NEW MEXICO OIL CONSERVATION COMMISSION GAS WELL TEST DATA SHEET - - SAN JUAN BASIN (TO BE USED FOR FRUITLAND, PICTURED CLIFFS, MESAVERDE, & ALL DAKOTA EXCEPT BARKER DOME STORAGE AREA) | | | | | Pietures | | = | | | |--|---|---|--|--|---|-------------------|-----------------------------|--------------------------| | Purchasing Pi | ipeline | . Page Habita | ral the Co. | Do | ate Test File | ed J | 1976 | | | Operator | heo Petrolim | n. Comporekt | Lease | aderral | | Well No | . 1 | | | Jnit 🖺 | Sec1 | Twp | Rge. | Pay Zone: Fro | om 2230 | Тс | . 2066 | | | Casing: OD_ | | | | Tubing: OD | | | _T. Perf | | | _ | | | | Gas Gravity: M | | | | | | | | | | _* Date S.I.P. Mea | | | | | | | | | | Ty | | | | | | Meter Hun Siz | ze <u> </u> | | Julice 21 ze | 1 y | pe Chart | | Type Tups | | | | | | OBSERV | ED DATA | | | | | | lowing casing | pressure (Dwt) | | | ps | sig + 12 = | | psia | (a) | | | | | | ps | | | | (b) | | lowing meter p | pressure (Dwt) | | | ps | sig + 12 = | | psia | (c) | | | pressure (meter read | - | | | | | | | | Normal char | t reading | | | ps | sig + 12 = | | | (d) | | | |) ² x sprir | | · · · · · · · · · · · · · · · · · · · | | | | (d) | | • • | - (d) or (d) - (c) | | ± | | = | | psi | (e) | | • | Flowing column to n | | | | _ | | psi | (f) | | | w through tubing: (| | | | | | het | (-) | | - | age static meter pre
t average reading | • | er chart): | ps | sia + 12 = | | psia | (g) | | Square root | chart average readi | ng (7.30) | 2x sp. const. | | = | 251 | psia | (g) | | | even day avge. mete | | | - | = | 252 | psia | (h) | | | <u>-</u> | | | | = | 252 | psia | (i) | | $P_t = (h) + (f)$ | • | | | | | | | | | • | g shut-in pressure (| (Dwt) | | ps | sig + 12 = | Cho | psia | (j) | | Wellhead casing
Wellhead tubing | shut-in pressure (I | Dwt) | 4 | · | sig + 12 =
sig + 12 = | 639 | psia | | | Wellhead casing
Wellhead tubing
P _C = (j) or (k) w | g shut-in pressure (I
whichever well flow | Dwt)
red through | | ps | - | 639
639 | psia | (k) | | Wellhead casing
Wellhead tubing
P _C = (j) or (k) w
Flowing Temp. | g shut-in pressure (I
vhichever well flow
(Meter Run) | Dwt)
red through | 4 | ps | - | 639 | psia
psia
• Abs | • . | | Wellhead casing
Wellhead tubing
P _C = (j) or (k) w
Flowing Temp. | g shut-in pressure (I
vhichever well flow
(Meter Run) | Dwt)
red through | | ps | - | 639
639
584 | psia Psia | (k)
(1)
(m | | Wellhead tubing | g shut-in pressure (I
vhichever well flow
(Meter Run) | Dwt) | 5 - • F + 4€ | psps | - | 639
639
584 | psia
psia
• Abs | (k) | | Wellhead casing
Wellhead tubing
P _C = (j) or (k) w
Flowing Temp. | g shut-in pressure (I
vhichever well flow
(Meter Run) | Dwt) | | psps | - | 639
639
584 | psia
psia
• Abs | (k)
(l)
(m | | Wellhead casing Wellhead tubing P _C = (j) or (k) w Flowing Temp. P _d = ½ P _C = ½ (| g shut-in pressure (I
vhichever well flow
(Meter Run) | ped through | ow rate cal | psps | - | 639
639
584 | psia
psia
• Abs | (k
(l)
(m
(n | | Wellhead casing
Wellhead tubing
P _C = (j) or (k) w
Flowing Temp. | y shut-in pressure (I
whichever well flow
(Meter Run)
(1) | ped through | ow rate cal | psps | - | 639
639
584 | psia
 | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing P _C = (j) or (k) w Flowing Temp. P _d = ½ P _C = ½ (| y shut-in pressure (I
whichever well flow
(Meter Run)
(1) | Dwt) | F + 46 | psps | - | 639
639
584 | psia
 | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing P _C = (j) or (k) w Flowing Temp. P _d = ½ P _C = ½ (| y shut-in pressure (I
whichever well flow
(Meter Run)
(1) | ped through | F + 46 | psps | - | 639
639
584 | psia
 | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing P _C = (j) or (k) w Flowing Temp. P _d = ½ P _C = ½ (| y shut-in pressure (I
whichever well flow
(Meter Run)
(1) | Powt) | OW RATE CAL | psps | sig + 12 =
=
=
=
* | 639
639
584 | psia
 | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing P _C = (j) or (k) w Flowing Temp. P _d = ½ P _C = ½ (| y shut-in pressure (I
whichever well flow
(Meter Run)
(1) | Powt) | LOW RATE CAL | CULATION = Y CALCULATION | sig + 12 =
=
=
=
= | 639
639
584 | psia
 | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing P _C = (j) or (k) w Flowing Temp. P _d = ½ P _C = ½ (| y shut-in pressure (I
whichever well flow
(Meter Run)
(1) | Powt) | LOW RATE CAL | .CULATION = | sig + 12 =
=
=
=
= | 639
639
584 | psia
 | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing P _C = (j) or (k) w Flowing Temp. P _d = ½ P _C = ½ (| y shut-in pressure (I
whichever well flow
(Meter Run)
(1) | Powt) | LOW RATE CAL | CULATION = Y CALCULATION | sig + 12 =
=
=
=
= | 639
639
584 | psia psia Abs psia MCF | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing P _C = (j) or (k) w Flowing Temp. P _d = ½ P _C = ½ (| y shut-in pressure (I
whichever well flow
(Meter Run)
(1) | Powt) | LOW RATE CAL | CULATION = Y CALCULATION | sig + 12 =
=
=
=
= | 639
639
584 | psia psia Abs psia MCF | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing Pc = (j) or (k) w Flowing Temp. Pd = ½ Pc = ½ (Q = | y shut-in pressure (I whichever well flow (Meter Run) (1) X | Powt) | LOW RATE CAL | CULATION = Y CALCULATION | sig + 12 =
=
=
=
= | 639
639
584 | psia psia Abs psia MCF | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing Pc = (j) or (k) w Flowing Temp. Pd = ½ Pc = ½ (C = (integrated) SUMMA | y shut-in pressure (I whichever well flow (Meter Run) (1) X | Powt) | OW RATE CAL | CULATION = Y CALCULATION | sig + 12 =
=
=
=
= | 639
639
584 | psia psia Abs psia MCF | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing Pc = (j) or (k) w Flowing Temp. Pd = ½ Pc = ½ (C = (integrated) SUMMA | y shut-in pressure (I whichever well flow (Meter Run) (1) X | Powt) | OW RATE CAL C) = d) ELIVERABILIT | Company | sig + 12 =
=
=
=
= | 639
639
584 | psia psia Abs psia MCF | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing Pc = (j) or (k) w Flowing Temp. Pd = ½ Pc = ½ (C = (integrated) SUMMA | y shut-in pressure (I whichever well flow (Meter Run) (1) X | Powt) | PSIG Mcf/day | CULATION = Y CALCULATION | sig + 12 =
=
=
=
= | 639
639
584 | psia psia Abs psia MCF | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing Pc = (j) or (k) w Flowing Temp. Pd = ½ Pc = ½ ((integrated) SUMMA | y shut-in pressure (I whichever well flow (Meter Run) (1) X X ARY | Powt) | OW RATE CAL C) = d) ELIVERABILIT | Company By | sig + 12 =
=
=
=
= | 639
639
584 | psia psia Abs psia MCF | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing Pc = (j) or (k) w Flowing Temp. Pd = ½ Pc = ½ (C = (integrated) SUMMA | y shut-in pressure (I whichever well flow (Meter Run) (1) X X ARY | Powt) | OW RATE CAL C) = d) ELIVERABILIT psia Mcf/day psia | Company By Title | sig + 12 =
=
=
=
= | 639
639
584 | psia psia Abs psia MCF | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing Pc = (j) or (k) w Flowing Temp. Pd = ½ Pc = ½ (Q = | y shut-in pressure (I whichever well flow (Meter Run) (1) X X ARY | Powt) | PSIG psig psig psig psig psig psig | COMPANY By Title Witnessed by | sig + 12 =
=
=
=
= | 639
639
584 | psia psia Abs psia MCF | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing Pc = (j) or (k) w Flowing Temp. Pd = ½ Pc = ½ (Q = | y shut-in pressure (I whichever well flow (Meter Run) (1) ARY | Powt) | PSIG psig psig psig psig psig psig | COMPANY By Title Witnessed by | sig + 12 =
=
=
=
= | 639
639
584 | psia psia Abs psia MCF | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing Pc = (j) or (k) w Flowing Temp. Pd = ½ Pc = ½ (C = | y shut-in pressure (I whichever well flow (Meter Run) (1) ARY | Ped through $ \frac{FL}{V(c)} $ $ \frac{P^2_c - P^2_d}{P^2_c - P^2_w} = \frac{1}{2} $ | PSIA | COMPANY By Title Witnessed by | 85 Potential Control of the | 639
639
584 | psia psia Abs psia MCF | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing Pc = (j) or (k) w Flowing Temp. Pd = ½ Pc = ½ (| g shut-in pressure (I whichever well flow (Meter Run) (1) ARY of completion test. | Pc-Pd Pc-Pw REM | PSIA | COMPANY By Title Witnessed by Company ION CALCULATION | 85 Potential Control of the | 576
576
576 | psia psia psia Abs psia MCF | (k) (l) (m) (n) | | Wellhead casing Wellhead tubing Pc = (j) or (k) w Flowing Temp. Pd = ½ Pc = ½ (C = | y shut-in pressure (I whichever well flow (Meter Run) (1) ARY | Ped through $ \frac{FL}{V(c)} $ $ \frac{P^2_c - P^2_d}{P^2_c - P^2_w} = \frac{1}{2} $ | PSIQ PSIQ PSIQ PSIQ PSIQ PSIQ PSIQ PSIQ | COMPANY By Title Witnessed by Company ION CALCULATION (1-e-s) | 85 = | 576
576
576 | psia psia Abs psia MCF | (k)
(l)
(m)
(n) | | Wellhead casing Wellhead tubing C_c = (j) or (k) w Flowing Temp. C_d = ½ P_c = ½ (P | g shut-in pressure (I whichever well flow (Meter Run) (1) ARY of completion test. | Pc-Pd Pc-Pw REM | PSIQ PSIQ PSIQ PSIQ PSIQ PSIQ PSIQ PSIQ | COMPANY By Title Witnessed by Company ION CALCULATION | .85 | 576
576
576 | psia psia psia Abs psia MCF | (k) (l) (m) (n) | | Wellhead casing Wellhead tubing C_c = (j) or (k) w Flowing Temp. C_d = ½ P_c = ½ (P | g shut-in pressure (I whichever well flow (Meter Run) (1) ARY of completion test. | Pc-Pd Pc-Pw REM | PSIQ PSIQ PSIQ PSIQ PSIQ PSIQ PSIQ PSIQ | COMPANY By Title Witnessed by Company ION CALCULATION (1-e-s) | 85 = | 576
576 | psia psia psia Abs psia MCF | (k) (l) (m) (n) | | | | | OIL CONSER | VATION | COMMISS | 5101 | |---|--|---|--|----------|---------|------| | | | | OIL CONSERVATION COMMISSIO AZTEC DISTRICT OFFICE | | | | | | | | No. Copies Pa | sceived | | | | | | | Dis | STRIBU | | | | | | | | | 16.1ED | | | | | | , system | <u> </u> | | | | | | • | l et. Fe | | | | | | | | * marion Office | | | | | | | | ≥ no Lena Offic | <u> </u> | | | | - | | | 2 G S. | | | | | | | | ansporter | | | | | | | | File | | | L | | • | | | | | | | \$.