NEW MEXICO DIL CONSERVATION COMMISSION WELL DELIVERABILITY TEST REISONT FOR 19 68 - 1.44 Form C122-A Revised 1-1-68 | South Blance | 1 1 .8 .8 . | Picta | red Cliff | | Sen Juan | | |---|--|--|--|--|--|---| | | | | | The state of s | | 5 -8 06 | | DMPANY | | | WELL NA | ME 1980 BYMSER | | | | El Paso I | Vatural Gas Compa | any
Itownshi e | RANGE | Clack B No. | G THE PIPEL INC | | | To . | 22 | 28 | 8 | | El Paso Netu | eal Gas Co | | SING O.D INCHES | CASING I.D INCHES | SET AT BERTH - P | | it Duthes 3 | BING I.D MCHES | TOP - TUBING PERF FEE | | 2.875 | 2.441 | 2 516 | NO | lubing . | AL GRAVITY | SHATTY X LENGTH | | 10M 2220 | 그는 그 전략 회사 스타를 통해 되네 | CASING. X | TUBII | | .657 | 1459 | | E CCU | TO 2240 | | | ur an enci sunt hi | | | | _{ком} 9-1-68 | 70 9- | -9-68 | | 6-13-68 | | | | | | PRESSURE DAT | TA - ALL PRESS | UR ES IN PSIA | | | | r) Flowing Cosing (Pressure (DWt) | | ewing Matter (d) | Flow Chart
Static Reading | (e) Meter Ermir
Man c – Stem | d) (f) Friction Loss d) (e-c) in (b-c) | | | rigasus (Dai) | 1.493014 (3/11) | | | | | | | | | | | | | 217 | | Corrected Meter | | | Shut-in Tubing | () in higher ve | lue (m) Dels Pressure | | | Pressure (g+e) | Press. P.= (h+f) Pres | | Pressure (DW1) | #(I) or (k) | Par 80 % | for critical flow only | | / | | | | oe. / | 689 | | | | 017 / 96 | The state of the s | | | | | | 217 / | 217 / 861 | 446.44 | PRECTION (ME) | | | | | 217 / 1 | 217 / 86 | 44.6 | PRRECTION (MET | 144 51 144 CO | | | | 217 / 1 | 217 / 86. | 44.6 | DRRECTION (MET | 144 51 144 CO | | recred Volume | | Integrated Volume - | | FLOW RATE CO | PRRECTION (MET | ER ENR OR) | | rested Volume | | | MCF/D Quasiant | FLOW RATE CO | DRRECTION (MET | ER ENR OR) | | recred Volume MCF/D | | Integrated Volume - | MCF/D Quasiant | FLOW RATE CO | PRESSURE CALC | FREMEOR) From Control Laccoo | | | | Integrated Volume - | MCF/D Quasiant | FLOW RATE CO | | FREMEOR) From Control Laccoo | | | | Integrated Volume - | MCF/D Questions | FLOW RATE CO | RESSURE CALCI | FREMEOR) From Control Laccoo | | | | Integrated Volume - 274 | MCF/D Questiant | FLOW RATE CO | RESSURE CALCI | LOCOCO | | | | Integrated Volume - | MCF/D Questions | FLOW RATE CO | RESSURE CALCI | FRENEDRI
Visual
LACCOO
PLATION | | | | integrated Volume -
274 | MCF/D Questiant | FLOW RATE CO | RESSURE CALCI | FRENEDRI
Visual
LACCOO
PLATION | | | | integrated Volume -
274 | MCF/D Questions (F _c q _m) ² (1000) 2313 | FLOW RATE CO | RESSURE CALCI | FRENEDRI
Visual
LACCCO
PLATION
PLATION | | 274 MCF/D | | Integrated Volume -
274 | MCF/D Questiant | FLOW RATE CO | RESSURE CALCI | FRENEDRI
Visual
LACCOO
PLATION | | | | Integrated Volume - 274 | MCF/D Questions (F _c q _m) ² (1000) 2313 | FLOW RATE CO | RESSURE CALCI | FRENEDRI
Visual
LACCCO
PLATION
PLATION | | P _w = √P _w ² 218 | | Integrated Volume - 274 $(1-e^{-5})$ $= 0 \left[\frac{P_c^2 - P_d^2}{P_c^2 - P_w^2} \right]^n$ | (F _E q _m) ² (1060)
2313 | FLOW RATE CO | RESSURE CALCI 2(1060) 4 ABILITY CALCU | LATION 1882 | | P _w = √P _w ² 218 | | Integrated Volume - 274 | (F _E q _m) ² (1060)
2313 | FLOW RATE CO | RESSURE CALCI 2(1060) 4 ABILITY CALCU | LATION 1882 | | P _w = √P _w ² 218 | | Integrated Volume - 274 $(1-e^{-5})$ $= 0 \left[\frac{P_c^2 \cdot P_d^2}{P_c^2 \cdot P_w^2} \right]^n$ | MCF/D Questions (F _e q _m) ² (1000) 2313 | FLOW RATE CO | RESSURE CALCI 2(1060) 4 ABILITY CALCU | LATION 1882 | | P _w = √P _w ² 218 | | Integrated Volume - 274 $(1-e^{-5})$ $= 0 \left[\frac{P_c^2 \cdot P_d^2}{P_c^2 \cdot P_w^2} \right]^n$ | (F _E q _m) ² (1060)
2313 | FLOW RATE CO | RESSURE CALCI 2(1060) 4 ABILITY CALCU | LATION 1882 | | P _w = √P _w ² 218 | | Integrated Volume - 274 $(1-e^{-5})$ $= 0 \left[\frac{P_c^2 \cdot P_d^2}{P_c^2 \cdot P_w^2} \right]^n$ | MCF/D Questions (F _c Q _n) ² (1000) 2313 274 New Well SUMMARY | FLOW RATE CO | RESSURE CALCI 2(1060) 4 ABILITY CALCU 1 21ivered 8- | LATION 1882 | | 274 MCF/D P.= VP.2 218 122 MCF/D | | (1-e ⁻⁵) .101. = Q \[\frac{P_c^2 \cdot P_d^2}{P_c^2 \cdot P_w^2} \] = EMARKS: | MCF/D Questions (F _c q _m) ² (1000) 2313 274 New Well SUMMARY 217 861 | FLOW RATE CO | RESSURE CALCI 2(1060) 4 ABILITY CALCU | LATION 1882 | | 274 MCF/D P.= VP.2 218 122 MCF/D | | (1-e ⁻⁵) .101 = Q \[\frac{P_c^2 \cdot P_d^2}{P_c^2 \cdot P_w^2} \] = EMARKS: | MCF/D Questions (F _c q _m) ² (1000) 2313 274 New Well SUMMARY 217 861 274 | FLOW RATE CO | RESSURE CALCI 2(1060) 4 ABILITY CALCU Company By Title | LATION 1882 | | 27 MCF/D P.= VP.2 218 122 MCF/D | | 101 | (F _c q _m) ² (1000)
2313
274
New Well
SUMMARY
217
861
274
218 | FLOW MATE CO | Company Site Calcutation Calcutation Company Site Calcu | | PARTINAL CAS | 274 MCF/D 122 MCF/D | | 101 | (F _c q _n) ² (1000) 2313 274 New Well SUMMARY 217 861 274 218 689 | FLOW RATE CO | RESSURE CALCI 2(1060) 4 ABILITY CALCU Company By Title | | PARTINAL CAS | 274 MCF/D P.= VP.2 218 122 MCF/D |