MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS | | | | | | _ | | |--------|----|---|-----|-------------|----|---| | Parrie | ٦, | 4 | 12. | - 1. | -5 | 5 | | | ol UNDESIG | NATED | F | ormation | DAKO | TA | No. | _County_ | SAN J | UAN | |--|--|-----------------|--------------------------------|---------------------------------|-----------------------|--|--|---|--------------------|--------------------------| | Ini | itial XX | Aı | nnual | | Spec | ial | | _Date of | Test | 4-28 -62 | | | npany R & C | | | | | | | | | | | Uni | it swi | Sec. <u>8</u> | _Twp3(| N Rge | •• <u>13</u> W | V_Purc | haser 80 | outhe rn U | nion | Gas Company | | Cas | sing 444 V | vt. <u>11.6</u> | _I.D | Set | at 61 | .75_Pe | rf. 59 | 8 | To6 | 100 | | Tub | oing 24 V | Vt | _I.D | Set | at_ 60 | 75 Pe | rf. 607 | 75 | ro6 | 095 | | Gas | Pay: From | 596 8_To | 6100 | L | x | rG | |] | Bar.Pre | 85 | | | ducing Thru: | - | | | | | | | | | | Dat | e of Complet | ion: | | Packer | NON | Sin | gle-Brade
Reservo | enhead-G. (| G. or G | .O. Dual | | | · | | | | | ED DATA | | * - | | | | Tes | ted Through | (Prever) | (Choke) | (Neberi) | | | | Type Tap: | 5 | | | | · · · · · · · · · · · · · · · · · · · | Flow | Data | | | Tubing | Data | Casing Da | ata | | | No. | (Prover)
(Line) | (Choke) | Press | Diff. | | | l | | | Duration of Flow | | | (Line)
Size | Size | psig | h _w | °F. | psig | °F. | psig | °F∙ | Hr. | | SI
1. | | -750 | - | | | 2022
360 | | 2022
793 | | | | 2. | | | | | | 320 | | 667 | | | | <u>3.</u> | | <u> </u> | | - | | 288 | 80 | 622 | | 3 Hours | | 5. | | | | | | | | | | | | | | | | F | LOW CAL | CULATION | S | | | | | | Coeffici | ent | P | ressure | Flow ' | Temp. | Gravity | Compres | s. | Rate of Flow | | No. | (24-Hon | r) | h. Da | nsia | Fact | tor | Factor
F | Factor F _{DV} | | Q-MCFPD
8 15.025 psia | | | | - / V | | | C 81 | | F _g | F _{pv} | | 3731 | | 1. l | | | | 300 | | | | | - | 3/31 | | 1.
2. | 12.365 | | | | | | | | | | | 1.
2.
3. | 12,307 | | | | | | | | | | | 1.
2.
3.
4.
5. | 12,365 | | | | | | | | | | | 3.
4.
5. | Liquid Hydro | d Hydroca | | · | SSURE CA | ALCUIATIO | Speci
Speci | fic Gravit | | | | 3.
4.
5. | Liquid Hydro
ity of Liqui | d Hydroca | rbons | · | cf/bbl.
deg. | The second of th | Speci
Speci | fic Gravit | P _C Cal | ing Fluid | | 3. 4. 5. 5. Sas 1. C. No. | Liquid Hydro
ity of Liqui | d Hydroca | rbons(1-e-S) | | cf/bbl.
deg. | -Q) ²
-e-s) | Speci
Speci
P _C | fic Gravit | y Flow | ing Fluid | | 3.
4.
5.
5.
No. | Liquid Hydro
ity of Liqui | d Hydroca | rbons(1-e-S) | | cf/bbl.
deg. | -Q) ²
-e-s) | Speci
Speci
P _C | fic Gravit | P _C Cal | ing Fluid | | 3.
4.
5.
5.
No. | Liquid Hydro
ity of Liqui | d Hydroca | rbons(1-e-S) | | cf/bbl.
deg. | -Q) ²
-e-s) | Speci
Speci
P _C | fic Gravit | P _C Cal | ing Fluid | | 3. 4. 5. No. 1. 2. 3. 4. 5. | Liquid Hydro
ity of Liqui
P _w
Pt (psia) | d Hydroca | rbons(1-e-s)_ | | cf/bbl.
deg. | -Q) ²
-e-s) | Speci
Speci
P _C | fic Gravit | P _C Cal | ing Fluid | | 3. 4. 5. No. 1. 2. 3. 4. 5. Absorption | Liquid Hydro ity of Liqui Pw Pt (psia) plute Potent | Pt lial:3 | F _c Q | (F _c Q) ² | Cf/bbl. deg. (F, (1- | n75 | Speci
Speci
Pc-
Pw2 | fic Gravit | P _C Cal | ing Fluid | | Absorption ADDR | Liquid Hydro ity of Liqui Pw Pt (psia) | Pt ial: | F _C Q 950 DRILLIN | (F _c Q) ² | (F, (1- | n75 | Speci
Speci
P _c
P _w 2 | P _c -P _w ² | y Flow | ing Fluid | | Absorption Additional Commerce of the | Liquid Hydro ity of Liqui Pw Pt (psia) Plute Potent PANY RESS WT and TITLE | Pt ial: | F _C Q 950 DRILLIN | (F _c Q) ² | (F, (1- | n75 | Speci
Speci
P _c
P _w 2 | fic Gravit | y Flow | I. P. Pc | | Absorption Additional Commerce of the | Liquid Hydro ity of Liqui Pw Pt (psia) Plute Potent PANY RESS WT and TITLE | Pt ial: | F _C Q 950 DRILLIN | (F _c Q) ² | cf/bbl. deg. (F. (1- | n75 | Speci
Speci
P _c
P _w 2 | P _c -P _w ² | PC Cal | Pw Pc | | Absorption Additional Commerce of the | Liquid Hydro ity of Liqui Pw Pt (psia) Plute Potent PANY RESS WT and TITLE | Pt ial: | F _C Q 950 DRILLIN | (F _c Q) ² | (F, (1- | n75 | Speci
Speci
P _c
P _w 2 | P _c -P _w ² | PC Cal | I. P. Pc | ## INSTRUCTIONS This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe. The log log paper used for plotting the back pressure curve shall be of at least three inch cycles. ## NOMENCLATURE - Q = Actual rate of flow at end of flow period at W. H. working pressure (P_W). MCF/da. @ 15.025 psia and 60° F. - P_c = 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. - PwI Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia - Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia - Pf Meter pressure, psia. - hw Differential meter pressure, inches water. - F_{g} : Gravity correction factor. - F_t Flowing temperature correction factor. - $\mathbf{F}_{\mathbf{DV}}$ Supercompressability factor. - n _ Slope of back pressure curve. Note: If $P_{\mathbf{W}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{W}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$.