will the allocation formula be reliable. \_X\_Yes \_\_\_ No (If No, attach explanation) 11. Will cross-flow occur? \_X\_ Yes \_\_\_ No 12. Are all produced fluids from all commingled zones compatible with each other? (If Yes, attach explanation) 13. Will the value of production be decreased by commingling? \_Yes \_ \_X No 14. If this well is on, or communitized with, state or federal lands, either the Commissioner of Public Lands or the United States Bureau of Land Management has been notified in writing of this application. \_\_X\_Yes \_\_\_\_ No ORDER NO(S). R-10696 15. NMOCD Reference Cases for Rule 303(D) Exceptions: \* C-102 for each zone to be commingled showing its spacing unit and acreage dedication. \* Production curve for each zone for at least one year. (If not available, attach explanation.) \* For zones with no production history, estimated production rates and supporting data. \* Data to support allocation method or formula. \* Notification list of working, overriding, and royalty interests for uncommon interest cases. \* Any additional statements, data, or documents required to support commingling. I hereby certify that the information above is true and complete to the best of my knowledge and belief. TITLE PRODUCTION ENGINEER 12/10/99 SIGNATURE N.

TELEPHONE NO. 505-326-9700

DISTRICT I P.O. Box 1980, Hobbs, N.M. 88241-1980

State of New Mexico Energy, Minerals & Natural Resources Department

Form C-102 Revised February 21, 1994 Instructions on back Submit to Appropriate District Office State Lease — 4 Copies

O. Drawer DD, Artesia, N.M. 88211-0719

PO Box 2088, Santa Fe, NM 87504-2088

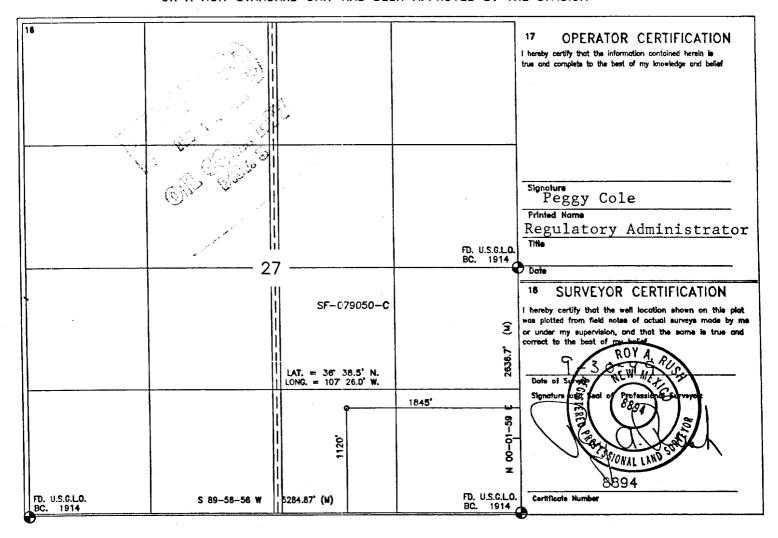
DISTRICT III

DISTRICT IV

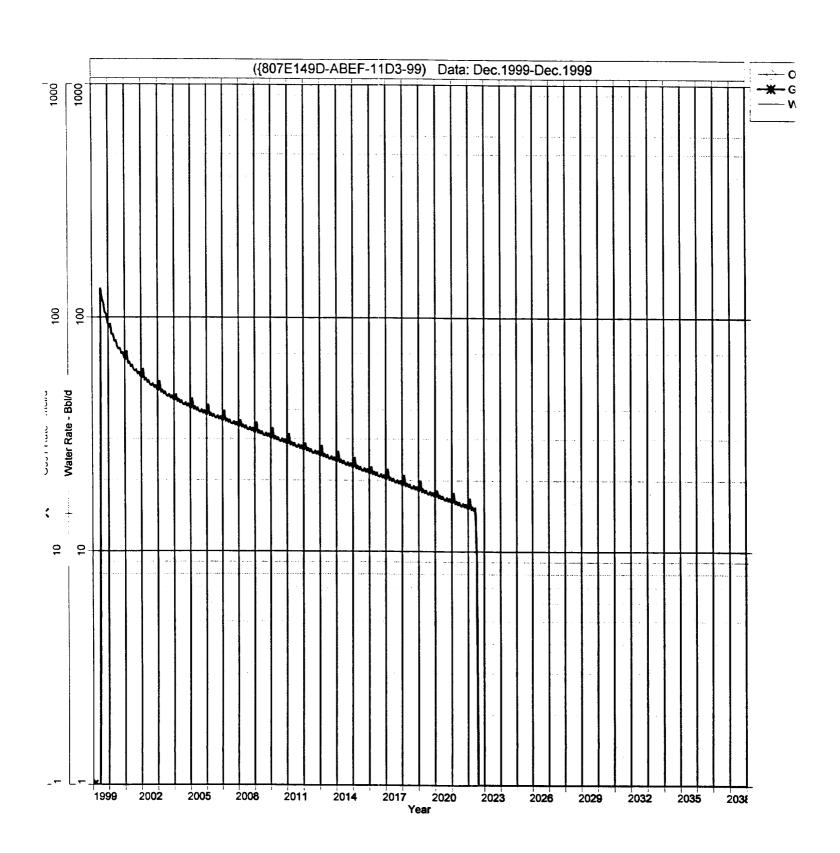
E/320

OIL CONSERVATION DIVISION P.O. Box 2088 Santa Fe, NM 87504-2088

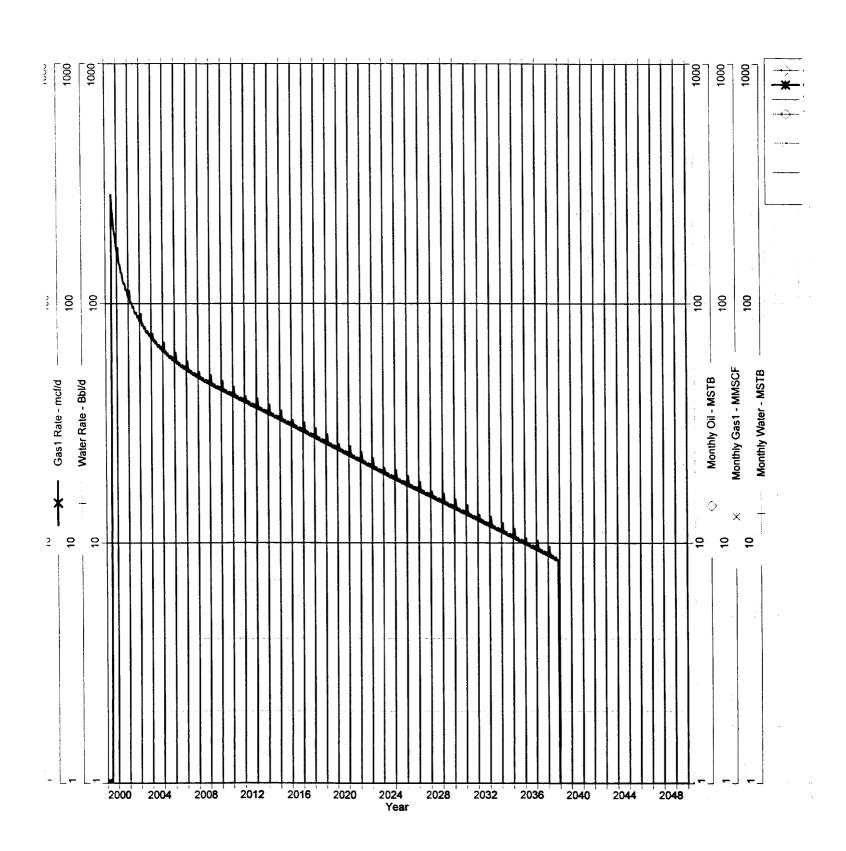
1000 Rio Brazos Rd., Aztec, N.M. 87410


☐ AMENDED REPORT

Fee Lease - 3 Copies


# WELL LOCATION AND ACREAGE DEDICATION PLAT

| <sup>1</sup> API Number    |          |                            |                                        | <sup>2</sup> Pool Code |                       | <sup>3</sup> Pool Name |               | •                        |                        |            |
|----------------------------|----------|----------------------------|----------------------------------------|------------------------|-----------------------|------------------------|---------------|--------------------------|------------------------|------------|
| 30-039 <b>-</b>            |          |                            | 72319/71599                            |                        |                       | Blanco Mesaverde/Basin |               |                          | Dakota                 |            |
| <sup>4</sup> Property Code |          | <sup>3</sup> Property Name |                                        |                        |                       |                        |               | <sup>4</sup> Well Number |                        |            |
| 7462                       |          | SAN JUAN 28-6 UNIT         |                                        |                        |                       |                        |               |                          | 149 <b>M</b>           |            |
| OGRID No.                  |          | *Operator Name             |                                        |                        |                       |                        |               |                          | <sup>9</sup> Elevation |            |
| 14538                      |          |                            | BURLINGTON RESOURCES OIL & GAS COMPANY |                        |                       |                        |               | 6501'                    |                        |            |
|                            | -        |                            |                                        | 4                      | <sup>10</sup> Surface | Location               |               |                          |                        |            |
| UL or let no.              | Section  | Township                   | Range                                  | Lot Idn                | Feet from the         | North/South line       | Feet from the | East/West                | line                   | County     |
| 0                          | 27       | 28-N                       | 6-W                                    |                        | 112 <b>0</b>          | SOUTH                  | 18 <b>45</b>  | EAST                     |                        | RIO ARRIBA |
|                            |          |                            | 11 Botto                               | m Hole                 | Location If           | Different From         | Surface       |                          |                        |            |
| UL or lot no.              | Section  | Township                   | Range                                  | Lot idn                | Feet from the         | North/South line       | Feel from the | Ecst/West                | t line                 | County     |
|                            |          | 1                          |                                        | 1                      |                       |                        | 1             | !                        | •                      |            |
| 12 Dedicated Acres         | 13 Joint | or Infill 14               | Consolidatio                           | n Code 15 C            | rder No.              | 1                      |               |                          |                        |            |


NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION



San Juan 28-6 Unit #149M
Expected Production
Mesaverde Formation



San Juan 28-6 Unit #149M
Expected Production
Dakota Formation



### San Juan 28-6 Unit #149M

Bottom Hole Pressures Flowing and Static BHP Cullender and Smith Method Version 1.0 3/13/94

| Mesaverd <b>e</b>                                                                                                                                                                                                                                                                         | Dakot <b>a</b>                                                                                                                                                                                                                |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| MV-Current                                                                                                                                                                                                                                                                                | DK-Current                                                                                                                                                                                                                    |  |  |  |
| GAS GRAVITY  COND. OR MISC. (C/M)  %N2  0.18  %CO2  1.01  %H2S  0  DIAMETER (IN)  DEPTH (FT)  SURFACE TEMPERATURE (DEG F)  BOTTOMHOLE TEMPERATURE (DEG F)  FLOWRATE (MCFPD)  SURFACE PRESSURE (PSIA)  BOTTOMHOLE PRESSURE (PSIA)  522.4                                                   | GAS GRAVITY COND. OR MISC. (C/M)  %N2 0.14 %CO2 1.23 %H2S 0 DIAMETER (IN) DEPTH (FT) SURFACE TEMPERATURE (DEG F) BOTTOMHOLE TEMPERATURE (DEG F) FLOWRATE (MCFPD) SURFACE PRESSURE (PSIA)  BOTTOMHOLE PRESSURE (PSIA)  1.662.7 |  |  |  |
| MV-Original                                                                                                                                                                                                                                                                               | DK-Original                                                                                                                                                                                                                   |  |  |  |
| GAS GRAVITY COND. OR MISC. (C/M)  %N2  %CO2  DIAMETER (IN)  DEPTH (FT)  SURFACE TEMPERATURE (DEG F)  BOTTOMHOLE TEMPERATURE (DEG F)  SURFACE PRESSURE (PSIA)  BOTTOMHOLE PRESSURE (PSIA)  0.7  C  0.18  0  0  1.01  2  0  60  80  137  FLOWRATE (MCFPD)  0  SURFACE PRESSURE (PSIA)  1097 | GAS GRAVITY COND. OR MISC. (C/M) %N2 %CO2 1.23 %H2S DIAMETER (IN) DEPTH (FT) SURFACE TEMPERATURE (DEG F) BOTTOMHOLE TEMPERATURE (DEG F) FLOWRATE (MCFPD) SURFACE PRESSURE (PSIA)  BOTTOMHOLE PRESSURE (PSIA)  3236.6          |  |  |  |

Page No.: 1

Print Time: Mon Dec 06 08:38:29 1999

Property ID: 1828

Property Name: SAN JUAN 28-6 UNIT | 29 | 49351A
Table Name: R:\RESERVES\GDPNOS\TEST.DBF

| DATE                 | CUM_GAS<br>Mcf     |        |                          |
|----------------------|--------------------|--------|--------------------------|
| 10/16/55             | 0                  | 1097.0 | San Juan 28-6 Unit #149M |
| 10/26/55             | 0                  | 1096.0 |                          |
| 08/24/56             | 166000             | 795.0  | Mesaverde Offset         |
| 10/30/57             | 370000             | 781.0  |                          |
| 11/06/58             | 514000             | 760.0  |                          |
| 06/14/59             | 6000 <b>00</b>     | 689.0  |                          |
| 06/14/60             | 753000             | 686.0  |                          |
| 10/13/61             | 876000             | 689.0  |                          |
| 10/28/62             | 96000 <b>0</b>     | 655.0  |                          |
| 05/16/63             | 1006000            | 663.0  |                          |
| 05/26/64             | 1072000            | 708.0  |                          |
| 03/08/65             | 1138000            | 664.0  |                          |
| 04/12/66             | 1244000            | 647.0  |                          |
| 03/22/67             | 1318000            | 627.0  |                          |
| 04/01/68             | 1397000            | 622.0  |                          |
| 06/23/69             | 1497888            |        |                          |
| 05/25/70             | 1574347            | 554.0  |                          |
| 05/04/71             | 1659616            |        |                          |
| 05/22/72<br>08/21/73 | 1742365<br>1838889 |        |                          |
| 07/31/74             | 1922862            |        |                          |
| 07/12/76             | 2025400            | 488.0  |                          |
| 05/15/78             | 2114701            | 476.0  |                          |
| 04/18/80             | 2184590            | 489.0  |                          |
| 05/18/82             | 2266446            | 492.0  |                          |
| 06/06/84             | 2321342            | 499.0  |                          |
| 04/07/86             | 2362593            | 466.0  |                          |
| 09/25/89             | 2444047            | 527.0  |                          |
| 07/11/91             | 2455444            | 527.0  |                          |
| 07/30/91             |                    | 515.0  |                          |
| 05/03/93             | 25489 <b>97</b>    | 452.0  |                          |

Page No.: 1

Print Time: Mon Dec 06 08:38:33 1999

Property ID: 1742

Property Name: SAN JUAN 28-6 UNIT | 149 | 52359A

Table Name: R:\RESERVES\GDPNOS\TEST.DBF

| DATE     | CUM_GAS        |        |                          |
|----------|----------------|--------|--------------------------|
| 04/17/70 | 0              | 2700.0 | San Juan 28-6 Unit #149M |
| 12/28/70 | 66430          | 1445.0 |                          |
| 05/04/71 | 133788         | 1080.0 | Dakota Offset            |
| 05/22/72 | 229897         | 831.0  |                          |
| 08/21/73 | 328209         | 866.0  |                          |
| 06/24/75 | 452279         | 755.0  |                          |
| 08/08/77 | 5758 <b>27</b> | 781.0  |                          |
| 04/24/79 | 659 <b>479</b> | 682.0  |                          |
| 10/14/81 | 779076         | 775.0  |                          |
| 09/22/83 | 844811         | 829.0  |                          |
| 06/07/85 | 884729         | 868.0  |                          |
| 09/19/88 | 1020774        | 832.0  |                          |
| 06/03/90 | 1098863        | 742.0  |                          |
| 04/14/92 | 1172024        | 896.0  |                          |

|                                                   |                                                | NA 305 NN 305 PS2120                                                        | SD2 20F                                                         | NM 305 402 56A NM 305                                    | Tn 120 NM 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NM 403                                            | 8 ₩ ₩ W                                        | 55 NW 136 88 9                                                              | 15 10 138 15A                                                   | 659-56 NM 136 E23 NM 138                                 | \$810 \\ \tilde{\square} = 12 \\ \tilde{\square} = \\ \tilde{\square}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5.1.28-5 Unit<br>HM 403 2                         | S.J. 28-0 Unit<br>NH 6632,22                   | 5.J. 28-6 Uniff NM 6831,22 48 123  SS 49A 123                               | S.J. 28-6 Unit<br>HM 6832,22<br>★47A                            | S.J. 26-6 Unit<br>Nu 6528,22<br>88 <sup>5</sup>          | 2.d 28-6 Unit<br>hii 305<br>71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| © 28A ⊕ 2<br>© 28A ⊕ 2<br>P ◯ 3212                | ⊕¹ <sup>4A</sup> ¹⊕' <u>28</u>                 | 12.7R                                                                       | \$\$ <sup>47A</sup>                                             | ₩ 2564 253 <sup>101</sup>                                | SS 108 SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 18                                                | 17                                             | 16                                                                          | 15                                                              | 14                                                       | MM 6552 NM675613 NM 6552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NN 908 ⊕ 2A<br>⊕ 25 ⊕ 25<br>⊠ 158                 |                                                | 48<br>48<br>82 128                                                          | D PA'97-123-                                                    | ***<br>™⊠***                                             | 75 8 28 71A (NWPC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S.J. 28-6 Unit                                    | S.J. <u>28–8 Unit</u><br>Nhi 6833,22           | S.J. 28-6 Unit<br>Na 6633,22                                                | 5.1 28-6 Unit<br>NW 5833 ,22                                    | S.J. 28-6 Unit<br>NV 6516 NW 2308 NW 6618                | S.d. 28-6 Unit<br>NW 6756 NW 6551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| © <sup>50A</sup>   ⊗ <sup>72</sup>   145          | **************************************         | <sup>80</sup> ⊕<br>25                                                       | 62 28 110<br>66 28 110                                          | ® <sup>™</sup> <sup>(3</sup> 88 )**                      | 994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 19                                                | 20                                             | <sub>21</sub> 28-6                                                          | 3 UNIAT                                                         |                                                          | 24 (MESA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>69</b> 50  <br>⊠3160                           | ⊗ <sub>142</sub> ⊗ <sub>44</sub> ,             | 142<br>\$28<br>\$30<br>\$30<br>\$30<br>\$30<br>\$30<br>\$30<br>\$30<br>\$30 | S. 2124<br>⊕ 62A                                                | 107<br>75 85 69 58A                                      | (MESA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| S.J. 28-6 Unit<br>NV 908                          | S.J. 28~6 Unit<br>NM 6552                      | S.J. 28-6 Unit                                                              | SJ 26-6 Unit<br>NN 10223,22 NN 10222,22 149                     | 2.4. 28-6 UAN<br>4063 UAN 6504 UAN                       | S.J. 28-6 Unit<br>(NESA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 160M 25 (25)                                      | (MESA) 7                                       | MM 10222 148<br>155M (TENNEOT)) 55333330                                    | 1544                                                            | 113M 45 (S) 102                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30 165M<br>23<br>18<br>18                         |                                                | 28 NH 6594                                                                  | 27<br>8 8 154   *   44AM                                        | 26                                                       | 25 (\$53 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$6 (\$6) \$ |
| S.1. 28-6 Unit                                    | S.J. 28-6 Unit                                 | S.J. 28-6 Unit                                                              | SJ 28 8 Unit                                                    | S.J. 28-6 Unit                                           | S.J. 28-6 Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nat 4852<br>(RASIN) 213<br>210M 252<br>213 435 52 | NA 10222,22 NA 10218<br>(TENNECO) (TENNECO) 34 | 116 B3 (TENNECO) 32                                                         | 164M NM 10218<br>253<br>(TENNECO)<br>M 151<br>253<br>151<br>253 | 150M P 6593,22<br>150M P 659 97<br>150 U                 | HM 6613 HM 6613 94 HM 6700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 31<br>17 200<br>17 213M                           | 32<br>NN 10224,22<br>(TENNECO) 130M            | — — 33 — — — — — — — — — — — — — — — —                                      | 34<br>NA 10224,22<br>151M<br>⊕42 (TENNECO) 23<br>—184           | 35 — 35 — — 35 — — 35 — — 35 — — 35 — — 35 — — 35 — 37 A | Nai 5612, 22 36 Nai 5610 94A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.1 58-0 NHS<br>M<br>ES                           | S.J. 28-8 Unit<br>S.J. 28-8 Unit               | S.J. 28-8 Unit                                                              | 2.7 58-8 nPH                                                    | 2.1 26-6 Mag                                             | 6623 P S.J. 28-8 Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

# STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

CASE NO. 11628 ORDER NO. R-10696

APPLICATION OF BURLINGTON RESOURCES
OIL & GAS COMPANY FOR THE ESTABLISHMENT
OF A DOWNHOLE COMMINGLING "REFERENCE
CASE" FOR ITS SAN JUAN 28-6 UNIT PURSUANT
TO DIVISION RULE 303.E. AND THE ADOPTION
OF SPECIAL ADMINISTRATIVE RULES THEREFOR,
SAN JUAN COUNTY, NEW MEXICO.

### ORDER OF THE DIVISION

### BY THE DIVISION:

This cause came on for hearing at 8:15 a.m. on October 17 and November 7, 1996, at Santa Fe, New Mexico, before Examiners David R. Catanach and Michael E. Stogner, respectively.

NOW, on this 12th day of November, 1996, the Division Director, having considered the testimony, the record and the recommendations of the Examiner, and being fully advised in the premises,

### FINDS THAT:

- (1) Due public notice having been given as required by law, the Division has jurisdiction of this cause and the subject matter thereof.
- (2) The applicant, Burlington Resources Oil & Gas Company (Burlington), pursuant to the provisions of Division Rule 303.E., seeks to establish a downhole commingling "reference case" to provide exceptions for (a) marginal economic criteria, (b) pressure criteria, (c) allocation formulas and (d) modification of notification rules on a unit-wide basis for downhole commingling of Dakota, Mesaverde, Fruitland Coal and Pictured Cliffs gas production within existing or future drilled wells within the San Juan 28-6 Unit, San Juan County, New Mexico.
- (3) Division Rule No. 303.E., amended by Order No. R-10470-A, currently states:

c) establish a "reference case" whereby the Division utilizes the data presented in the immediate case to endorse or approve certain methods of allocating production whereby the applicant need not submit additional data or justification when proposing a certain

method of allocating production on Form C-107-A's subsequently filed for wells within the San Juan 28-6 Unit; and.

d) establish a "reference case" or an administrative procedure for authorizing the downhole commingling of existing or future drilled wells within the San Juan 28-6 Unit without additional notice to each affected interest owner as required by Division Rule No. 303.D.

- (7) In support of its request to except marginal economic criteria, the applicant presented geologic and engineering evidence and testimony which indicates that within the San Juan 28-6 Unit:
  - a) the structure and thickness of the Dakota and Pictured Cliffs formations are very consistent;
  - b) the average recoverable Dakota and Pictured Cliffs gas reserves underlying an undeveloped drill block are approximately 449 MMCFG and 186 MMCFG, respectively;
  - the average initial producing rate for a newly drilled or recompleted Dakota and Pictured Cliffs gas well is approximately 254 MCFGD and 216 MCFGD, respectively; and,
  - d) the estimated ultimate gas recoveries and initial producing rates from the Dakota and Pictured Cliffs formations are insufficient to justify drilling stand alone wells and/or dually completed wells to recover such gas reserves.
- (8) The evidence and testimony presented by the applicant indicates that the Dakota and Pictured Cliffs formations within the San Juan 28-6 Unit should be properly classified as "marginal".
- (9) In support of its request to except pressure criteria within the Dakota and Pictured Cliffs formations within the San Juan 28-6 Unit, the applicant presented engineering evidence and testimony which indicates that:

- c) providing notice to each interest owner within the San Juan 28-6 Unit of subsequent downhole comminglings is unnecessary and is an excessive burden on the applicant;
- d) the downhole commingling of wells within the San Juan 28-6 Unit Area will benefit working, royalty, and overriding royalty interest owners. In addition, the downhole commingling of wells within the San Juan 28-6 Unit should not violate the correlative rights of any interest owner:
- e) no interest owner appeared at the hearing in opposition to the establishment of a "reference case" or administrative procedure for notice.
- (14) An administrative procedure should be established within the San Juan 28-6 Unit for obtaining approval for subsequent downhole commingled wells without notice to Unit interest owners, provided however that, all other provisions contained within Division Rule No. 303.C. are complied with.
- (15) Approval of the proposed "reference cases" for marginal economic criteria, pressure criteria, allocation formulas and notice will lessen the burden on the applicant insofar as providing the data required pursuant to Division Rule No. 303.D. and Form C-107-A, will provide the applicant a streamlined method for obtaining downhole commingling approvals within the San Juan 28-6 Unit, and will not violate correlative rights.

### IT IS THEREFORE ORDERED THAT:

(1) The application of Burlington Resources Oil & Gas Company to establish a "reference case" for (a) marginal economic criteria, (b) pressure criteria, (c) allocation formulas and (d) modification of notification rules on a unit-wide basis for downhole commingling of Dakota, Mesaverde, Fruitland Coal and Pictured Cliffs gas production within existing or future drilled wells within the San Juan 28-6 Unit, San Juan County, New Mexico, is hereby approved.