Form C-122 | MULTI-POINT BACK | PRESSURE | TEST | FOR | GAS | WELLS | |------------------|----------|------|-----|-----|-------| |------------------|----------|------|-----|-----|-------| | -4 | ٠. | - | 0-I~~ | |--------|----|----|-------| | Revise | d | 12 | -1-55 | | Po | ol | Basi | n | | | Formatio | n Dak | tota | | County_ | | Son Jus | | |--|--|--------------------------|---------------------------|--------------------------|--|--|--|--------------------------------------|--|---|--------------|--|----------------| | | | | | | | | | | | Date of | | | | | Co | mpany | So | uther | n Unior | n Prod | i. Co. | Lease | Re- | 18 | We | 1006 | 1/24/ | 02 | | Un | it - | G ; | Sec. | 31 Tw | n. 29 | 2-11 R | | Draw | ha | Southern | TT 140. | 2 - | <u> </u> | .68 | | | | | | | | | | | | | | | 30lı | | | | | Gas | s Pay: | From_ | 616 | C_To_ | 6346 | L6 | 5304 z | .700 | | 4413 | _Bar.Pr | ess | 12.00 | | Pro | ducing | Thru | : Ca | sing | | T | ubing | XX Sin | Type We | ell <u>s</u> | ingle (| as | | | Dat | e of Co | mplet | ion:_ | 1-10 | /62 | Packe | er | | keserve | enhe sd-G.
oir Tem p. | G. or | G.O. Du | al | | | | | | | | | | ED DATA | | | | | | | Tes | ted Thr | ough | (Pro | <u>ver) ((</u> | Choke | (Meter | Σ | | | Туре Тар | os | | | | - | (Pro | ver) | | Flow Da | | Diff. | Temp. | Tubing | Data | Casing I | ata | Ī . | | | No. | | nek)k | (Qasa | Bèsec) I | | 1 | 1 | 1 | Ī | i | 1 | 1 . | ration of Flow | | SI | | | | | hark | h _w | | 20µ6 | · F. | psig | F. | | Hr. | | 1. | | | 3/ | 4 | 361 | | 840 | 367 | 8),0 | 20/16
8/17 | | | days | | 2.
3. | | | | | | - | | | | | | | hrg. | | 4. | | | | | | | | | | | | | | | 5. | | | | | | + | | | | | | | | | _ | | | | | | ressure | FLOW CALCULATIONS essure Flow Temp. Gravit Factor Factor | | | cy Compress. Rate of Factor Q-MCF | | | Flow | | No. | | | | | | | #2C1 | tor i | Factor | Pacto | r | O_MCGE | חול | | | (21 | -Hou | r) | $\sqrt{h_{\mathbf{W}}p}$ | | psia | raci | cor | Factor | Facto | r | Q-MCFF | D
5 psia | | | (24
12.3 6 | -How
50 | r) | √ h _w p | | | raci | cor | Factor | Facto
Fpv | r | Q-MCFF | D
5 psia | | | (2 <u>1</u> | -Hou | r) | √ h _w p | | psia | Fact | cor | Factor
Fg | F _{pv} | r | Q-MCFF
@ 15.02 | D
5 psia | | | 12.36 | -Hou | r) | √ h _w p | | psia | Fact | cor | Factor
Fg | F _{pv} | r | Q-MCFF
@ 15.02 | D
5 psia | | 1.
2.
3.
4. | (24
12,36 | -How
50 | r) | √ h _w p | | psia | Fact | cor | Factor
Fg | F _{pv} | r | Q-MCFF
@ 15.02 | D
5 psia | | 1.
2.
3.
4.
5. | 12,36 | 50 | | | f | psia 373 PR | Fact
F ₁
.9777
ESSURE CA | t | ractor
Fg
_9258 | Facto
Fpv
1.040 | r | Q-MCFF
• 15.02 | D
5 psia | | 1.
2.
3.
4.
5. | (24
12,36 | ydroc | arbon | Ratio | f | psia 373 PR | Fact
F ₁
.9777
ESSURE CA | t | Factor
Fg
.9258 | Facto Fpv 1.046 | ty Sepa | Q-MCFF
• 15.02
 | D
5 psia | | 1.
2.
3.
4.
5. | 12.36 | ydroc | arbon | Ratio | f | psia 373 PR | Fact
F ₁
.9777
ESSURE CA | t | Factor
Fg
.9258 | Facto Fpv 1.046 | ty Sepa | Q-MCFF
• 15.02
 | D
5 psia | | 1.
2.
3.
4.
5. | liquid H | ydroc | arbon | Ratio | f | psia 373 PR | Fact
F ₁
.9777
ESSURE CA | t | Pactor Fg 9258 Specis | Facto Fpv 1.046 | ty Sepa | Q-MCFF
15.02
131
rator G
ing Flu | D
5 psia | | 1.
2.
3.
4.
5. | 12.36 | ydroc | arbon | Ratio | ns | psia 373 PR | ESSURE CA | ALCUIATIO | Pactor Fg 9258 Specis | Facto Fpv 1.046 | ty Sepa | rator Ging Flu | D
5 psia | | 1. 2. 3. 4. 5. 1. No. 1. | liquid H | ydroc | earbon | Ratio ocarbon (1- | ns | psia 373 PR | ESSURE CA | t | Pactor Fg 9258 Specimon Specimon Pc | Facto
Fpv
1.040
fic Gravit
2058 | y Sepa | rator Ging Flu | D
5 psia | | 1. 2. 3. 4. 5. 1. No | liquid H | ydroc | earbon | Ratio ocarbon (1- | ns | psia 373 PR | ESSURE CA | ALCUIATIO | Pw2 | Facto
Fpv
1.040 | y Sepa | rator Ging Flu | D
5 psia | | 1. 2. 3. 4. 5. No. No. 1. 2. 3. 4. | liquid H | ydroc | earbon | Ratio ocarbon (1- | ns | psia 373 PR | ESSURE CA | ALCUIATIO | Pw2 | Facto
Fpv
1.040
fic Gravit
2058 | y Sepa | rator Ging Flu | D
5 psia | | 1. 2. 3. 4. 5. 5. No. No | liquid H | ydroc | earbon | Ratio ocarbon (1- | ns | psia 373 PR | ESSURE CA | ALCUIATIO | Pw2 | Facto
Fpv
1.040
fic Gravit
2058 | y Sepa | rator Ging Flu | D
5 psia | | 1. 2. 3. 4. 5. No | Pw Pt (ps | ydrod
iquid
ia) | arbon Hydr Pt al: | Ratio ocarbon (1. | nse=s) | psia 373 PR (F _c Q) ² | Fact Fi 9777 ESSURE CA cf/bbl. deg. (Fc (1- | Q) ²
e ^{-s}) | Pw2 | Facto
Fpv
1.040
fic Gravit
2058 | y Sepa | rator Ging Flu | D
5 psia | | 1. 2. 3. 4. 5. No. No. Absocomp | Pw Pt (ps | ydrod
iquid
ia) | arbon Hydr Pt al: thern | Ratio ocarbon (1- | ns_e=s) | psia 373 PRI (F _c Q) ² | essure carefolded (For (1- | Q) ² e-s) | Factor Fg 9258 Special Special Pc Pw2 737.9 | Facto
Fpv
1.040
Pic Gravit
2058
Pc-Pw
3497.5 | y Sepa | rator Ging Flu | D
5 psia | | as I ravido Composition Compos | Pw Pt (ps lute Por ANY ESS T and T: ESSED | ydrodiquid ia) tenti Son | arbon Hydr Pt al: thern | Ratio ocarbon (1- | f same series of the | psia 373 PRI (F _c Q) ² ction Cornington ld, Jr. | Pact Fi 9777 ESSURE CA cf/bbl. deg. (Fc (1- | Q) ² e-s) | Factor Fg 9258 Special Special Pc Pw2 737.9 | Facto
Fpv
1.040
fic Gravit
2058 | y Sepa | rator Ging Flu | D
5 psia | | as I ravido Composition Compos | Pw Pt (ps lute Por ANY ESS T and T: ESSED | ydrodiquid ia) tenti Son | arbon Hydr Pt al: thern | Ratio ocarbon (1- | f same series of the | psia 373 PRI (F _c Q) ² ction Cornington ld, Jr. | Pact Fi 9777 ESSURE CA cf/bbl. deg. (Fc (1- | Q) ²
e-s) | Factor Fg 9258 Special Special Pc Pw2 737.9 | Facto
Fpv
1.040
Pic Gravit
2058
Pc-Pw
3497.5 | y Sepa | rator Ging Flu | D
5 psia | | as I ravido Composition Compos | Pw Pt (ps lute Por ANY ESS T and T: ESSED | ydrodiquid ia) tenti Son | arbon Hydr Pt al: thern | Ratio ocarbon (1- | f same series of the | psia 373 PRI (F _c Q) ² | Pact Fi 9777 ESSURE CA cf/bbl. deg. (Fc (1- | Q) ²
e-s) | Factor Fg 9258 Special Special Pc Pw2 737.9 | Facto
Fpv
1.000
Pic Gravit
2058
Pc-Pw
31,97.5 | y Sepa | Q-MCFF 15.02 131 rator G ing Flu 1235.4 | D
5 psia | ## INSTRUCTIONS This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe. The log log paper used for plotting the back pressure curve shall be of at least three inch cycles. ## NOMENCLATURE - Q = Actual rate of flow at end of flow period at W. H. working pressure (P_w) . MCF/da. @ 15.025 psia and 60° F. - $P_c=72$ hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia - Pw Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia - Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia - Pf Meter pressure, psia. - hw Differential meter pressure, inches water. - Fg Gravity correction factor. - Ft Flowing temperature correction factor. - Fny Supercompressability factor. - n _ Slope of back pressure curve. Note: If $P_{\mathbf{W}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{W}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$.