Distrior+ P.O. Box 1980. Hobbs, NM

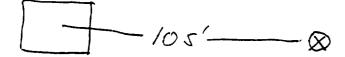
District II P O. Drawer DD. Artesia, NM 88221

District III 1000 Rio Brazos Rd, Aztec, NM 87410 State of New Mexico
Energy, Minerals and Natural Resources Department

SUBMIT I COPY TO APPROPRIATE DISTRICT OFFICE AND I COPY TO SANTA FE OFFICE

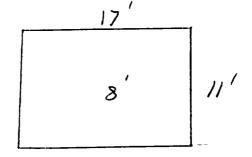
OIL CONSERVATION DIVISION

2040 South Pacheco Street Santa Fe, New Mexico 87505


PIT REMEDIATION AND CLOSURE REPORT

Operator:	PNM Gas Services (Meridian) Telephone:	324-3764							
Address:	603 W. Elm Street Farmington, NM	87401								
Facility or W	Facility or Well Name: Angel Peak #22 North									
Location:	Unit: M Sec.	7 T. 28 N E	R. 10 W County	San Juan						
Pit Type:	Separator Dehyo	drator Othe	r							
Land Type:	BLM State	Fee Othe	r							
Pit Location:	Pit dimensions: length	15 ' width	15 depth	3 '						
(Attach diagrai	m) Reference: wellhead	other _								
	Footage from reference:	105'								
	Direction from reference: 9	O Degrees	East North	<u>*</u>						
		<u> </u>	of West South							
Depth to Grou		Less than 50 feet 50 feet to 99 feet Greater than 100 feet		(20 points) (10 points) (0 points) 0						
(Vertical distance from o seasonal high water elev water				(5 points)						
Wellhead Pro	tection Area: JAN 2 4	1327		22						
(Less than 200 feet from domestic water source, c feet from all other water	or, less than 1,000 OILI OVAN	Yes No		(20 points) (0 points) 0						
Distance to Su	perennial lakes,	Less than 200 feet 200 feet to 1,000 feet Greater than 1,000 feet		(20 points) (10 points) (0 points) 0						
ponds, rivers, streams, c canals and ditches	reeks, irrigation	RANKING SCORE	(TOTAL POINTS)	: 0						

Date Remediation Started:	9/23/96	Date Completed: 9/23/96
Remediation Method:	Excavation	X Approx. Cubic Yard 55
Check all appropriate	Landfarmed	X Amount Landfarmed (cubic yds) 35
ections)	Other	
Remediation Location: (i.e., landfarmed onsite, name and location of offsite facility)	Onsite	X Offsite
Backfill Material Location	: 	
General Description of Rer	nedial Action:	
Excavated contaminated soil to	pit size 11'x17'x8'	and landfarmed soil onsite within a bermed area at a depth of 6" to 12". Soil was aerated
by plowing/disking until soil met	regulatory levels.	
Ground Water Encountered	ed: No	Yes Depth
Final Pit Closure Sampling:	Sample Locati	ion 5 pt composite-4 side walls and center of pit bottom
(if multiple samples, attach sample result and diagram of	Sample depth	8'
sample locations and depths.)	Sample date	9/23/96 Sample time 1:30:00 PM
	Sample Result	ts
	Benze	ene (ppm) < 0.0002
	Total	BTEX (ppm) 0.0117
	Field l	headspace (ppm)
	ТРН	< 5.0 Method 8015A
Vertical Extent (ft)		Risk Assessment form attached Yes No
Ground Water Sample:	Yes	No (If yes, attach sample results)
I HEREBY CERTIFY THA KNOWLEDGE AND MY		MATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY
DATE January 22, SIGNATURE	1997 yus Bu	PRINTED NAME Denver Bearden AND TITLE Administrator III


Angel Peak # 22 North Pit Meridian O:1 Sec. 7, 28N, 10N, m

90° V. FN

Composite sample # 960923 1330

Excavated Pit: 11'x 17'x8' =

LAB: (505) 325-1556

Diesel Range Organics

Attn:

Denver Bearden

Company: PNM Gas Services

Address:

603 W. Elm

City, State: Farmington, NM 87401

Date:

26-Sep-96

COC No.:

5057

Sample No.

12269

Job No.

2-1000

Project Name:

PNM Gas Services - Angel Peak #22 North Pit

Project Location: Sampled by:

9609231330; 5pt. Composite, 8' depth GC

Date:

23-Sep-96 Time:

13:30

Analyzed by:

DC/HR

Date:

25-Sep-96

Sample Matrix:

Soil

Laboratory Analysis

Para meter	Result	Unit of Measure	Detection Limit	Unit of Measure
Diesel Range Organics (C10 - C28)	<5.0	ing/kg	5.0	mg/kg

Quality Assurance Report

DRO QC No.:

0489-QC

Calibration Check

Para meter	Method Blank	Unit of Measure	True Value	Analyzed Value	% Diff	Limit
Diesel Range (C10 - C28)	< 5.0	ppm	100	95	4.5	15%

Matrix Spike

Parameter	1- Percent Recovered	2 - Percent Recovered	Limit	%RSD	Limit
Diesel Range (C10-C28)	111	95	(70-130)	11	20%

Method - SW-846 EPA Method 8015A mod. - Nonhalogenated Volatile Hydrocarbons by Gas Chromatography

Approved by:

P.O. BOX 2606 • FARMINGTON, NM 87499

- Technology Blending Industry with the Environment -

OFF: (505) 325-5667

LAB: (505) 325-1556

AROMATIC VOLATILE ORGANICS

Attn:

Denver Bearden

Date:

26-Sep-96

Company: PNM Gas Services

COC No.:

5057

Address:

Sample No.:

12269

603 W. Elm

Job No.:

City, State: Farmington, NM 87401

2-1000

Project Name:

PNM Gas Services - Angel Peak #22 North Pit

Project Location: Sampled by:

9609231330; 5pt. Composite, 8' depth GC

Date:

23-Sep-96 Time:

13:30

Analyzed by:

HR

Date:

26-Sep-96

Sample Matrix:

Soil

Laboratory Analysis

Parameter		Result	Unit of Measure	Detection Limit	Unit of Measure	
Benzene		<0.2	ug/ k g	0.2	ug/ kg	
Toluene		9.3	ug/kg	0.2	ug/ kg	
Ethylbenzene		< 0.2	ug/ kg	0.2	ug/kg	
m,p-Xylene		2.4	ug/ kg	0.2	ug/kg	
o-Xylene		<0.2	ug/ kg	0.2	ug/kg	
	TOTAL	11.7	ug/kg			

Method - SW-846 EPA Method 8020 Aromatic Volatile Organics by Gas Chromatography

Approved by: Date:

Angel Peak # 22 Meridian Dil Sec. 7-28N-10U			The state of the s	
Land farm:	On location			
soil vapor h	tad space PIO read	ing - 6.8 p	2h	
	2"-12" dp	74		
.0	3			
• •			i i	1 1

OFF: (505) 325-5667

LAB: (505) 325-1556

Diesel Range Organics

Attn:

Denver Bearden

Date:

29-Nov-96

Company: PNM Gas Services

COC No.:

5112

Address:

603 W. Elm

Sample No.

13030

City, State: Farmington, NM 87401

Job No.

2-1000

Project Name:

PNM Gas Services - Angel Peak #22 Landfarm

Project Location:

9611251115; 4pt. Composite, 2"-12" depth

Date:

25-Nov-96 Time:

11:15

Sampled by: Analyzed by: GC DC/HR

Date:

26-Nov-96

Sample Matrix:

Soil

Laboratory Analysis

Parameter	Result	Unit of Measure	Detection Limit	Unit of Measure
Diesel Range Organics (C10 - C28)	<5.0	mg/kg	5.0	mg/kg

Quality Assurance Report

DRO QC No.:

0512-QC

Calibration Check

			·			
	Method	Unit of	True	Analyzed		
Parameter	Blank	Measure	Value	Value	% Diff	Limit
Diesel Range (C10 - C28)	< 5.0	ppm	100	103	2.8	15%

Matrix Spike

matrix opino					
	1- Percent	2 - Percent			
Parameter	Recovered	Recovered	Limit	%RSD	Limit
Diesel Range (C10-C28)	109	107	(70-130)	1	20%

Method - SW-846 EPA Method 8015A mod. - Nonhalogenated Volatile Hydrocarbons by Gas Chromatography

Approved by: Date: