Form C-122

Revised 12-1-55

MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS

Pool	1 E	anco				Formation Mesaverde						County Ric Arribs			
Init	tial_	X		Anı	nual_			Spec	ial		Dat	ce of	Test_O	ct. 24, 1956	
									San Jus						
Unit	t	<u> </u>	Sec	2° 39 ₹	qw1	29N	R.ge	7W	Pur	chaser_	El Pa	Bo Nat	ural G	as Company	
Casing 52 Wt. 15.5 I.D. 4.950 Set at 5515 Perf. 4880 To 5452															
Tubing 2 3/5 Wt. 4.7 I.D. 2 Set at 5453 Perf. 5423 To 5453															
Gas Pay: From 4880 To 5452 L 5423 xG 0.67 _GL 3633 Bar.Press. 12.0															
Producing Thru: Casing Tubing Tubing Type Well Single - Gas															
Date of Completion: Sept. 11, 1956 Packer Single-Bradenhead-G. G. or G.O. Dual Reservoir Temp.															
OBSERVED DATA Opened 10:15 Tested Through (Choke) (New York) Type Taps															
	(Pr	over		Flow		988	Diff.	Тетр	Tubin Press	g Data	Cas	sing Da	ata Temp.	Duration	
No.	(L	ine) ize	1 (Ori	fice	\ l	J	1		psig	ł	1		Į.	of Flow	
SI									1054	<u> </u>	10	75			
1. 2.			3	174	F	4		750	131,	75	, ,	957		3 hr.	
3.			T												
4. 5.															
FLOW CALCULATIONS															
No.	Coefficie (24-Hour		ent ir)	ent -\frac{h_{wi}}{}		Pressu		re Flow Ten Factor Ft		Gravi Fact Fg	ty C	y Compres r Factor Fpv		Rate of Flow Q-MCFPD @ 15.025 psia	
1.	12,3650					1426		0.9859		0.94	3	1.05		51.35	
1. 2. 3. 4.								···							
4.						ļ									
PRESSURE CALCUTATIONS Gas Liquid Hydrocarbon Ratio cf/bbl. Specific Gravity Separator Gas Gravity of Liquid Hydrocarbons deg. Specific Gravity Flowing Fluid Fc (1-e^{-S}) Pc 1087															
No.	P _w Pt. (psia)	F	2 t	F _c Q	(1	$F_cQ)^2$	(F	cQ) ² -e ^{-s})	P _w 2	P	$p_c^2 - p_w^2$	Ca P	P _W P _C	
1.	_ <u>-</u> `					#				938.9	2	42,6		0.891	
3.													+		
<u>4.</u>													+		
Abso COMP ADDR AGEN	ANY_ ESS_ IT and	Potent South	ern Ur	rion C		mpany	r.	MCFPD;	n_ 0•7	5					
COMP	ANY	Kl Ps	BO N	tura	Gas	Compa	ny .					(11)	IID,		
								REM	ARKS		(8	MON. J	M COM	۸.	

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q I Actual rate of flow at end of flow period at W. H. working pressure ($P_{\rm W}$). MCF/da. @ 15.025 psia and 60° F.
- P_c = 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- $P_{\mathbf{w}}$ Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- Pf Meter pressure, psia.
- hw Differential meter pressure, inches water.
- F_g I Gravity correction factor.
- F_t Flowing temperature correction factor.
- F_{DV} Supercompressability factor.
- n I Slope of back pressure curve.

Note: If $P_{\mathbf{W}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{W}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$.

OIL CONTITIONAL	NOISSION CON
A Z	1000 200 104
Mo. Copier natur	2) 1
And the second s	13 1 3 N No. 1
Operator	
Santa Fe Proration Office	
U. S. L. S.	
Transports:	
Ni c	