NEW MEXICO OIL CONSERVATION COMMISSION Santa Fe, New Mexico ## WELL RECORD Mail to District Office, Oil Conservation Commission, to which Form C-101 was sent not later than twenty days after completion of well. Follow instructions in Rules and Regulations of the Commission. Submit in QUINTUPLICATE. Depth Cleaned Out CON. UM | Well is | ·, | mpany or Opera | • | | | | | | |--|--------------------|--|--|--|---------------------------------|--------------------|----------------|---| | Vell is | W(1 | ın | y of SE | 4, of Sec3 | 5 _T | (Lease)
20 N | 3 E | NMPN | | f Section | VY A1 | dcat | ••••••••••••••••••••••••••••••••••••••• | Pool, | Sandov | al | | Count | | | 660 | feet from | South | line and | 660 | feet from | East | li- | | | 26 | | ate Land the Oil an | | | | | | | Orilling Commen | | | MAY 21, | | | | | | | | | | entury Drillin | | | | | | | Address | | Pa | rmington, No | ew Mexico | | | | *************************************** | | Elevation above s | ea level at T | op of Tubing | Head 869 | 7.0 GL | The in | formation given is | to be kept con | ifidential unt | | | | | | | | 6.10.1 12 | to be kept con | indendar unt | | | | | ΔĦ | SANDS OR 2 | ONTE C | | | | | Io 1 from N | one | ** | | | - | | | | | | | | ••••• | | | | | | | | | | •••••• | | | | | | | | • | ······································ | *************************************** | No. (|), Irom | tc | 0 | • | | | | | | TANT WATER | - | | | | | | | | elevation to which s | | | | | | | | | | to | | | | | | | | | | to | | | | | | | | | | to | | | | | | | | | •••••••••• | to | · | | feet | | | | | | | | CASING RECO | | feet. | | | | SIZE | WEIGHT
PER FOOT | NEW OI | | | | perforations | | RPOSE | | size
13 3/8 | | NEW O | R AMOUNT | CASING RECO | RD CUT AND | | 3 PU | | | | PER FOOT | NEW OI | AMOUNT 392 | KIND OF SHOE | RD CUT AND | | Sur | rpose
face | | 13 3/8 | 48 ♣ | NEW OI USED | R AMOUNT 7 392 | KIND OF SHOE | RD CUT AND | | Sur | RPOSE | | 13 3/8 | 48 ♣ | NEW OI USED | R AMOUNT 7 392 7 1205 | KIND OF SHOE Baker Baker | CUT AND PULLED FROM | | Sur | rpose
face | | 13 3/8
9 5/8 | 48 # 36 # ze of | NEW OI USED | R AMOUNT 7 392 7 1205 MUDDING | RIND OF SHOE Baker Baker AND CEMENT | RD CUT AND | PERFORATIONS | Sur | rpose
face
ermediat | | 13 3/8 9 5/8 SIZE OF SIZE OF CA | 2E OF ISING | New of USED New New | R AMOUNT 7 392 7 1205 MUDDING A NO. SACKS OF CEMENT | Baker Baker Baker METHOD USED | CUT AND PULLED FROM | | Sur | repose face ermediat | | 13 3/8 9 5/8 SIZE OF SIZE OF CA | 48 # 36 # ze of | New of USED New New New 404' | AMOUNT 392 1205 MUDDING NO. SACKS OF CEMENT SITCULETED | RIND OF SHOE Baker Baker AND CEMENT | CUT AND PULLED FROM | PERFORATIONS | Sur Sur Into | repose face ermediat | | 13 3/8
9 5/8
9 5/8
81ZE OF 81Z
HOLE CA | 2E OF ISING | New of USED New New New 404' | R AMOUNT 7 392 7 1205 MUDDING A NO. SACKS OF CEMENT | Baker Baker Baker METHOD USED | CUT AND PULLED FROM ING RECORD | PERFORATIONS | Sur Sur Into | repose face ermediat | ## RECORD OF DRILL-STEM AND SPECIAL TESTS If drill-stem or other special tests or dexiation surveys were made, submit report on separate sheet and attach hereto ## TOOLS USED | | ols were us | sed from | 0 feet to 3675 | feet, ar | nd from | | feet to | feet. | | |---|---|--|---|--|--|---------------------------------------|--|---|--| | Cable tool | | | feet to | | | | | | | | | | | PROI | UCTION | | | | | | |) D- | | | None , 19 | | | | | | | | | | ••• | | | | | | | | | OIL WEI | LL: The | production | during the first 24 hours was | | barr | els of liqu | id of which | | | | | was | oil; | % was emulsion; | *************************************** | .% water; | and | % w | as sediment. A.P.I. | | | | Grav | vi t y | | • | | | | | | | OAC MAIDI | | | during the first 24 hours was | | MCE alu | | | harrele of | | | GAS WEI | | | | | wi,c.r. più | | | Jan 1 1 15 OI | | | | liqu | id Hydroca | rbon. Shut in Pressurelt |) S. | | | | | | | Length o | f Time Sh | ut in | | •••• | | | | | | | PLE | ASE IND | ICATE BI | LOW FORMATION TOPS (IN CO | NFORMAN | CE WITH | GEOGR. | APHICAL SECTIO | ON OF STATE): | | | | | | Southeastern New Mexico | | | | Northwestern N | lew Mexico | | | Γ. Anhy | · | | T. Devonian | | | | Ojo Alamo | | | | Γ. Salt | | | T. Silurian | | | | Kirtland-Fruitland | | | | | | т. | | | | | <u> </u> | | | | | | | • | | | | | | | | | | | | T. McKee T. Ellenburger | | | | | | | ~ | ~ | | | | | | Mancos | | | | | - | | T. Granite | | | | Dakota
Morrison | | | | Γ. Glori | eta | | т | · . | | т. | Morrison | VOLCANIC - | | | | | | Т | | | т. | Penn | NO TOPS | | | T. Tubb | 08 | | T | | ···· | | •• | | | | T. Abo | | | T | | | | | | | | | | | | | | _ | ••••• | | | | T. Miss. | | | T | | | т. | *************************************** | ••••• | | | | 1 | ŧ i | FORMATI | ON RECC | 1 | lens t | | | | | From | То | Thickness
in Feet | Formation | From | То | Thickness
in Feet | Forn | nation | | | | | | | | | | | | | | | | | | | l l | 1 | } | | | | | | 1 1 | | H | | | | | | | 0 | 10 | 10 | Cong composed of Rhyol | ite | | | | | | | 0 | 10 | | Tuff - Tr shale | 1760 | 2055 | 295 | Rhyolite Tu | ~ | | | 0
10 | 80 | 70 | Tuff - Tr shale
Sandstone Cong - Quart | 1760
2 2055 | 2185 | 130 | Rhyolite Flo | OW . | | | 10 | 80 | 70 | Tuff - Tr shale
Sandstone Cong - Quart
Feldspar & Rhyolite Tui | 1760
2055
2185 | 2185
2350 | 130
165 | Rhyolite Flo
Rhyolite Tu | ow
eff | | | 10 | 80
90 | 70
10 | Tuff - Tr shale Sandstone Cong - Quart Feldspar & Rhyolite Tuf Quartz Latite Tuff | 2 1760
2 2055
2 2185
2350 | 2185
2350
2550 | 130
165
200 | Rhyolite Flo
Rhyolite Tu
Rhyolite Tu | ow
ifi
ifi — Fracture | | | 10
80
90 | 90
207 | 70
10
117 | Tuff - Tr shale Sandstone Cong - Quart Feldspar & Rhyolite Tuf Quartz Latite Tuff Latite Tuff - Pyritic | 1760
2055
2185
2350
2550 | 2185
2350
2550
3470 | 130
165
200
920 | Rhyolite Flo
Rhyolite Tu
Rhyolite Tu
Rhyolite Ti | ow
ff
ff – Fracture
ff – Pyrite | | | 10 | 80
90 | 70
10 | Tuff - Tr shale Sandstone Cong - Quart Feldspar & Rhyolite Tuf Quartz Latite Tuff | 2 1760
2 2055
2 2185
2350 | 2185
2350
2550 | 130
165
200 | Rhyolite Flo
Rhyolite Tu
Rhyolite Tu
Rhyolite Tu
Rhyolite Tu | ow
ff
ff – Fracture
ff – Pyrite | | | 10
80
90
207 | 90
207
214 | 70
10
117
7 | Tuff - Tr shale Sandstone Cong - Quart Feldspar & Rhyolite Tuf Quartz Latite Tuff Latite Tuff - Pyritic Sandstone | 2055
Ef 2185
2350
2550
3470 | 2185
2350
2550
3470
3650 | 130
165
200
920
180 | Rhyolite Flo
Rhyolite Tu
Rhyolite Tu
Rhyolite Tu
Rhyolite Tu | ow
iff
iff — Practure
iff — Pyrite
iff — May be | | | 10
80
90
207
214
220
460 | 90
207
214
220
460
860 | 70
10
117
7
6
240
400 | Tuff - Tr shale Sandstone Cong - Quart Feldspar & Rhyolite Tuf Quartz Latite Tuff Latite Tuff - Pyritic Sandstone Latite Tuff Latite Tuff Latite Tuff - Pyrite Rhyolite Tuff - Pyrite | 2055
Ef 2185
2350
2550
3470
3650 | 2185
2350
2550
3470
3650
3675 | 130
165
200
920
180 | Rhyolite Flo
Rhyolite Tu
Rhyolite Tu
Rhyolite Tu
Rhyolite Tu | ow
iff
iff — Practure
iff — Pyrite
iff — May be | | | 10
80
90
207
214
220
460
860 | 90
207
214
220
460
860
1515 | 70
10
117
7
6
240
400
655 | Tuff - Tr shale Sandstone Cong - Quart Feldspar & Rhyolite Tuf Quartz Latite Tuff Latite Tuff - Pyritic Sandstone Latite Tuff Latite Tuff Latite Tuff - Pyrite Rhyolite Tuff - Pyrite Rhyolite Tuff - Pyrite | 2 1760
2 2055
2 185
2 350
2 550
3 470
3 6 50 | 2185
2350
2550
3470
3650
3675 | 130
165
200
920
180 | Rhyolite Flo
Rhyolite Tu
Rhyolite Tu
Rhyolite Tu
Rhyolite Tu | ow
iff
iff — Practure
iff — Pyrite
iff — May be | | | 10
80
90
207
214
220
460
860 | 90
207
214
220
460
860
1515
1560 | 70
10
117
7
6
240
400
655
45 | Tuff - Tr shale Sandstone Cong - Quart Feldspar & Rhyolite Tuf Quartz Latite Tuff Latite Tuff - Pyritic Sandstone Latite Tuff Latite Tuff - Pyrite Rhyolite Tuff - Pyrite Rhyolite Tuff - Pyrite Quartz Latite Tuff Pyrite | 2055
Ef 2185
2350
2550
3470
3650 | 2185
2350
2550
3470
3650
3675 | 130
165
200
920
180
25 | Rhyolite Flo
Rhyolite Tu
Rhyolite Tu
Rhyolite Tu
Rhyolite Tu | ow
iff
iff - Fracture
iff - Pyrite
iff - May be
Agglosse | | | 10
80
90
207
214
220
460
860
1515
1560 | 90
207
214
220
460
860
1515
1560
1655 | 70
10
117
7
6
240
400
655
45
95 | Tuff - Tr shale Sandstone Cong - Quart Feldspar & Rhyolite Tuf Quartz Latite Tuff Latite Tuff - Pyritic Sandstone Latite Tuff - Pyrite Rhyolite Tuff - Pyrite Rhyolite Tuff - Pyrite Quartz Latite Tuff Pyrite Rhyolite Tuff - Pyrite | 2055
Ef 2055
2185
2350
2550
3470
3650 | 2185
2350
2550
3470
3650
3675 | 130
165
200
920
180
25 | Rhyolite Floring Rhyolite Turn | ow
iff
iff - Fracture
iff - Pyrite
iff - May be
Agglosse | | | 10
80
90
207
214
220
460
860
1515
1560
1655 | 90
207
214
220
460
860
1515
1560
1655
1710 | 70
10
117
7
6
240
400
655
45
95
55 | Tuff - Tr shale Sandstone Cong - Quart Feldspar & Rhyolite Tuf Quartz Latite Tuff Latite Tuff - Pyritic Sandstone Latite Tuff - Pyrite Rhyolite Tuff - Pyrite Rhyolite Tuff - Pyrite Quartz Latite Tuff Pyrite Quartz Latite Tuff Pyrite Quartz Latite Tuff Pyrite | 2055
Ef 2055
2185
2350
2550
3470
3650 | 2185
2350
2550
3470
3650
3675 | 130
165
200
920
180
25 | Rhyolite Floring Rhyolite Turn | ow
iff
iff - Fracture
iff - Pyrite
iff - May be
Agglosse | | | 10
80
90
207
214
220
460
860
1515
1560
1655
1710 | 90
207
214
220
460
860
1515
1560
1655
1710
1740 | 70
10
117
7
6
240
400
655
45
95
55
30 | Tuff - Tr shale Sandstone Cong - Quart Feldspar & Rhyolite Tuf Quartz Latite Tuff Latite Tuff - Pyritic Sandstone Latite Tuff Latite Tuff - Pyrite Rhyolite Tuff - Pyrite Rhyolite Tuff - Pyrite Rhyolite Tuff - Pyrite Quartz Latite Tuff Pyrite Rhyolite Tuff Pyrite Rhyolite Tuff Pyrite Rhyolite Tuff Pyrite Rhyolite Tuff Pyrite | 2055
Ef 2055
2185
2350
2550
3470
3650 | 2185
2350
2550
3470
3650
3675 | 130
165
200
920
180
25 | Rhyolite Floring Rhyolite Turn | ow
iff
iff - Practure
iff - Pyrite
iff - May be
Agglome | | | 10
80
90
207
214
220
460
860
1515
1560
1655 | 90
207
214
220
460
860
1515
1560
1655
1710 | 70
10
117
7
6
240
400
655
45
95
55 | Tuff - Tr shale Sandstone Cong - Quart Feldspar & Rhyolite Tuf Quartz Latite Tuff Latite Tuff - Pyritic Sandstone Latite Tuff - Pyrite Rhyolite Tuff - Pyrite Rhyolite Tuff - Pyrite Quartz Latite Tuff Pyrite Quartz Latite Tuff Pyrite Quartz Latite Tuff Pyrite | 2055
Ef 2055
2185
2350
2550
3470
3650 | 2185
2350
2550
3470
3650
3675 | 130
165
200
920
180
25 | Rhyolite Floring Rhyolite Turn | ow
iff
iff - Practure
iff - Pyrite
iff - May be
Agglome | | | 10
80
90
207
214
220
460
860
1515
1560
1655
1710 | 90
207
214
220
460
860
1515
1560
1655
1710
1740 | 70
10
117
7
6
240
400
655
45
95
55
30 | Tuff - Tr shale Sandstone Cong - Quart Feldspar & Rhyolite Tuf Quartz Latite Tuff Latite Tuff - Pyritic Sandstone Latite Tuff Latite Tuff - Pyrite Rhyolite Tuff - Pyrite Rhyolite Tuff - Pyrite Rhyolite Tuff - Pyrite Quartz Latite Tuff Pyrite Rhyolite Tuff Pyrite Rhyolite Tuff Pyrite Rhyolite Tuff Pyrite Rhyolite Tuff Pyrite | 2055
Ef 2055
2185
2350
2550
3470
3650 | 2185
2350
2550
3470
3650
3675 | 130
165
200
920
180
25 | Rhyolite Floring Rhyolite Turn | ow
iff
iff - Practure
iff - Pyrite
iff - May be
Agglome | | | 10
80
90
207
214
220
460
860
1515
1560
1655
1710 | 90
207
214
220
460
860
1515
1560
1655
1710
1740 | 70
10
117
7
6
240
400
655
45
95
55
30 | Tuff - Tr shale Sandstone Cong - Quart Feldspar & Rhyolite Tuf Quartz Latite Tuff Latite Tuff - Pyritic Sandstone Latite Tuff Latite Tuff - Pyrite Rhyolite Tuff - Pyrite Rhyolite Tuff - Pyrite Rhyolite Tuff - Pyrite Quartz Latite Tuff Pyrite Rhyolite Tuff Pyrite Rhyolite Tuff Pyrite Rhyolite Tuff Pyrite Rhyolite Tuff Pyrite | 2055
Ef 2055
2185
2350
2550
3470
3650 | 2185
2350
2550
3470
3650
3675 | 130
165
200
920
180
25 | Rhyolite Floring Rhyolite Turn | ow
iff
iff - Practure
iff - Pyrite
iff - May be
Agglome | | ATTACH SEPARATE SHEET IF ADDITIONAL SPACE IS NEEDED | as can be determined from available records. APRIL 4, 1961 | | |---|--| | as can be determined from available records. | | Company or Operator Dewey Watson Name | pany | 855 Petroleum Club Bidg., | Denver 2, Colo. | |-------|---------------------------|-----------------| | | District Engineer | | | ••••• | Position or Title | |