

5309 Wurzbach, Suite 100 San Antonio, Texas 78238 (210) 680-3767 (210) 680-3763 FAX

April 1, 1999

Mr. Tony Savoie TEXAS - NEW MEXICO PIPE LINE COMPANY P.O. Box 1030 Jal, New Mexico 88252

Re: Closure Report TNM-98-04 Lot 15, Section 6, Township 16 South, Range 36 East Lea County, New Mexico Job No. 810059-1

Dear Mr. Savoie:

Transmitted with this letter is the Closure Report for the Texas-New Mexico Pipe Line (TNMPL) site TNM-98-04 located approximately 2.5 miles west of Lovington in Lea County, New Mexico.

Please contact me at (210) 680-3767 if you have any questions or need additional information.

Respectfully,

Therera Nic

Theresa Nix Project Manager

Enclosure

cc: Marc Oler; Equilon William C. Olson, OCD Santa Fe Chris Williams, OCD Hobbs

mkh\p:\trimpf\810059\closure\rclosure.doc

CLOSURE REPORT

TEXAS - NEW MEXICO PIPE LINE COMPANY TNM-98-04 LOT 15, SECTION 6, TOWNSHIP 16 SOUTH, RANGE 36 EAST LEA COUNTY, NEW MEXICO

5309 Wurzbach, Suite 100 San Antonio, Texas 78238 (210) 680-3767 (210) 680-3763 FAX

CLOSURE REPORT

TEXAS - NEW MEXICO PIPE LINE COMPANY TNM-98-04 LOT 15, SECTION 6, TOWNSHIP 16 SOUTH, RANGE 36 EAST LEA COUNTY, NEW MEXICO

PREPARED FOR:

TEXAS - NEW MEXICO PIPE LINE COMPANY P. O. Box 1030 Jal, New Mexico 88252

Mr. Tony Savoie

PREPARED BY:

KEI

M. Kay Hawthorne, REM

Theresa Nix

Theresa Nix Project Manager

Michael

KEI Job No. 810059-1-0

April 1, 1999

PURPOSE AND SCOPE	1
SITE LOCATION AND BACKGROUND	1
CLOSURE ACTIVITIES WATER WELL SURVEY CLOSURE STANDARDS SOIL INVESTIGATION SOIL DESCRIPTION SOIL DESCRIPTION SOIL SAMPLING & ANALYTICAL REPORTS SOIL EXCAVATION, CHARACTERIZATION, LANDFARMING, AND BACKFILLING	1
CLOSURE SUMMARY	4

FIGURES

FIG. 1 - SITE LOCATION MAP FIG. 2 - SITE DETAILS FIG. 3 - LOG AND DETAILS OF SOIL BORING SB-1

TABLES

GENERAL NOTES TABLE I - SUMMARY OF SOIL RESULTS - BTEX AND TPH

APPENDICES

APPENDIX A - WATER WELL INFORMATION APPENDIX B - ANALYTICAL LABORATORY RESULTS CHAIN-OF-CUSTODY DOCUMENTATION APPENDIX C - QA/QC PROCEDURES APPENDIX D - DISPOSAL DOCUMENTATION

PURPOSE AND SCOPE

The objective of the reported site closure activities is to obtain closure for site TNM-98-04 based on New Mexico Oil Conservation Division (OCD) regulations. The following activities were performed to achieve this objective:

- determination of site specific closure standards
- removal of impacted soil
- characterization of removed impacted soil
- confirmation sampling in excavation
- off-site landfarming of impacted soil

SITE LOCATION AND BACKGROUND

The Texas - New Mexico Pipe Line Company (TNMPL) release site TNM-98-04 is located approximately 2.5 miles west of Lovington, bea County, New Mexico in Lot 15, Section 6, Township 16 South, Range 36 East (latitude 32° 57' 15" N, longitude 103° 23' 36" W) . A site location map is presented as FIG. 1. The site is located on property owned by Mr. Dan Field. Site details are presented on FIG. 2.

The release was discovered and reported to the New Mexico OCD on January 31, 1998. According to TNMPL estimates, approximately 30 barrels were released from a 4-inch-crude oil pipeline due to external corrosion, and approximately 25 barrels were recovered during initial abatement activities. Apparent hydrocarbon impact to soils was identified at the subject site and the leak was excavated and repaired at the time of discovery. Affected soils were excavated and placed on plastic pending transport to the landfarm facility.

CLOSURE ACTIVITIES

WATER WELL SURVEY

A survey of registered water wells was conducted for the area within a 1 mile radius of the site. According to water well information provided by the New Mexico Office of the State Engineer (OSE), 123 registered water wells are possibly located within a 1 mile radius of the site. The most recent water level reported for this section was taken in 1986 at well number 112414, which is within 1 mile of the site. This well had a measured depth to water of approximately <u>55 feet</u> below ground surface and a total well depth of 102 feet. Water well information provided by OSE is presented as APPENDIX A.

CLOSURE STANDARDS

The New Mexico OCD Guidelines for Remediation of Leaks, Spills, and Releases contains standard criteria for remediation activities. A ranking analysis for the site was performed to determine appropriate soil remediation levels. The ranking analysis is as follows:

Depth to Ground Water	Greater than 50 Feet	10 Points
Well Head Protection	Greater Than 1000 Feet to Water Source Greater Than 200 Feet to Private Water Source	0 Points
Surface Water Body	Greater Than 1000 Feet	0 Points

Total Ranking Score 10 Points

Based on the total ranking score, the closure objectives for this site for concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX), and total petroleum hydrocarbons (TPH) are summarized below.

CONSTITUENT	CLOSURE CONCENTRATIONS (mg/kg)
BENZENE	10
BTEX	50
ТРН	1000 + Background Concentration

SOIL INVESTIGATION

During the subsurface investigation, 1 soil boring (designated SB-1) was installed utilizing air rotary drilling. Soil samples were collected at selected intervals from the ground surface to the bottom of the boring. The soils were classified in the field, soil samples were field screened, and selected samples were prepared and shipped to the laboratory for analysis.

SOIL DESCRIPTION

The subsurface soil profile was classified in general accordance with the Unified Soil Classification System by visually observing the soil samples obtained during the investigation. In general, 3 soil types were encountered. A general description, approximate thickness, and head-space sample results for each soil type are as follows:

<u>Soil Type I</u>

This soil type was encountered at the ground surface and consisted of dark brown clay. The clay was medium stiff and very moist. The observed thickness of this soil type was approximately 6 inches. Samples of this soil type were not collected.

<u>Soil Type II</u>

This soil type consisted of tan sand and was encountered below Soil Type I. The sand was fine to medium grained, slightly clayey with depth, very calcareous, loose, and moist. The observed thickness of this soil type was approximately 9 feet. Head-space readings from samples of this soil type ranged from not detected (ND) to 138 ppm.

<u>Soil Type III</u>

This soil type consisted of light pink sandstone and was encountered below Soil Type II. The sandstone was fine to medium grained, hard, and dry. The observed thickness of this soil type was approximately 6 inches to the bottom of the boring. Head-space readings from the sample of this soil type were ND.

The boring log indicating the subsurface soil profile, depths at which soil samples were obtained, head-space results, laboratory results, and generalized geologic profile is presented on FIG. 3.

SOIL SAMPLING AND ANALYTICAL RESULTS

Two soil samples were selected from the boring based on the following criteria:

- the sample collected from 0 to 2 feet below ground surface (highest PID reading)
- the sample collected from the bottom of the soil boring

Soil samples selected for analytical testing consisted of the following:

- two soil samples from the soil boring were tested for benzene, toluene, ethylbenzene, and xylenes (BTEX), and total petroleum hydrocarbons diesel range organics (TPH-DRO)
- the soil sample exhibiting the highest concentration of TPH was also tested for synthetic precipitate leaching procedure (SPLP) volatile organic compounds (VOC), SPLP semi volatile organic compounds (SVOC), and SPLP TPH
- laboratory results for the selected soil samples indicated the following concentration ranges:

CONSTITUENT	CONCENTRATION RANGE
BENZENE	ND to 0.780 mg/kg
BTEX	ND to 14.050 mg/kg
ТРН	52.6 to 516 ppm
SPLP SVOC	ND
SPLP VOC	ND to 0.005 mg/l
SPLP TPH	ND

SOIL EXCAVATION, CHARACTERIZATION, LANDFARMING, AND BACKFILLING

Hydrocarbon impact to soil was visually determined on site. Impacted soil was excavated and stockpiled on plastic. Stockpile soil samples were collected and submitted for analysis. The measurements of the excavation and soils removed are summarized below:

APPROXIMATE MEASUREMENTS	VALUE
Length	180 to 200 feet
Width	20 to 25 feet
Area	4,500 square feet)
Depth	3 to 4 feet
Volume Landfarmed	382 cubic yards
Approximate Depth to Water (based on well records within a 1 mile radius of the site)	∑55 feet

Soils from the Initial Stockpile and Stockpiles SP-1 through SP-4 were hauled to C&C Landfarm in New Mexico on January 12, 1999. Disposal documentation is included in APPENDIX D. Analytical results from composite samples of the stockpile indicated the following concentration ranges:

CONSTITUENT	CONCENTRATION RANGE (mg/kg)
BENZENE	ND
BTEX	3.318
ТРН	712 to 4,730

During investigations performed by KEI, composite soil samples from the sides and bottom of the excavated area were submitted for determination of BTEX and TPH concentrations. For sampling purposes, the excavated area was divided into 4 sections: Section A, Section B, Section C, and Section D. Two trenches were installed adjacent to the pipeline to determine the approximate lateral and vertical extent of the hydrocarbon impact in proximity to the pipeline. Soil samples were collected and submitted for determination of TPH concentrations. KEI began excavation at the site on December 15, 1998. Excavation samples collected on December 16, 1998, revealed TPH concentrations above closure limits. Additional excavation and sampling activities were conducted on December 22, 23, and 28, 1998. Final concentration ranges representing soil remaining in the excavation are summarized below:

CONSTITUENT	SECTION A (mg/kg)	SECTION B (mg/kg)	SECTION C (mg/kg)	SECTION D (mg/kg)	TRENCH 1 (mg/kg)	TRENCH 2 (mg/kg)
BENZENE	0.283	ND	ND	ND		
BTEX	8.196	1.567	ND	3.474		
ТРН	ND to 565	ND to 337	67	337	ND to 200	ND

Approximately 168 cubic yards of caliche and 96 cubic yards of top soil were used to backfill the excavation. Samples of backfill materials were analyzed for BTEX and TPH concentrations. Laboratory results were ND for all constituents. The project site was graded and closure activities completed on January 8, 1999.

Soil analytical results are summarized in TABLE I. The laboratory reports and chain-ofcustody documentation are provided in APPENDIX B. Sampling locations at the subject site are shown on FIG. 2.

CLOSURE SUMMARY

The following can be summarized from field and laboratory data:

- site specific closure criteria were determined using OCD regulations
- a soil investigation was conducted to evaluate site conditions and estimate required soil excavation area
- previously impacted soil was excavated, stockpiled, and landfarmed off-site
- samples obtained from the excavated area of the site indicated BTEX and TPH concentrations below OCD site specific closure standards

Based on activities completed at the site and analytical results from selected soil samples, we request the site be closed under OCD regulations.

1 A.

LEGEND

Clay (CL), medium stiff, dark brown, very moist.

Sand (SM), fine to medium grained, slightly clayey with depth, very calcareous, loose, tan, moist.

Sandstone, fine to medium grained, hard, light pink, dry.

Indicates the depth interval from which a soil sample was selected and prepared for field head-space and/or laboratory analysis. The soil samples were obtained using a split-spoon sampler.

) Indicates sample selected for laboratory analysis.

a	Benzene Concentration (ma/ka)	

BTEX = Total BTEX Concentration (mg/kg)

- TPH = Total Petroleum Hydrocarbon Concentration (mg/kg)
- PID = Head-space readings in ppm obtained with a photo-ionization detector.
- ND = Indicates the concentration was below laboratory detection limits.

NOTES:

- 1. The soil boring was advanced utilizing an air rotary rig on November 5, 1998.
- 2. The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- 3. The depths indicated are referenced from the ground surface.
- 4. The soil boring was grouted to the ground surface with a cement and bentonite grout.

LOG AND DETAILS OF SOIL BORING SB-1

810059-1-0

TEXAS - NEW MEXICO PIPE LINE CO.

TNM-98-04 LEA COUNTY, NEW MEXICO

GENERAL NOTES

- --- Indicates constituent was not analyzed.
- ND Indicates constituent was not detected above the method detection or reporting limit.

Method reporting/detection limits:

 TPH
 - 10.0 to 400 mg/kg

 BTEX
 - 0.050 to 0.100 mg/kg

 SPLP SVOC
 - 0.005 to 0.013 mg/l

 SPLP VOC
 - 0.005 to 0.010 mg/l

 SPLP TPH
 - 1.3 ppm

Laboratory test methods:

- EPA Method SW846-8020
- Modified EPA Method 8015 Diesel Range Organics
- EPA Method 1312/8270
- EPA Method 1312/8260
- EPA Method 1312/418.1

TABLE I

SUMMARY OF SOIL RESULTS - BTEX AND TPH TEXAS - NEW MEXICO PIPE LINE COMPANY TNM-98-04 LEA COUNTY, NEW MEXICO

SAMPLE	SAMPLE	DEPTH	BENZENE		ETHYL- BENZENE	XYLENES	TOTAL BTEX	TPH
LOCATION	DATE	(Teet)	(тд/кд)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/ Kg)	(тд/кд)
 SB-1	11/5/98	0 - 2	0.780	3.320	1,250	8,700	14,050	516
SB-1	11/5/98	8 - 9.5	ND	ND	ND	ND	ND	52.6
······································								
Section A	12/16/98	Excavation Surface	0.283	0.298	0.800	6.815	8.196	1,670
Section B	12/16/98	Excavation Surface	ND	0.071	0.268	1.228	1.567	2,090
Section C	12/16/98	Excavation Surface	ND	ND	ND	ND	ND	133
Section D	12/16/98	Excavation Surface	ND	ND	0.354	3.120	3.474	6,440
Initial Stockpile	12/16/98	Surface	ND	0.244	0.434	2.640	3.318	4,730
Section A Bottom	12/28/98	4						565
	ļ							
Section A E. Wall	12/28/98	Composite						ND
Section A W Wall	12/28/98	Composite						15
	12/20/00	Composito						
Section B Bottom	12/28/98	3						337
	ļ							
Section B E. Wall	12/28/98	Composite						ND
	40/00/00	0						40
Section B VV. Wall	12/28/98	Composite						12
Section C Bottom	12/28/98	3 - 4						67
Section D Bottom	12/28/98	3 - 4						337
			<u> </u>			<u> </u>		
I-1 N. Wall	12/28/98	Composite						ND
T-1 S. Wall	12/28/98	Composite						ND
		<u> </u>						
T-1 E. Wall	12/28/98	Composite						200
		<u> </u>	<u> </u>			<u> </u>	ļ	
T-1 W. Wall	12/28/98	Composite						ND
	1	<u> </u>	<u> </u>	1	<u> </u>			

TABLE I

SUMMARY OF SOIL RESULTS - BTEX AND TPH TEXAS - NEW MEXICO PIPE LINE COMPANY TNM-98-04 LEA COUNTY, NEW MEXICO

		DEDTU			ETHYL-		TOTAL	7011
SAMPLE LOCATION	SAMPLE DATE	(feet)	BENZENE (mg/kg)	(mg/kg)	BENZENE (mg/kg)	ATLENES (mg/kg)	BIEX (mg/kg)	IPH (mg/kg)
T-1 Bottom	12/28/98	2						ND
T-2 N. Wall	12/28/98	Composite						ND
T-2 S. Wall	12/28/98	Composite						ND
T-2 E. Wall	12/28/98	Composite						ND
	40/08/08	Composito						
	12/20/90	Composite						
T-2 Bottom	12/28/98	2						ND
				·				
SP-1	12/28/98	Composite						2,637
SP-2	12/28/98	Composite						1,245
SP- <u>3</u>	12/28/98	Composite						712
			=					
SP-4	12/28/98	Composite						929
*Bottom	1/5/00			ND				
Dottoin	1,0,33							
*North Wall	1/5/99	Composite	ND	ND	ND	ND	ND	ND
		·				<u> </u>		
*South Wall	1/5/99	Composite	ND	ND	ND	ND	ND	ND
*East Wall	1/5/99	Composite	ND	ND	ND	ND	ND	ND
		ļ			<u> </u>			
*West Wall	1/5/99	Composite	ND	ND	ND	ND	ND	ND
	<u> </u>	<u> </u>	L		1	1		

NOTES:

1. T = Trench

2. SP = Stockpile

3. *Backfill material - samples were collected and analyzed from the source area prior to closure.

4. The samples collected on 12/16/98 were obtained from the excavation surface (approximately 1 - 2 feet below ground surface.)

12-22-98 10:43AM FROM NM STATE ENGINEERS

i)	611	No
$-\omega$	\mathcal{I}	1.1.

Subdivision

Section - Twinshp Range

1-5223 140	SElly SWH4	6-165-362.
1. 20/a Doma	1/2 W/2 E/2 SW/4	6-165- 362
- 6200 Out	5W14 NE.145W14	6-165 - 36E.
· 1110 Drom	52/4 500/4	6-165-362.
-7187 Dom	5W/4 SW/4	6-165-362
- 73/3 Dm	SElly SW/4	10-165- 36E
-7497 Dom + Stk	Lot 12. nw/21	6-165-368
-196-A-B-A M.	19/14 let 12	6.165-36E.
- 8464 DonaDIC	nwhysely swhy	6-145- 368.
1. 9500 OND test	halas	6 - 165 - 368
- 99/07 Dom	N/2 Lat 13	6 · 165 - 34 E.
-10.0.24 100m	N/2 W/2 5/2 Lot 12	6-165-368.
-10,577 Dom	W1/2 E/2 5W/4	6 - 165-368
-14,42% (7m	EY2 EY2 SW/4	6-165-362
-10,657 IOUIN	NElly Swilly	6-165-362
- 10.705 QUD	nully sully	6.165-342
-10,733 AWD	NEHY SWHY	6.145-348
1-10,752 OWD	nwhanwhy swhy	6-165-362
··· ··· ·· ··	OWW	7-165-365
103 M	nille	7-165-362
Used Dom	nstinstinstu	7-165-368
- 4134 Jun	nulla	7- 165- 348
-10,606 OWD	nw/45W/45w/11nw/45	etynety 7-16536E
	n. Kunski souki	8-11-5-368
-100 on	nully nully nelly	8 - 1105 - 3GE.
161. 100	nuthi Sulling isid	8-115- 345
7/74 200	nulling 41 Sull	a 1165 - 310 -
1/27 CM	null nulle	8 - 11/2 - 365
-14×3 Jom	nestanwhite ye	4.165.36E
- 990 UNU - 920, CD	11014 118/11	F. 165. 36 E.
161-1-A the	NINIY NEVel	8-145-368
1-10,139 Dom	MW145W141	8-165-362
the share of the second s		
`	· · ·	

P06

Well No.

Subdivision

5-165- 36E. 5W14 NE14 SE14 -3212 Dom 5- 165- 36E. nwyy Swyy Swyy - 3385 Oom 5 - 165 · 36 E. SW/U Lot 16 :- 3700 Dom 5-165. 36E. SWY4 SWY4 - 2465 . OLS 5 - 165 - 368 NWY45WY4 - 97 in -4659 Dom SW/4 SW/4 SE/14 5 - 165 - 368 SW Pt. Lat 14 5 - 165 - 36E. - 5798 ... in SWY4 SEY4 SEY4 5- 165-348 .-5835 Dom 5 - 165.362 nwru swry - 7430 : Dom nwly nelly 5- 165- 368. .- 8665 Donusik nwkinwki neku 5-165 - 36 8. -8715 Dom SWK4 SWK4 5.165-368. - 8852 Dom nulla SWYANEKY 5-165-362. · 8926 Dom nuky nukysuky ·5- · 165 - 368. - 9262 Dom 5-165-36E nw445W145W14 -9346 Dom 5-165-368 SWK4 NWK4 - 9354 Dom nwr4 ner4 5.165.36E. - 9387 Dom. SWKUNWYY NWYY -9532 OWD 5-165-368. SWYY NWYYSWYY 5.165.368 .- 9579 OWD 5-165-368 nuly sully - 6969 Dom. Wha & SEMASEMASSMASW/4 5-165-36E - 7182 Dom SWY NEKYNWKY SEVY 5-165-368 . 7500 Stb. nwily nwily nwilly SEV4 5-165-362. - 7632 Dom NW/14 SEX4 5- 165-368 . 7709 Dom. nuther a catig 5 - 165 - 368 - 7832 Dom. -7993 Dom W1/2 of lat 15 5- 165- 368. nwhy nwhy nwhy 5-165-362 .8478 Dom. 6-165-362 nuly Laty - 3104 OWQ. 6-165-362. NE145 E/4 NW14 - 3549 Dom. 6. -165 - 362 - 3697 Lot 9UWD 6-165-362 . - 3773 Let 14 OWD 6-165-362 Lot 1 - 3797 Don 6-165-362 -3842 OWD

Section-Twishp-Range

Section - Twishp-Range Jell no. Subdivision 31- 155- 362. SElly NWILY NELLY - 6243 Stk. SE 14 SE 14 SE 14 31 - 155- 362 - 6554 ... iom 31 - 155 - 368. 50/145/14 - 6841 . Dom - 6924 Drinking San+Pur SEY4 SE145E14 31- 155 - 368 31 - 155- 362 5844 5844 - 8276 . Dom & Stk SE'ly NW/4 SW/4 - 8480 . Dome Stk 31 - 155 - 362. -6847 SW14 Lot 13 1- 165 - 352 - 3164 ...OWD 1 - 165 - 358 SE 14 SW14 OWA -3214 SE Corner Lot 14 1- 165- 358. - 3309 OWD SEKINE /4 NWKI 1 - 165 - 358. .OWD -10,272 SW14 SW14 11W/4 1- 165-358. 10,594 DWD 1-145-358. - 5573 n12 58/4 Dom 1- 165.35E. N12 5E/14 -6508 Dom NEKY NEKYSEKY 12-165-358. -153-Enlads IR NEVA NEVA SEVA 12 165.358. -10,801 OWD 5-165.-362. SW/4 SW/4 SW/4 -- 2910 Dom 5-165. - 36E. SW44 NW 44SEY4 · 53 in. 5-165-362 - 53-A in nwkynwkyseky nully Latig 5-165-362 ·54 m. 5-165-368 nully Latio .- 55 in 5-165 - 368. · 57 in NW/4 NE/4 5W/4 nw 14 MEXUSW14 5-165.362. :57-5 in nwky Swhi 5-165-368. in .97 5.165-368. WZSWKISWKI -97-A in 5-165-36E nw/# 51/2 Lot/6 in - 141 NWYY SEHA 5-165-368 in -240 5-165-36E 5w/4ne/452/4 - 240.5 in 5WH4SWH4SWH4 5-165-36E. -967 m

12-22-98 10:43AM FROM NM STATE ENGINEERS

E

I

ł

I

I

I

· .

Well No.	Subdivision	Section - Twishp - Range
- 10. 1070 Dom.	SEV4 NEX4	36 - 155 - 35E
- 10, 843 Dom	SE% nE%	36- 155 - 35E
- 3582 Dom	SE Y4 5W145E14	31 - 15S 36 E.
- 2408 Dom	SEVY Lot 3	31 - 155 36E.
2068 Dom	5E W SW 4 6+3	31-15S 36E.
- 3009	SWH LOT4	31-155 36E.
	SEVUSWVUSEKU	31- 155 36E.
216/ Da	5w14 5EH15EH4	31-15S 36E.
- 5104 Lorn	SEY4 Corner Lot 3	31 15S 36E
	5E / 10+ 3	31 15S 36E
3//// Dun	SWW LOT3	31 15S 36E.
-0746 Dain	55/4 51/4 5/4	31 155 36 E
- 27471	55/4 10+3	31 155 362
- 3292 . Dom.	55 1/4 SW 52 /11	3) 155 368
- 5250 . Dom	Celli KS Va SS Va	31 15-5 342
· 3256 Dom	ENVUNCKUSS /	31 155 366
	SWH ILHOLH	21 155 362
-1275 Dom	Celli Anna Latil	21 155 368
-14/16 .Dom	SZ14 Corner WT9	21 155 368
2544 Dom	JWH COT J	
·2624 Dom	561/4 5214 5214	
2505 Dom	5 5 5 WH LOT 3	
-3848 Dom	52 14	31 153 362
-3883 Dom	SEV4	31 155 362.
-3917 Dom	512512 674	31 153 36 2.
-4248 Dom	SWY4 Lat 1	31 155 362.
-4286 Dom	SE 1/4 Lat 3	31 155 362
-4608 Dom.	SEHY Lot 3	31 15.5 368.
-4761 Dom	5 E'14 lot 3	3/ 155 36 E.
- 4908 Dom	SW14 Lat 3	31 155 36E.
-5223 Oom	51/2 lot 1	31 155 36E
- 5658 Dom	SWHY	31 153 34 8
- 5831 Dom	SWVy SWVY SEVY	<u>31 155 36E</u>

·

. .

.

ANALYTICAL REPORT 1-84320

for

K.E.I. Consultants, Inc.

Project Manager: Theresa Nix Project Name: TNM-98-04 Project Id: 810059-1-0

December 8, 1998

 11381 Meadowglen Lane
 Suite L * Houston, Texas 77082-2647

 Phone (281) 589-0692
 Fax (281) 589-0695

11381 Meadowglen Suite L Houston, Texas 77082-2647 (281) 589-0692 Fax: (281) 589-0695 Houston - Dallas - San Antonio - Latin America

December 8, 1998

Project Manager: Theresa Nix K.E.I. Consultants, Inc. 5309 Wurzbach Rd. Suite 100 San Antonio, TX 78238

Reference: XENCO Report No.: 1-84320 Project Name: TNM-98-04 Project ID: 810059-1-0 Project Address: Lea County, NM.

Dear Theresa Nix:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with XENCO Chain of Custody Number 1-84320. All results being reported to you apply only to the samples analyzed, properly identified with a Laboratory ID number. This letter documents the official transmission of the contents of the report and validates the information contained within.

All the results for the quality control samples passed thorough examination. Also, all parameters for data reduction and validation checked satisfactorily. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, completeness or properly flagged.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 3 years in our archives and after that time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. 1-84320 will be filed for 60 days, and after that time they will be properly disposed of without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

XENCO operates under the A2LA guidelines. Our Quality System meets ISO/IEC Guide 25 requirements which is strictly implemented and enforced through our standard QA/QC procedures.

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Sincerely,

ddie L. Clemons.

QA/QC Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY!

ANALYTICAL CHAIN OF CUSTODY REPORT CHRONOLOGY OF SAMPLES

K.E.I. Consultants, Inc.

Project Name: TNM-98-04

XENCO COC#: 1-84320

1 (1 a) (1 a) (1 a) (1 a) (1 a) (1 a)

Project ID: 810059-1-0 Project Manager: Theresa Nix Project Location: Lea County, NM.

Date Received in Lab: Nov 9, 1998 09:55 by JO xenco contact : Carlos Castro/Karen Olson

								Date	e and Time	
	Field ID	Lab. ID	Method Name	Method ID	Units	Turn Around	Sample Collected	Addition Requested	Extraction	Analysis
1 SB-1		184320-001	BTEX	SW-846	ppm	10 days	Nov 5, 1998 13:45		Nov 12, 1998 by HL	Nov 12, 1998 18:35 by HL
2			TPH8015M-D	SW-846 8015 M	mg/kg	10 days	Nov 5, 1998 13:45		Nov 16, 1998 by JM	Nov 19, 1998 12:30 by LC
3			VOA (8260)	EPA1312/8260	mg/kg	24 hours	Nov 5, 1998 13:45	Dec 1,1998 11:00	Dec 1, 1998 by CCE	Dec 1, 1998 16:28 by CCE
4			SPLP TPH	EPA	ppm	24 hours	Nov 5, 1998 13:45	Dec 1,1998 11:00	Dec 1, 1998 by EZ	Dec 1, 1998 16:40 by EZ
5			SPLP-SV(TCL)	SW846-1312/82	ug/L	24 hours	Nov 5, 1998 13:45	Dec 1,1998 11:00	Dec 1, 1998 by SS	Dec 3, 1998 02:11 by MM
6		184320-002	BTEX	SW-846	ppm	10 days	Nov 5, 1998 14:15		Nov 12, 1998 by HL	Nov 12, 1998 18:53 by HL
7			TPH8015M-D	SW-846 8015 M	mg/kg	10 days	Nov 5, 1998 14:15		Nov 16, 1998 by JM	Nov 19, 1998 12:50 by LC

بالمستعقدة والأراب

CERTIFICATE OF ANALYSIS SUMMARY 1-84320

K.E.I. Consultants, Inc. Project Name: TNM-98-04

Project ID: 810059-1-0 Project Manager: Theresa Nix Project Location: Lea County, NM.

Date Received in Lab: Nov 9, 1998 09:55 Date Report Faxed: Dec 8, 1998 **XENCO CONTACT :** Carlos Castro/Karen Olson

Analysis Requested	Lab ID: Field ID: Depth: Matrix: Sampled:	SB-1 0-2' Solid 11/05/98 13:45		1843 S 8 5 11/05/	SB-1 8-9.5' Solid 11/05/98 14:15				
TPH-DRO (Diesel)	Analyzed:	11/19/98		RL	11/19/98		R.L.		
EPA 8015 M	Units:	mg/kg			mg/kg				
Jotal Petroleum Hydrocarbons			516	(10.0)		52.6	(10.0)		
BTEX EPA 8021B	Analyzed: Units:	11/12/98 ppm		R.L.	11/12/98 ppm		R.L.		
Benzene			0.780	(0.050)	< (0.050	(0.050)		n
Toluene			3.320	(0.050)	< (0.050	(0.050)		1
Ethylbenzene			1.250	(0.050)	< (0.050	(0.050)		·
m,p-Xylene			6.100	(0.100)	< 0	0.100	(0.100)		
o-Xylene			2.600	(0.050)	< (0.050	(0.050)		
Total BTEX				14.050			N.D.		
SPLP-Semivolatiles EPA1312/8270	Analyzed: Units:	12/03/98 ma/L		R.L.			_		
Acenaphthene		<	0.005	(0.005)					<u> </u>
Acenaphthylene		<	0.005	(0.005)					
Anthracene		<	0.005	(0.005)					
Benz(a)anthracene		<	0.005	(0.005)					<u> </u>
Benzo(a)pyrene		<	0.005	(0.005)				· · · · · · · · · · · · · · · · · · ·	
Benzo(b)fluoranthene		<	0.005	(0.005)		•			
Benzo(g,h,i)perylene		<	0.005	(0.005)					İ
Benzo(k)fluoranthene		<	0.005	(0.005)					1
4-Bromophenyl-phenylether		<	0.005	(0.005)					· · · · · · · · · · · · · · · · · · ·
Butyl benzyl phthalate		<	0.005	(0.005)				······································	
Carbazole		<	0.005	(0.005)				······································	
4-Chloro-3-methylphenol		<	0.005	(0.005)				,	· ·
4-Chloroaniline		<	0.005	(0.005)					
2-Chloronaphthalene		<	0.005	(0.005)					
2-Chlorophenol		<	0.005	(0.005)			1		
4-Chlorophenyl-phenyl ether		<	0.005	(0.005)					
Chrysene		<	0.005	(0.005)					
Di-n-butyl phthalate		<	0.005	(0.005)					
Di-n-octylphthalate		<	0.005	(0.005)					
Dibenz(a,h)anthracene		< (0.005	(0.005)					
Dibenzofuran		< (0.005	(0.005)					
1,2-Dichlorobenzene		< (0.005	(0.005)					
1,3-Dichlorobenzene		< (0.005	(0.005)			[
1,4-Dichlorobenzene		< (0.005	(0.005)					
This report summary, and the entire reports of K.E.I. Consultants, Inc The interpretations and results expressed	ort it represents d through this	s, has been analytical re	made f	or the ex	clusive and o the best judg	confid gment	ential of		

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

CEddle L. Clemons, II QA/QC Manager

K.E.I. Consultants, Inc. Project Name: TNM-98-04

Project ID: 810059-1-0 Project Manager: Theresa Nix

Project Location: Lea County, NM.

Date Received in Lab : Nov 9, 1998 09:55 Date Report Faxed: Dec 8, 1998 xenco contact : Carlos Castro/Karen Olson

	Lab ID:	184320 001	184320 002	
	Field ID:	SB-1	SB-1	
Analysis Requested	Depth:	0-2'	8-9.5	
Analysis Requested	Matrix:	Solid	Solid	
	Sampled:	11/05/98 13:45	11/05/98 14:15	
SPLP-Semivolatiles	Analyzed:	12/03/98 R.L.		
EPA1312/8270	Units:	mg/L		
3,3'-Dichlorobenzidine		< 0.005 (0.005)		
2,4-Dichlorophenol		< 0.005 (0.005)		
Diethyl phthalate		< 0.005 (0.005)		
2,4-Dimethylphenol		< 0.005 (0.005)		
Dimethyl phthalate		< 0.005 (0.005)		
4,6-Dinitro-2-methylphenol		< 0.013 (0.013)		
2,4-Dinitrophenol		< 0.013 (0.013)		
2,4-Dinitrotoluene		< 0.005 (0.005)		
2,6-Dinitrotoluene		< 0.005 (0.005)		
Fluoranthene		< 0.005 (0.005)		
Fluorene		< 0.005 (0.005)		
Hexachlorobenzene		< 0.005 (0.005)		
Hexachlorobutadiene		< 0.005 (0.005)		
Hexachlorocyclopentadiene		< 0.005 (0.005)		
Hexachloroethane		< 0.005 (0.005)		
Indeno(1,2,3-cd)pyrene		< 0.005 (0.005)		
Isophorone		< 0.005 (0.005)		
2-Methylnaphthalene		< 0.005 (0.005)		
2-Methylphenol		< 0.005 (0.005)		
4-Methylphenol		< 0.005 (0.005)		
N-Nitrosodi-n-propylamine		< 0.005 (0.005)		
N-Nitrosodiphenylamine		< 0.005 (0.005)		
Naphthalene		< 0.005 (0.005)		
2-Nitroaniline		< 0.013 (0.013)		
3-Nitroaniline		< 0.013 (0.013)		
4-Nitroaniline		< 0.013 (0.013)		
Nitrobenzene		< 0.005 (0.005)		
2-Nitrophenol		< 0.005 (0.005)		
4-Nitrophenol		< 0.005 (0.005)		
Pentachlorophenol		< 0.013 (0.013)		
Phenanthrene		< 0.005 (0.005)		
Phenol		< 0.005 (0.005)		
Pyrene		< 0.005 (0.005)		
1,2,4-Trichlorobenzene		< 0.005 (0.005)		
2,4,5-Trichlorophenol		< 0.013 (0.013)		

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Eddie L. Clemons, II QA/QC Manager

K.E.I. Consultants, Inc. Project Name: TNM-98-04

Project ID: 810059-1-0

Project Manager: Theresa Nix

Project Location: Lea County, NM.

Date Received in Lab: Nov 9, 1998 09:55 Date Report Faxed: Dec 8, 1998 xenco contact: Carlos Castro/Karen Olson

	Lab ID:	184320 (001	184320 002	
	Field ID:	SB-1		SB-1	
Analysis Paguastad	Depth:	0-2'		8-9.5'	
Analysis Requested	Matrix:	Solid		Solid	
	Sampled:	11/05/98 1	3:45	11/05/98 14:15	
SPLP-Semivolatiles	Analyzed:	12/03/98	RI		
EPA1312/8270	Units:	mg/L	, , <u> </u> .		
2,4,6-Trichlorophenol	<u> </u>	< 0.00	5 (0.005)		
bis(2-Chloroethoxy) methane		< 0.005	5 (0.005)		
bis(2-Chloroethyl) ether		< 0.005	5 (0.005)		
bis(2-Chloroisopropyl) ether		< 0.005	5 (0.005)		
bis(2-Ethylhexyl) phthalate		< 0.005	5 (0.005)		
SPLP Volatiles	Analyzed:	12/01/98	RI		
EPA 8260	Units:	mg/L	11.6.		
Benzene		< 0.005	5 (0.005)		
Bromobenzene		< 0.005	5 (0.005)		
Bromochloromethane		< 0.005	5 (0.005)		
Bromodichloromethane		< 0.005	5 (0.005)		
Bromoform		< 0.005	6 (0.005)		
Bromomethane		< 0.005	6 (0.005)		
Carbon tetrachloride		< 0.005	6 (0.005)		
Chlorobenzene		< 0.005	6 (0.005)		· · · · · · · · · · · · · · · · · · ·
Chlorodibromomethane		< 0.005	(0.005)		
Chloroethane		< 0.010	(0.010)		
Chloroform		< 0.005	(0.005)		
Chloromethane		< 0.010	(0.010)		· · · · ·
2-Chlorotoluene		< 0.005	(0.005)		
4-Chlorotoluene		< 0.005	(0.005)		
1,2-Dibromo-3-chloropropane		< 0.005	(0.005)		
1,2-Dibromoethane		< 0.005	(0.005)		
Dibromomethane		< 0.005	(0.005)		
1,2-Dichlorobenzene		< 0.005	(0.005)		
1,3-Dichlorobenzene		< 0.005	(0.005)		
1,4-Dichlorobenzene		< 0.005	(0.005)		
Dichlorodifluoromethane		< 0.005	(0.005)		
1,1-Dichloroethane		< 0.005	(0.005)		 · · · · · · · · · · · · · · · · · · ·
1,2-Dichloroethane		< 0.005	(0.005)		
1,1-Dichloroethene		< 0.005	(0.005)		
1,2-Dichloropropane		< 0.005	(0.005)		
1,3-Dichloropropane		< 0.005	(0.005)		
2,2-Dichloropropane		< 0.005	(0.005)		
					 \sim

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Eddle L. Clemons, II QA/QC Manager

K.E.I. Consultants, Inc. Project Name: TNM-98-04

Project ID: 810059-1-0 Project Manager: Theresa Nix

.

Project Location: Lea County, NM.

Date Received in Lab: Nov 9, 1998 09:55 Date Report Faxed: Dec 8, 1998 xenco contact: Carlos Castro/Karen Olson

	Lah ID:	184320 001	184320 002	
	Field ID:	SB-1	SB-1	
Analysis Deguasted	Depth:	0-2'	8-9.5'	
Analysis Requested	Matrix:	Solid	Solid	
	Sampled:	11/05/98 13:45	11/05/98 14:15	
SPLP Volatiles	Analyzed:	12/01/98 R I		
EPA 8260	Units:	mg/L		
1,1-Dichloropropene	\$	< 0.005 (0.005)		Ι
Ethylbenzene		< 0.005 (0.005)		
Hexachlorobutadiene		< 0.005 (0.005)		
Isopropylbenzene (Cumene)		< 0.005 (0.005)		
MTBE		< 0.010 (0.010)		
Methylene chloride		< 0.010 (0.010)		
Naphthalene		< 0.005 (0.005)		
Styrene		< 0.005 (0.005)		
1,1,1,2-Tetrachloroethane		< 0.005 (0.005)		
1,1,2,2-Tetrachloroethane		< 0.005 (0.005)		
Tetrachloroethene		< 0.005 (0.005)		
Toluene		< 0.005 (0.005)		·
1,2,3-Trichlorobenzene		< 0.005 (0.005)		
1,2,4-Trichlorobenzene		< 0.005 (0.005)		
1,1,1-Trichloroethane		< 0.005 (0.005)		
1,1,2-Trichloroethane		< 0.005 (0.005)		
Trichloroethene		< 0.005 (0.005)		
Trichlorofluoromethane		< 0.005 (0.005)		
1,2,3-Trichloropropane		< 0.005 (0.005)		
1,2,4-Trimethylbenzene		< 0.005 (0.005)		
1,3,5-Trimethylbenzene		0.005 (0.005)		
Vinyl chloride		< 0.005 (0.005)		
cis-1,2-Dichloroethene		< 0.005 (0.005)		
cis-1,3-Dichloropropene		< 0.005 (0.005)		
m,p-Xylene		< 0.005 (0.005)		
n-Butylbenzene		< 0.005 (0.005)		
n-Propylbenzene		< 0.005 (0.005)		
o-Xylene		< 0.005 (0.005)		
p-Isopropyltoluene (p-Cymene)		< 0.005 (0.005)		
sec-Butylbenzene		< 0.005 (0.005)		
tert-Butylbenzene		< 0.005 (0.005)		
trans-1,2-Dichloroethene		< 0.005 (0.005)		
trans-1,3-Dichloropropene		< 0.005 (0.005)		

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Eta Eddie L. Clemons, II QA/QC Manager

K.E.I. Consultants, Inc. Project Name: TNM-98-04

Project ID: 810059-1-0

Project Manager: Theresa Nix Project Location: Lea County, NM. Date Received in Lab : Nov 9, 1998 09:55 Date Report Faxed: Dec 8, 1998 xenco contact : Carlos Castro/Karen Olson

Analysis Requested	Lab ID: Field ID: Depth: Matrix: Sampled:	184320 001 SB-1 0-2' Solid 11/05/98 13:45	184320 002 SB-1 8-9.5' Solid 11/05/98 14:15	
SPLP TPH	Analyzed:	12/01/98 BI		
1312/418.1	Units:	ppm		
Total Petroleum Hydrocarbons		< 1.3 (1.3)	· · · · · · · · · · · · · · · · · · ·	1

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Eddie L. Clemons, II

QA/QC Manager

Certificate Of Quality Control for Batch: 18A40100

SW- 846 8015 M TPH- DRO (Diesel)

 Date Validated:
 Nov 23, 1998
 12:45

 Date Analyzed:
 Nov 20, 1998
 16:05

Analyst: AM

Matrix: Solid

			MAT	RIX SPIKE /	MATRIX S	PIKE DUP	LICATE AND	RECOVERY			
Q.C. Sample ID	[A] Sample	[B] Matrix Spike	[C] Matrix Spike	[D] Matrix	[E]	Matrix Limit	[F] QC	[G] QC	[H] QC	[l] Matrix Spike	រោ
184298- 011	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Matrix Spike	M.S.D.	Recovery	Qualifier
Parameter	mg/kg	mg/kg	Result mg/kg	Amount mg/kg	Limit mg/kg	Difference %	Difference %	Recovery %	Recovery %	Range %	
Total Petroleum Hydrocarbons	25.37	228	239	200	10.00	30.0	4.7	101.3	106.8	65-135	j

Spike Relative Difference [F] = 200*(B-C)/(B+C) Matrix Spike Recovery [G] = 100*(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

dale L. Clemons.

QA/QC Manager

Houston - Dallas - San Antonio

Certificate Of Quality Control for Batch :: 18A40100

SW- 846 8015 M TPH- DRO (Diesel)

Date Validated: Nov 23, 1998 12:45 Date Analyzed: Nov 20, 1998 18:14

. . .

Analyst: AM Matrix: Solid

				BLANK SPII	KE ANALYS	SIS		́. •.
_		[A]	[B]	[C]	[D]	(E)	(F)	[G]
		Blank	Blank Spike	Blank		QC	LIMITS	
	Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
-				Amount	Limit	Recovery	Range	
		mg/kg	mg/kg	mg/kg	mg/kg	%	%	c
	Total Petroleum Hydrocarbons	< 10.00	211	200	10.00	105.5	65-135	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

dule L. Clemons, II

QA/QC Manager

Houston - Dallas - San Antonio

Certificate Of Quality Control for Batch :: 18A25E03

SW- 846 5030/8021B BTEX

Date Validated: Nov 13, 1998 13:00 Date Analyzed: Nov 12, 1998 16:06 Analyst: HL Matrix: Solid

				BLANK SPI	KE ANALY:	5IS			
Iſ		[A]	(B)	[C]	[D]	[E]	(F)	[G]	
		Blank	Blank Spike	Blank		QC	LIMITS	1	
	Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier	
"				Amount	Limit	Recovery	Range		
	r	ppm	ppm	ppm	ppm	%	%		
ľ	Benzene	< 0.0010	0.1010	0.1000	0.0010	101.0	65-135		
	Toluene .	< 0.0010	0.1000	0.1000	0.0010	100.0	65-135		
	Ethylbenzene	< 0.0010	0.1000	0.1000	0.0010	100.0	65-135		
"[m,p-Xylene	< 0.0020	0.2030	0.2000	0.0020	101.5	65-135		
	o-Xylene	< 0.0010	0.0992	0.1000	0.0010	99.2	65-135		

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Eddie L. Clemons, II

QA/QC Manager

Certificate Of Quality Control for Batch: 18A25E03

SW- 846 5030/8021B BTEX

 Date Validated:
 Nov 13, 1998
 13:00

 Date Analyzed:
 Nov 12, 1998
 16:43

Analyst: HL

Matrix: Solid

			MATI	RIX SPIKE /	MATRIX S	PIKE DUP	LICATE AND I	RECOVERY			
	[A]	[B]	[Ċ]	[D]	(E)	Matrix	[F]	[G]	[H]	Ŋ	[1]
Q.C. Sample ID	Sample	Matrix Spike	Matrix Spike	Matrix		Limit	QC	QC	QC	Matrix Spike	1
184324- 001 	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Matrix Spike	M.S.D.	Recovery	Qualifier
Deremeter	1		Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
Parameter	ppm	ppm	ppm	ррт	ppm	%	×	%	%	%	
Benzene	< 0.020	1.996	1.932	2.000	0.020	25.0	3.3	99.8	96.6	65-135	3
Toluene	< 0.020	1.976	1.944	2.000	0.020	25.0	1.6	98.8	97.2	65-135	5
Ethylbenzene	< 0.020	1.958	1.934	2.000	0.020	25.0	1.2	97.9	96.7	65-135	5
m,p-Xylene	< 0.040	4.000	3.940	4.000	0.040	25.0	1.5	100.0	98.5	65-13	5
o-Xylene	< 0.020	1.994	1.952	2.000	0.020	25.0	2.1	99.7	97.6	65-13	5

Spike Relative Difference [F] = 200*(B-C)/(B+C) Matrix Spike Recovery [G] = 100*(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Idie L.

QA/QC Manager

Houston Dallas San Antonio

Certificate Of Quality Control for Batch :: 18A23E79

EPA1312/8260 SPLP Volatiles

 Date Validated:
 Dec 3, 1998
 12:00

 Date Analyzed:
 Dec 1, 1998
 19:45

Analyst: CCE Matrix: Solid

				BLANK SPI	KE ANALY:	SIS		
		[A] Biank	[B] Blank Spike	[C] Blank	[D]	INALYSIS [D] [E] [F] [G] QC LIMITS Quality mection Blank Spike Recovery Quality imit Recovery Range Quality ng/kg % % 0.0010 76.6 66-142 0.0010 80.0 60-133 0.0040 71.6 59-172 0.0010 79.0 59-139 0.0030 74.4 62-137 0.0010 0.0030 <th>[G]</th>	[G]	
	Parameter	Result	Result	Spike Arnount	Detection Limit	Blank Spike Recovery	Recovery Range	Qualifier
		mg/kg	mg/kg	mg/kg	mg/kg	%	[F] LIMITS Recovery Range % 66-142 60-133 59-172 59-139 62-137	
	Benzene	< 0.0010	0.0383	0.0500	0.0010	76.6	66-142	
	Chlorobenzene	< 0.0010	0.0400	IC] [D] [E] [F] [G] Blank QC LIMITS Qualifier Spike Detection Blank Spike Recovery Qualifier Amount Limit Recovery Range Qualifier 0.0500 0.0010 76.6 66-142 66-142 0.0500 0.0010 80.0 60-133 60-133 0.0500 0.0040 71.6 59-172 60-100 0.0500 0.0010 79.0 59-139 60-100 0.0500 0.0030 74.4 62-137 60-100				
Π	1,1-Dichloroethene	< 0.0040	0.0358	0.0500	0.0040	71.6	59-172	
	Toluene	< 0.0010	0.0395	0.0500	Image: Pike Analysis [D] [E] [F] [G] QC Limits QC Limits Qualifier Detection Blank Spike Recovery Qualifier Mg/kg % % % 00 0.0010 76.6 66-142 00 0.0010 80.0 60-133 00 0.0040 71.6 59-172 00 0.0010 79.0 59-139 00 0.0030 74.4 62-137			
	Trichloroethene	< 0.0030	0.0372	0.0500	0.0030	74.4	62-137	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Eddie L. Clemons, II

QA/QC Manager

Certificate Of Quality Control for Batch: 18A23E79

EPA1312/8260 SPLP Volatiles

 Date Validated:
 Dec 3, 1998
 12:00

 Date Analyzed:
 Dec 1, 1998
 14:45

Analyst: CCE

Matrix: Solid

			MATI	RIX SPIKE /	X SPIKE / MATRIX SPIKE DUPLICATE AND RECOVERY[D][E]Matrix[F][G][H][I][J]MatrixLimitQCQCQCMatrix SpikeSpikeDetectionRelativeSpike RelativeMatrix SpikeM.S.D.RecoveryQualifierAmountLimitDifferenceDifferenceRecoveryRecoveryRangeQualifiermg/kgmg/kg%%%%%%0.05000.001020.08.8106.297.266-1420.05000.001020.04.796.492.060-133						
Q.C. Sample ID 184388- 001	(A) Sample Result	(B) Matrix Spike Result	[C] Matrix Spike Duplicate	[D] Matrix Spike	PIKE / MATRIX SPIKE DUPLICATE AND RECOVERY [F] [G] [H] [I] [J] I [E] Matrix [F] [G] [H] [I] [J] rix Limit QC QC QC Matrix Spike ke Detection Relative Spike Relative Matrix Spike M.S.D. Recovery Qualifier /kg mg/kg % % % % % % % Qualifier 0.0500 0.0010 20.0 8.8 106.2 97.2 66-142 60-133 0.0500 0.0010 20.0 4.7 96.4 92.0 60-133 0.0500 0.0040 25.0 9.9 116.4 105.4 59-172 0.0500 0.0010 20.0 7.3 89.6 82.0 59-139 0.0500 0.0030 20.0 10.0 106.6 96.4 62-137						
Parameter	mg/kg	mg/kg	Result mg/kg	Amount mg/kg	Limit mg/kg	RIX SPIKE DUPLICATE AND RECOVERY I Matrix [F] [G] [H] [I] [J] Limit QC QC QC QC Matrix Spike Matrix Spike Matrix Spike Matrix Spike Matrix Spike Recovery Recovery Recovery Range Qualifier nit Difference Difference Recovery Recovery Range Qualifier 0/kg % % % % % % Qualifier 0.0010 20.0 8.8 106.2 97.2 66-142 60-133 0.0010 20.0 4.7 96.4 92.0 60-133 60-133 0.0040 25.0 9.9 116.4 105.4 59-172 60-133 0.0010 20.0 7.3 89.6 82.0 59-139 60-133 0.0030 20.0 10.0 106.6 96.4 62-137 62-137					
Benzene	< 0.0010	0.0531	0.0486	0.0500	0.0010	20.0	8.8	106.2	97.2	66-142	
Chlorobenzene	< 0.0010	0.0482	0.0460	0.0500	0.0010	20.0	4.7	96.4	92.0	60-133	1
1,1-Dichloroethene	< 0.0040	0.0582	0.0527	0.0500	0.0040	25.0	9.9	116.4	105.4	59-172	2
Toluene	0.0095	0.0543	0.0505	0.0500	0.0010	20.0	7.3	89.6	82.0	59-139	
Trichloroethene	< 0.0030	0.0533	0.0482	0.0500	0.0030	20.0	10.0	106.6	96.4	62-137	7

Spike Relative Difference [F] = 200*(B-C)/(B+C) Matrix Spike Recovery [G] = 100*(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Eddie L. Clemons, II

QA/QC Manager

Certificate Of Quality Control for Batch: 18A02D69

SW846-1312/8270MOD SPLP- Semivolatiles

 Date Validated:
 Dec 8, 1998
 12:30

 Date Analyzed:
 Dec 2, 1998
 23:53

Analyst: MM

Matrix: Solid

		BLANK SPIKE / BLANK SPIKE DUPLICATE AND RECOVERY [A] [B] [C] [D] [F] Blank [F] [G] [H] [I] [I] Blank Blank Spike Blank Spike Blank Spike Blank Detection Limit Imit QC QC Blank Spike Blank Spike Blank Spike Detection Number Difference Blank Blank Blank Blank Spike											
	[A]	BLANK SPIKE / BLANK SPIKE DUPLICATE AND RECOVERY [A] [B] [C] [D] [E] Blank [F] [G] [H] [I] Blank Blank Spike Blank Spike Blank Blank Limit QC QC QC Blank Spike Blank Spike Result Duplicate Spike Detection Relative Blank Spike Spike			[J]								
	Blank	Blank Spike	Blank Spike	Blank		Limit	QC	QC	QC	Blank Spike			
Parameter	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Blank Spike	B.S.D.	Recovery	Qualifier		
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range			
	ug/L	ug/L	ug/L	ug/L	ug/L	%	%	%	%	%			
Acenaphthene	< 0.0025	0.0329	0.0365	0.0500	0.0025	19.0	10.4	65.8	73.0	31-137	1		
4-Chloro-3-methylphenol	< 0.0038	0.0326	0.0345	0.0500	0.0038	33.0	5.7	65.2	69.0	26-103	4		
2-Chlorophenol	< 0.0050	0.0276	0.0307	0.0500	0.0050	28.7	10.6	55.2	61.4	25-102	2		
1,4-Dichlorobenzene	< 0.0042	0.0285	0.0332	0.0500	0.0042	32.1	15.2	57.0	66.4	28-104	4 .·		
2,4-Dinitrotoluene	< 0.0050	0.0321	0.0349	0.0500	0.0050	21.8	8.4	64.2	69.8	28-89	8		
N-Nitrosodi-n-propylamine	< 0.0040	0.0333	0.0372	0.0500	0.0040	55.4	11.1	66.6	74.4	41-12	6		
4-Nitrophenol	< 0.0040	0.0095	0.0092	0.0500	0.0040	47.2	3.2	19.0	18.4	11-11	4		
Pentachlorophenol	< 0.0086	0.0246	0.0251	0.0500	0.0086	48.9	2.0	49.2	50.2	17-10	9		
Phenol	< 0.0037	0.0112	0.0120	0.0500	0.0037	22.6	6.9	22.4	24.0	26-9	0 /		
Pyrene	< 0.0020	0.0403	0.0434	0.0500	0.0020	25.2	7.4	80.6	86.8	35-14	2		
1,2,4-Trichlorobenzene	< 0.0054	0.0309	0.0349	0.0500	0.0054	23.0	12.2	61.8	69.6	3 38-10	7		

(A) BKS/BSD recoveries were below laboratory acceptance limits. Associated samples were N.D.

Spike Relative Difference [F] = 200*(B-C)/(B+C)

Blank Spike Recovery [G] = 100*(B-A)/[D]

B.S.D. = Blank Spike Duplicate

B.S.D. Recovery [H] = 100*(C-A)/[D]

N.D. = Below detection limit or not detected

All results are based on MDL and validated for QC purposes

Eddie L. Clemons, II QA/QC Manager

Houston - Dallas - San Antonio

Blank Spike Recovery [G] = 100*(B-A)/[D] B.S.D. = Blank Spike Duplicate B.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Spike Relative Difference [F] = 200*(B-C)/(B+C)

1

Page

Certificate Of Quality Control for Batch : 18A07E40

EPA 1312/418.1 SPLP TPH

 Date Validated:
 Dec 2, 1998 09:37

 Date Analyzed:
 Dec 1, 1998 14:55

			BLA	NK SPIKE /	BLANK SI	PIKE DUPL	ICATE AND R	ECOVERY			
	[A]	(B)	[C]	[D]	[E]	Blank	(F)	[G]	[H]	m	[J]
	Blank	Blank Spike	Blank Spike	Blank		Limit	QC	QC	QC	Blank Spike	1
Parameter	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Blank Spike	B.S.D.	Recovery	Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	
Total Petroleum Hydrocarbons	< 0.50	3.59	3.71	4.01	0.50	20.0	3.3	89.5	92.5	65-13	5

ddie L. Clemons, II

QA/QC Manager

Houston Dallas San Antonio

Analyst: EZ Matrix: Solid

			381 Meade 13) 589-0	owglen	Suite) lousto Fax	n, Tex	as 7708				F C	US US	FOI	Y YC	RE		RD	l T		}	Pag	e / of	
aboral	ories							\/ Ky \									<u>эі</u>	FU				 	Lab	Batch # $\sqrt{8}$	4320
KE	<u> </u>	ons	uH.	an	Æ			Phone	21	0 68	0-37	67	No	No. c Carri	oolen ier: "	this a \mathcal{UP}_{\cdot}	^{shipm}	ent:		ۍ ۲	noC רוס ה	rac) Q	tor (vote	COC # 179 #:	
5 <u>30</u> ° ect Name -	1 W	$\frac{a}{a-a}$	<u>zbal</u>	<u>~~</u>		>+	<u>e /</u> F) Trector	A, TX	782	38	C O		11 No. 240,	470	590 D	7			Lee to	F 7		¹⁰⁰ 810059 -1	-0
ect Location	Lea	Co,	<u>s-c</u> N,	\hat{m}	,		P -	roject h	<u>kanagar</u> Ores	Sa N	norna lix	2	N T A				TP24	1	हित्					Turn-around	L A B
plar Signature	7/0.	21-	-/	f	en.	Ż-	P	roject N 81	ia DOSE	i - l - C)	- k	I N E				R	Ind		10	/		//	+ ASAP + 24 hrs	ONLY
eld ID	Date	Time		BUN BW DA TE R	С О М Р	G C R A B	ontain 29 Ty	er pe ice	Other	Waste Oil PTT No: Sami	Tank	No: 011	K S Total	BIEX ISA		Mar Mal			Spiel	H.		/	Please Hu	48 hrs Standard Remarks	#
JB-1	11/5/95	13:16	0-á	X		8)	52	ςX		Soill	obrino	1	1	X		\langle	X	K	X					see below	1
<u>B-1</u>	11/5/98	14:15	8-95	X		X 8	jz (₽ĮΧ		Soil	borin	<u>a I</u>	1	Х		\langle	X	X	Х					see below	2
																									4
																	-	-				+	-		5
		<u> </u>						 	 													_			6
								_									+		N24 N24	U 14	(5 90 75 90	7		9-	7
											···· · · · · · · · · · · · · · · · · ·					U									8
						+									_										10
inquished b	r Sig		<u> </u>	DA ////	 .re /?c	1 1 3 1 4	ме 0:67	R	L boviece	<u> </u>	(Signature)	Vì	ע DA ק		.p.c	TIME 5		Rema Dr Dr					Pl ia	Panaiy mple u TPH. Fr	sis ,itx
								Rece		poratory by	>(n)	ma	nk	1/18		१:5	5	<u>nc</u>	sut	<u>ts</u>	+0	7	Te	resk Nix	at
(Contrac	tor), Yellov	w & Whil	te (Lab).						(- + (e)	e-sched	uling	is r	eco		end	led	(512	z) E	36	1-3	35E	56	Precision Analytic	d Service

ANALYTICAL REPORT 1-84915

for

K.E.I. Consultants, Inc.

Project Manager: Theresa Nix Project Name: Dan Fields Project Id: 810059

December 24, 1998

 11381
 Meadowglen Lane
 Suite L * Houston, Texas 77082-2647

 Phone (281) 589-0692
 Fax (281) 589-0695

11381 Meadowglen Suite L Houston, Texas 77082-2647 (281) 589-0692 Fax: (281) 589-0695 Houston - Dallas - San Antonio - Latin America

December 24, 1998

Project Manager: Theresa Nix K.E.I. Consultants, Inc. 5309 Wurzbach Rd. Suite 100 San Antonio, TX 78238

Reference: XENCO Report No.: 1-84915 Project Name: Dan Fields Project ID: 810059 Project Address: Lovington, NM

Dear Theresa Nix:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with XENCO Chain of Custody Number 1-84915. All results being reported to you apply only to the samples analyzed, properly identified with a Laboratory ID number. This letter documents the official transmission of the contents of the report and validates the information contained within.

All the results for the quality control samples passed thorough examination. Also, all parameters for data reduction and validation checked satisfactorily. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, completeness or properly flagged.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 3 years in our archives and after that time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. 1-84915 will be filed for 60 days, and after that time they will be properly disposed of without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

XENCO operates under the A2LA guidelines. Our Quality System meets ISO/IEC Guide 25 requirements which is strictly implemented and enforced through our standard QA/QC procedures.

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Sincerely,

Eddie L. Clemons, II QA/QC Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY!

K.E.I. Consultants, Inc.

Project Name: Dan Fields

XENCO COC#: 1-84915

Project ID: 810059 Project Manager: Theresa Nix Project Location: Lovington, NM

Date Received in Lab: Dec 17, 1998 10:15 by JO

XENCO CONTACT : Carlos Castro/Karen Olson

								Dau	auo lime 👘	
	Field ID	Lab. ID	Method Name	Method ID	Units	Turn Around	Sample Collected	Addition Requested	Extraction	Analysis
1	S-A	184915-001	BTEX	SW-846	ppm	24 hours	Dec 16, 1998 12:43	a menana ang ang ang ang ang ang ang ang ang	Dec 17, 1998 by HL	Dec 17, 1998 16:11 by HL
2			TPH8015M-D	SW-846 8015 M	mg/kg	24 hours	Dec 16, 1998 12:43		Dec 18, 1998 by SS	Dec 22, 1998 12:30 by CG
3	S-B	184915-002	втех	SW-846	ppm	24 hours	Dec 16, 1998 12:55		Dec 17, 1998 by HL	Dec 17, 1998 16:30 by HL
4			TPH8015M-D	SW-846 8015 M	mg/kg	24 hours	Dec 16, 1998 12:55		Dec 18, 1998 by SS	Dec 22, 1998 01:03 by CG
5	S-C	184915-003	BTEX	SW-846	ppm	24 hours	Dec 16, 1998 13:10	•	Dec 17, 1998 by HL	Dec 17, 1998 16:48 by HL
6			TPH8015M-D	SW-846 8015 M	mg/kg	24 hours	Dec 16, 1998 13:10		Dec 18, 1998 by SS	Dec 21, 1998 23:57 by CG
7	\$-D	184915-004	BTEX	SW-846	ppm	24 hours	Dec 16, 1998 13:25		Dec 17, 1998 by HL	Dec 17, 1998 17:07 by HL
8			TPH8015M-D	SW-846 8015 M	mg/kg	24 hours	Dec 16, 1998 13:25		Dec 18, 1998 by SS	Dec 22, 1998 01:36 by CG
9	Stockpile	184915-005	BTEX	SW-846	ppm	24 hours	Dec 16, 1998 13:40		Dec 17, 1998 by HL	Dec 17, 1998 17:26 by HL
10			TPH8015M-D	SW-846 8015 M	mg/kg	24 hours	Dec 16, 1998 13:40		Dec 18, 1998 by SS	Dec 22, 1998 02:08 by CG

KEI Consultants, Inc.

Project Name: Dan Fields

Date Received in Lab : Dec 17, 1998 10:15 Date Report Faxed: Dec 24, 1998

Project ID: 810059 Project Manager: Theresa Nix

Project Location: Lovington, NM

XENCO contact : Carlos Castro/Karen Olson

Analysis Requested	Lab ID: Field ID: Depth: Matrix: Sampled:	184 s 12/16	915 00 S-A urface Solid 5/98 12:	1	184 s 12/16	915 002 S-B urface Solid 5/98 12:	2 55	1849 su 12/16	915 00: S-C urface Solid /98 13:	3 10	1849 su 12/16	915 004 S-D urface Solid /98 13:	4 25	184 Sta St 12/16	915 005 ockpile urface Solid 5/98 13:	5 40	
TPH-DRO (Diesel)	Analyzed:	12/22/98		R.L.	12/22/98	*	R.L.	12/21/98		R.L.	12/22/98	*	R.L.	12/22/98	*	R.L.	
EPA 8015 M	Units:	mg/kg	\$		mg/kg			mg/kg	*		mg/kg			mg/kg			
Total Petroleum Hydrocarbons	_		1670	(20.0)		2090	(50.0)		133	(10.0)		6440	(400)		4730	(400)	
TPH-DRO (Diesel), Rerun	Analyzed:	01/11/99		RI	01/11/99		RI	01/11/99		RI	01/12/99		RI	01/12/99		RL	
EPA 8015 M	Units:	mg/kg	*	1 1 .E.	mg/kg	*		mg/kg	*		mg/kg	*		mg/kg	*	,	
Total Petroleum Hydrocarbons			1650	(100)		2280	(100)		214	(50)		6180	(100)		6840	(100)	
BTEX	Analyzed:	12/17/98		RI	12/17/98		RI	12/17/98		R I	12/17/98		RI	12/17/98		RI	
EPA 8021B	Units:	ppm			ppm		1.1.	ppm			ppm		1	ppm			
Benzene			0.283	(0.050)	<	0.050	(0.050)	<	0.050	(0.050)	<	0.050	(0.050)	<	0.050	(0.050)	
Toluene	· · · · · · · · · · · · ·		0.298	(0.050)		0.071	(0.050)	<	0.050	(0.050)	<	0.050	(0.050)		0.244	(0.050)	
Ethylbenzene		<u> </u>	0.800	(0.050)		0.268	(0.050)	. <	0.050	(0.050)		0.354	(0.050))	0.434	(0.050)	
m,p-Xylene			4.375	(0.100)		0.770	(0.100)	<	0.100	(0.100)		2.005	(0.100)		1.505	(0.100)	
o-Xylene			2.440	(0.050)		0.458	(0.050)	<	0.050	(0.050)		1.115	(0.050)		1.135	(0.050)	
Total BTEX				8.196	š.		1.567	1		N.D	·		3.474			3.318	

*TPH-DRO analyses re-analyzed to confirm results due to QC failure

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of KEI Consultants, inc.. The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Eddie L. Clemons, II

QA/QC Manager

SW- 846 5030/8021B BTEX

Date Validated: Dec 18, 1998 07:45 Date Analyzed: Dec 17, 1998 11:08 Analyst: HL Matrix: Solid

				BLÁNK SPI	KE ANALYS	SIS		
	· · · · · · · · · · · · · · · · · · ·	[A]	[B]	[C]	[D]	(E)	[F]	[G]
		Blank	Blank Spike	Blank		QC	LIMITS	
	Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
		1		Amount	Limit	Recovery	Range	
	_	ppm	ррт	ppm	ppm	%	%	
	Benzene	< 0.0010	0.1030	0.1000	0.0010	103.0	65-135	
1	Toluene -	< 0.0010	0.1030	0.1000	0.0010	103.0	65-135	
1	Ethylbenzene	< 0.0010	0.1040	0.1000	0.0010	104.0	65-135	
	m,p-Xylene	< 0.0020	0.2080	0.2000	0.0020	104.0	65-135	
	o-Xylene	< 0.0010	0.1030	0.1000	0.0010	103.0	65-135	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Eddie L. Clemons, II

QA/QC Manager

-

Certificate Of Quality Control for Batch : 18A25E51

SW- 846 5030/8021B BTEX

 Date Validated:
 Dec 18, 1998
 07:45

 Date Analyzed:
 Dec 17, 1998
 12:04

Analyst: HL

Matrix: Solid

		· ·	MATI	RIX SPIKE /	MATRIX S	ATRIX SPIKE DUPLICATE AND RECOVERY [E] Matrix [F] [G] [H] [I] Limit QC QC QC Matrix Spike etection Relative Spike Relative Matrix Spike M.S.D. Recovery Recovery Qua Limit Difference Difference Recovery Recovery Range Qua ppm % % % % % % 0.020 25.0 6.2 117.0 110.0 65-135 0.020 25.0 7.1 117.0 109.0 65-135 0.020 25.0 7.0 118.0 110.0 65-135 0.040 25.0 7.0 118.5 110.5 65-135					
	[A]	[B]	[Ċ]	[D]	[E]		[J]				
ą.c. sample ID	Sample	Matrix Spike	Matrix Spike	Matrix		Limit	QC	[G] [H] [I] QC QC Matrix Spike Matrix Spike M.S.D. Recovery Recovery Recovery Range % % % 117.0 110.0 65-135 117.0 110.0 65-135 118.0 110.5 65-135 118.5 110.5 65-135 117.0 110.0 65-135			
184910- 005	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative		Qualifie		
			Result	Amount	Limit	Difference	Difference	Recovery	[G] [H] [I] QC QC Matrix Spike atrix Spike M.S.D. Recovery Recovery Recovery Range % % % 117.0 110.0 65-135 117.0 109.0 65-135 118.0 110.0 65-135 118.5 110.5 65-135 117.0 110.0 65-135		
Parameter	ppm	ppm	ppm	ppm	ppm	%	%	%			
Benzene	< 0.020	2.340	2.200	2.000	Image: Constraint of the system Matrix splike DUPLICATE AND RECOVER Image: Constraint of the system Matrix splike Constraints Image: Con	117.0	110.0	65-135			
Toluene	< 0.020	2.340	2.180	2.000	0.020	25.0	7.1	117.0	109.0	65-135	
Ethylbenzene	< 0.020	2.360	2.200	2.000	0.020	25.0	7.0	118.0	110.0	65-135	<u>,</u>
m,p-Xylene	< 0.040	4.740	4.420	4.000	0.040	25.0	7.0	Image: Non-Section of the section of the se	5.		
o-Xylene	< 0.020	2.340	2.200	2.000	0.020	25.0	6.2	Image: Constraint of the state of	1		

Spike Relative Difference [F] = 200*(B-C)/(B+C) Matrix Spike Recovery [G] = 100*(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

ddie L. Clemons, II

QA/QC Manager

Houston Dallas San Antonia

Certificate Of Quality Control for Batch : 19A02A23

SW- 846 8015 M TPH- DRO (Diesel), Rerun

 Date Validated:
 Jan 12, 1999
 13:30

 Date Analyzed:
 Jan 11, 1999
 22:11

:

Analyst: MM

Matrix: Solid

			MAT	RIX SPIKE	MATRIX S	SPIKE DUP	LICATE AND	RECOVERY		SC 7	
O.C. Sample ID	[A]	[B]	[C]	[D]	(E)	Matrix	[F]	[G]	(H)	(m	្រា
	Sample	Matrix Spike	Matrix Spike	Matrix		Limit	QC	QC	QC	Matrix Spike	1 .
184915- 003	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Matrix Spike	M.S.D.	Recovery	Qualifier
Demonster			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
Parameter	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	%	
Total Petroleum Hydrocarbons	214	193	212	100	50	30.0	9.4	21.0	2.0	65-13	5 /

(A) MS/MSD % recovery is less than laboratory acceptance limits due to sample non-homogeneity
Spike Relative Difference [F] = 200*(B-C)/(B+C)
Matrix Spike Recovery [G] = 100*(B-A)/[D]
M.S.D. = Matrix Spike Duplicate
M.S.D. Recovery [H] = 100*(C-A)/[D]
N.D. = Below detection limit or not detected
All results are based on MDL and validated for QC purposes

Eddie L. Clemons, II

QA/QC Manager

Houston - Dallas - San Antonio

Certificate Of Quality Control for Batch : 19A02A23

SW- 846 8015 M TPH- DRO (Diesel), Rerun

Date Validated: Jan 12, 1999 13:30 Date Analyzed: Jan 11, 1999 19:09 Anaiyst: MM

Matrix: Solid

R			-iter	BLANK SPII	KE ANALYS	SIS		
		[A]	[8]	[C]	[D]	[E]	(F)	[G]
_		Blank	Blank Spike	Blank		QC	LIMITS	
	Parameter	Result	Resuit	Spike	Detection	Blank Spike	Recovery	Qualifier
		-		Amount	Limit 👘	Recovery	Range	
		mg/kg	mg/kg	mg/kg	mg/kg	%	%	
	Total Petroleum Hydrocarbons	< 10.00	86.70	100	10.00	86.7	65-135	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Eddie L. Clemons, II

QA/QC Manager

Houston - Dallas - San Antonio

	11078 Morrison	Road, S	ulte D,	Dalla	s, TX 7	5229	972-48	1-9999	9			Co	mpa	ny (coc	C No	22	Z١		1	Vorl	(Ord	ər No	0:				Page	1 0	r (
Company	11. 1.			Pho 7/4	ne / ø	. 2				Lai	o On	nly:	12	22	ľ	7/F	5	61											La		ly No.
	viously done at	XENCO		Proi	o <u>o o</u> ect II	<u>~3</u>	6			TA	1:5h	12	1 <u>C</u> h 2	<u>//</u>)n (24h	10		d 5	1 7	d 14	1d	21d	Stan	darc	TAT	ls 10	Wor	kina Davs	<u>^</u>	T	
The fields		121100		81	$\gamma \gamma$	۔ م	,			un	ess c	othe	rwise	agi	reec	i in w	riting	i. Bu	ofte	n rep	orte	d in 5-	7 W	orkin	g Do	ays					
	Aim			0		-								to I		Σ	T		Т				0	+			Re	marks	ΪË	Ë	Ë
Project Manager (PM)	<u> </u>			Proj	ect D	irecto	r (PD)	1						8	Σ	Ե							5	L I					- 8	15	L L
Theresa Nix			Y	Mils	eЦ	cur	the	rn	e	_				3	<u></u>	U at							14	l e							
Fax Results to EPPM on	id)/or			Fax	Ş	2-6	34-3				ther.	Stef		231A	्र ।	± 8							B	Ī					Ä	ä	ة
Stas Grave	210-480-	<u>5763</u>	with Fi		57	4 SI	_ (۳ ۰				δ	801		<u>e</u>	8.	Ж								S S					Š	Š	Š
must have a P.O. Bill to:			WILL FI		spon	Ano	PIVI		VOICE	' ŧ	624	a		<u>ب</u>	3	å							Ĩ) b L			ନ୍			-	
Quote No.	<u> </u>	<u> </u>	P.O.No	210	159.	1-0E] Call	for a	P.O.	5	8	ğ		۳ ۳	2	ក្ត							22	-	ĺ		8	d			
Special DLs (RR RR [OW QAPP See	Lab PN	1 Call	Proj. F	<u></u> М)					°_	0	3		۲ļ	e	<							g	i z			1	22			
Specifications 5		1	~ /		-1 -				ົ	-18	826	S.		å	₩¥	8X8							L S	1		5	ズ	4	0	0	0
For Or	My Ques!	iem s	_Cal		ne	180	\mathcal{W}		9	- 8	ล	0156	8310	Ĕ	<u>ک</u>	윤								Ē		Į Į	3		đ	đ	a
Sampler Name Clas	34-	. Slar		F	-	\rightarrow	K			- -	8	1 8(8	R S S	8	PA				1			12			2		510			
campion name Stas	Grau				10		The second	que	7	82	8	418.	810	8	624	625							- E	P			Ľ	60			
Sample ID	Sampling Date	Time	ep# -=	lahrix APSW	omposite	Containers	ontainer Size	ed	eservatives	TEX b 8020	TEX-MTBE by 8	PH by TX1005	AHs by 8270	IETALS by 601	OAs by 8260	VOAs by 8270							AT 5h 12h	ddn: PAH ab	lold Analysis	م مرامد م م	- BTE	Hato			
<i>3</i> -A	12-16-98	12:43	⊆± Surêa			2	് പ്പവം	E GA	<u> </u>			/		2	>	5			-				-				Τ	<u> </u>		-	┢
C. R		12.00	-	11	T	Ť	T	1	Ī			1							1											1	
3.8		12.3.3		+-+	╂┼─	┿╋		+																	+	+				+	+-
5-5		13:10		+		++	┝╌╏╌	+	┼╌╂			┼╂╌														_			_	+	┢
S-P		13:25	<u> </u>		11_														_												L
STOCK Pile	J.	13:40	*					4				1		1																	İ
······································																															
				+		+	<u> </u>		+		1		┼─┼	+				+-	+-				1	17	1					+	
				+	_		<u> </u>							-	-+	_					\downarrow	A-		Ψ	\Rightarrow	/				+-	┢
							L				1										<u> </u>									1	
																			1												
				\dagger		1	1	-	+		1	-			-†	-	+,	イ	1		-+		1-		1					1	\uparrow
Relinquished by flait	ials and Siana	lure)	Ro	lingul	shed	to (<u> </u> nitiak	ands	Slanc	ture `	<u> </u>		Date	- &	Tim		HT.		Contr		Der (10	<u> </u>							<u> </u>
The THE						<u> (</u> 1			- -		,	1,7	1, 10	279		~	/ _	ish T/	Ts Fo	x Due			10			Fli	nal F	ax Due:			
	~ uov	- L						<u> </u>				11-4	- 1 - 1 - 1	10		$\boldsymbol{\omega}$					-										

ENVIRONMENTAL , INC. LAB OF

"Don't Treat Your Soil Like Dirt!"

KEI

ATTN: THERESA NIX & M. HAWTHORNE 5309 WURZBACH SUITE 100 SAN ANTONIO, TEXAS 78238 FAX: 512-364-3556 FAX: 210-680-3763 (Stas Grover)

Receiving Date: 12/29/98 Sample Type: Soil Project #: 810059-1-0 Project Name: Dan Field Project Location: Lovington, N.M. Analysis Date: 12/29/98 Sampling Date: 12/28/98 Sample Condition: Intact/Iced

			TPH (DRO)
			C10-C28
ELT#	FIELD CODE	· · · · ·	mg/kg
16440	Section A Bottom		565
16441	Section & Fast Wall		<10
16442	Section A West Wall		15
16443	Section B Bottom		337
16444	Section B Fast Wall		<10
16445	Section B West Wall		12
16446	Section C Bottom		67
16447	Section D Bottom		337
16448	T-1 North Wall	. *	<10
16449	T-1 South Wall	· · · ·	<10
16450	T-1 East Wall		200
16451	T-1 West Wall		<10
16452	T-1 Bottom		<10
16453	T-2 North Wall	·	<10
16454	T-2 South Wall		<10
16455	T-2 East Wall	•	<10
16456	T-2 West Wall		<10
16457	T-2 Bottom		<10
16458	SP-1		2,637
16459	SP-2		1,245
16460	SP-3		712
16461	Sp-4		929
	BLANK	· .	<10

BLANK	
% INSTRUMENT ACCURA	CY
% EXTRACTION ACCURA	CY

METHODS: SW 846- 8015m DRO

Raland K. Tuttle

12-30-98 Date

95

							(910		-10							٢	-0	·C	Ħ	2	23										
roject Manager. There	st Ni	×				Pi	one #	،ک	2-	36	4-	344	0							AN	ALY	SIS	REC	OUE	ST			l			
						F/	X#:	5/2	- 3	64	- 3	55	6																		-
Company Name & Address:	Kieii 5309 Sani A	consultonts wurzbach, sta wiknic, TY D	100 2 38															Se	•												
roject #: 810059-1	-0					Pı	oject	Name	:: T	7 4 N	5 -	liele	0			1	0210	РЪ НО	Pb Hg S	i i											
roject Location: Lovia	ston,	NM				Se	mple	r Sign	atur	:							E		ວັ ຈ												
	•					$\boldsymbol{\varsigma}$	Y.	Log	_	Lo	z	4					5	Ba	Ba		<u>ه</u> ا					1					
			ERS	Ę		MATI	IX		PR	ESER MET	IVA1	TIVE D	SA	MP	LING	0/5030	8 8	s Ag As	Ag As	es	Volatile									Î	
LAB # (LAB USE) ONLY	FIELD (CODE	# CONTAIN	Volume/Amo	WATER	SOIL	SLUDGE	OTHER	HCL	HNO3		OTHER	DATE		TIME	BTEX 8020	Hdt Hdt	TCLP Metal	Total Metals	TCLP Volati	TCLP Sem	801	RCI								
16440 Saction	440 Saction-A Battom					Δ							280	5	1210		Δ													·	Ι
16441 Section	Section - A East wall														1145																
16442 section	-A	west well									\square				1140														\square		
16443 Section	<u>1-8</u>	Bottom													1230	_				_			\square	\square			1		\square	┛	\bot
16444 section	1-13	East wall					_							_	1200	_			_			\downarrow	_	\downarrow			\perp	\square		┶	\bot
16445 section	1-B	west wall		\square	<u> </u>		_							_	1150			$ \downarrow$		_		_	_	_	_	\downarrow	\bot	\square	\square	╇	⊥
16446 Section	<u>-C</u>	Battom					+							_	1245				_	_	_	4		_		4	4		\vdash	+	\downarrow
16447 Section	7-D	Battom	1	12	_	*	_							_	14:45		之	_		-	_	4		_		+	+-	┯	\vdash	+	╀
		<u></u>							$\left - \right $		+	╋		_				_		-	+	-		-	-+	+	+	+	┝┼	╋	+
		<u> </u>			┼╌	-		+			-+	+					$\left \cdot \right $	\neg	+	\neg	+	+	-+	-	+	╉	+	+	┢┼	╋	╉
elinquished by:		Date: /2/20/92	3	Times: 0855				Rec	etved P	by:		1.5	è	REMAR	KS	Ph	ـــــــــــــــــــــــــــــــــــــ	۲. ۲.		Rei	 5 u d X	115	74	 7 7	The 51.	2-3	<u>د م</u>	5.5	 5%	_ _	
elinquisbed by:	1	Date:	Times:				Rec	civied	by:		<u> </u>	~	Anah	B i,	s: 	PH	80	15-1	mÐ	RO)		J	210	6 A - 6 S	0-1	576.	3			
lelinquished by:		Date:	Times:				Rec	cived	by L	abora	lo ry:		-IF. •Z41	40	ica h tur	an A	ne d Arsi		y e d	<u>a</u> re:	.	i sa	9 7 (رب حرار ح	1 s 75-	1 74 -63 -73:	. s (1/-/ 8_ 0	5 90 27 400	ж. В 6		

Project Manager:	hereca NI	v	•			P	hone	#:]-	512	- 3	64	- 34	40		<u> </u>					<u>ں</u>		· · · · · ·			Τ-		
		•				F	AX#	:]	512	- 34	4-	35	56					A	NAL	.YSI	S REC	QUES	T				
Company Name & A	ddress: K.C.i 5309	Consulta Wurzbach	nts scc 787	100 TA	2																	Τ		T	\square		1
Project#: 8100	59-1-0		_106			P	rojec	t Narr	ne : D	>	s f1	eld	•				S DH QC										
Project Location:]	ovington, 7	Im	<u> </u>			S	ampi	er Sig	nature		bn	3.	show	-en													
	<u> </u>		RS	Ę		MAT	RIX		PR	esei Met	RVAT THOI	IVE	SAMP	LING	/5030	8015	Ag As Bi	e s	Volatiles								
LAB # (LAB USE) ONLY	LAB # FIELD CODE				NATER	solt		OTHER	HCL	FOO3	CENONF	DTHER	DATE	TIME	BTEX 8020		Total Metals	TCLP Volatil	TCLP Semi	TDS	RCI						
T-INT-	NT-1 North Wall				2	7					1		• 28 Pec 48	1030		1			Ť						Ť	\square	
T.1 5 T-	1 south h	Ja [/		1		T	Ť.		1	Ī	T			T		T										\square	
T-LE T-	I East w	all		T							T															\square	
T-INT	·1 west	wal/									Π																
T-1 B T	-1 Bottom													<u> </u>													
16453 T-	2 North C	عما(_							1100]]								\perp			
16454 7-	2 south 1	wa 11		Ш.							$\left \right $					\prod		1	<u> </u>				\square	<u> </u>			
16455 7-	2 East c	sall					\downarrow				11-					\prod			<u> </u>								
16456 7-	2 west a	Jall		$\parallel \mid$			_				\square					11-			<u> </u>						\bot	\square	
16457 7.	2 Bottom		1×	1×		Ł	_						 	*	1_	¥.	_							⊢		\square	
Relinquished by:		Date: /2/29/9	8	Tim	=:			<u> </u>	Reci	elved	by:			REMA	RKS	Ēc	 >r		<u> </u>					 	1		
Starley -	Twee	D-4				לשי	2		4	<u>_</u> u	Ken	dh	juit	7	the	"esc	2	7 63	6) 3	 512	-36	4-	35	56	a	N
Relinquished by: <u>Thanley</u> Relinquished by:	Lover	Date: /2/24/9	8	Tim		85	5		Reco	elved Da elved	by: (cm	dĻ	Junh	REMA Pie T	RKS ASC The	Fa	2 ~	ana Dex		-+ c.) 5	d sizi	R: -36	sed 4-	ts 35.	То 56	a	

ł

Ductor Mana								DL			2-	7/		- 7	<u>u</u> 2191		C	-0	-0	#	2.	23	7				_					مستنبستيا
r roject winne	an There	sa Ni	12				: 1	F A OR	ис w: 	.	<u> </u>	34	, 4 .	· •							A	NAL	.YSI	IS RE	QU	est						
		<i>K.e.</i> ; (consultants						<u>.</u>	12	<u> </u>	64	- 3	22) Ço											T	<u> </u>	—	╞			—
Company Nan	ne & Address:	5309 4 SAN AN	Jurzbach, stanio. Tx	56e	(00 g23.	8													Se	ø												
Project #: 8	10059-1-	0						Proj	ect N:	une :	0	ÂN	t	دل	9			020	Pb Hg	Pb Hg S												
Project Locat	Lovins	lan Ni	M					Sam	pler S	ignat	ure	;		· · ·				- 76	cd Cr	5 P												
	U	4				-	2	4	the	īl	2		The	n	~			510	s Ba	BaC		ŝ										
				ERS	Int		MAT	rrr.	:		PRE	SER	VATI	VE	SAM	PLING	1/5031	4 8	s Ag A:	Ag As	es	Volatile										
LAB #		FIELD COD	E	CONTAIN	olume/Amoi	VATER	solt	VIR	LUDGE	DTHER		INO3	VONE	THER	DATE	IME	BTEX 8020	TPH 4	FCLP Metal	Fotal Metals	TCLP Volati	ICLP Semi	ros	çı								
LUS8	SP-1	<u></u>		1	>	>	7	4	<u>s</u>		+				2305	1223	F	7	F			-	-	££				+	+	┝┤	\neg	┯╋
1459	52-2						1			-	\uparrow					1228		ľT									\uparrow	+	-			
16460	52-3		· · · · · · · · · · · · · · · · · · ·						Ť		╈			1.		1233		T									Ť		1-			
16461	58-4		••••••••••••••••••••••••••••••••••••••	I			Ł							Γ	L	14:55	ł		Ī								T	T			T	
·····				<u> </u>														ŀ									_		\bot			
															<u> </u>													\perp	\bot			Ц
			······································	 		 					_				<u> </u>	<u> </u>	<u> </u>	<u> </u>		-		<u> </u>										
				 		<u> </u>				_	-					<u> </u>		_	_	<u> </u>		\vdash					4		╇	╀╼┥		\vdash
	<u> </u>			<u> </u>		<u> </u>				·																				Ł		
they by	Juares	D	are: 14/6 9 /70	r	C	" 85	5					cl.	ייי כי ריי כי	ĸj	1. aib		KK.	5 Г А		r 9(-4	₩ α 3			، عمد ح	1 57745	5 6 1	512 512	2-3 2-3		-35	554
Relinquished	pà:	D	ate:		Time	5:				F	lece	lived 1	y:	:		ANA	1 ~1 #	ŝ	17	% [80	51	N D	Ð				210)-6	60-	37	63
-												Laure - 1 1				- •If	¥Ð(u h		r ¢ 4	-	y 4	કેપ્સ	5661	in	C.	. <u> </u> 	57# 5-	ر س المح	6 R 31 - 31 -	00	N(4 78
venudanzue a	יני	u u	ale:		Ling	3:				ľ	(566	ined j	y La	Dora	10171		•	1		_	. .			٦			30	J -				

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

KEI

ATTN: THERESA NIX 5309 WURZBACH SUITE 100 SAN ANTONIO, TEXAS 78238 FAX: 512-364-3556 FAX: 505-738-9006 (Stas Grover)

Receiving Date: 01/05/99 Sample Type: Soil Project #: 810059-1-0 Project Name: Dan Fields Project Location: Lovington, N.M.

Analysis Date: 01/05/99 Sampling Date: 01/05/99 Sample Condition: Intact/Iced

ELT#	FIELD CODE	BENZENE mg/kg	TOLUENE mg/kg	ETHYLBENZENE mg/kg	m.p-XYLENE mg/kg	o-XYLENE mg/kg	C10-C28
16667	Detter	<0.100	<0.100	<0.100	<0 100	<0 100	<10
10001	Bottom	<0.100	<0.100	XU.100	KU.100	NO.100	×10
16558	North Wall	<0.100	<0.100	<0.100	< <0.100	<0.100	<10
16559	South Wall	<0.100	<0.100	<0.100	<0.100	<0.100	<10
16560	East Wall	<0.100	<0.100	<0.100	<0.100	<0.100	<10
16561	West Wall	<0.100	<0.100	<0.100	<0.100	<0.100	<10

% IA	97	98	98	96	98	98
% EA	97	96	96	96	97	92
BLANK	<0.100	<0.100	<0.100	<0.100	<0.100	<10

METHODS: SW 846-8021B, 5030, 8015m DRO

<u>Kaland K Juth</u> Baland K. Tuttle

1-6-	<u>99</u>	
Date	K	I CONSULTANTS
		JAN 1 21 1999
		SAN ANTONIO

12600 West I-20 East • Odessa, Texas 79765 • (915) 563-1800 • Fax (915) 563-1713

						(915	o) 56	3-18	00	FAX	נע) ז	3) 303-1	[/13															
Project Manager:		· · · · · · · · · · · · · · · · · · ·			Pl	ione #	: 5	/2 •.	369	-3	440)						ANA	1 10	10 DI	20115	 ? CT						
Therese Nix				10	F	XX #:	51	2-3	64	- 30	55	6						~~~~~				، لم 						
Company Name & Address:	3																						1					
Kiei Consultan	5 5309 W	urzb	<u>cch</u>	ی ر	óż,	100		SA	N	Jule	mic), TX	72:28			S.	2											
Project #: \$10059-1-0					Pı	roject	Nam	•:D	kn	fie	lds	5			2	Ĩ.	B											
Project Location:	<u> </u>				S	male	- Sier								A	5	5											
				C	_	AA		7	••	X	,				2	D B	8											
Lovintian NW	£		1		14.73	ua.	<u>n</u>	PR	ESEI	RVAT	IVE	7 SAMP		5	ŝ	As l	As B	ilee									$\left \right $	
		VERS	bun	ļ			1		MET	CHOD) 			20/51	Å	₹ Sa	S Ag											
LAB # FIELI	CODE	NTAI	e/Am	l 🛱		GE	ı ۲			 	ĸ			< 80;	4	Wet	Meta											
		A CO	/olum	NAT			OTHE	Ę	ÖNH		OTHE	DATE	TIME	BTE)	TPH	12	Total			RCI								
16557 Ballon	· · · · · · · · · · · · · · · · · · ·	$\frac{1}{1}$	400		7		1		_	7		115/99	6:00	\overline{Z}	Ζ	-+		Ť							H	+-	++	
16558 North 12		1	††				<u>†</u>			T			b:06	ΪT	1		╈		\top					Ť		╈	++	
16559 South wa	l(1	1T			+	İ			\mathbf{T}			6:13													+		
16560 East wa	ll	1	1T							Π			6:20												\Box			
16561 West wa	ll	1								Ł		×	6:26		¥											\perp		
																-				-				<u> </u>	\square	\bot		
	· · ·						1													<u> </u>		_			$\downarrow \downarrow$			
						_						 				_	_			-		_			╂━╂		┥	
			ļ	┞╌┼	_									+		_		+		╞	\square	_			┝╌┠	+	╇	
<u> </u>	- <u>}</u>			╂╌╂			+-	$\left - \right $	┝╼╋						$\left - \right $	\dashv		+			$\left - \right $	_		+	┝┤	+	+-'	
	Date:		Time	<u> </u>		_				ber		<u> </u>	REMA	RKS											4			L
The Same	01/05/99			-12	:0	5			P	la-	dŁ	1 Such	•	71-		- Ŧ	čχ	G	Cup	y	ю	51	ras	6	\mathbf{S}			
Relinquished by:	Date:		Time	3;				Rec	elved	by:	5	/ un)	ł							,		、	505	5-7	738·	·H	206	
										-				÷					/	1.	CS	0\$	-63	31-	127	8		
Relinquished by:	Date:		Time	:				Rec	cived	by La	boral	or y:	1	•	· ·													
						d Ti Ser Ser and Ser A											<u>.</u>											

QA/QC PROCEDURES

SOIL SAMPLING

Representative soil samples selected for analysis were placed in sterile glass containers equipped with a Teflon-lined lid furnished by the analytical laboratory. The container was filled to capacity with soil to limit the amount of head-space present. The container was labeled and placed on ice in an insulated cooler. The cooler was sealed for shipment to XENCO Laboratories in San Antonio, Texas or Environmental Lab of Texas, Inc. in Odessa, Texas for determination of the following constituents:

- BTEX concentrations by EPA Method SW846-8020
- TPH concentrations by EPA Method 8015-DRO
- SPLP SVOC concentrations by EPA Method 1312/8270
- SPLP VOC concentrations by EPA Method 1312/8260
- SPLP TPH concentrations by EPA Method 1312/418.1

Proper chain-of-custody documentation was maintained throughout the sampling process.

LABORATORY PROTOCOL

The laboratory was responsible for proper QA/QC procedures. These procedures are either transmitted with the laboratory reports or are on file at the laboratory.

	NE: (505) 387-2045
061735	(505) 397-2860 (505) 382-2235
COMPANY NAME K.e.i	Consultants/TNMPL
COMPANY REPRESENTAT	VENAME Sten Grove G
LEASENAME TOO TO	1 / 176 No BIOGER-1-0
SEC. 6	TOWNSHIP / L SHIM RANGE 36 BASH
TRUCKING COMPANY NAM	E Hamirez Tacking
ORIVERS SIGNATURE	
TYPE OF MATERIAL BEING	HALLED AND QUANTITY SAL COMPLEX
with crude of	(392 years) II 40
COPYDFANALYSIGATTAC	HED, IF REQUIRED Ves
TPHC_2937.4	
BENZENE AD	
TOLUENE :244	
ETHYL BENZENE	434
PARA XYLENE 2	
Norm Free	X Sek.
ATTENDANT ON DUTY	the comment
DATE TE /2 99	
	CD-07-01