NEW MEXICO OIL CONSERVATION COMMISSION GAS WELL TEST DATA SHEET - - SAN JUAN BASIN ## (TO BE USED FOR FRUITLAND, PICTURED CLIFFS, MESAVERDE, & ALL DAKOTA EXCEPT BARKER DOME STORAGE AREA) | | Blanco | | Formatic | Mesa Verde | Coı | intyRio | Arriba | | |--|---|---|--|--|---------------|--|----------|----------| | PoolPurchasing F | Pipeline | . Paso Na | tural Gas | Date | | • | | | | | El Paso Natur | aal far | | Barron Kide | | | 8 | | | Operator | | <u> </u> | Lease
30 _ | £ | enel | _Well No | 5518 | | | OIIII | sec | I WD• | Rge
Set At 5620 | Pay Zone: From | WT. | h 7 | - 1 | 5499 | | Casing: OD_ | | -/-/ | Set At | Tubing: OD 2 | | | Pen | | | | rough: Casing | 0/7/58 | Tubing | Gas Gravity: Med | sured | <u>~</u> Es
1 <i>6/5</i> 8 | timated | | | | | | | | | | | | | Meter Run Si | ze | | _Orifice Size | 1.750 Type | Chart | Гуре | e Taps | _ | | | | | OBSER | VED DATA | | | | | | | | | | psig | | | | (α | | | | | | psig | | | | (b | | | | | | psig | + 12 = | | psia | (c | | | pressure (meter rea | | vt. measurement tak | en:
psig | . 10 - | | | 1.4 | | | rt reading | | | psig | | | | (d | | | - (d) or (d) - (c) |) - x s | t t | | | | - | (u
(e | | | Flowing column to r | neter: | _ | | | | • | • | | • | ow through tubing: (| | through casing | | ≅ | | psi | (f) | | | rage static meter pre | | | | | | | | | Normal cha | irt average reading_ | | | | + 12 = | | psia | (g | | Square root | t chart average readi | ing (|) ² x sp. const | 10 | = | <u>526</u> | psia | (g | | Corrected s | seven day avge. mete | er press. (p_f) | (g) + (e) | | = | <u>526</u> | psia | (h | | $P_t = (h) + (f)$ | | | | 10/3 | = | <u>526</u> | psia | (i) | | | ng shut-in pressure (| | | 30/0 | + 12 = | 1073 | psia | (j | | | ng shut-in pressure (| | | psig_ | + 12 = | 1.072
1.072 | psia | (k | | $P_C = (j) \text{ or } (k)$ | whichever well flow | ed through | 80 | | = | 540 | psia | (1) | | Flowing Temp | • | | 60 •F+ | 460 | = | 536 | •Abs | | | $P_d = \frac{1}{2} P_c = \frac{1}{2}$ | 2 (1) | | | | | | psia | (n | | | | | FLOW RATE CA | I CIII ATION | | • | | | | | | | FLOW NATE CA | LCOLATION | \. | | | | | 0 = | х | . [| V(c) = | = | \ <u>_</u> | 2744 | мс | F/da | | (integrate | | \ | | | / | | | . , == | | (Integrate | - u, | | V(d) | | | | | | | | | | · (u) | | | | | | | 1 - 1 | | | DELIVERABILI' | TY CALCULATION | | | | | | | | 0 0\ | _ | 1 | | | | | | | 1 1 | | | | | | | | | 2 7 | (| Pc-Pd = | 861.888 | n 1.1991 | _ | 3145 | MCE | /da | |) = Q 27 | <u> </u> | $P_c^2 - P_d^2 =$ | 861.888
718.757 | n 1,1991
1,1460 | = | 31.45 | MCF | /da. | | D = Q 27 | } | $P_{c}^{2} - P_{d}^{2} =$ $P_{c}^{2} - P_{w}^{2} =$ | 861,888
718,757 | 1,1991
1,1460 | = | 3145 | MCF | /da. | | D = Q 27 | <u>lala</u> | $P_{c}^{2} - P_{d}^{2} =$ $P_{c}^{2} - P_{w}^{2} =$ | 861,888
718,757 | 1,1991
1,1460 | =_ | 3145 | MCF | /da. | | | | $P_{c}^{2} - P_{d}^{2} =$ $P_{c}^{2} - P_{w}^{2} =$ | 861,888
718,757 |] 200 | == | | | /da. | | SUMM | /ARY
1072 | .°c-°w/ | 861.888
718.757 | Company | | latural Ge | | /da. | | SUMM
P _c =
Q = | MARY
1072
2744 | . Fc - F w/- | | CompanyBy | Orig | Satural Ge
(inal Signed | . | /da. | | SUMM
P _C =
Q =
P _w = | MARY
1072
2744
656 | . Fc - F w/- | psia
Mcf/day
psia | Company
By
Title | Orig
Hare | Satural Ge
(inal Signed | . | /da. | | SUMM
P _C =
Q =
P _W =
P _d = | /ARY
1072
2744
656
536 | Pc-Fw/- | psia
Mcf/day
psia
psia | Company
By
Title
Witnessed by | Orig
Haro | Satural Ge
(inal Signed
old L. Kendri | . | /dα. | | SUMM
P _c =
Q =
P _w =
P _d =
D = | MARY 1072 2744 656 536 3145 | Pc-Fw/- | psia
Mcf/day
psia | Company
By
Title | Orig
Haro | Satural Ge
(inal Signed
old L. Kendri | . | /dα. | | SUMM P _C = Q = P _w = P _d = D = * This is date | MARY 1072 2744 656 536 3145 of completion test. | Pc-Fw/- | psia
Mcf/day
psia
psia | Company
By
Title
Witnessed by | Orig
Haro | Satural Ge
(inal Signed
old L. Kendri | . | /da. | | SUMM P _C = Q = P _w = P _d = D = * This is date | MARY 1072 2744 656 536 3145 | Pc-Fw/- | psia
Mcf/day
psia
psia
Mcf/day | CompanyByTitleWitnessed byCompany | Orig
Hare | Satural Ge
(inal Signed
old L. Kendri | . | /da. | | SUMM P _C = Q = P _w = P _d = D = * This is date | MARY 1072 2744 656 536 3145 of completion test. | Pc-Fw/- | psia Mcf/day psia psia psia Mcf/day | Company | Orig
Harc | Satural Ge
(inal Signed
old L. Kendri | . | /dα, | | SUMM P _C = Q = P _w = P _d = D = * This is date | MARY 1072 2744 656 536 3145 of completion test. | Fc-Fw/- | psia Mcf/day psia psia psia Mcf/day Mcf/day | CompanyByTitleWitnessed byCompany | Orig
Hare | latural. Ge
inal Signed
old L. Kendri | . | /dα, | | SUMM P _C = Q = P _w = P _d = * This is date * Meter error co | MARY 1072 2744 656 536 3145 of completion test. | Pc-Fw/- | psia Mcf/day psia psia psia Mcf/day Mcf/day | Company | Orig
Harc | Satural Ge
(inal Signed
old L. Kendri | ck | | | P _C = | MARY 1072 2744 656 536 3145 of completion test. | Fc-Fw/- | psia Mcf/day psia psia psia Mcf/day Mcf/day REMARKS OR FRIC | CompanyByTitleWitnessed byCompanyTION CALCULATIONS | Orig
Hare | intural Ge | ck | | D at 500 = 2778 <u> 7</u> - 44] i 🔐 (Link ii) or ji Çir $\mathcal{O}(1, \frac{1}{2}, \frac{1}{2}) = 0$