NEW MEXICO OIL CONSERVATION COMMISSION GAS WELL TEST DATA SHEET - - SAN JUAN BASIN ## (TO BE USED FOR FRUITLAND, PICTURED CLIFFS, MESAVERDE, & ALL DAKOTA EXCEPT BARKER DOME STORAGE AREA) | ool | lanco | | _Formation_ | Mesa Verde | Coi | inty | o Arribe | · | |--|---|--|---|--|---------------------------|--------------------------|--------------|-------------| | ourchasing Pi | | aso Natural | | Date ' | | , | | | | <u> </u> | | | | | | | (0 | | | perator | El Paso Natura | ol Ges | | n Juan 29-7 | | _Well No | 62 | | | A | Sec14 | 7 wp. 29 | 77 | Pay Zone: From_ | 4890 | То | 545 6 | | | nit | 5-1/2 | <u>L</u> | 5560 | _Tubing: OD | | b.7 | Perf | 84 | | asing: OD_ | WT | Set At | A | _ | | .690 | | | | roduced Thro | ough: Casing | Tubir
9/22 | ~ / ~ / ~ / ~ ~ | _Gas Gravity: Meas | | 4/9/57 Est | timated | | | | Test: From | | | Date S.I.P. Measure | ed | | | | | eter Run Siz | e | Orific | ce Size | Type | Chart | Туре | e Taps | | | | | | OBSERVE | | | | | | | | (D. 1) | | | psig | + 12 = | | psia | (a) | | owing casing | pressure (Dwt) | | | psig | + 12 = | | psia | (b) | | owing tubing
owing meter r | pressure (Dwt) | | | psig | + 12 = | | psia | (c) | | | pressure (meter readi | | urement taken | : | | | | | | | | | | nsia - | + 12 = | | psia | (d) | | | | $\frac{1}{2}$ x spring co | | | =_ | | psia | (d) | | | - (d) or (d) - (c) | | ± | | = | | psi | (e) | | | lowing column to me | | : | | = | | psi | (f) | | | w through tubing: (a) | | | | | | | 1 -7 | | | age static meter pres
t average reading | | | psig | + 12 = | PhO - | psia | (g) | | Square root | chart average reading | 7.40 2 _x | sp. const | 10 | = | 548 | psia | (g) | | Corrected se | even day avge. meter | press. (p _f) (g) + (e | • | | = | 548
548 | psia | (h) | | f = f(h) + f(f) | | | _ | | = | 1110 | psia | (i) | | | g shut-in pressure (D | wt) | 1098 | psig | + 12 = | 1110 | psia | (j) | | | g shut-in pressure (D | | | psig | + 12 = | 1110 + | psia | (k) | | | whichever well flowe | | | | = | 523 | psia | (1) | | lowing Temp. | (Meter Run) | | °F +46 | 0 | = | | °Abs | (m | | $d = \frac{1}{2} P_c = \frac{1}{2}$ | (1) | | | | = | | psia | (n) | | | | | | | | | | | | | | _ | | | | | | | | | | / FLOW | RATE CAL | CULATION | | | | | | | · · · · · · · · · · · · · · · · · · | | RATE CAL | CULATION |): | 182 | MCE | /da | | | x | FLOW
V(c) | RATE CAL | CULATION = | = | 182 | MCF | /da | | =(integrate | | V(c) | / RATE CAL
== | <u>CULATION</u>
== | = | 182 | MCF | /da | | | | | / RATE CAL== | <u>CULATION</u> = | = | 182 | MCF | /da | | | | V(d) | = | CULATION = CALCULATION | = | 182 | MCF | /da | | | d) | V(d) | VERABILIT | =
CALCULATION | = | | MCF | /da | | (integrate | d) | V(d) | VERABILIT | =
CALCULATION | = | 182 | MCF | · | | (integrate | d) | V(d) | VERABILIT | =
CALCULATION | = _ | | MCF | · | | (integrate | d) | V(d) | VERABILIT | =
CALCULATION | = _ | | MCF | · | | (integrate | 82 (F | V(d) | VERABILIT | =
CALCULATION | = _ | | MCF | · | | (integrate | 82 (F | $ \frac{\sqrt{(a)}}{\sqrt{(d)}} $ $ \frac{DELI}{\sqrt{(a)}} $ $ \frac{2^2 - P_d^2}{\sqrt{(a)}} = \frac{924}{931}, $ $ \frac{2^2 - P_w^2}{\sqrt{(a)}} = \frac{924}{931}, $ | VERABILITY
075
102 | | | | MCF/ | · | | (integrate = Q | 82 (F | $ \frac{\sqrt{(a)}}{\sqrt{(d)}} $ $ \frac{DELI}{\sqrt{(a)}} $ $ \frac{2^2 - P_d^2}{\sqrt{(a)}} = \frac{924}{931}, $ $ \frac{2^2 - P_w^2}{\sqrt{(a)}} = \frac{924}{931}, $ | VERABILITY 075 102 | ==
(CALCULATION | | 181
tural G es | MCF/ | · | | (integrate | 82 (ARY 1110 182 540 | $ \frac{\sqrt{(a)}}{\sqrt{(d)}} $ $ \frac{DELI}{\sqrt{(a)}} $ $ \frac{2^2 - P_d^2}{\sqrt{(a)}} = \frac{924}{931}, $ $ \frac{2^2 - P_w^2}{\sqrt{(a)}} = \frac{924}{931}, $ | VERABILITY 075 102 psiaMcf/day | Company E1 | iginal Sign | 181
stural Gas | MCF/ | · | | (integrate | 1110
182
549 | $ \frac{\sqrt{(a)}}{\sqrt{(d)}} $ $ \frac{DELI}{\sqrt{(a)}} $ $ \frac{2^2 - P_d^2}{\sqrt{(a)}} = \frac{924}{931}, $ $ \frac{2^2 - P_w^2}{\sqrt{(a)}} = \frac{924}{931}, $ | VERABILITY 075 102 | ==
(CALCULATION | iginal Sign | 181
stural Gas | MCF/ | · | | SUMM | 1110
182
549 | $ \frac{\sqrt{(a)}}{\sqrt{(d)}} $ $ \frac{DELI}{\sqrt{(a)}} $ $ \frac{2^2 - P_d^2}{\sqrt{(a)}} = \frac{924}{931}, $ $ \frac{2^2 - P_w^2}{\sqrt{(a)}} = \frac{924}{931}, $ | VERABILITY 075 102 psiaMcf/daypsia | Company E1 Company 0; Title 1; | iginal Sign | 181
stural Gas | MCF/ | · | | SUMM | 1110
182
549
555
181 | $ \frac{\sqrt{(a)}}{\sqrt{(d)}} $ $ \frac{DELI}{\sqrt{(a)}} $ $ \frac{2^2 - P_d^2}{\sqrt{(a)}} = \frac{924}{931}, $ $ \frac{2^2 - P_w^2}{\sqrt{(a)}} = \frac{924}{931}, $ | VERABILITY 075 102 psiaMcf/daypsiapsia | Company By Title Witnessed by | iginal Sign | 181
stural Gas | MCF/ | · | | SUMM | 82 (ARY 1110 182 549 555 | $ \frac{\sqrt{(a)}}{\sqrt{(d)}} $ $ \frac{DELI}{\sqrt{(a)}} $ $ \frac{2^2 - P_d^2}{\sqrt{(a)}} = \frac{924}{931}, $ $ \frac{2^2 - P_w^2}{\sqrt{(a)}} = \frac{924}{931}, $ | VERABILITY 075 102 psiaMcf/daypsiapsia | Company By Title Witnessed by | iginal Sign | 181
stural Gas | MCF/ | | | (integrate SUMM C = w = d = This is date | 1110
182
549
555
181
of completion test. | $ \frac{\sqrt{(c)}}{\sqrt{(d)}} $ $ \frac{\sqrt{(c)}}{\sqrt{(d)}} $ $ \frac{DELI'}{\sqrt{(c)}} $ $ \frac{\sqrt{(c)}}{\sqrt{(d)}} $ $ \frac{\sqrt{(c)}}{\sqrt{(d)}} $ $ \frac{\sqrt{(c)}}{\sqrt{(d)}} $ $ \frac{\sqrt{(c)}}{\sqrt{(d)}} $ $ \frac{\sqrt{(d)}}{\sqrt{(d)}} | VERABILITY O75 102 psiaMcf/daypsiapsiaMcf/day | Company By Title Witnessed by | iginal Sign | 181
stural Gas | MCF/ | · | | (integrate SUMM C = w = d = This is date | 1110
182
549
555
181
of completion test. | V(c) $V(d)$ $DELI'$ $P(c) = P(d) = P(d)$ $P(c) = P(d) = P(d)$ $P(c) = P(d)$ $P(d) =$ | VERABILITY O75 102 psiaMcf/daypsiapsiaMcf/day | Company El Witnessed by Company Compan | iginal Sign | 181
stural Gas
ed | MCF/ | · | | (integrate SUMM C = w = d = This is date | 1110
182
549
555
181
of completion test. | $ \frac{\sqrt{(c)}}{\sqrt{(d)}} $ $ \frac{\sqrt{(c)}}{\sqrt{(d)}} $ $ \frac{DELI'}{\sqrt{(c)}} $ $ \frac{\sqrt{(c)}}{\sqrt{(d)}} $ $ \frac{\sqrt{(c)}}{\sqrt{(d)}} $ $ \frac{\sqrt{(c)}}{\sqrt{(d)}} $ $ \frac{\sqrt{(c)}}{\sqrt{(d)}} $ $ \frac{\sqrt{(d)}}{\sqrt{(d)}} | VERABILITY 075 102 psia Mcf/day psia Mcf/day | Company El Company El Witnessed by Company C | iginal Sign
wis D. Gol | 181 stural Gas ed | MCF/ | · | | SUMM c = w = d = This is date Meter error co | 1110
182
549
555
181
of completion test. | V(c) $V(d)$ $DELI'$ $P(c) = P(d) = P(d)$ $P(c) = P(d) = P(d)$ $P(c) = P(d)$ $P(d) =$ | VERABILITY O75 102 psia Mcf/day psia psia Mcf/day KS OR FRICT: (FcQ) | Company El Witnessed by Company Compan | iginal Sign
wis D. Gol | 181 stural Gas ed | MCF/ | · | + - SIPC used because SIPT wasn't available. M D at 500 = 188 Lumual test in first