|                   |                | SITE               | INFORMATION                     |                                           |
|-------------------|----------------|--------------------|---------------------------------|-------------------------------------------|
| General Site Info | ormation:      |                    |                                 |                                           |
| Site:             |                | Unnamed Later      | al Line of the C-line (active)  |                                           |
| Company:          |                |                    | eld Services, LP                |                                           |
| Section, Townshi  | ip and Range   | Section 33, T17    | S, R33 E                        |                                           |
| Unit Letter:      |                | D                  |                                 |                                           |
| Lease Number:     |                |                    |                                 |                                           |
| County:           |                | Lea                |                                 |                                           |
| GPS:              |                | 32° 47' 41.7", 1   |                                 |                                           |
| Surface Owner:    |                | State of New Me    |                                 |                                           |
| Mineral Owner:    |                | State of New Mo    |                                 |                                           |
| Directions:       |                | Site located appro | ox. 5.0 miles southwest of Malj | amar                                      |
|                   |                | From intersection  | of 238 and 529, go west 17.4    | miles on 529, turn right (north) on       |
|                   |                | Doglake road (pa   | ved road), go 0.5 miles and tui | n right (east) on lease, road located     |
|                   |                | before CR 125, fo  | ollow main lease road 0.5 miles | and turn right (at Y), take road to right |
|                   |                | go approx. 0.1 mi  | to Wyatt Fed. #2 Conoco Phil    | ips TB, spill west of TB on lease rd.     |
| Release Data:     |                | Contaction of      |                                 |                                           |
| Date Released:    |                | 12/10/2004         |                                 |                                           |
| Type Release:     |                | condensate         |                                 |                                           |
| Source of Contar  | nination:      | Pipeline failure   |                                 |                                           |
| Fluid Released:   |                | Estimated 11 ba    | arrels                          |                                           |
| Fluids Recovered  |                | 0 barrels          |                                 |                                           |
| Official Commu    | nication:      |                    |                                 |                                           |
| Name:             | Lyne Ward      |                    |                                 | ike Tavarez                               |
| Company:          | Duke Energy I  | Field Services, LP |                                 | Highlander Environmental Corp.            |
| Address:          | 10 Desta Dr. S | Suite 10           |                                 | 1910 N. Big Spring                        |
| P.O. Box          |                |                    |                                 |                                           |
| City:             | Midland Texas  | s, 79705           |                                 | Midland, Texas                            |
| Phone number:     | (432) 620-420  | 7                  |                                 | (432) 692- 4559                           |
| Fax:              | (432) 620-416  | 2                  |                                 |                                           |
| Email:            |                | e-energy.com       |                                 | itavarez@hec-enviro.com                   |

| Depth to Groundwater:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | Ranking Score    |       | Site Data          |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|-------|--------------------|-------------|
| <50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 20               |       |                    |             |
| 50-99 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 10               |       |                    |             |
| >100 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 0                |       | Average Depth >100 | BS          |
| WellHead Protection:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del></del> | Ranking Score    |       | Site Data          |             |
| Water Source <1,000 ft., Private <200 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 20               |       | None               |             |
| Water Source >1,000 ft., Private >200 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 0                |       |                    |             |
| Surface Body of Water:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | Ranking Score    |       | Site Data          |             |
| <200 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 20               |       | None               | 14.115.     |
| 200 ft - 1,000 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 10               |       | None               | <b>~</b>    |
| >1,000 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 0                |       | <u> </u>           | <b>19</b> , |
| Total Ranking Score:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 0                |       | /4/<br>/ <b>©</b>  | `%3<br>√    |
| Acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eptable S   | oli RRAL (mg/kg) |       | 3 45               | Ŝ           |
| Name of the last o | enzene      | Total BTEX       | TPH   | 6                  | 75 5 TO     |
| [ B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Biizeiie    | I I Utal DILA    | 11717 | 100                | 30          |



Midland, Texas

May 26, 2005

Mr. Larry Johnson Environmental Engineer Specialist Oil Conservation Division- District I 1625 N. French Drive P. O. Box 1980 Hobbs, New Mexico 88240



RE: Assessment and Closure Report for the Duke Energy Field Services, L.P., Unnamed Lateral of the C Line (active) Located in Section 33, Township 17 South, Range 33 East, Lea County, New Mexico

Dear Mr. Johnson:

Highlander Environmental Corp. (Highlander) was contacted by Duke Energy Field Services, L.P. (Duke) to assess a spill on the Unnamed Lateral of the C Line (active) located in Section 33, Township 17 South, Range 33 East, Lea County, New Mexico (Site). The site coordinates are N 32° 47′ 41.8″, W 103° 40′ 27.5″. The State of New Mexico C-141 (Initial) is shown in Appendix A. The Site is shown in Figure 1.

#### **Background**

According to the State of New Mexico C-141 report, the spill occurred on December 10, 2004 from a rupture of a low pressure pipeline. The volume of the release was estimated at 11 barrels of water and condensate and none recovered. Most of the fluid ran down a lease road, in an area, which measured approximately 1,000 feet long at an average width of 2.0 feet.

#### **Groundwater and Regulatory**

The New Mexico State Engineer Office database shows a well in Section 20, Township 17 South, Range 33 East, with a reported depth to water of 190'. The New Mexico State Engineer well reports are shown in Appendix B. A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene and xylene). Based upon the depth to groundwater, the proposed RRAL

for TPH is 5,000 mg/kg.

#### **Soil Assessment**

On January 12, 2005, Highlander personnel inspected and collected soil samples from the spill area using a stainless steel, bucket type, hand auger. The majority of the spill was on the lease road and measured approximately 1,000 feet long, at an average width of 2.0 feet. A total of four (4) auger holes were installed to evaluate the subsurface soils. The spill area and auger hole locations are shown on Figure 2. Soil samples were collected at 0-1' and 1-1.5' below surface for analysis of TPH by method 8015M, BTEX by method 8021B and chloride by method SW 846-9252. The soil sample results are shown in Table 1. The laboratory reports and the chain of custody documentation are included in Appendix C.

Referring to Table 1, auger holes (AH-1 and AH-2) exceeded the RRAL total BTEX at 0-1' below surface. In addition, AH-1 exceeded the TPH at 0-1'. The deeper samples at 1-1.5' did not exceed the RRAL for TPH or BTEX. The remaining auger holes (AH-3 and AH-4) did not exceed the RRAL for TPH or BTEX. The chloride concentrations detected are not considered an environmental concern.

#### **Corrective Action and Sampling**

Due to the shallow impact at the Site, Duke proposed to remediate the impacted soil in-situ. The soil remediation consisted of working the soils in place using a backhoe. The spill area was then segregated into three areas (#1, #2 and #3) for sampling. The segregated areas are shown on Figure 2. On March 3, 2005 and May 6, 2005, the impacted areas were worked and sampled for evaluation. The results are summarized in Table 1. The laboratory reports and chain of custody are included in Appendix C. Referring to Table 1, the confirmation samples collected were all below the RRAL for TPH and BTEX.

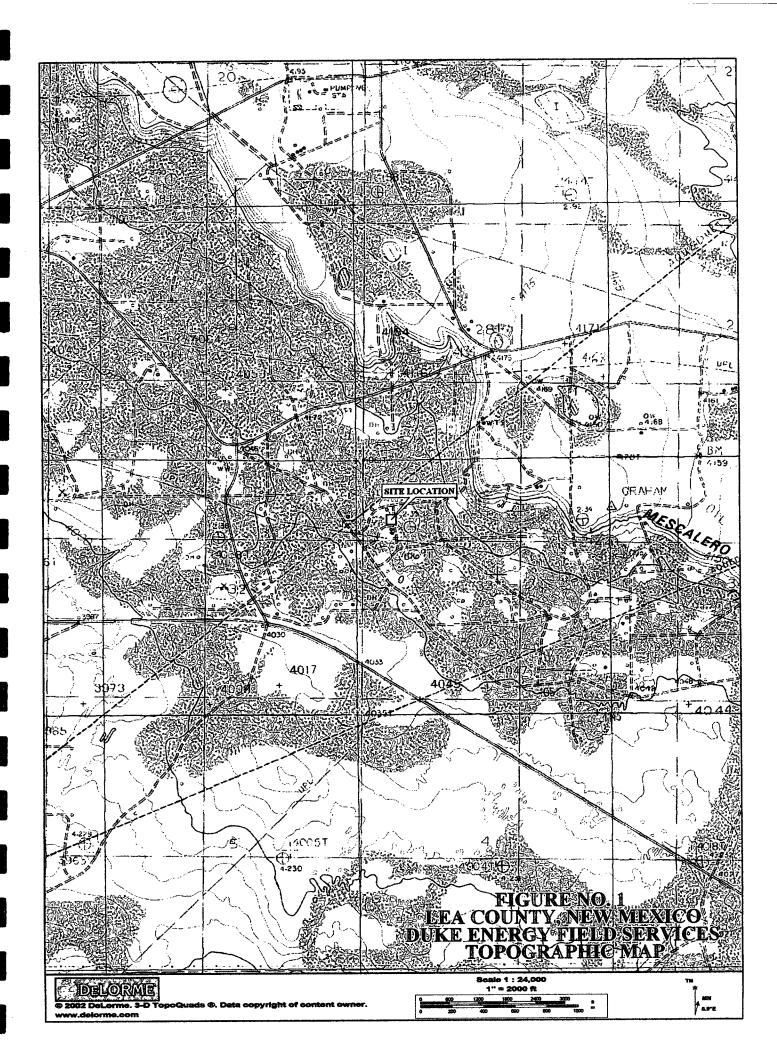
#### **Conclusions**

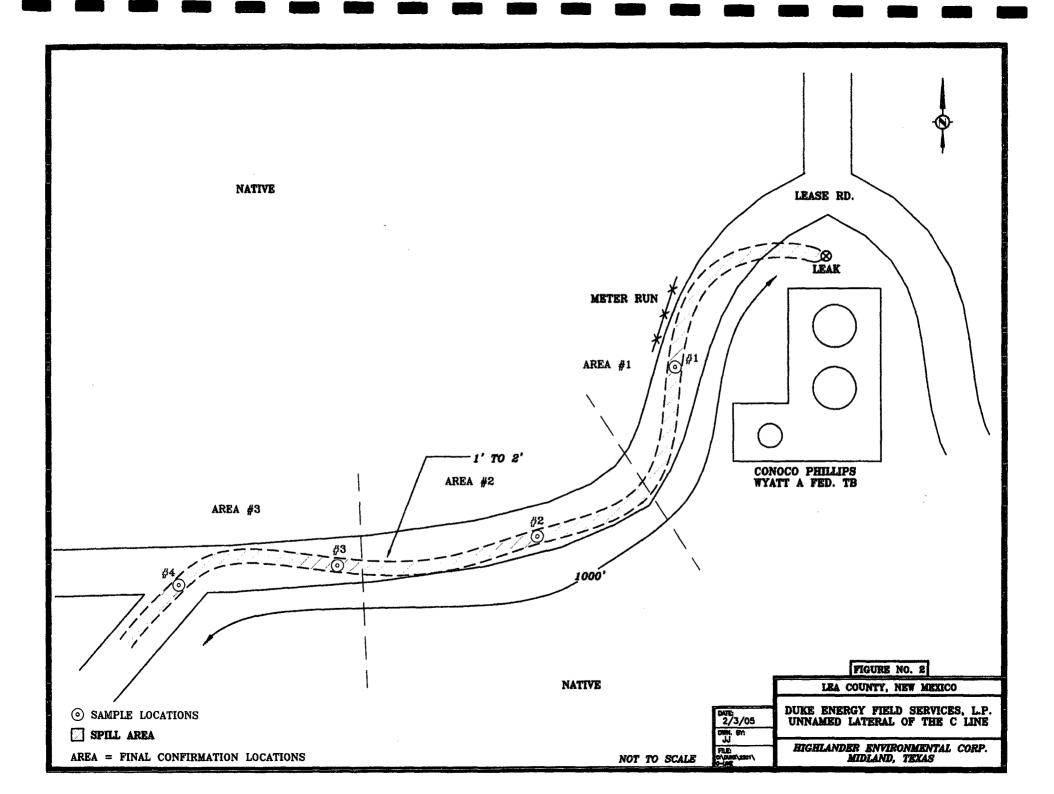
The TPH and BTEX confirmation sampling did not show any significant residual hydrocarbon impact above the RRAL. The chloride concentrations do not appear to be an environmental concern. Based upon the results of sampling and work performed on this Site, Duke requests closure of this spill issue. The State of New Mexico C-141 (Final) is shown in Appendix A.

If you require any additional information or have any questions or comments, please call.

HIGHLANDER ENVIRONMENTAL CORP.

Ike Tavarez, P.G.


Project Manager/Senior Geologist




cc:

Lynn Ward - Duke

## **FIGURES**





## **TABLE**

Table 1
Duke Energy Field Service, LP
Unname Lateral of the C- Line (Active)

Section 33, Township 17 South, Range 33 East Lea County, New Mexico

| Sample       | Date                | Sample     |          | TPH (mg/kg) | <del></del>                            | Benzene | Toluene | Ethlybenzene | Xylene  | Total  | Chloride |
|--------------|---------------------|------------|----------|-------------|----------------------------------------|---------|---------|--------------|---------|--------|----------|
| ID           | Sampled             | Depth (ft) | C6-C12   | C12-C35     | Total                                  | (mg/kg) | (mg/kg) | (mg/kg)      | (mg/kg) | BTEX   | (mg/kg)  |
| #1           | 1/12/2005           | 0-0.5      | 2,190    | 3,020       | 5,210                                  | 9.57    | 105     | 74.1         | 104.6   | 293.27 | 42.5     |
|              | 1/12/2005           | 1-1.5      | <10.0    | 47.8        | 47.8                                   | <0.025  | <0.025  | <0.025       | <0.025  | <0.025 | 149      |
| #2           | 1/12/2005           | 0-0.5      | 1,150    | 2,130       | 3,280                                  | 0.0838  | 11.1    | 19.2         | 27.85   | 58.23  | 234      |
|              | 1/12/2005           | 1-1.5      | 16.3     | 102         | 118                                    | <0.025  | < 0.025 | <0.025       | <0.025  | <0.025 | 255      |
| #3           | 1/12/2005           | 0-0.5      | <10.0    | 28.7        | 28.7                                   | _       | -       | -            | -       | •      | 510      |
|              | 1/12/2005           | 1-1.5      | <10.0    | 41.4        | 41.4                                   | -       |         | -            | -       | -      | 234      |
| #4           | 1/12/2005           | 0-0.5      | 337      | 973         | 1,310                                  | -       | -       | -            | -       | -      | 596      |
|              | 1/12/2005           | 1-1.5      | <10.0    | 38.6        | 38.6                                   | -       | -       | -            | -       | •      | <20.0    |
| inal Confirr | l<br>nation Samplin | g          |          |             | ······································ |         |         |              |         |        |          |
| Area l       | 3/3/2005            | Composite  | -        | -           | -                                      | 0.868   | 13.8    | 11.6         | 18.66   | 44.92  | -        |
| Area l       | 5/6/2005            | Composite  | 160      | 1340        | 1500                                   | <0.025  | <0.025  | <0.025       | 0.1307  | 0.1307 | -        |
| Area 2       | 3/3/2005            | Composite  | <u>-</u> | -           |                                        | 0.549   | 19.6    | 23.1         | 47.2    | 90.44  | -        |
| Area 2       | 5/6/2005            | Composite  | -        | -           | +                                      | <0.025  | 0.139   | 0.576        | 2.01    | 2.73   |          |
| Area 3       | 3/3/2005            | Composite  | <u>.</u> | -           | -                                      | <0.025  | <0.025  | 0.0338       | 0.141   | 0.1748 | -        |

## APPENDIX A

New Mexico Oil Conservation Division - Form C-141 Release Notification and Corrective Action

" Kevisea March 17. 1999

Submit 2 Copies to appropriate
District Office in accordance
with Rule 116 on back
side of form

#### Release Notification and Corrective Action

|                                              |               |                  |             |               | OPER             | ATOR                     |                                         | K Ini          | tial Rep      | oxt                                          | Final Report     |
|----------------------------------------------|---------------|------------------|-------------|---------------|------------------|--------------------------|-----------------------------------------|----------------|---------------|----------------------------------------------|------------------|
| Name of Co                                   |               |                  |             |               |                  | Contact                  |                                         |                |               |                                              |                  |
| Duke Energy                                  | y Field Se    | rvices, LP       |             |               |                  | Lynn Wa                  | rd/Ronnie Gilch                         | rest           |               |                                              |                  |
| Address                                      |               |                  |             |               |                  | Telephon                 | e No.                                   |                |               |                                              |                  |
| 10 Desta Dr.                                 | Suite 10      | , Midland, T     | X 79705     | 5             |                  | 432/620-                 | 1207                                    |                | _             |                                              |                  |
| Facility Nan                                 | ne            |                  |             |               |                  | Facility T               | ype                                     |                |               |                                              |                  |
| Unnamed La                                   | ateral of th  | ne C Line (A     | ctive)      |               |                  | Pipeline                 |                                         |                |               |                                              |                  |
| Surface Own                                  | ner           |                  |             | TM            | lineral Owner    |                          |                                         |                | Lease         | No.D                                         |                  |
| State of New                                 |               |                  |             |               | tate of New M    |                          |                                         |                | 2000          |                                              |                  |
| 0.2.10                                       | 1.10.000      |                  |             |               | CATION           |                          | EASÉ                                    |                | <del>-1</del> |                                              |                  |
| Unit Letter                                  | Section       | Township         | Range       | Feet from     |                  | South Line               | Feet from the                           | East/Wes       | t Line        | County                                       |                  |
| DAR BORD                                     | 33            | 178              | 33E         | 7 000 13 013  | 1 1011111        | 50010 30110              | 1,000,000,000                           |                | 2             | Lea Cou                                      | nty              |
| <u>.                                    </u> | L             | 17.4.            | <u> </u>    | 738 (4        | 76071            | -                        | itade 103                               | 3 * //A        | 400           | 10/                                          |                  |
|                                              |               | Jar              | that        |               | ATURE O          |                          |                                         | - <del></del>  | 736           | V                                            |                  |
| Type of Relea                                | ace.          |                  |             | 144           | AT DICE O        | Volume of                |                                         | Т              | Volum         | e Recovere                                   | -d               |
| Condensate                                   | 2,10          |                  |             |               |                  | Estimated                |                                         |                | 0             | - 1(000 / 201                                |                  |
|                                              |               |                  |             |               |                  |                          |                                         |                |               |                                              |                  |
| Source of Rel                                |               |                  |             |               |                  |                          | lour of Occurrence                      | :c             |               |                                              | Discovery        |
| Pipeline failu                               |               |                  |             |               |                  |                          | 3:45 pm MST                             |                | 12/10/0       | 4 @ 3:45                                     | pm MST           |
| Was Inunedia                                 | ate Notice C  |                  | Yes         | No K          | Not Required     | If YES, To               | whom?<br>binson, Hobbs Di               | etriet Offic   | • OCD         |                                              |                  |
|                                              |               | ,                | ( 162       | 140 🗡         | IAGI VOCUITCO    | ontainy &o               | oinson, Piddos Di                       |                | e, ocd        |                                              |                  |
| By Whom?                                     | 7.70          |                  |             |               |                  | Date and H               |                                         |                |               |                                              |                  |
| Lynn Ward[]                                  |               |                  |             |               | ·                |                          | 5:30 pm MST                             |                |               |                                              |                  |
| Was a Waterc                                 | course Reac   | hed?             | \           | 1             |                  |                          | olume Impacting (                       | he Watered     | ourse.        |                                              |                  |
|                                              |               |                  | -           | (No           |                  | NA                       |                                         |                |               |                                              |                  |
| If a Watercou                                | rse was lm    | pacted, Descri   | ibe Fully.  | 1             |                  |                          |                                         | •              |               |                                              |                  |
| NA                                           |               |                  |             |               |                  |                          |                                         |                |               |                                              |                  |
| Doomiba Com                                  | so of Beable  | and Remo         | dial Action | Tokon #17     | Atamanimat       | J. 7.46 a.m.             | MST on 12/10/04                         | DEEC           |               |                                              | - E              |
|                                              |               |                  |             |               |                  |                          | mpact was 2 feet                        |                |               |                                              |                  |
|                                              |               |                  |             |               |                  |                          | into the surface s                      |                |               |                                              |                  |
| 3 inch steel lir                             | ne with a no  | ormal volume     | of 25 Mm    | sefd. The     | volume of liqui  | ds lost is unl           | mown but estima                         | ted at 11 bl   | ols. The      | line was bl                                  | locked in and    |
|                                              |               |                  |             |               |                  |                          | S intends to pick-                      |                |               |                                              |                  |
| in the vicinity                              | as reported   | the New I        | Mexico Of   | tice of the S | State Engineer's | s database 19            | greater than 100                        | teet below     | ground        | surface (W                                   | ell 04363 @      |
|                                              |               |                  |             |               |                  |                          | ill be collected fo<br>CRI (Control Re- |                |               |                                              |                  |
| permitted land                               |               | o or cicamp (    | rougui cą.  | Cotratichter  | icu eo a wiji ve | disposed at              | CXC (Connect Acc                        | covery mic.    | ) as exe      | Tipt waste                                   | or to a property |
| Describe Area                                | Affected a    | and Cleanup A    | ction Tak   | en."          |                  |                          |                                         |                |               |                                              | · ·              |
| I hereby certif                              | o that the i  | oformation of    | wan ahawa   | ic Prop and   | complete to the  | heat of my               | knowledge and u                         | nderstand t    | hat muse      | unnt to NA                                   | 1000 males       |
|                                              |               |                  |             |               |                  |                          | is and perform co                       |                |               |                                              |                  |
| endanger publ                                | ic health or  | the environm     | ent. The    | acceptance    | of a C-14) rep   | ort by the NA            | MOCD marked as                          | "Final Re      | oon" do       | es not rehe                                  | ve the operator  |
| of liability sho                             | ould their of | perations have   | failed to   | adequately    | investigate and  | remediate c              | ontamination that                       | pose a thre    | eat to gr     | ound water                                   | , surface        |
| water, human                                 | health or th  | e environmen     | nt. In addi | tion, NMO     | CD acceptance    | of a C-141 r             | eport does not rel                      | ieve the op    | erator o      | responsib                                    | ility for        |
| compliance wi                                | no sory opne  | er lederal, stat | e, or local | IBWS BROVO    | r regulations.   |                          | OTL CONTE                               | - TO 3 Z A 70° |               | 77.77070                                     |                  |
| Signature: /                                 | tim           | Was at           | •           |               |                  |                          | OIL CONS                                | CKVAI          | <u>ion L</u>  | <u> 1                                   </u> | <u>N</u>         |
| /                                            | 7             | ~ · · · · · ·    | ·           | <del> </del>  |                  | A marana de              | ***                                     |                |               |                                              |                  |
| Printed Name;                                | / Lynn W      | ard              |             |               |                  | Approved to District Sup | -                                       |                |               |                                              |                  |
| Title: Sr. Env                               | /ironmental   | Specialist       |             |               |                  | Approval D               |                                         | E              | xpiratio      | n Date:                                      |                  |
| Date: 12/16/6                                | 04            |                  | Phone       | 432/620-      | 4207             |                          | of Approval                             |                |               | Attact                                       | ned              |

CC: R. Gilchriot Guthingtine file 2.1.1.1 917108 2133 3930 9403 3737

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

#### State of New Mexico **Energy Minerals and Natural Resources**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised June 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

#### **Release Notification and Corrective Action OPERATOR** Initial Report Final Report Contact Lynn Ward Name of Company Duke Energy Field Services, LP Telephone No. (432) 620-4207 Facility Type Pipeline Lease No. Mineral Owner State of New Mexico

Address 10 Desta Dr., Suite 400-W, Midland, TX. 79705 Facility Name Unname Lateral of the C Line (active) Surface Owner State of New Mexico LOCATION OF RELEASE East/West Line Unit Letter Feet from the North/South Line Feet from the County Section Township Range 33 17S 33E Lea NATURE OF RELEASE Type of Release Volume of Release Volume Recovered Condensate 11bbls 0 bbls Date and Hour of Discovery Source of Release pipeline failure Date and Hour of Occurrence 12/10/04, 3:45 pm MST 12/10/04 3:45 pm MST Was Immediate Notice Given? If YES, To Whom? ☐ Yes ☐ No ☒ Not Required Johnny Robinson, NMOCD Hobbs District Office Date and Hour 12/10/04 5:30 PM MST By Whom? Lynn Ward Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. ☐ Yes ⊠ No If a Watercourse was Impacted, Describe Fully.\* N/A Describe Cause of Problem and Remedial Action Taken.\* Leak on a lateral line off C line. Line is a low pressure (15-20 psi). Volume released was estimated at 11 barrels of condensate and water. The area of impact was 2 feet by 1,000 feet and had impacted 1 inch into the surface soils. Describe Area Affected and Cleanup Action Taken.\* The impacted area, which flowed on the lease road, measured 1,000 feet with a width of approximately 2.0 feet. An assessment was performed on the impacted soil and results showed a shallow impact to the subsurface soils. The impacted soils were worked in place to reduce the hydrocarbon concentrations below the RRAL. The final confirmation samples for TPH and BTEX were all below the RRAL. The chloride concentrations detected do not appear to be an environmental concern. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Approved by District Supervisor: Printed Name: Ike Tavarez (Agent for Duke Energy Field Services, LP)

Approval Date: **Expiration Date:** Title: Senior Geologist Conditions of Approval: E-mail Address: itavarez@hec-enviro.com Attached 05 Phone: (432) 682-4559

Attach Additional Sheets If Necessary

## APPENDIX B

New Mexico Office of the State Engineer Well Reports and Downloads

#### Water Well - Average Depth to Groundwater

|    | Sou | th  | E  | ast |    |     |                   | So               | uth             | E        | ast              |                  |   |    | So  | uth | Ea | ast |    |
|----|-----|-----|----|-----|----|-----|-------------------|------------------|-----------------|----------|------------------|------------------|---|----|-----|-----|----|-----|----|
| 6  | 5   | 4   | 3  | 2   | 1  |     | 6                 | 5                | 4               | 3        | 2                | 1                |   | 6  | 5   | 4   | 3  | 2   | 1  |
| 7  | 8   | 9   | 10 | 11  | 12 |     | 7                 | 8                | 9               | 10       | 11               | 12               |   | 7  | 8   | 9   | 10 | 11  | 12 |
| 18 | 17  | 16  | 15 | 14  | 13 |     | 18                | 17               | 16              | 15       | 14               | 13               |   | 18 | 17  | 16  | 15 | 14  | 13 |
| 19 | 20  | 21  | 22 | 23  | 24 |     | 19                | 20               | 21              | 22       | 23               | 24               |   | 19 | 20  | 21  | 22 | 23  | 24 |
| 30 | 29  | 28  | 27 | 26  | 25 |     | 30                | 29               | 28              | 27       | 26               | 25               |   | 30 | 29  | 28  | 27 | 26  | 25 |
| 31 | 32  | 33  | 34 | 35  | 36 |     | 31                | 32               | 33              | 34       | 35               | 36               |   | 31 | 32  | 33  | 34 | 35  | 36 |
|    | Sou | ıth | E  | ast |    |     |                   | 17 S             | outh            | 33       | 3 East           | :                |   |    | Soi | uth | E  | ast |    |
| 6  | 5   | 4   | 3  | 2   | 1  | 9   | 90                | 5                | 4               | 3<br>155 | <b>2</b><br>158  | 1<br>150         |   | 6  | 5   | 4   | 3  | 2   | 1  |
| 7  | 8   | 9   | 10 | 11  | 12 | ľ   | 7<br>167          | <b>8</b><br>173  | <b>9</b><br>161 | 10       | 11               | 12               |   | 7  | 8   | 9   | 10 | 11  | 12 |
| 18 | 17  | 16  | 15 | 14  | 13 | 1 1 | 1 <b>8</b><br>188 | <b>17</b><br>180 | 16              | 15       | 14               | <b>13</b><br>165 |   | 18 | 17  | 16  | 15 | 14  | 13 |
| 19 | 20  | 21  | 22 | 23  | 24 |     | 19                | <b>20</b><br>190 | 21              | 22       | <b>23</b><br>115 | 24               |   | 19 | 20  | 21  | 22 | 23  | 24 |
| 30 | 29  | 28  | 27 | 26  | 25 |     | 30                | 29               | 28              | 27       | 26               | 25               |   | 30 | 29  | 28  | 27 | 26  | 25 |
| 31 | 32  | 33  | 34 | 35  | 36 |     | 31                | 32               | 33<br>SITE      | 34       | <b>35</b><br>155 | 36               |   | 31 | 32  | 33  | 34 | 35  | 36 |
|    | Sou | ıth | E  | ast |    |     | 1                 | l8 Soi           | uth             | 3        | 3 Eas            | t                | • |    | So  | uth | E  | ast |    |
| 6  | 5   | 4   | 3  | 2   | 1  |     | 6                 | 5                | 4               | 3        | 2                | 1                |   | 6  | 5   | 4   | 3  | 2   | 1  |
| 7  | 8   | 9   | 10 | 11  | 12 |     | 7                 | <b>8</b><br>100  | 9               | 10       | 11               | 12<br>140        |   | 7  | 8   | 9   | 10 | 11  | 12 |
| 18 | 17  | 16  | 15 | 14  | 13 | ľ   | 18                | 17               | 16              | 15       | 14               | <b>13</b><br>60  |   | 18 | 17  | 16  | 15 | 14  | 13 |
| 19 | 20  | 21  | 22 | 23  | 24 | ľ   | 19                | 20               | 21              | 22       | 23               | <b>24</b><br>195 |   | 19 | 20  | 21  | 22 | 23  | 24 |
| 30 | 29  | 28  | 27 | 26  | 25 |     | <b>30</b><br>35   | 29               | 28              | 27       | 26               | 25               |   | 30 | 29  | 28  | 27 | 26  | 25 |
| 31 | 32  | 33  | 34 | 35  | 36 |     | 31                | 32               | 33              | 34       | 35               | 36               |   | 31 | 32  | 33  | 34 | 35  | 36 |

<sup>150</sup> New Mexico Engineer average depth to groundwater (ft)

#### New Mexico Office of the State Engineer Well Reports and Downloads

| Towr           | nship: 17S | Range: 33E       | Sections:     |                |              |           |
|----------------|------------|------------------|---------------|----------------|--------------|-----------|
| NAD27          | X:         | Y:               | Zone:         | Sea            | rch Radius:  |           |
| County:        | В          | Sasin:           |               | Number:        | Suffi        | x:        |
| Owner Name: (l | First)     | (L               | ast)<br>• All | ON             | Ion-Domestic | ODomestic |
|                | Well / Sur | face Data Report | ter Column R  | Avg Depth to W | /ater Report | )         |
|                | (          | Clear Form       | ( WATERS      | S Menu Hel     | р            |           |

#### AVERAGE DEPTH OF WATER REPORT 01/10/2005

|     |     |         |      |   |   |       | (Depth | Water in | Feet) |
|-----|-----|---------|------|---|---|-------|--------|----------|-------|
| Bsn | Tws | Rng Sec | Zone | Х | Y | Wells | Min    | Max      | Avg   |
| L   | 17S | 33E 01  |      |   |   | 2     | 150    | 150      | 150   |
| L   | 17S | 33E 02  |      |   |   | 4     | 151    | 168      | 158   |
| L   | 17S | 33E 03  |      |   |   | 2     | 155    | 155      | 155   |
| L   | 17S | 33E 06  |      |   |   | 2     | 90     | 90       | 90    |
| L   | 17S | 33E 07  |      |   |   | 2     | 114    | 214      | 164   |
| L   | 17S | 33E 08  |      |   |   | 2     | 173    | 173      | 173   |
| L   | 17S | 33E 09  |      |   |   | 2     | 160    | 161      | 161   |
| L   | 17S | 33E 13  |      |   |   | 2     | 165    | 165      | 165   |
| L   | 17S | 33E 17  |      |   |   | 2     | 180    | 180      | 180   |
| L   | 17S | 33E 18  |      |   |   | 2     | 188    | 188      | 188   |
| L   | 17S | 33E 20  |      |   |   | 3     | 190    | 190      | 190   |
| L   | 17S | 33E 23  |      |   |   | 2     | 70     | 160      | 115   |
| L   | 17S | 33E 35  |      |   |   | 4     | 150    | 160      | 155   |

Record Count: 31

#### New Mexico Office of the State Engineer Well Reports and Downloads

Range: 33E Township: 18S Sections: Y: Zone: Search Radius: NAD27 X: Number: Suffix: County: Basin: Owner Name: (First) (Last) Non-Domestic Domestic • All Well / Surface Data Report Avg Depth to Water Report Water Column Report

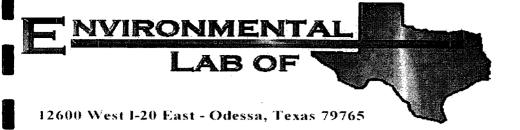
WATERS Menu

Help

#### AVERAGE DEPTH OF WATER REPORT 05/26/2005

Clear Form

|     |     |         |      |   |   |       | (Depth | Water in | Feet) |
|-----|-----|---------|------|---|---|-------|--------|----------|-------|
| Bsn | Tws | Rng Sec | Zone | Х | Y | Wells | Min    | Max      | Avg   |
| CP  | 18S | 33E 13  |      |   |   | 1     | 60     | 60       | 60    |
| CP  | 18S | 33E 24  |      |   |   | 1     | 195    | 195      | 195   |
| L   | 18S | 33E 08  |      |   |   | 1     | 100    | 100      | 100   |
| L   | 18S | 33E 12  |      |   |   | 2     | 130    | 150      | 140   |
| L   | 18S | 33E 30  |      |   |   | 2     | 35     | 35       | 35    |
|     |     |         |      |   |   |       |        |          |       |


Record Count: 7

APPENDIX C

Lab Analysis

Lab Analysis

1/20/2005



# **Analytical Report**

## **Prepared for:**

Ike Tavarez
Highlander Environmental Corp.
1910 N. Big Spring St.
Midland, TX 79705

Project: Duke/ Lateral of C Line Project Number: 2305 Location: Lea Co., NM

Lab Order Number: 5A17011

Report Date: 01/20/05

Highlander Environmental Corp. 1910 N. Big Spring St.

Project: Duke/ Lateral of C Line

Fax: (432) 682-3946

Midland TX, 79705

Project Number: 2305
Project Manager: Ike Tavarez

Reported: 01/20/05 15:13

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID   | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-------------|---------------|--------|----------------|----------------|
| #1 (0-0.5') | 5A17011-01    | Soil   | 01/12/05 00:00 | 01/14/05 17:30 |
| #1 (1-1.5') | 5A17011-02    | Soil   | 01/12/05 00:00 | 01/14/05 17:30 |
| #2 (0-0.5') | 5A17011-03    | Soil   | 01/12/05 00:00 | 01/14/05 17:30 |
| #2 (1-1.5') | 5A17011-04    | Soil   | 01/12/05 00:00 | 01/14/05 17:30 |
| #3 (0-0.5') | 5A17011-05    | Soil   | 01/12/05 00:00 | 01/14/05 17:30 |
| #3 (1-1.5') | 5A17011-06    | Soil   | 01/12/05 00:00 | 01/14/05 17:30 |
| #4 (0-0.5') | 5A17011-07    | Soil   | 01/12/05 00:00 | 01/14/05 17:30 |
| #4 (1-1.5') | 5A17011-08    | Soil   | 01/12/05 00:00 | 01/14/05 17:30 |

1910 N. Big Spring St. Midland TX, 79705 Project: Duke/ Lateral of C Line

Project Number: 2305

Project Manager: Ike Tavarez

Fax: (432) 682-3946

Reported: 01/20/05 15:13

## Organics by GC Environmental Lab of Texas

| Analyte                           | Result   | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|-----------------------------------|----------|--------------------|-----------|----------|---------|----------|----------|-----------|-------|
| #1 (0-0.5') (5A17011-01) Soil     |          |                    |           |          |         |          |          |           |       |
| Benzene                           | 9.57     | 0.100              | mg/kg dry | 100      | EA51806 | 01/18/05 | 01/18/05 | EPA 8021B |       |
| Toluene                           | 105      | 0.100              | 11        | 11       | n       | •        | "        | н         |       |
| Ethylbenzene                      | 74.1     | 0.100              | **        | n        | н       | n        | *        |           |       |
| Xylene (p/m)                      | 75.6     | 0.100              | n         | . #      | 11      | n        | •        | ,,        |       |
| Xylene (o)                        | 29.0     | 0.100              |           | 11       | 11      | "        | "        | ņ         |       |
| Surrogate: a,a,a-Trifluorotoluene |          | 657 %              | 80-1      | 20       | "       | 11       | "        | "         | S-04  |
| Surrogate: 4-Bromofluorobenzene   |          | 183 %              | 80-1      | 20       | "       | "        | "        | "         | S-04  |
| Gasoline Range Organics C6-C12    | 2190     | 10.0               | mg/kg dry | 1        | EA51704 | 01/17/05 | 01/17/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35    | 3020     | 10.0               | 11        | 11       | n       | H        | "        | "         |       |
| Total Hydrocarbon C6-C35          | 5210     | 10.0               | *1        | "        | н       |          |          | **        |       |
| Surrogate: 1-Chlorooctane         |          | 110 %              | 70-       | 30       | "       | "        | "        | "         |       |
| Surrogate: 1-Chlorooctadecane     |          | 102 %              | 70-       | 130      | "       | "        | "        | rr .      |       |
| #1 (1-1.5') (5A17011-02) Soil     |          |                    |           |          |         |          |          |           |       |
| Gasoline Range Organics C6-C12    | J [9.92] | 10.0               | mg/kg dry | 1        | EA51704 | 01/17/05 | 01/17/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35    | 47.8     | 10.0               | **        | n        | •       | •        | 11       | tt.       |       |
| Total Hydrocarbon C6-C35          | 47.8     | 10.0               | **        | "        | 11      | н        | 11       |           |       |
| Surrogate: 1-Chlorooctane         |          | 91.8 %             | 70        | 130      | "       | "        | "        | "         |       |
| Surrogate: 1-Chlorooctadecane     |          | 93.2 %             | 70-       | 130      | "       | "        | "        | "         |       |
| #2 (0-0.5') (5A17011-03) Soil     |          |                    |           |          |         |          |          |           |       |
| Benzene                           | 0.0838   | 0.0250             | mg/kg dry | 25       | EA51806 | 01/18/05 | 01/18/05 | EPA 8021B | ,     |
| Toluene                           | 11.1     | 0.0250             | "         | H        | 11      |          | •        | 11        |       |
| Ethylbenzene                      | 19.2     | 0.0250             | **        | 11       | **      | 11       | H        | **        |       |
| Xylene (p/m)                      | 19.7     | 0.0250             | 11        | "        | n       | "        | Ħ        | Ħ         |       |
| Xylene (0)                        | 8.15     | 0.0250             | "         | Ħ        | н       |          | 11       | "         |       |
| Surrogate: a,a,a-Trifluorotoluene |          | 250 %              | 80        | 120      | "       | "        | "        | "         | S-0-  |
| Surrogate: 4-Bromofluorobenzene   |          | 183 %              | 80-       | 120      | "       | "        | "        | **        | S-0   |
| Gasoline Range Organics C6-C12    | 1150     | 10.0               | mg/kg dry | 1        | EA51704 | 01/17/05 | 01/18/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35    | 2130     | 10.0               | "         | н        | н       | 11       | н        | n         |       |
| Total Hydrocarbon C6-C35          | 3280     | 10.0               | "         | n        | 11      | 11       | н        | "         |       |
| Surrogate: 1-Chlorooctane         |          | 109 %              | 70-       | 130      | "       | "        | "        | ,,        |       |
| Surrogate: 1-Chlorooctadecane     |          | 104 %              | 70        | 130      | "       | "        | ,,       | "         |       |

Highlander Environmental Corp. 1910 N. Big Spring St.

Midland TX, 79705

Project: Duke/ Lateral of C Line

Project Number: 2305 Project Manager: Ike Tavarez Fax: (432) 682-3946

Reported:
01/20/05 15:13

## Organics by GC Environmental Lab of Texas

|                                |          | Environii          | iiciitai L   | 740 VI I |         |          |          |           |     |
|--------------------------------|----------|--------------------|--------------|----------|---------|----------|----------|-----------|-----|
| Analyte                        | Result   | Reporting<br>Limit | Units        | Dilution | Batch   | Prepared | Analyzed | Method    | Not |
| #2 (1-1.5') (5A17011-04) Soil  |          |                    |              |          |         |          |          |           |     |
| Gasoline Range Organics C6-C12 | 16.3     | 10.0               | mg/kg dry    | 1        | EA51704 | 01/17/05 | 01/18/05 | EPA 8015M |     |
| Diesel Range Organics >C12-C35 | 102      | 10.0               | 11           | 10       | "       | 11       | н        | n         |     |
| Total Hydrocarbon C6-C35       | 118      | 10.0               | ıı .         | "        |         | "        |          | 19        |     |
| Surrogate: 1-Chlorooctane      |          | 93.2 %             | 70-1         | 130      | "       | "        | "        | n         |     |
| Surrogate: 1-Chlorooctadecane  |          | 105 %              | 70-1         | 130      | "       | "        | "        | "         |     |
| #3 (0-0.5') (5A17011-05) Soil  |          |                    |              |          |         |          |          |           |     |
| Gasoline Range Organics C6-C12 | J [8.61] | 10.0               | mg/kg dry    | 1        | EA51704 | 01/17/05 | 01/18/05 | EPA 8015M |     |
| Diesel Range Organics >C12-C35 | 28.7     | 10.0               | "            | n        | *       | н        | н        | 11        |     |
| Total Hydrocarbon C6-C35       | 28.7     | 10.0               | "            | fr .     | n n     | #        | 11       |           |     |
| Surrogate: 1-Chlorooctane      |          | 99.2 %             | 70-          | 130      | "       | "        | "        | "         |     |
| Surrogate: 1-Chlorooctadecane  |          | 113 %              | 70           | 130      | "       | "        | "        | "         |     |
| #3 (1-1.5') (5A17011-06) Soil  |          |                    |              |          |         |          |          |           | -   |
| Gasoline Range Organics C6-C12 | ND       | 10.0               | mg/kg dry    | 1        | EA51704 | 01/17/05 | 01/18/05 | EPA 8015M |     |
| Diesel Range Organics >C12-C35 | 41.4     | 10.0               | 11           | n        | **      | Ħ        | Ħ        | n         |     |
| Total Hydrocarbon C6-C35       | 41.4     | 10.0               |              | "        | 11      | 11       | 11       | **        |     |
| Surrogate: 1-Chlorooctane      |          | 87.0 %             | 70-          | 130      | "       | "        | "        | "         |     |
| Surrogate: 1-Chlorooctadecane  |          | 100 %              | 70-          | 130      | "       | "        | "        | "         |     |
| #4 (0-0.5') (5A17011-07) Soil  |          |                    |              |          |         |          |          |           |     |
| Gasoline Range Organics C6-C12 | 337      | 10.0               | mg/kg dry    | 1        | EA51704 | 01/17/05 | 01/18/05 | EPA 8015M |     |
| Diesel Range Organics >C12-C35 | 973      | 10.0               | 11           | "        | •       | 11       | Ħ        | **        |     |
| Total Hydrocarbon C6-C35       | 1310     | 10.0               | "            | "        | 11      | 11       | 11       | **        |     |
| Surrogate: 1-Chlorooctane      |          | 91.4 %             | 70-          | 130      | "       | "        | "        | "         |     |
| Surrogate: 1-Chlorooctadecane  |          | 119 %              | 70-          | 130      | "       | ,,       | "        | "         |     |
| #4 (1-1.5') (5A17011-08) Soil  |          |                    |              |          |         |          |          |           |     |
| Gasoline Range Organics C6-C12 | ND       | 10.0               | mg/kg dry    | 1        | EA51704 | 01/17/05 | 01/18/05 | EPA 8015M |     |
| Diesel Range Organics >C12-C35 | 38.6     | 10.0               | n            | **       | n       | *        | •        | n         |     |
| Total Hydrocarbon C6-C35       | 38.6     | 10.0               | "            | 11       | **      | "        |          | #         |     |
| Surrogate: 1-Chlorooctane      |          | 91.0 %             | 7 <b>0</b> - | 130      | "       | "        | "        | "         |     |
| Surrogate: 1-Chlorooctadecane  |          | 98.4 %             | 70-          | 130      | "       | "        | "        | "         |     |

1910 N. Big Spring St. Midland TX, 79705

Project: Duke/ Lateral of C Line

Project Number: 2305

Project Manager: Ike Tavarez

Fax: (432) 682-3946 Reported: 01/20/05 15:13

## General Chemistry Parameters by EPA / Standard Methods **Environmental Lab of Texas**

| Analyte                       | Result | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method        | Not |
|-------------------------------|--------|--------------------|-----------|----------|---------|----------|----------|---------------|-----|
| #1 (0-0.5') (5A17011-01) Soil |        |                    |           |          |         |          |          |               |     |
| Chloride                      | 42.5   | 20.0               | mg/kg Wet | 2        | EA52005 | 01/18/05 | 01/19/05 | SW 846 9253   | _   |
| % Moisture                    | 6.3    |                    | %         | 1        | EA51802 | 01/17/05 | 01/18/05 | % calculation |     |
| #1 (1-1.5') (5A17011-02) Soil |        |                    |           |          |         |          |          |               |     |
| Chloride                      | 149    | 20.0               | mg/kg Wet | 2        | EA52005 | 01/18/05 | 01/19/05 | SW 846 9253   |     |
| % Moisture                    | 9.2    |                    | %         | 1        | EA51802 | 01/17/05 | 01/18/05 | % calculation |     |
| #2 (0-0.5') (5A17011-03) Soil |        |                    |           |          |         |          |          |               |     |
| Chloride                      | 234    | 20.0               | mg/kg Wet | 2        | EA52005 | 01/18/05 | 01/19/05 | SW 846 9253   |     |
| % Moisture                    | 4.4    |                    | %         | 1        | EA51802 | 01/17/05 | 01/18/05 | % calculation |     |
| #2 (1-1.5') (5A17011-04) Soil |        |                    |           |          |         |          |          |               |     |
| Chloride                      | 255    | 20.0               | mg/kg Wet | 2        | EA52005 | 01/18/05 | 01/19/05 | SW 846 9253   |     |
| % Moisture                    | 9.1    |                    | %         | 1        | EA51802 | 01/17/05 | 01/18/05 | % calculation |     |
| #3 (0-0.5') (5A17011-05) Soil |        |                    |           |          |         |          |          |               |     |
| Chloride                      | 510    | 20.0               | mg/kg Wet | 2        | EA52005 | 01/18/05 | 01/19/05 | SW 846 9253   |     |
| % Moisture                    | 10.0   |                    | %         | 1        | EA51802 | 01/17/05 | 01/18/05 | % calculation |     |
| #3 (1-1.5') (5A17011-06) Soil |        |                    |           |          |         |          |          |               | _   |
| Chloride                      | 234    | 20.0               | mg/kg Wet | 2        | EA52005 | 01/18/05 | 01/19/05 | SW 846 9253   |     |
| % Moisture                    | 3.7    |                    | %         | 1        | EA51802 | 01/17/05 | 01/18/05 | % calculation |     |
| #4 (0-0.5') (5A17011-07) Soil |        |                    |           |          |         |          |          |               |     |
| Chloride                      | 596    | 20.0               | mg/kg Wet | 2        | EA52005 | 01/18/05 | 01/19/05 | SW 846 9253   |     |
| % Moisture                    | 5.3    |                    | %         | 1        | EA51802 | 01/17/05 | 01/18/05 | % calculation |     |
| #4 (1-1.5') (5A17011-08) Soil |        |                    |           |          |         |          |          |               |     |
| Chloride                      | ND     | 20.0               | mg/kg Wet | 2        | EA52005 | 01/18/05 | 01/19/05 | SW 846 9253   |     |
| % Moisture                    | 5.3    |                    | %         | 1        | EA51802 | 01/17/05 | 01/18/05 | % calculation |     |

1910 N. Big Spring St. Midland TX, 79705 Project: Duke/ Lateral of C Line

Project Number: 2305 Project Manager: Ike Tavarez Fax: (432) 682-3946

**Reported:** 01/20/05 15:13

| Analyte                              | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|--------------------------------------|--------|--------------------|-----------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| Batch EA51704 - Solvent Extraction ( | GC)    |                    |           |                |                  |             |                |       |              |       |
| Blank (EA51704-BLK1)                 |        |                    |           | Prepared       | & Analyze        | ed: 01/17/0 | 05             |       |              |       |
| Gasoline Range Organics C6-C12       | ND     | 10.0               | mg/kg wet |                |                  |             |                |       |              |       |
| Diesel Range Organics >C12-C35       | ND     | 10.0               | **        |                |                  |             |                |       |              |       |
| Total Hydrocarbon C6-C35             | ND     | 10.0               | It        |                |                  |             |                |       |              |       |
| Surrogate: 1-Chlorooctane            | 48.6   | , <u> </u>         | mg/kg     | 50.0           |                  | 97.2        | 70-130         |       |              |       |
| Surrogate: 1-Chlorooctadecane        | 49.7   |                    | "         | 50.0           |                  | 99.4        | 70-130         |       |              |       |
| LCS (EA51704-BS1)                    |        |                    |           | Prepared       | & Analyze        | ed: 01/17/0 | 05             |       |              |       |
| Gasoline Range Organics C6-C12       | 457    |                    | mg/kg     | 500            |                  | 91.4        | 75-125         |       |              |       |
| Diesel Range Organics >C12-C35       | 528    |                    | "         | 500            |                  | 106         | 75-125         |       |              |       |
| Total Hydrocarbon C6-C35             | 985    |                    | 11        | 1000           |                  | 98.5        | 75-125         |       |              |       |
| Surrogate: 1-Chlorooctane            | 50.9   |                    |           | 50.0           |                  | 102         | 70-130         |       |              |       |
| Surrogate: 1-Chlorooctadecane        | 50.2   |                    | "         | 50.0           |                  | 100         | 70-130         |       |              |       |
| Calibration Check (EA51704-CCV1)     |        |                    |           | Prepared       | & Analyzo        | ed: 01/17/  | 05             |       |              |       |
| Gasoline Range Organics C6-C12       | 447    |                    | mg/kg     | 500            |                  | 89.4        | 80-120         |       |              |       |
| Diesel Range Organics >C12-C35       | 512    |                    | u         | 500            |                  | 102         | 80-120         |       |              |       |
| Total Hydrocarbon C6-C35             | 959    |                    | n         | 1000           |                  | 95.9        | 80-120         |       |              |       |
| Surrogate: 1-Chlorooctane            | 51.7   |                    | "         | 50.0           |                  | 103         | 70-130         |       |              |       |
| Surrogate: 1-Chlorooctadecane        | 55.7   |                    | "         | 50.0           |                  | 111         | 70-130         |       |              |       |
| Matrix Spike (EA51704-MS1)           | So     | urce: 5A17(        | )10-01    | Prepared       | & Analyzo        | ed: 01/17/  | 05             |       |              |       |
| Gasoline Range Organics C6-C12       | 485    |                    | mg/kg     | 500            | ND               | 97.0        | 75-125         |       |              |       |
| Diesel Range Organics >C12-C35       | 485    |                    | n         | 500            | ND               | 97.0        | 75-125         |       |              |       |
| Total Hydrocarbon C6-C35             | 970    |                    | 11        | 1000           | ND               | 97.0        | 75-125         |       |              |       |
| Surrogate: 1-Chlorooctane            | 57.7   |                    | "         | 50.0           |                  | 115         | 70-130         |       |              |       |
| Surrogate: 1-Chlorooctadecane        | 60.1   |                    | n         | 50.0           |                  | 120         | 70-130         |       |              |       |
| Matrix Spike Dup (EA51704-MSD1)      | So     | urce: 5A170        | 010-01    | Prepared       | & Analyz         | ed: 01/17/  | 05             |       |              |       |
| Gasoline Range Organics C6-C12       | 484    |                    | mg/kg     | 500            | ND               | 96.8        | 75-125         | 0.206 | 20           |       |
| Diesel Range Organics >C12-C35       | 507    |                    | **        | 500            | ND               | 101         | 75-125         | 4.44  | 20           |       |
| Total Hydrocarbon C6-C35             | 991    |                    | 11        | 1000           | ND               | 99.1        | 75-125         | 2.14  | 20           |       |
| Surrogate: 1-Chlorooctane            | 59.7   |                    | "         | 50.0           |                  | 119         | 70-130         |       |              |       |
| Surrogate: 1-Chlorooctadecane        | 57.9   |                    | "         | 50.0           |                  | 116         | 70-130         |       |              |       |

1910 N. Big Spring St. Midland TX, 79705 Project: Duke/ Lateral of C Line

Project Number: 2305

Project Number: 2303

Project Manager: Ike Tavarez

Fax: (432) 682-3946

**Reported:** 01/20/05 15:13

| Analyte                           | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result                | %REC        | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-----------|----------------|---------------------------------|-------------|----------------|-----|--------------|-------|
| Batch EA51806 - EPA 5030C (GC)    |        |                    |           |                |                                 |             |                |     |              |       |
| Blank (EA51806-BLK1)              |        |                    |           | Prepared .     | & Analyze                       | ed: 01/17/0 | 05             |     |              |       |
| Benzene                           | ND     | 0.0250             | mg/kg wet |                |                                 |             |                |     |              |       |
| Toluene                           | ND     | 0.0250             | n         |                |                                 |             |                |     |              |       |
| Ethylbenzene                      | ND     | 0.0250             | **        |                |                                 |             |                |     |              |       |
| Xylene (p/m)                      | ND     | 0.0250             | n         |                |                                 |             |                |     |              |       |
| Xylene (o)                        | ND     | 0.0250             | 11        |                |                                 |             |                |     |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 112    |                    | ug/kg     | 100            |                                 | 112         | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 113    |                    | "         | 100            |                                 | 113         | 80-120         |     |              |       |
| LCS (EA51806-BS1)                 |        |                    |           | Prepared       | & Analyze                       | ed: 01/17/0 | 05             |     |              |       |
| Benzene                           | 108    |                    | ug/kg     | 100            | · · · · · · · · · · · · · · · · | 108         | 80-120         |     |              |       |
| Toluene                           | 106    |                    | 11        | 100            |                                 | 106         | 80-120         |     |              |       |
| Ethylbenzene                      | 101    |                    | H         | 100            |                                 | 101         | 80-120         |     |              |       |
| Xylene (p/m)                      | 220    |                    | "         | 200            |                                 | 110         | 80-120         |     |              |       |
| Xylene (o)                        | 103    |                    | "         | 100            |                                 | 103         | 80-120         |     |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 119    |                    | "         | 100            |                                 | 119         | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 118    |                    | "         | 100            |                                 | 118         | 80-120         |     |              |       |
| Calibration Check (EA51806-CCV1)  |        |                    |           | Prepared       | & Analyz                        | ed: 01/17/  | 05             |     |              |       |
| Benzene                           | 106    |                    | ug/kg     | 100            | · · · · · ·                     | 106         | 80-120         |     |              |       |
| Toluene                           | 105    |                    | 11        | 100            |                                 | 105         | 80-120         |     |              |       |
| Ethylbenzene                      | 102    |                    | III       | 100            |                                 | 102         | 80-120         |     |              |       |
| Xylene (p/m)                      | 217    |                    | **        | 200            |                                 | 108         | 80-120         |     |              |       |
| Xylene (o)                        | 103    |                    | n         | 100            |                                 | 103         | 80-120         |     |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 116    |                    | "         | 100            |                                 | 116         | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 117    |                    | "         | 100            |                                 | 117         | 80-120         |     |              |       |
| Matrix Spike (EA51806-MS1)        | So     | urce: 5A14(        | )15-06    | Prepared       | & Analyz                        | ed: 01/17/  | 05             |     |              |       |
| Benzene                           | 111    |                    | ug/kg     | 100            | ND                              | 111         | 80-120         |     |              |       |
| Toluene                           | 112    |                    | "         | 100            | ND                              | 112         | 80-120         |     |              |       |
| Ethylbenzene                      | 108    |                    | •         | 100            | ND                              | 108         | 80-120         |     |              |       |
| Xylene (p/m)                      | 233    |                    | n         | 200            | ND                              | 116         | 80-120         |     |              |       |
| Xylene (o)                        | 106    |                    | 11        | 100            | ND                              | 106         | 80-120         |     |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 113    |                    | "         | 100            |                                 | 113         | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 116    |                    | "         | 100            |                                 | 116         | 80-120         |     |              |       |

1910 N. Big Spring St. Midland TX, 79705

Surrogate: a,a,a-Trifluorotoluene

Surrogate: 4-Bromofluorobenzene

Project: Duke/ Lateral of C Line

Spike

100

100

Source

Project Number: 2305

Reporting

116

114

Project Manager: Ike Tavarez

Fax: (432) 682-3946

RPD

%REC

80-120

80-120

116

114

Reported: 01/20/05 15:13

| Analyte                         | Result | Limit U       | nits | Level    | Result    | %REC        | Limits | RPD  | Limit | Notes |
|---------------------------------|--------|---------------|------|----------|-----------|-------------|--------|------|-------|-------|
| Batch EA51806 - EPA 5030C (GC)  |        |               |      |          |           |             |        |      |       |       |
| Matrix Spike Dup (EA51806-MSD1) | Sour   | ce: 5A14015-0 | 6    | Prepared | & Analyze | ed: 01/17/0 | 05     |      |       |       |
| Benzene                         | 109    | ug            | /kg  | 100      | ND        | 109         | 80-120 | 1.82 | 20    |       |
| Toluene                         | 110    |               | **   | 100      | ND        | 110         | 80-120 | 1.80 | 20    |       |
| Ethylbenzene                    | 112    |               | R    | 100      | ND        | 112         | 80-120 | 3.64 | 20    |       |
| Xylene (p/m)                    | 233    |               | #    | 200      | ND        | 116         | 80-120 | 0.00 | 20    |       |
| Xylene (o)                      | 112    |               | 19   | 100      | ND        | 112         | 80-120 | 5.50 | 20    |       |

Project: Duke/ Lateral of C Line

Fax: (432) 682-3946

1910 N. Big Spring St. Midland TX, 79705

Project Number: 2305

Project Manager: Ike Tavarez

Reported: 01/20/05 15:13

#### General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

|                                  |        | Reporting       | Spike    | Source     |            | %REC               |      | RPD   |       |
|----------------------------------|--------|-----------------|----------|------------|------------|--------------------|------|-------|-------|
| Analyte                          | Result | Limit Units     | Level    | Result     | %REC       | Limits             | RPD  | Limit | Notes |
| Batch EA51802 - % Solids         |        | -               |          |            |            |                    |      |       |       |
| Blank (EA51802-BLK1)             |        |                 | Prepared | : 01/17/05 | Analyzed   | d: 01/18/05        |      |       |       |
| % Moisture                       | 0.004  | %               |          |            |            |                    |      |       |       |
| Duplicate (EA51802-DUP1)         | Sou    | rce: 5A17002-01 | Prepared | : 01/17/05 | Analyzed   | <u>d: 01/18/05</u> |      |       |       |
| % Moisture                       | 2.4    | %               |          | 2.2        |            |                    | 8.70 | 20    |       |
| Batch EA52005 - Water Extraction |        |                 |          |            |            |                    |      |       |       |
| Blank (EA52005-BLK1)             |        |                 | Prepared | & Analyz   | ed: 01/19/ | 05                 |      |       |       |
| Chloride                         | ND     | 20.0 mg/kg W    | et       |            |            |                    |      |       |       |
| Matrix Spike (EA52005-MS1)       | Sou    | rce: 5A17011-01 | Prepared | & Analyz   | ed: 01/19/ | 05                 |      |       |       |
| Chloride                         | 510    | 20.0 mg/kg W    | et 500   | 42.5       | 93.5       | 80-120             |      |       |       |
| Matrix Spike Dup (EA52005-MSD1)  | Sou    | rce: 5A17011-01 | Prepared | & Analyz   | ed: 01/19/ | 05                 |      |       |       |
| Chloride                         | 521    | 20.0 mg/kg W    | et 500   | 42.5       | 95.7       | 80-120             | 2.13 | 20    |       |
| Reference (EA52005-SRM1)         |        |                 | Prepared | & Analyz   | ed: 01/19/ | 05                 |      |       |       |
| Chloride                         | 5000   | mg/kg           | 5000     |            | 100        | 80-120             |      |       |       |

1910 N. Big Spring St.

Midland TX, 79705

Project: Duke/ Lateral of C Line

Project Number: 2305

Project Manager: Ike Tavarez

Fax: (432) 682-3946

**Reported:** 01/20/05 15:13

#### **Notes and Definitions**

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

Kalandtstul

Date: \-23-05

Raland K. Tuttle, Lab Manager

Celey D. Keene, Lab Director, Org. Tech Director

Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

# Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

| Client: Highlander Env.                                   |             |     |                |             |
|-----------------------------------------------------------|-------------|-----|----------------|-------------|
| Date/Time: 01-14-05@1730                                  |             |     |                |             |
| Order #: _5/4/7011                                        |             |     |                |             |
| Initials: JMM                                             |             |     | #. ·           |             |
| Sample Receipt                                            | Checkli     | ict |                |             |
| Temperature of container/cooler?                          | (Yes)       | No  | 4.0 C          |             |
| Shipping container/cooler in good condition?              | Ves         |     |                |             |
| Custody Seals intact on shipping container/cooler?        | Yes         | No  | Mot present    |             |
| Custody Seals intact on sample bottles?                   | Yes         | No  | Not present    |             |
| Chain of custody present?                                 | (Yes)       | No  |                |             |
| Sample Instructions complete on Chain of Custody?         | Yes         | No  | <del></del>    |             |
| Chain of Custody signed when relinquished and received?   | Yes         | No  |                |             |
| Chain of custody agrees with sample label(s)              | (Yes)       | No  |                |             |
| Container labels legible and intact?                      | (es)        | No  |                |             |
| Sample Matrix and properties same as on chain of custody? | (es)        | No  |                |             |
| Samples in proper container/bottle?                       | Yes         | No  |                |             |
| Samples properly preserved?                               | Yes         | No  |                |             |
| Sample bottles intact?                                    | Yes         | No  |                |             |
| Preservations documented on Chain of Custody?             | Yes         | No  |                |             |
| Containers documented on Chain of Custody?                | (Pe)        | No  |                |             |
| Sufficient sample amount for indicated test?              | Ves         | No  |                |             |
| All samples received within sufficient hold time?         | (es)        | No  |                |             |
| VOC samples have zero headspace?                          | Yes         | No  | Not Applicable |             |
| Other observations:  Add Chloride per Ike. 1-18-05 13     | \$ 15 A     | 7   |                |             |
| Variance Docum Contact Person: Date/Time: Regarding:      |             |     | Contacted by:  |             |
|                                                           |             |     |                |             |
| Corrective Action Taken:                                  |             |     |                |             |
|                                                           |             |     |                |             |
|                                                           |             |     |                |             |
|                                                           |             |     |                |             |
|                                                           |             |     |                |             |
|                                                           | <del></del> |     |                |             |
|                                                           |             |     | -,             | <del></del> |
|                                                           |             |     |                | <del></del> |
|                                                           |             |     |                |             |

Midland, Texas

#### **FAX**

DATE:

1-25-05

TO:

Jeanne

WITH:

Environmental Lab of Texas

FAX:

1-(432) 563-1713

FROM:

lke Tavarez

WITH:

Highlander Environmental Corp.

Midland, Texas

PAGES:

(including Fax cover)

#### **Description:**

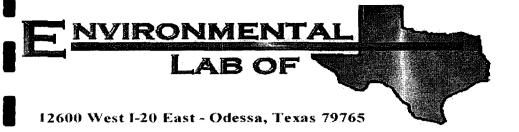
1. Duke Energy Field Service - Lateral of C Line, Lea County, New Mexico Order # 5A17011

#### Requesting additional analyses:

BTEX Analysis:

#1 (1-1.5)

#2 (1-1.5)


Please call me if you have any questions, Thanks

HIGHLANDER ENVIRONMENTAL CORP. 1910 N. BIG SPRING MIDLAND, TEXAS 79705 (432) 682-4559

e-mail: itavarez@hec-enviro.com

If fax is not legible please call Ike Tavarez at (432) 682-4559

|                                                   |          |        |                                       |             |       |           |                 |              |          |                 |           |            |                                   |       |              |       |               |          |                   |           |              |      |      |               |           |                    |                |             | _              |        |               |                      | _                  |                                |              |                      |                |          |               |   |
|---------------------------------------------------|----------|--------|---------------------------------------|-------------|-------|-----------|-----------------|--------------|----------|-----------------|-----------|------------|-----------------------------------|-------|--------------|-------|---------------|----------|-------------------|-----------|--------------|------|------|---------------|-----------|--------------------|----------------|-------------|----------------|--------|---------------|----------------------|--------------------|--------------------------------|--------------|----------------------|----------------|----------|---------------|---|
| Ana                                               | aly      | si     | s R                                   | eg          | ιu    | e         | st a            | $\mathbf{n}$ | d (      | Tha             | aiı       | n          | of                                | C.    | ust          | od    | y             | F        | lе                | co        | rc           | l    | }    |               |           |                    |                |             | AM             |        | GE:           |                      | QUE                | <u></u>                        |              | OF.                  | : /            | <u>/</u> |               |   |
|                                                   | <u> </u> | $\sim$ | TIT A                                 | 1 X         |       | L         | ם<br>סיי        | יים          | 1717     | TD              | $\alpha$  |            | /T                                | יאזי  | r a T        |       | $\sim$        | $\alpha$ |                   |           |              |      |      |               |           |                    | (Ci            | rcle        |                |        |               |                      |                    | hod                            | No           | <u>,,)</u>           |                |          |               |   |
|                                                   |          |        | <b>1 L</b> A<br>4559                  | l/V         | 1     | <b>19</b> | R 10 N idlar    | <b>I.</b> :  | Big      | Sp              | rii       | ng         | St.                               |       |              | ax (  |               |          |                   |           | 3940         | 5    |      |               |           | ) TXLUMB           | 윤              | Cr Pd Hg Se |                |        |               | 9                    |                    |                                | •            |                      |                |          |               |   |
| CLIENT N                                          |          | 1      | Dul                                   | ke          |       | -         |                 | Si           | TE M     | NYAGI           | ER        | ml         | re                                | 2     |              |       | NERS          |          | P                 |           | ERVA<br>ETHO |      | E    |               |           |                    | 쿒              | Be C        |                |        | 128/08        | 8270/625             |                    | - 1                            | Chloride     |                      |                |          |               |   |
| PROJECT                                           | NO.:     | 2      | 301                                   | P           | RgS   | Tr.       | T NAME          | 20           | kre      | l or            | 10        | 1.         | an                                | ie,   |              |       | CONTAINERS    | (N/N)    |                   |           |              |      |      | 208           |           | 9                  | 4              | 8 48        | Volatiles      |        | 8240/8280/824 |                      | 909/               | 8                              | H. 708,      | ( <u>A</u> fr.)      | tou)           | 2        |               |   |
| <i>LAB I.D.</i><br><i>NUMBER</i><br>SAI7 <i>0</i> | DAT      |        | TIME                                  |             | сомь. | GRAB      |                 |              | SAMPI    | le              | C         | ou.        | 14                                | ٨     | In           |       | NUMBER OF     | CZ CZ    | нст               | HNO3      | ICE          | NONE |      | BTEX 8020/802 | <b>4</b>  | PAH 6870           | RCRA Metals Ag | TCLP Metals | TCLP Volatiles | RCI    | GC.MS Vol.    | GC.MS Semi. Vol.     | PCB's 8080/608     | Pest. 808/808                  | German Spec  | Alpha Beta           | PLM (Asbestos, | Men      |               |   |
| -01                                               | /12/     | los    | 5                                     | 5           |       |           | #/              | ,            |          | )-c             |           |            |                                   |       |              |       | 1             |          |                   |           |              | 45   | 15/0 | X             | Ì         | X                  |                |             |                |        |               |                      |                    |                                |              |                      |                | Y        | !             |   |
| -02                                               |          |        |                                       | 5           |       | 1         | # /             | ,            |          | 1-1             |           |            |                                   |       |              |       | 1             |          |                   |           | -            |      | İ    | X)            | <u>'</u>  | X                  |                |             |                |        |               |                      |                    | $\perp$                        | $\perp$      |                      |                | X        |               | Ш |
| -03                                               |          |        |                                       | 5           |       | 1         | <del>-#</del> Z |              | (        | )-(             | <u>0.</u> | <u>5</u>   | <u>)</u>                          |       |              |       |               |          |                   |           | 1            |      |      | X             |           | 4                  |                |             |                |        |               |                      |                    | $\perp$                        | $\perp$      | L                    |                | Ϋ́       |               |   |
| оЧ                                                |          |        |                                       | 5           |       | 1         | # 2             |              |          | 1-1             | 1.5       | 5 <u>′</u> | )                                 |       |              |       | 1             |          |                   |           |              |      |      | X             | '         | *                  |                |             |                |        |               |                      |                    |                                |              |                      |                | 4        |               |   |
| -05                                               |          |        |                                       |             |       | 1         | #3              |              |          | 0-              |           |            |                                   |       |              |       | (             |          |                   |           | 1            |      |      |               |           | 4                  |                |             |                |        |               |                      |                    |                                | $\perp$      | $\perp$              |                | ķ        |               |   |
| ob                                                |          |        |                                       | 5           |       | 1         | #3              |              | _(,      | <u>'/-</u>      | 10        | <u>5′</u>  | )                                 |       |              |       | 1             |          | _                 |           | 1            |      |      |               | -         | 4                  |                | _           | _              |        |               |                      |                    | $\downarrow$                   | $\downarrow$ |                      |                | <u> </u> |               |   |
| -07                                               |          | 4      | · · · · · · · · · · · · · · · · · · · | 5           |       | 1         | #4              |              |          | -0.             |           |            |                                   |       |              | _     | 1             |          |                   |           | 4            |      |      | _             | -+-       | 4                  |                | _           |                |        |               | _                    | $\perp$            | $\bot$                         | $\bot$       | _                    |                | À        | +             |   |
| <i>-0</i> 9                                       | <b>y</b> | _      |                                       | 5           | _     | 1         | #4              |              | <u> </u> | - /.            | <u>.5</u> | 2          |                                   |       |              |       | •             | _        |                   |           | 4            |      |      | _             |           | χ                  |                |             |                | -      |               |                      |                    | _                              | _            |                      |                | 4        |               |   |
|                                                   | 1        |        |                                       | 5           | _     | 1         |                 |              |          |                 |           |            | <del></del>                       |       |              |       |               | _        | _                 |           |              |      | _    | _             |           |                    |                | _           |                | -      |               |                      | _                  | _                              |              | _                    |                | _        |               |   |
| RELINGUISME                                       | D ÆY:    | (Sign  | mature)                               | 5           |       |           | Date:           | #            | 4        | ,<br>/ <u>*</u> | RR        | CRIVE      | D RY:                             | (Sign | iature)      |       |               |          | Dat               | <u> </u>  |              |      |      |               | 184       | муц                | to H           | E U         | -<br>          | *      | Siem          |                      |                    |                                | Dat          |                      |                |          |               | 4 |
| RELINQUISHE                                       | ~ [      |        | 7                                     |             |       |           | Time: _         |              | 30       |                 |           |            |                                   |       |              |       |               |          | Tim               | e:        |              |      |      |               | 1         |                    |                |             |                |        |               | <u>Y</u>             |                    |                                | Tim          |                      |                |          |               | _ |
| RELINQUISHE                                       |          |        |                                       |             |       |           | Date: Date:     |              |          | <u> </u>        | —         |            |                                   |       | ature)       |       |               |          | Dat<br>Tim<br>Dat | e:        |              |      |      | <u>-</u>      | _ PI      | MPLI<br>DEX<br>IND |                |             |                | r: (C  | BC<br>UF      | JS                   |                    |                                | RBIL<br>THER | L #                  |                |          | $\rightarrow$ |   |
| RECEIVING L                                       |          |        |                                       | 613         |       | _         | Time:           |              |          |                 |           |            |                                   |       |              | . /   | $\overline{}$ |          | Tim               |           |              |      |      |               | н         | GHLA               | NDE            | ? CC        | NTA            | T P    | ERS           | ON:                  |                    |                                | I            | Rosuli               | te by:         | ;        |               | 7 |
| ADDRESS:<br>CITY:<br>CONTACT:                     |          | . val  |                                       | STATE<br>PH | S:    | : _       |                 | ZIP          | ·        |                 | DATE      |            | ) BY: (1<br>[-/                   | #-0   |              | TI    | <u></u>       |          |                   | 7 32      | 2            |      |      | -             |           | 12                 | Æ              | 1           | a              | ren    | <u>.</u>      | , .                  |                    |                                |              | RUSH<br>Autho<br>Yes |                | _        | ,             |   |
| <b>ВЛИРГЕ СОМ</b><br>402 91645                    |          |        | EN RECE                               | TVED.       | : 4   | 1.0       | oc.             | MATI         |          | W-Wa            | ater      |            | l <i>–A</i> ir<br>L <i>–S</i> luc | dge   | SDS<br>0-0tl |       |               |          | RI                | EMAR<br>X | KS:          | 10   | 4    | 1-1           | 2)<br>21. | 100                | 78             | K           | u<br>De        | 7 - cu | the<br>et     | <del>ور</del><br>زير | 9 <b>1</b><br>_b>1 | <del></del><br>ع <u>د</u> راً، | 71           | DH<br>V              |                |          |               |   |
| Please Fill                                       | out e    | ıll o  | opies -                               | Lab         | orat  | OFY       | retains         | velle        | W COD    | y – R           | letur     | n or       | iginal                            | CODY  | to High      | lande | T I           | Covis    | ome               | ntal      | Cor          | D. – | Pro  |               |           |                    |                |             |                |        |               |                      |                    |                                | og z         | ecci                 | ves (          | old (    | CODV.         |   |



## Analytical Report

## **Prepared for:**

Ike Tavarez
Highlander Environmental Corp.
1910 N. Big Spring St.
Midland, TX 79705

Project: Duke/ Lateral of C Line Project Number: 2305 Location: Lea Co., NM

Lab Order Number: 5A17011

Report Date: 01/28/05

1910 N. Big Spring St. Midland TX, 79705

Project: Duke/ Lateral of C Line

Project Number: 2305

Project Manager: Ike Tavarez

Fax: (432) 682-3946

**Reported:** 01/28/05 13:50

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID   | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-------------|---------------|--------|----------------|----------------|
| #1 (1-1.5') | 5A17011-02    | Soil   | 01/12/05 00:00 | 01/14/05 17:30 |
| #2 (1-1.5') | 5A17011-04    | Soil   | 01/12/05 00:00 | 01/14/05 17:30 |

1910 N. Big Spring St. Midland TX, 79705

Project: Duke/ Lateral of C Line

Project Number: 2305

Project Manager: Ike Tavarez

Fax: (432) 682-3946

Reported: 01/28/05 13:50

## Organics by GC **Environmental Lab of Texas**

| Analyte                           | Result | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes        |
|-----------------------------------|--------|--------------------|-----------|----------|---------|----------|----------|-----------|--------------|
| #1 (1-1.5') (5A17011-02) Soil     |        |                    |           |          |         |          |          |           |              |
| Benzene                           | ND     | 0.0250             | mg/kg dry | 25       | EA52719 | 01/26/05 | 01/26/05 | EPA 8021B | <del>-</del> |
| Toluene                           | ND     | 0.0250             | н         | **       | **      | "        | **       | n         |              |
| Ethylbenzene                      | ND     | 0.0250             | Ħ         | **       | n       | "        | "        | 11        |              |
| Xylene (p/m)                      | ND     | 0.0250             | n         | "        | "       | н        | "        | n         |              |
| Xylene (o)                        | ND     | 0.0250             | 11        | **       | 11      | 11       | n        | 11        |              |
| Surrogate: a,a,a-Trifluorotoluene |        | 104 %              | 80-1      | 20       | "       | "        | "        | "         |              |
| Surrogate: 4-Bromofluorobenzene   |        | 95.2 %             | 80-1      | 20       | "       | "        | "        | "         |              |
| #2 (1-1.5') (5A17011-04) Soil     |        |                    |           |          |         |          |          |           |              |
| Benzene                           | ND     | 0.0250             | mg/kg dry | 25       | EA52719 | 01/26/05 | 01/26/05 | EPA 8021B |              |
| Toluene                           | ND     | 0.0250             | H         | **       | •       | et       | 11       | н         |              |
| Ethylbenzene                      | ND     | 0.0250             | **        | n        | **      | "        | 11       | 11        |              |
| Xylene (p/m)                      | ND     | 0.0250             | n         | "        | "       | н        | "        | •         |              |
| Xylene (o)                        | ND     | 0.0250             | "         | n        | "       | "        | "        | n         |              |
| Surrogate: a,a,a-Trifluorotoluene |        | 99.8 %             | 80-1      | 120      | "       | "        | "        | "         |              |
| Surrogate: 4-Bromofluorobenzene   |        | 88.8 %             | 80-       | 120      | "       | "        | "        | "         |              |

1910 N. Big Spring St.

Project: Duke/ Lateral of C Line

Project Number: 2305

Reported:

Midland TX, 79705

Project Manager: Ike Tavarez

01/28/05 13:50

Fax: (432) 682-3946

| Analyte                           | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-----------|----------------|------------------|-------------|----------------|-----|--------------|-------|
| Batch EA52719 - EPA 5030C (GC)    |        |                    |           |                |                  |             |                | _   |              |       |
| Blank (EA52719-BLK1)              |        |                    |           | Prepared       | & Analyze        | ed: 01/26/0 | 05             |     |              |       |
| Benzene                           | ND     | 0.0250             | mg/kg wet |                |                  |             |                |     |              |       |
| Toluene                           | ND     | 0.0250             | "         |                |                  |             |                |     |              |       |
| Ethylbenzene                      | ND     | 0.0250             | •         |                |                  |             |                |     |              |       |
| Xylene (p/m)                      | ND     | 0.0250             | и         |                |                  |             |                |     |              |       |
| Xylene (o)                        | ND     | 0.0250             | 11        |                |                  |             |                |     |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 99.9   |                    | ug/kg     | 100            |                  | 99.9        | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 85.9   |                    | "         | 100            |                  | 85.9        | 80-120         |     |              |       |
| LCS (EA52719-BS1)                 |        |                    |           | Prepared:      | 01/26/05         | Analyzed    | : 01/28/05     |     |              |       |
| Benzene                           | 93.7   |                    | ug/kg     | 100            |                  | 93.7        | 80-120         |     |              |       |
| Toluene                           | 89.3   |                    | 11        | 100            |                  | 89.3        | 80-120         |     |              |       |
| Ethylbenzene                      | 95.9   |                    | 11        | 100            |                  | . 95.9      | 80-120         |     |              |       |
| Xylene (p/m)                      | 215    |                    | н         | 200            |                  | 108         | 80-120         |     |              |       |
| Xylene (o)                        | 107    |                    | II        | 100            |                  | 107         | 80-120         |     |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 119    |                    | "         | 100            |                  | 119         | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 102    |                    | "         | 100            |                  | 102         | 80-120         |     |              |       |
| Calibration Check (EA52719-CCV1)  |        |                    |           | Prepared:      | 01/26/05         | Analyzed    | l: 01/28/05    |     |              |       |
| Benzene                           | 96.2   |                    | ug/kg     | 100            |                  | 96.2        | 80-120         |     |              |       |
| Toluene                           | 86.9   |                    | "         | 100            |                  | 86.9        | 80-120         |     |              |       |
| Ethylbenzene                      | 90.1   |                    | **        | 100            |                  | 90.1        | 80-120         |     |              |       |
| Xylene (p/m)                      | 201    |                    | **        | 200            |                  | 100         | 80-120         |     |              |       |
| Xylene (o)                        | 101    |                    | **        | 100            |                  | 101         | 80-120         |     |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 120    |                    | "         | 100            |                  | 120         | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 95.1   |                    | "         | 100            |                  | 95.1        | 80-120         |     |              |       |
| Matrix Spike (EA52719-MS1)        | So     | urce: 5A250        | 015-09    | Prepared       | : 01/26/05       | Analyzed    | i: 01/28/05    | ;   |              |       |
| Benzene                           | 95.6   |                    | ug/kg     | 100            | ND               | 95.6        | 80-120         |     |              |       |
| Toluene                           | 89.4   |                    | n         | 100            | ND               | 89.4        | 80-120         |     |              |       |
| Ethylbenzene                      | 97.9   |                    | n         | 100            | ND               | 97.9        | 80-120         |     |              |       |
| Xylene (p/m)                      | 220    |                    | "         | 200            | ND               | 110         | 80-120         |     |              |       |
| Xylene (o)                        | 111    |                    | **        | 100            | ND               | 111         | 80-120         |     |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 118    |                    | "         | 100            |                  | 118         | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 111    |                    | "         | 100            |                  | 111         | 80-120         |     |              |       |

1910 N. Big Spring St. Midland TX, 79705 Project: Duke/ Lateral of C Line

Fax: (432) 682-3946

Project Number: 2305

Project Manager: Ike Tavarez

**Reported:** 01/28/05 13:50

|                                 |        | Reporting      |       | Spike     | Source   |          | %REC        |     | RPD   |       |
|---------------------------------|--------|----------------|-------|-----------|----------|----------|-------------|-----|-------|-------|
| Analyte                         | Result | Limit          | Units | Level     | Result   | %REC     | Limits      | RPD | Limit | Notes |
| Batch EA52719 - EPA 5030C (GC)  |        |                |       |           |          |          |             |     |       |       |
| Matrix Chike Dun (FA52710 MCD1) | So     | urce: 5 A 2501 | 5.00  | Prepared: | 01/26/05 | Analyzed | l· 01/28/05 |     |       |       |

| Matrix Spike Dup (EA52719-MSD1)   | Source: | 5A25015-09 | Prepared: | 01/26/05 | Analyzed | 1: 01/28/05 |       |    |
|-----------------------------------|---------|------------|-----------|----------|----------|-------------|-------|----|
| Benzene                           | 97.2    | ug/kg      | 100       | ND       | 97.2     | 80-120      | 1.66  | 20 |
| Toluene                           | 90.6    | *          | 100       | ND       | 90.6     | 80-120      | 1.33  | 20 |
| Ethylbenzene                      | 98.5    | **         | 100       | ND       | 98.5     | 80-120      | 0.611 | 20 |
| Xylene (p/m)                      | 221     | "          | 200       | ND       | 110      | 80-120      | 0.00  | 20 |
| Xylene (o)                        | 111     | n          | 100       | ND       | 111      | 80-120      | 0.00  | 20 |
| Surrogate: a,a,a-Trifluorotoluene | 118     | "          | 100       |          | 118      | 80-120      |       |    |
| Surrogate: 4-Bromofluorobenzene   | 114     | "          | 100       |          | 114      | 80-120      |       |    |

1910 N. Big Spring St. Midland TX, 79705

Project: Duke/ Lateral of C Line

Fax: (432) 682-3946

Project Number: 2305 Project Manager: Ike Tavarez

Reported: 01/28/05 13:50

#### **Notes and Definitions**

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

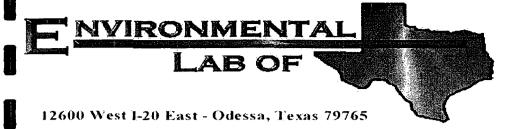
LCS Laboratory Control Spike

Matrix Spike MS

Dup Duplicate

Date: 1-28-05 Report Approved By:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer


Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Lab Analysis

3/07/2005



## **Analytical Report**

#### **Prepared for:**

Ike Tavarez
Highlander Environmental Corp.
1910 N. Big Spring St.
Midland, TX 79705

Project: Duke/ Lateral of C Line Project Number: 2301 Location: Lea County, NM

Lab Order Number: 5C04018

Report Date: 03/07/05

1910 N. Big Spring St. Midland TX, 79705 Project: Duke/ Lateral of C Line

Project Number: 2301

Project Manager: Ike Tavarez

Fax: (432) 682-3946

Reported: 03/07/05 12:05

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID    | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|--------------|---------------|--------|----------------|----------------|
| #1 Composite | 5C04018-01    | Soil   | 03/03/05 00:00 | 03/04/05 13:25 |
| #2 Composite | 5C04018-02    | Soil   | 03/03/05 00:00 | 03/04/05 13:25 |
| #3 Composite | 5C04018-03    | Soil   | 03/03/05 00:00 | 03/04/05 13:25 |

1910 N. Big Spring St. Midland TX, 79705 Project: Duke/ Lateral of C Line

Project Number: 2301

Project Manager: Ike Tavarez

Fax: (432) 682-3946

Reported: 03/07/05 12:05

#### Organics by GC Environmental Lab of Texas

| Analyte                           | Result | Reporting<br>Limit | Units                                   | Dilution | Batch   | Prepared | Analyzed | Method    | Note |
|-----------------------------------|--------|--------------------|-----------------------------------------|----------|---------|----------|----------|-----------|------|
| #1 Composite (5C04018-01) Soil    |        |                    |                                         |          |         |          |          |           |      |
| Benzene                           | 0.868  | 0.0250             | mg/kg dry                               | 25       | EC50408 | 03/04/05 | 03/04/05 | EPA 8021B |      |
| Toluene                           | 13.8   | 0.0250             | H                                       | "        | H       | ,        | "        | 11        |      |
| Ethylbenzene                      | 11.6   | 0.0250             | 11                                      | 11       | н       | "        | H        | **        |      |
| Xylene (p/m)                      | 13.8   | 0.0250             | "                                       | н        | •       | n        | n        | **        |      |
| Xylene (o)                        | 4.86   | 0.0250             | 11                                      |          | "       |          | n        | н         |      |
| Surrogate: a,a,a-Trifluorotoluene |        | 266 %              | 80-1                                    | 20       | "       | <b>"</b> | "        | n         | S-04 |
| Surrogate: 4-Bromofluorobenzene   |        | 102 %              | 80-1                                    | 20       | n       | "        | "        | "         |      |
| #2 Composite (5C04018-02) Soil    |        |                    |                                         |          |         |          |          |           |      |
| Benzene                           | 0.549  | 0.100              | mg/kg dry                               | 100      | EC50408 | 03/04/05 | 03/04/05 | EPA 8021B |      |
| Toluene                           | 19.6   | 0.100              | 11                                      | *        | **      | ,,       | n        | 10        |      |
| Ethylbenzene                      | 23.1   | 0.100              | 11                                      | "        | ,,      | 10       | n        | H         |      |
| Xylene (p/m)                      | 34.3   | 0.100              | "                                       | *        | 11      | "        | n        | n         |      |
| Xylene (o)                        | 12.9   | 0.100              | *                                       | "        | n       | 11       | н        | n         |      |
| Surrogate: a,a,a-Trifluorotoluene |        | 188 %              | 80-1                                    | 20       | "       | "        | "        | "         | S-04 |
| Surrogate: 4-Bromofluorobenzene   |        | 116 %              | 80-1                                    | 20       | "       | "        | "        | "         |      |
| #3 Composite (5C04018-03) Soil    |        |                    |                                         |          |         |          |          |           |      |
| Benzene                           | ND     | 0.0250             | mg/kg dry                               | 25       | EC50408 | 03/04/05 | 03/04/05 | EPA 8021B |      |
| Toluene                           | ND     | 0.0250             | n                                       | н        | n       | "        | "        | n         |      |
| Ethylbenzene                      | 0.0338 | 0.0250             | n                                       | n        | n       | 11       | "        | H         |      |
| Xylene (p/m)                      | 0.0627 | 0.0250             | 17                                      | "        | н       | и        | n        | "         |      |
| Xylene (o)                        | 0.0783 | 0.0250             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | H        | "       |          |          |           |      |
| Surrogate: a,a,a-Trifluorotoluene |        | 90.4 %             | 80-1                                    | 20       | "       | n        | "        | ,,        |      |
| Surrogate: 4-Bromofluorobenzene   |        | 92.9 %             | 80-1                                    | 20       | "       | "        | "        | "         |      |

1910 N. Big Spring St. Midland TX, 79705 Project: Duke/ Lateral of C Line

Project Number: 2301 Project Manager: Ike Tavarez Fax: (432) 682-3946

Reported: 03/07/05 12:05

#### General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

| Analyte                        | Result | Reporting<br>Limit | Units | Dilution | Batch   | Prepared | Analyzed | Method        | Notes |
|--------------------------------|--------|--------------------|-------|----------|---------|----------|----------|---------------|-------|
| #1 Composite (5C04018-01) Soil |        |                    |       |          |         |          |          |               |       |
| % Moisture                     | 9.7    | 0.1                | %     | 1        | EC50704 | 03/04/05 | 03/07/05 | % calculation |       |
| #2 Composite (5C04018-02) Soil |        |                    |       |          |         |          |          |               |       |
| % Moisture                     | 5.6    | 0.1                | %     | 1        | EC50704 | 03/04/05 | 03/07/05 | % calculation |       |
| #3 Composite (5C04018-03) Soil |        |                    |       |          |         |          |          |               |       |
| % Moisture                     | 5.6    | 0.1                | %     | 1        | EC50704 | 03/04/05 | 03/07/05 | % calculation |       |

1910 N. Big Spring St. Midland TX, 79705

Project: Duke/ Lateral of C Line

Project Number: 2301

Project Manager: Ike Tavarez

Fax: (432) 682-3946

Reported: 03/07/05 12:05

| Analyte                           | Result                                | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result                       | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-----------------------------------|---------------------------------------|--------------------|-----------|----------------|----------------------------------------|------------|----------------|-----|--------------|-------|
| Batch EC50408 - EPA 5030C (GC)    | · · · · · · · · · · · · · · · · · · · | <del></del>        |           |                |                                        |            |                |     |              |       |
| Blank (EC50408-BLK1)              |                                       |                    |           | Prepared:      | 03/03/05                               | Analyzed   | 1: 03/04/05    |     |              |       |
| Benzene                           | ND                                    | 0.0250             | mg/kg wet |                |                                        |            |                |     |              |       |
| Toluene                           | ND                                    | 0.0250             | n         |                |                                        |            |                |     |              |       |
| Ethylbenzene                      | ND                                    | 0.0250             | H         |                |                                        |            |                |     |              |       |
| Xylene (p/m)                      | ND                                    | 0.0250             | **        |                |                                        |            |                |     |              |       |
| Xylene (o)                        | ND                                    | 0.0250             | n         |                |                                        |            |                |     |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 91.9                                  |                    | ug/kg     | 100            |                                        | 91.9       | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 98.1                                  |                    | "         | 100            |                                        | 98.1       | 80-120         |     |              |       |
| LCS (EC50408-BS1)                 |                                       |                    |           | Prepared       | & Analyze                              | ed: 03/03/ | 05             |     |              |       |
| Benzene                           | 111                                   |                    | ug/kg     | 100            |                                        | 111        | 80-120         |     |              |       |
| Toluene                           | 115                                   |                    | n         | 100            |                                        | 115        | 80-120         |     |              |       |
| Ethylbenzene                      | 113                                   |                    | *         | 100            |                                        | 113        | 80-120         |     |              |       |
| Xylene (p/m)                      | 238                                   |                    | 11        | 200            |                                        | 119        | 80-120         |     |              |       |
| Xylene (o)                        | 118                                   |                    | **        | 100            |                                        | 118        | 80-120         |     |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 111                                   |                    | "         | 100            | ······································ | 111        | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 112                                   |                    | "         | 100            |                                        | 112        | 80-120         |     |              |       |
| Calibration Check (EC50408-CCV1)  |                                       |                    |           | Prepared:      | 03/03/05                               | Analyzed   | 1: 03/04/05    |     |              |       |
| Benzene                           | 101                                   |                    | ug/kg     | 100            |                                        | 101        | 80-120         |     |              |       |
| Toluene                           | 101                                   |                    | H         | 100            |                                        | 101        | 80-120         |     |              |       |
| Ethylbenzene                      | 89.3                                  |                    | v         | 100            |                                        | 89.3       | 80-120         |     |              |       |
| Xylene (p/m)                      | 199                                   |                    | 11        | 200            |                                        | 99.5       | 80-120         |     |              |       |
| Xylene (0)                        | 96.7                                  |                    | **        | 100            |                                        | 96.7       | 80-120         |     |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 99.0                                  |                    | "         | 100            |                                        | 99.0       | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 85.2                                  |                    | "         | 100            |                                        | 85.2       | 80-120         |     |              |       |
| Matrix Spike (EC50408-MS1)        | So                                    | urce: 5C030        | 004-02    | Prepared       | & Analyz                               | ed: 03/03/ | 05             |     |              |       |
| Benzene                           | 114                                   |                    | ug/kg     | 100            | ND                                     | 114        | 80-120         |     |              |       |
| Toluene                           | 120                                   |                    | ,         | 100            | ND                                     | 120        | 80-120         |     |              |       |
| Ethylbenzene                      | 110                                   |                    | 11        | 100            | ND                                     | 110        | 80-120         |     |              |       |
| Xylene (p/m)                      | 237                                   |                    | н         | 200            | ND                                     | 118        | 80-120         |     |              |       |
| Xylene (o)                        | 117                                   |                    | •         | 100            | ND                                     | 117        | 80-120         |     |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 117                                   |                    | "         | 100            |                                        | 117        | 80-120         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 112                                   |                    | "         | 100            |                                        | 112        | 80-120         |     |              |       |

1910 N. Big Spring St. Midland TX, 79705 Project: Duke/ Lateral of C Line

Spike

Source

%REC

Project Number: 2301

Reporting

Project Manager: Ike Tavarez

Fax: (432) 682-3946

RPD

Reported: 03/07/05 12:05

| Analyte                           | Result | Limit       | Units | Level    | Result   | %REC        | Limits | RPD  | Limit | Notes |
|-----------------------------------|--------|-------------|-------|----------|----------|-------------|--------|------|-------|-------|
| Batch EC50408 - EPA 5030C (GC)    |        |             |       |          |          |             |        |      |       |       |
| Matrix Spike Dup (EC50408-MSD1)   | Sour   | ce: 5C03004 | -02   | Prepared | & Analyz | ed: 03/03/0 | 05     |      |       |       |
| Benzene                           | 99.8   |             | ug/kg | 100      | ND       | 99.8        | 80-120 | 13.3 | 20    |       |
| Toluene                           | 100    |             | *     | 100      | ND       | 100         | 80-120 | 18.2 | 20    |       |
| Ethylbenzene                      | 92.6   |             | "     | 100      | ND       | 92.6        | 80-120 | 17.2 | 20    |       |
| Xylene (p/m)                      | 208    |             | "     | 200      | ND       | 104         | 80-120 | 12.6 | 20    |       |
| Xylene (o)                        | 101    |             | 17    | 100      | ND       | 101         | 80-120 | 14.7 | 20    |       |
| Surrogate: a,a,a-Trifluorotoluene | 94.2   |             | "     | 100      | ···      | 94.2        | 80-120 |      |       |       |
| Surrogate: 4-Bromofluorobenzene   | 91.7   |             | "     | 100      |          | 91.7        | 80-120 |      |       |       |

1910 N. Big Spring St. Midland TX, 79705 Project: Duke/ Lateral of C Line

Spike

Source

Project Number: 2301

Project Manager: Ike Tavarez

Reporting

Fax: (432) 682-3946

Reported:

03/07/05 12:05

RPD

%REC

#### General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

| Analyte                        | Result       | Limit       | Units | Level       | Result   | %REC     | Limits      | RPD  | Limit | Notes |
|--------------------------------|--------------|-------------|-------|-------------|----------|----------|-------------|------|-------|-------|
| Batch EC50704 - General Prepar | ation (Prep) |             | -4.0  | - marketter |          |          |             |      |       |       |
| Blank (EC50704-BLK1)           |              |             |       | Prepared:   | 03/04/05 | Analyzed | 1: 03/07/05 |      |       |       |
| % Moisture                     | ND           | 0.1         | %     |             |          |          |             |      |       |       |
| Duplicate (EC50704-DUP1)       | Sour         | rce: 5C0400 | )1-01 | Prepared:   | 03/04/05 | Analyzed | 1: 03/07/05 |      |       |       |
| 9/ Moisture                    | 0.9          | 0.1         | %     |             | 1.3      |          |             | 36.4 | 20    |       |

Project: Duke/ Lateral of C Line

Project Number: 2301 Project Manager: Ike Tavarez Fax: (432) 682-3946

Reported: 03/07/05 12:05

#### **Notes and Definitions**

The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. S-04

DET Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit ND

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

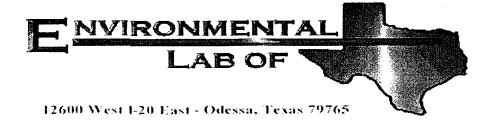
Dup Duplicate

Report Approved By: Raland K Just

Date: 3-07-05

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.


This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

## Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

| Client: Highlander  Date/Time: 34(05 2'-00)               | •       |                                                    |                |             |
|-----------------------------------------------------------|---------|----------------------------------------------------|----------------|-------------|
| Date/Time: 24(05 2'-00                                    |         |                                                    |                |             |
| Order#:509018                                             |         |                                                    |                |             |
| Initials:                                                 |         |                                                    |                |             |
| Sample Receipt (                                          | Check   | list                                               |                |             |
| Temperature of container/cooler?                          | Yes     | No                                                 | 3.0 · 0        | :T          |
| Shipping container/cooler in good condition?              | (Yes    | No                                                 |                |             |
| Custody Seals intact on shipping container/cooler?        | Yes     | No                                                 | Not present    | -           |
| Custody Seals intact on sample bottles?                   | Yes     | No                                                 | Not present    | ┪           |
| Chain of custody present?                                 | ) (CES  | No                                                 | Crot prognit   | -           |
| Sample Instructions complete on Chain of Custody?         | Xes     | No                                                 |                | 7           |
| Chain of Custody signed when relinquished and received?   | res     | No                                                 | <del></del>    | 7           |
| Chain of custody agrees with sample label(s)              | Tes     | No                                                 |                | 7           |
| Container labels legible and intact?                      | Ves     | No                                                 |                | -           |
| Sample Matrix and properties same as on chain of custody? | Tes     | No                                                 |                |             |
| Samples in proper container/bottle?                       | Yes     | No                                                 |                | -           |
| Samples properly preserved?                               | res     | No                                                 |                |             |
| Sample bottles intact?                                    | (es     | No                                                 |                |             |
| Preservations documented on Chain of Custody?             | (Yes    | No                                                 |                | 7           |
| Containers documented on Chain of Custody?                | Yes     | (No.                                               |                | 7           |
| Sufficient sample amount for indicated test?              | (/es    | No                                                 | ·              | -           |
| All samples received within sufficient hold time?         | (es     | No                                                 |                | 7           |
| VOC samples have zero headspace?                          | res     | No                                                 | Not Applicable | 7           |
| Other observations:                                       |         |                                                    |                |             |
| Variance Docume                                           | entatio | n:                                                 |                |             |
| Contact Person: Date/Time:                                |         |                                                    | Contacted by:  |             |
| Regarding:                                                |         | •                                                  |                |             |
|                                                           |         |                                                    |                |             |
|                                                           |         |                                                    | <del></del>    |             |
|                                                           |         |                                                    |                |             |
| Consolina Astion Talent                                   |         |                                                    |                |             |
| Corrective Action Taken:                                  |         |                                                    |                |             |
|                                                           |         |                                                    |                |             |
|                                                           |         |                                                    |                |             |
|                                                           |         |                                                    |                |             |
| -                                                         |         |                                                    | ·              | <del></del> |
|                                                           |         |                                                    |                |             |
|                                                           |         |                                                    |                |             |
|                                                           |         | <del>- · · · · · · · · · · · · · · · · · · ·</del> | ·              | <del></del> |
|                                                           |         |                                                    |                |             |

| ſ   | Δn                               | alysi      | s R        | 200    | 111         |      | + .                     | - n                                    | 7           | C    | h s          | ir  |       | Λf          | . (      | ٦,,     | at a          | 2 d z | 7                                      | R         | ٥.                    | · ^      | rd         | ]    |              |               |               |            |                |             |                |                     | PAG          |                          |                                              |                | 1              |             | OF:              |                | $\overline{\mathcal{I}}$ |        |              |
|-----|----------------------------------|------------|------------|--------|-------------|------|-------------------------|----------------------------------------|-------------|------|--------------|-----|-------|-------------|----------|---------|---------------|-------|----------------------------------------|-----------|-----------------------|----------|------------|------|--------------|---------------|---------------|------------|----------------|-------------|----------------|---------------------|--------------|--------------------------|----------------------------------------------|----------------|----------------|-------------|------------------|----------------|--------------------------|--------|--------------|
| -   |                                  |            |            |        |             |      |                         |                                        |             |      |              |     |       |             |          |         |               |       |                                        |           |                       |          |            |      | $\dashv$     |               |               |            | 11             | Jiro        |                |                     |              |                          |                                              | UES<br>(eth    |                | No.         | }                |                |                          |        |              |
| ļ   | _                                | HIG        | HLA        | 4N     |             |      |                         |                                        |             |      |              |     |       |             |          | $T_{A}$ | 4L            | (     | CO                                     | R         | P                     | •        |            |      |              | T             |               | T          | 8              | 1           |                |                     |              |                          | <u>,                                    </u> | T              | Ť              | T           | $\prod$          | П              |                          |        | Τ            |
| ı   |                                  |            |            |        |             |      | 10                      |                                        |             |      |              |     |       |             |          |         |               |       |                                        |           |                       |          |            |      |              | 1             | 300           | 3          | Ha             | 3           |                |                     |              |                          |                                              |                |                |             |                  |                |                          |        |              |
|     | (43)                             | 2) 682-    | 4559       |        |             | Mı   | dla                     | nd                                     | , 1         | ex   | as           | 1 7 | 797   | 705         | )        |         | Fa            | ax (4 | 432                                    | ) 6       | 82                    | -3       | 946        | 5    |              |               |               |            | Cr. Pb Ha      | G Pd        |                |                     |              |                          |                                              |                | g.             |             |                  |                |                          |        |              |
|     | CLIENT N                         | AME:       | Uke        |        |             |      |                         |                                        | SITE        | KE.  | AG)          | ER: |       | , _         | -<br>Ler |         |               |       | INERCO                                 |           |                       |          | RVA<br>THO |      | E            |               | CON STOR      |            | As Be Cd       |             |                | 70                  |              | 280/824                  | 8270/825                                     |                | Chloride       |             |                  |                |                          |        |              |
|     | PROJECT                          | NO.: 23    | 50/        | P      | <b>1</b> 63 | ECT  | NAM                     | E: /                                   | te          | L    | 4            | nj  | 0(    | C-          | Ler      | (م      |               |       | CONTAINERS                             |           |                       |          |            |      |              | /803          |               |            | 15 Ag Ag       | 8 Ag As     | 88             | Volatile            |              | 8/01/28                  |                                              | 7608           | p.H. 7DS.      |             | (ALF)            | rtos)          |                          |        |              |
| 24  | LAB I.D.<br>NUMBER               | DATE       | TOME       | MATRIX | COMP.       | CKAB | ,                       | (                                      |             | (PLE |              |     |       | ATIO        | ,<br>N   |         |               |       | NUMBER OF CO.                          |           | בשנים                 | SOME     | ICE        | NONE |              | BTEX BOZO/602 | MTBE 8020/602 | 18         | RCRA Metals Ag | TCIP Metals | TCLP Volatiles | TCLP Semi Volatiles | RCI          | GC.MS Vol. 8240/8280/624 | GC.MS Semi. Vol.                             | PCB's 8080/608 | BOD. 758. p.H. | Gemma Spec. | Alpha Bota (Air) | PLM (Asbestos) |                          |        |              |
|     | -01 =                            | 3/3/05     |            | \$     | 4           |      | # 2                     | , (                                    | 3.          | מנת  | y8 C         | te  |       |             |          |         | *******       | ,     | 1                                      |           |                       |          |            |      |              | X             |               |            |                |             |                |                     |              |                          |                                              |                |                |             |                  |                |                          |        | $\int$       |
|     | 702 3                            | /3/05      |            | 5      | Y           |      | £12                     | $\overline{C}$                         | ) Jage      | esi  | Le           |     |       |             |          |         |               | \     |                                        |           |                       |          | 1          |      |              | X             |               |            |                |             |                |                     |              |                          |                                              |                |                |             |                  |                |                          |        |              |
| ŀ   | 03                               | 3/5/       |            | 5      | Y           |      | #t                      | 3                                      | 2           | 07   | ∂ø\$         | Ż   | -     |             |          |         |               |       | 1                                      |           |                       |          | 1          | _    |              | X             |               |            |                |             |                |                     |              |                          |                                              |                |                |             |                  |                |                          |        | 1            |
|     |                                  |            |            |        |             |      |                         |                                        |             |      |              |     |       |             |          |         |               |       |                                        |           |                       |          |            |      |              |               |               |            |                |             |                |                     |              |                          |                                              |                |                |             |                  |                |                          |        |              |
|     |                                  |            |            |        |             |      |                         | ······································ |             |      |              |     |       | <del></del> |          |         |               |       |                                        |           |                       |          |            |      |              |               |               |            |                |             |                |                     |              |                          |                                              |                |                |             |                  |                |                          |        |              |
| ļ   | ·                                |            |            |        |             |      |                         |                                        |             |      |              | ,   |       |             |          |         |               |       |                                        |           |                       |          |            |      |              |               |               |            |                |             |                |                     | _            |                          |                                              |                |                |             |                  |                | _                        |        | $\downarrow$ |
|     |                                  |            |            |        |             |      |                         |                                        |             |      |              |     |       |             |          |         |               |       |                                        |           |                       |          |            |      |              |               |               |            | _              |             |                |                     | $\downarrow$ |                          |                                              | $\bot$         | <u> </u>       | _           |                  |                | $\bot$                   | _      | $\downarrow$ |
|     |                                  |            |            |        |             | _    |                         |                                        | · · · · · · |      |              |     |       |             |          |         |               |       | _                                      |           | $\perp$               |          |            |      |              |               |               | _          | _              |             |                |                     |              |                          | _                                            | _              |                |             |                  |                | $\downarrow$             | $\bot$ | $\downarrow$ |
|     | <del> </del>                     | 5          |            |        |             |      |                         |                                        |             |      |              |     |       |             |          |         |               |       | _                                      | 1         |                       | _        | _          |      | $\downarrow$ | _             | _             | _          | _              | _           |                |                     |              |                          |                                              | _              | $\perp$        | _           |                  |                | $\bot$                   |        | $\downarrow$ |
|     | RELINGUISM                       | (Si        | dra Lyra   | ) ]    |             |      | Date:                   | 3                                      | 14          | 4    | <u>´</u>     | PRY | menvi | ED F        | Y: (Si,  | gnat    | ura)          |       |                                        | 1         | Date:                 |          |            |      |              |               | SA            | MPL        | Zn.            | HY:         | Pr             | int i               |              | ian                      |                                              |                |                | Date        |                  |                |                          |        |              |
| - 1 | RELINQUISH                       |            | $\nearrow$ | <      |             |      | Time:<br>Date:          |                                        | <u> </u>    | حب   | -<br>-<br>-  |     |       |             | Y: (Si   |         |               |       | ······································ |           | ime:<br>late:         | _        |            |      |              | <u>-</u><br>- | SA            | MPL.       | E S            |             | 7              | ~~                  | 7 4          | rale                     | )                                            | _              |                | Time        | o:               |                |                          |        | <u>-</u>     |
| ł   | relinquishi                      | SD BY: (Si | gnature    | )      | <del></del> |      | Time:<br>Date:<br>Time: |                                        |             |      | <del>-</del> | REC | CEIVE | ED B        | Y: (SI   | gnat    | ure)          |       |                                        | 1         | ime:<br>late:<br>ime: |          |            |      |              | <del>-</del>  | H             | DEX<br>LND | DEI            |             |                |                     |              | UP                       | S                                            |                |                | HER         | esult            |                |                          |        | _            |
| Ì   | RECEIVING I<br>ADDRESS:<br>CITY: |            | Y:         | STATI  |             | ,    |                         |                                        | IP:         |      |              |     |       |             |          |         |               | d/9   |                                        | <u>عر</u> | 13                    | <u>_</u> | <u>}-</u>  |      |              | <u></u>       | н             | GHI.       | AND.           | ER          | CONF.          | ener<br>L           | O            | rs<br>/ 1                | ON:<br>cZ                                    | _              |                | R           | WSH<br>Lutbo     | Char           | rgas<br>l:               |        |              |
|     | CONTACT:<br>SAMPLE CON           | IDITION WE | IEN REC    | EIVED. | ONE         |      | ·                       | MA                                     | TRIX:       |      | V Va         | ter |       | A-AL        |          | , .     | SD-30<br>0-0U |       | Æ: _                                   |           | REL                   |          |            |      |              | <del>-</del>  | 1             | • •        |                |             |                |                     |              |                          |                                              |                |                | 1_          | You              |                |                          | řo     |              |



### Analytical Report

#### Prepared for:

Ike Tavarez
Highlander Environmental Corp.
1910 N. Big Spring St.
Midland, TX 79705

Project: Duke/ Lateral of C Line
Project Number: 2301
Location: Lea County, NM

Lab Order Number: 5C04018

Report Date: 03/07/05

Project: Duke/ Lateral of C Line

Fax: (432) 682-3946

1910 N. Big Spring St. Midland TX, 79705

Project Number: 2301 Project Manager: lke Tavarez

Reported: 03/07/05 17:25

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID    | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|--------------|---------------|--------|----------------|----------------|
| #1 Composite | 5C04018-01    | Soil   | 03/03/05 00:00 | 03/04/05 13:25 |
| #2 Composite | 5C04018-02    | Soil   | 03/03/05 00:00 | 03/04/05 13:25 |
| #3 Composite | 5C04018-03    | Soil   | 03/03/05 00:00 | 03/04/05 13:25 |

Midland TX, 79705

Project: Duke/ Lateral of C Line

Project Number: 2301

Project Manager: Ike Tavarez

Fax: (432) 682-3946

Reported: 03/07/05 17:25

#### Organics by GC **Environmental Lab of Texas**

| Analyte                           | Result | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|-----------------------------------|--------|--------------------|--------------------|----------|---------|----------|----------|-----------|-------|
| #1 Composite (5C04018-01) Soil    |        |                    | - <u>- ,,, ,,,</u> |          |         |          |          |           |       |
| Benzene                           | 0.868  | 0.0250             | mg/kg dry          | 25       | EC50408 | 03/04/05 | 03/04/05 | EPA 8021B |       |
| Toluene                           | 13.8   | 0.0250             |                    |          | **      | •        |          |           |       |
| Ethylbenzene                      | 11.6   | 0.0250             | **                 |          |         |          |          | •         |       |
| Xylene (p/m)                      | 13.8   | 0.0250             | •                  | •        | •       | -        |          |           |       |
| Xylene (o)                        | 4.86   | 0.0250             |                    | *        | *       |          | *        | *         |       |
| Surrogate: a,a,a-Trifluorotoluene |        | 266 %              | 80-1               | 120      | ,,      | ,,       | ,,       | "         | S-04  |
| Surrogate: 4-Bromofluorobenzene   |        | 102 %              | 80-1               | 120      | "       | ••       | ,,       | 'n        |       |
| #2 Composite (5C04018-02) Soil    |        |                    |                    |          |         |          |          |           |       |
| Benzene                           | 0.549  | 0.100              | mg/kg dry          | 100      | EC50408 | 03/04/05 | 03/04/05 | EPA 8021B |       |
| Toluene                           | 19.6   | 0.100              | **                 | n        | m       |          | n        | n         |       |
| Ethylbenzene                      | 23.1   | 0.100              |                    |          |         | •        | •        | "         |       |
| Xylene (p/m)                      | 34.3   | 0.100              | *                  |          | •       | •        | •        | ,         |       |
| Xylene (o)                        | 12.9   | 0.100              | •                  |          |         |          | -        | •         |       |
| Surrogate: a,a,a-Trifluorotoluene |        | 188 %              | 80-1               | 120      | ,       | "        | "        | "         | S-04  |
| Surrogate: 4-Bromofluorobenzene   |        | 116 %              | 80-1               | 120      | "       | п        | *        | "         |       |
| #3 Composite (5C04018-03) Soil    |        |                    |                    |          |         |          |          |           |       |
| Benzene                           | ND     | 0.0250             | mg/kg dry          | 25       | EC50408 | 03/04/05 | 03/04/05 | EPA 8021B |       |
| Toluene                           | ND     | 0.0250             | **                 |          | *       | •        |          | *         |       |
| Ethylbenzene                      | 0.0338 | 0.0250             |                    |          |         | ,,       |          | •         |       |
| Xylene (p/m)                      | 0.0627 | 0.0250             | "                  |          | -       | •        | n        | u         |       |
| Xylene (o)                        | 0.0783 | 0.0250             | "                  | •        | •       | *        | **       | •         |       |
| Surrogate: a,a,a-Trifluorotoluene |        | 90.4 %             | 80-1               | 20       | "       |          | ,        | 0         |       |
| Surrogate: 4-Bromofluorobenzene   |        | 92.9 %             | 80-1               | 20       | ,,      | "        | ,,       | n         |       |

Project: Duke/ Lateral of C Line

Project Number: 2301 Project Manager: 1ke Tavarez Fax: (432) 682-3946

Reported: 03/07/05 17:25

### General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

| Analyte .                      | Result | Reporting<br>Limit | Units | Dilution | Batch   | Prepared | Analyzed | Method        | Notes |
|--------------------------------|--------|--------------------|-------|----------|---------|----------|----------|---------------|-------|
| #1 Composite (5C04018-01) Soil |        |                    |       |          |         |          |          |               |       |
| % Moisture                     | 9.7    | 0.1                | %     | l        | EC50704 | 03/04/05 | 03/07/05 | % calculation |       |
| #2 Composite (5C04018-02) Soil |        |                    |       |          |         |          |          |               |       |
| % Moisture                     | 5.6    | 0.1                | %     | ]        | EC50704 | 03/04/05 | 03/07/05 | % calculation |       |
| #3 Composite (5C04018-03) Soil |        |                    |       |          |         |          |          |               |       |
| % Moisture                     | 5.6    | 0.1                | %     | 1        | EC50704 | 03/04/05 | 03/07/05 | % calculation |       |

Project. Duke/ Lateral of C Line

Fax: (432) 682-3946

1910 N. Big Spring St. Midland TX, 79705 Project Number: 2301
Project Manager: Ike Tavarez

Reported: 03/07/05 17:25

| Analyte                           | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD           | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-----------|----------------|------------------|-------------|----------------|---------------|--------------|-------|
| Batch EC50408 - EPA 5030C (GC)    |        |                    |           |                |                  |             |                |               |              |       |
| Blank (EC50408-BLK1)              |        |                    |           | Prepared: (    | )3/03/05 A       | nalyzed: 03 | 3/04/05        |               |              |       |
| Benzene                           | ND     | 0 0250             | mg/kg wet |                |                  | , - ,       |                |               |              |       |
| Toluene                           | ND     | 0 0250             |           |                |                  |             |                |               |              |       |
| Ethylbenzene                      | ND     | 0.0250             |           |                |                  |             |                |               |              |       |
| Xylene (p/m)                      | ND     | 0.0250             | •         |                |                  |             |                |               |              |       |
| Xylene (o)                        | ND     | 0.0250             |           |                |                  |             |                |               |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 91.9   |                    | ng kg     | 100            |                  | 91.9        | 80-120         |               |              |       |
| Surrogate: 4-Bromofluorobenzene   | 98.1   |                    | ,         | 100            |                  | 98.1        | 80-120         |               |              |       |
| LCS (EC50408-BS1)                 |        |                    |           | Prepared &     | Analyzed:        | 03/03/05    |                |               |              |       |
| Benzene                           | 111    |                    | ug/kg     | 100            |                  | 111         | 80-120         |               |              |       |
| Foluene                           | 115    |                    | **        | 100            |                  | 115         | 80-120         |               |              |       |
| Ethylbenzene                      | 113    |                    |           | 100            |                  | 113         | 80-120         |               |              |       |
| Xylene (p/m)                      | 238    |                    |           | 200            |                  | 119         | 80-120         |               |              |       |
| Kylene (o)                        | 118    |                    | *         | 100            |                  | 118         | 80-120         |               |              |       |
| Surrogate: a.a,a-Trifluorotoluene | 777    |                    |           | 100            | ** **            | 111         | ×0-120         |               |              |       |
| Surrogate: 4-Bromofluorohenzene   | 112    |                    | ,,        | 100            |                  | 112         | X0-120         |               |              |       |
| Calibration Check (EC50408-CCV1)  |        |                    |           | Prepared: (    | 03/03/05 A       | nalyzed: 03 | 3/04/05        |               |              |       |
| Benzene                           | 101    |                    | υg/kg     | 100            |                  | 101         | 80-120         |               |              |       |
| Toluene                           | 101    |                    | •         | 100            |                  | 103         | 80-120         |               |              |       |
| Ethylbenzene                      | 89.3   |                    | **        | 100            |                  | 89.3        | 80-120         |               |              |       |
| Xylene (p/m)                      | 199    |                    |           | 200            |                  | 99.5        | 80-120         |               |              |       |
| Xylene (o)                        | 96 7   |                    | **        | 100            |                  | 96.7        | 80-120         |               |              |       |
| Surrogate: a.a.a-Trifluorotoluene | 99 0   |                    | . ,,      | 100            |                  | 99 Ô        | 80-120         |               |              |       |
| Surrogote: 4-Bromofluorobenzene   | 85.2   |                    | "         | 100            |                  | 85.2        | 80-120         |               |              |       |
| Matrix Spike (EC50408-MS1)        | Sou    | rce: 5C03004       | I-02      | Prepared &     | : Analyzed:      | 03/03/05    |                |               |              |       |
| Benzene                           | 114    |                    | ug/kg     | 100            | ND               | 114         | 80-120         | ** ********** |              |       |
| foluene                           | 120    |                    | -         | 100            | ND               | 120         | 80-120         |               |              |       |
| Ethylbenzene                      | 110    |                    | •         | 100            | ND               | 110         | 80-120         |               |              |       |
| Xylene (p/m)                      | 237    |                    |           | 200            | ND               | 118         | 80-120         |               |              |       |
| Kylene (0)                        | 117    |                    | •         | 100            | ND               | 117         | 80-120         |               |              |       |
| Surrogate: a.a.a-Trifluorotoluene | 11-    |                    |           | 100            |                  | 11-         | ×0-120         |               | -            |       |
| Surrogate: 4-Bromofluorobenzene   | 112    |                    | "         | 100            |                  | 112         | ×0-120         |               |              |       |

Midland TX, 79705

Project: Duke/ Lateral of C Line

Fax: (432) 682-3946

Project Number: 2301 Project Manager: lke Tavarez

Reported: 03/07/05 17:25

|                                   | D I.   | Reporting       | 11.00       | Spike<br>Level | Source   | NDC      | %REC   | n.n.n. | RPD   | N -   |
|-----------------------------------|--------|-----------------|-------------|----------------|----------|----------|--------|--------|-------|-------|
| Analyte                           | Result | Limit           | Limit Units |                | Result   | %REC     | Limits | RPD    | Limit | Notes |
| Batch EC50408 - EPA 5030C (GC)    |        |                 |             |                |          |          |        |        |       |       |
| Matrix Spike Dup (EC50408-MSD1)   |        | rce: 5C03004-02 | 2           | Prepared &     | Analyzed | 03/03/05 |        |        |       |       |
| Benzene                           | 99.8   |                 | ug/kg       | 100            | ND       | 99.8     | 80-120 | 13.3   | 20    |       |
| Toluen <b>e</b>                   | 100    |                 | •           | 100            | ND       | 100      | 80-120 | 18.2   | 20    |       |
| Ethylbenzene                      | 92.6   |                 | •           | 100            | ND       | 92.6     | 80-120 | 17.2   | 20    |       |
| Xylene (p/m)                      | 208    |                 | •           | 200            | ND       | 104      | 80-120 | 12.6   | 20    |       |
| Xylene (0)                        | 101    |                 | •           | 100            | ND       | 101      | 80-120 | 14.7   | 20    |       |
| Surrogate: a,a,a-Trifluorotoluene | 94.2   |                 | "           | 100            |          | 94.2     | 80-120 |        |       |       |
| Surrogate: 4-Bromofluorobenzene   | 91     |                 | •           | 100            |          | 91.7     | 80-120 |        |       |       |

Project: Duke/ Lateral of C Line

Fax: (432) 682-3946

1910 N. Big Spring St. Midland TX, 79705

Project Number: 2301

Project Manager: Ike Tavarez

Reported: 03/07/05 17:25

#### General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

| 1                                          |        | Reporting     |       | Spike       | Source     |             | %REC   |      | RPD   |       |
|--------------------------------------------|--------|---------------|-------|-------------|------------|-------------|--------|------|-------|-------|
| Analyte                                    | Result | Limit         | Units | Level       | Result     | %REC        | Limits | RPD  | Limit | Notes |
| Batch EC50704 - General Preparation (Prep) |        |               |       |             |            |             |        |      |       |       |
| Blank (EC50704-BLK1)                       |        |               |       | Prepared: ( |            | nalyzeď: 03 | /07/05 |      |       |       |
| % Moisture                                 | ND     | 0.1           | %     |             |            |             |        |      |       |       |
| Duplicate (EC50704-DUP1)                   | Sou    | rce: 5C04001- | 01    | Prepared: ( | 03/04/05 A | nalyzed: 03 | /07/05 |      |       |       |
| % Moisture                                 | 0.9    | 0.3           | %     |             | 1.3        |             |        | 36.4 | 20    |       |

Highlander Environmental Corp.

Project: Duke/ Lateral of C Line

Project Number: 2301

Midland TX, 79705

Project Manager: Ike Tavarez

Duke/ Lateral of C Line

Fax: (432) 682-3946

Reported:

03/07/05 17:25

#### **Notes and Definitions**

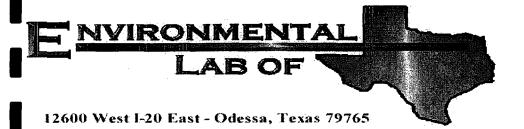
S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. Analyte DETECTED DET ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported Sample results reported on a dry weight basis dry. RPD Relative Percent Difference Laboratory Control Spike LCS Matrix Spike MS Duplicate Dup

|                     | Kaland K Julis |       |          |
|---------------------|----------------|-------|----------|
| Report Approved By: | Riscario 180   | Date: | 3/7/2005 |

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.


If you have received this material in error, please notify us immediately at 432-563-1800.

| Analysis Reque                                          | et and Cha                               | in of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Custos                                             | 17             | Re           | CO          | rd          |           |               |           |          |                |             |            | AGE        |                            |             | 1                    | OI         | **                  |   |
|---------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|--------------|-------------|-------------|-----------|---------------|-----------|----------|----------------|-------------|------------|------------|----------------------------|-------------|----------------------|------------|---------------------|---|
|                                                         | <del></del>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                | ·····        |             | - ·         |           |               |           |          | /4 m/          |             |            |            | REQ<br>Ify 1               |             |                      | io.)       |                     |   |
|                                                         | ER $ENVIRO$ 010 N. Big Spifidland, Texas | ring St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                                  | <i>CO</i> (432 |              |             | 946         | ó         |               | 17/2 0/05 |          | C Para Res     |             |            | 3-1        |                            |             |                      |            |                     |   |
|                                                         | SITE . WASAGE                            | R. 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***************************************            | <del></del>    |              | RESE        |             | TIVE      |               | MOD.      | ;        | Pa Co          |             |            | 0/824      | 8270/625                   |             | Chloride             |            |                     |   |
| PROJECT NO.: 230/ PROJECT                               | T NAME: Later Co                         | rio (e-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | erip)                                              | DF CONTAINERS  |              |             |             |           | 8026          | 1 8015    | ١,       | 2 2            |             | Vola tilos | 8240/836   | Val. 82                    | 909         | H, 7708,             | /A (m.)    | (pop)               |   |
| LAB L.D. DATE TIME XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |                                          | Ey VIN<br>ENTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | FILTERED (Y    | HCL          | FINTOS      | Œ)          | MONE<br>) | HTEX 3020/802 | TPH 418.1 | PAH 6870 | TCLP Metals Ag | Tap Volatii | TCLP Semi  | GC MS Vol. | OC. WS Sand. Val. 8270/625 | PCB's 8080, | BOD, 1785, p.H. 708, | German Spe | PLM (Asbestos)      |   |
| -01 3/3/05 5 4                                          | 4                                        | te.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | And designed designed sold designed and the second |                | 1            |             | 1           |           | X             |           |          |                |             |            |            |                            |             |                      |            |                     |   |
| -02 3/3/05 FY                                           | # Conjuste                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                |              |             | 1           |           | X             |           |          |                |             |            |            |                            |             |                      |            |                     |   |
| -03 3/3/6+ ) ×                                          | #3 Copos                                 | Že                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                |              |             | 1           |           | Y             |           |          |                |             |            |            | -                          | _           | -                    |            |                     |   |
|                                                         |                                          | and the second s |                                                    |                | <del> </del> |             |             |           | -             | -         |          | -              |             | -          |            |                            | _           | -                    |            |                     | _ |
|                                                         |                                          | and a second state and a second state of the s |                                                    |                | -            |             |             |           | -             |           |          |                |             |            |            | -                          |             | +-                   |            |                     |   |
|                                                         |                                          | artife till hadishingan da sanagaa ar formati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                | -            |             |             |           | -             | -         | -        | +              | -           |            |            |                            | _           | -                    |            | ++                  | + |
| -                                                       |                                          | ويدانون دار ميلند برسا اسانده در در بناله الإدار                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er Alandarianan artaru era artarua, papanan perdag |                | <del> </del> |             |             |           |               | -         |          | -              |             | -          | -          | +                          | +           | +                    |            | ++                  |   |
|                                                         |                                          | يتحصيح بدونتين ودعيانو فليحوج بجذدات                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eren - maker endrounderlyddige, ar i maker, i      |                | ┼            |             |             | _         |               |           | -        | -              | $\vdash$    |            |            | -                          | -           | -                    |            | +                   |   |
| 5                                                       |                                          | na <del>Taman 1998 de 1</del> 986 de 1986 de 1886 de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                | +-           |             |             |           | -             | -         |          | -              |             |            |            | +-                         |             | +-                   |            |                     | - |
| RELIACULTARIO M. (Samelare)                             | Date: J.C. Fig.                          | RECEIVED HY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Signature)                                        |                | De Tin       | te:         |             |           |               | Sale      |          | TY.            | (2)         | nt de      | عاق ا      | السالة<br>سيخ              |             |                      | ate:       |                     |   |
| RELINQUINIED BY (Signature)                             | Cete:<br>Those:                          | RECEIVED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                | De<br>Tin    | ta:         |             |           |               | SAM       | PLE :    | SHIP           | PED         |            | (Circ      |                            | *****       | ADR                  | ULL I      |                     |   |
| RECEIVING LABORATORY: CLARGE ADDRESS                    | Date:<br>Bine:                           | RECEIVED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Digosture)                                        |                | 74 <u>0</u>  | 10:<br>12:  | <del></del> |           |               | 27.0      | 77.4 N   | פידות          | rnsa        | 467        | -CED       | 90%                        |             | 012                  | Regu       | lia by:             |   |
| ADURRES CITY: STATE: CONTACT: PHONE:                    | ZIP:                                     | 147E 3 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2020m N                                            | <u>/C</u>      |              | ين<br>د د د | 5           |           | ~ <b></b>     | l         | 1/0      | E              | 10          | W          |            | ~ Z                        | •           |                      |            | ii Chan<br>artired: |   |
| SAMPLE CONDITION WHEN RECEIVED:                         | BATRIX:                                  | or A-Atr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SD-Solid                                           |                |              | EWR         |             |           |               |           |          |                |             |            |            |                            |             |                      | 1,         |                     |   |

## Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

| Client: Hiddlander                                        |                                        |       |                                                                                                                   |   |
|-----------------------------------------------------------|----------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------|---|
| Date/Time: <u>2405 200</u>                                |                                        |       |                                                                                                                   |   |
| Order #: 509018                                           |                                        |       |                                                                                                                   |   |
| order                                                     |                                        |       |                                                                                                                   |   |
| Initials:                                                 |                                        |       |                                                                                                                   |   |
| Sample Receipt                                            | t Checkl                               | list  |                                                                                                                   |   |
| Temperature of container/cooler?                          | Yes                                    | No    | 3,0° C                                                                                                            |   |
| Shipping container/cooler in good condition?              | (Yeş                                   | No    |                                                                                                                   |   |
| Custody Seals intact on shipping container/cooler?        | Yes                                    | No    | Not present                                                                                                       |   |
| Custody Seals intact on sample bottles?                   | Yes                                    | No    | (Not present                                                                                                      |   |
| Chain of custody present?                                 | ₹ē\$                                   | No    | 2000                                                                                                              |   |
| Sample Instructions complete on Chain of Custody?         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | No    |                                                                                                                   |   |
| Chain of Custody signed when relinquished and received?   | des                                    | No    |                                                                                                                   |   |
| Chain of custody agrees with sample label(s)              | Tes                                    | No    |                                                                                                                   |   |
| Container labels legible and intact?                      | ₹es                                    | No    |                                                                                                                   |   |
| Sample Matrix and properties same as on chain of custody? | Yes                                    | No    |                                                                                                                   |   |
| Samples in proper container/bottle?                       | Yes                                    | No    |                                                                                                                   |   |
| Samples properly preserved?                               | Wes                                    | No    |                                                                                                                   |   |
| Sample bottles intact?                                    | (Pes                                   | No    |                                                                                                                   |   |
| Preservations documented on Chain of Custody?             | (Yes                                   | No    |                                                                                                                   |   |
| Containers documented on Chain of Custody?                | Yes                                    | (190) |                                                                                                                   |   |
| Sufficient sample amount for indicated test?              | //es                                   | No    |                                                                                                                   |   |
| All samples received within sufficient hold time?         | Res                                    | No    |                                                                                                                   |   |
| VOC samples have zero headspace?                          | (Feb                                   | No    | Not Applicable                                                                                                    |   |
| Other observations:                                       |                                        |       |                                                                                                                   |   |
| Variance Docur Contact Person: Date/Time: Regarding:      | mentatic                               |       | Contacted by:                                                                                                     |   |
| Corrective Action Taken:                                  |                                        |       |                                                                                                                   |   |
|                                                           |                                        |       |                                                                                                                   | , |
|                                                           | <del></del>                            |       |                                                                                                                   |   |
|                                                           |                                        |       |                                                                                                                   |   |
|                                                           |                                        |       |                                                                                                                   |   |
|                                                           |                                        |       |                                                                                                                   |   |
|                                                           |                                        |       |                                                                                                                   |   |
|                                                           |                                        |       | a annual |   |
|                                                           |                                        |       |                                                                                                                   |   |

**Lab Analysis** 5/12/2005



## Analytical Report

#### **Prepared for:**

Ike Tavarez
Highlander Environmental Corp.
1910 N. Big Spring St.
Midland, TX 79705

Project: Duke/ Lateral of C Line Project Number: 2301 Location: Lea County, NM

Lab Order Number: 5E10005

Report Date: 05/12/05

1910 N. Big Spring St. Midland TX, 79705 Project: Duke/ Lateral of C Line

Project Number: 2301 Project Manager: Ike Tavarez Fax: (432) 682-3946

**Reported:** 05/12/05 13:49

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-----------|---------------|--------|----------------|----------------|
| Area #1   | 5E10005-01    | Soil   | 05/06/05 00:00 | 05/09/05 17:25 |
| Area #2   | 5E10005-02    | Soil   | 05/06/05 00:00 | 05/09/05 17:25 |

Project: Duke/ Lateral of C Line

Project Number: 2301
Project Manager: Ike Tavarez

Fax: (432) 682-3946

**Reported:** 05/12/05 13:49

#### Organics by GC Environmental Lab of Texas

| Analyte                           | Result     | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|-----------------------------------|------------|--------------------|-----------|----------|---------|----------|----------|-----------|-------|
| Area #1 (5E10005-01) Soil         |            |                    |           |          |         |          |          |           |       |
| Benzene                           | ND         | 0.0250             | mg/kg dry | 25       | EE51116 | 05/11/05 | 05/11/05 | EPA 8021B | •     |
| Toluene                           | ND         | 0.0250             | **        | и        | 9       | n        | W        | **        |       |
| Ethylbenzene                      | J [0.0149] | 0.0250             | n         | н        | **      | **       | 11       | n         | J     |
| Xylene (p/m)                      | 0.0553     | 0.0250             | **        | **       | II.     | n        | н        | "         |       |
| Xylene (o)                        | 0.0754     | 0.0250             | н .       | 11       | #       | n        | 11       | п         |       |
| Surrogate: a,a,a-Trifluorotoluene |            | 81.5 %             | 80-1      | 20       | "       | "        | "        | "         |       |
| Surrogate: 4-Bromofluorobenzene   |            | 80.8 %             | 80-1      | 20       | "       | "        | "        | "         |       |
| Gasoline Range Organics C6-C12    | 160        | 10.0               | mg/kg dry | 1        | EE51003 | 05/10/05 | 05/10/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35    | 1340       | 10.0               | *         | n        | 11      | *        | 11       | u         |       |
| Total Hydrocarbon C6-C35          | 1500       | 10.0               |           | н        | 11      | н        | 11       | 11        |       |
| Surrogate: 1-Chlorooctane         |            | 81.0 %             | 70-1      | 30       | "       | "        | "        | "         |       |
| Surrogate: 1-Chlorooctadecane     |            | 83.2 %             | 70-1      | 30       | "       | "        | "        | "         |       |
| Area #2 (5E10005-02) Soil         |            |                    |           |          |         |          |          |           |       |
| Benzene                           | ND         | 0.0250             | mg/kg dry | 25       | EE51116 | 05/11/05 | 05/11/05 | EPA 8021B |       |
| Toluene                           | 0.139      | 0.0250             | "         | "        | "       | n        | н        | **        |       |
| Ethylbenzene                      | 0.576      | 0.0250             | H         | 11       | "       | "        | 17       | n         |       |
| Xylene (p/m)                      | 1.34       | 0.0250             | *         | н        | 11      | 11       | n        | •         |       |
| Xylene (o)                        | 0.675      | 0.0250             |           | ,,       | "       | 11       | "        | n         |       |
| Surrogate: a,a,a-Trifluorotoluene | _          | 83.3 %             | 80-1      | 120      | "       | "        | "        | "         |       |
| Surrogate: 4-Bromofluorobenzene   |            | 86.3 %             | 80-1      | 120      | "       | "        | n        | "         |       |

Project: Duke/Lateral of C Line

Project Number: 2301
Project Manager: Ike Tavarez

Fax: (432) 682-3946

**Reported:** 05/12/05 13:49

#### General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

| Analyte                   | Result | Reporting<br>Limit | Units | Dilution | Batch   | Prepared | Analyzed | Method        | Notes |
|---------------------------|--------|--------------------|-------|----------|---------|----------|----------|---------------|-------|
| Area #1 (5E10005-01) Soil |        |                    |       |          |         |          |          |               |       |
| % Moisture                | 5.6    | 0.1                | %     | 1        | EE51102 | 05/10/05 | 05/11/05 | % calculation |       |
| Area #2 (5E10005-02) Soil |        |                    |       |          |         |          |          |               |       |
| % Moisture                | 6.0    | 0.1                | %     | 1        | EE51102 | 05/10/05 | 05/11/05 | % calculation |       |

Project: Duke/ Lateral of C Line

Project Number: 2301 Project Manager: Ike Tavarez Fax: (432) 682-3946

**Reported:** 05/12/05 13:49

| ł                                  |              | Reporting |           | Spike    | Source    |             | %REC   |      | RPD   |       |
|------------------------------------|--------------|-----------|-----------|----------|-----------|-------------|--------|------|-------|-------|
| Analyte                            | Result       | Limit     | Units     | Level    | Result    | %REC        | Limits | RPD  | Limit | Notes |
| Batch EE51003 - Solvent Extraction | (GC)         |           |           |          |           |             |        |      |       |       |
| Blank (EE51003-BLK1)               |              |           |           | Prepared | & Analyze | ed: 05/10/0 | 05     |      |       |       |
| Gasoline Range Organics C6-C12     | ND           | 10.0      | mg/kg wet |          |           |             |        |      |       |       |
| Diesel Range Organics >C12-C35     | ND           | 10.0      | **        |          |           |             |        |      |       |       |
| Total Hydrocarbon C6-C35           | ND           | 10.0      | "         |          |           |             |        |      |       |       |
| Surrogate: 1-Chlorooctane          | 37.I         |           | mg/kg     | 50.0     |           | 74.2        | 70-130 |      |       |       |
| Surrogate: 1-Chlorooctadecane      | 35.9         |           | "         | 50.0     |           | 71.8        | 70-130 |      |       |       |
| LCS (EE51003-BS1)                  |              |           |           | Prepared | & Analyze | ed: 05/10/0 | 05     |      |       |       |
| Gasoline Range Organics C6-C12     | 442          | 10.0      | mg/kg wet | 500      |           | 88.4        | 75-125 |      |       |       |
| Diesel Range Organics >C12-C35     | 448          | 10.0      | "         | 500      |           | 89.6        | 75-125 |      |       |       |
| Total Hydrocarbon C6-C35           | 890          | 10.0      | 11        | 1000     |           | 89.0        | 75-125 |      |       |       |
| Surrogate: 1-Chlorooctane          | 37.9         |           | mg/kg     | 50.0     |           | 75.8        | 70-130 |      |       |       |
| Surrogate: 1-Chlorooctadecane      | 35.8         |           | "         | 50.0     |           | 71.6        | 70-130 |      |       |       |
| LCS Dup (EE51003-BSD1)             |              |           |           | Prepared | & Analyze | ed: 05/10/  | 05     |      |       |       |
| Gasoline Range Organics C6-C12     | 424          | 10.0      | mg/kg wet | 500      |           | 84.8        | 75-125 | 4.16 | 20    |       |
| Diesel Range Organics >C12-C35     | 480          | 10.0      | 11        | 500      |           | 96.0        | 75-125 | 6.90 | 20    |       |
| Total Hydrocarbon C6-C35           | 904          | 10.0      | n         | 1000     |           | 90.4        | 75-125 | 1.56 | 20    |       |
| Surrogate: 1-Chlorooctane          | 38.5         |           | mg/kg     | 50.0     |           | 77.0        | 70-130 |      |       |       |
| Surrogate: 1-Chlorooctadecane      | <i>37</i> .7 |           | "         | 50.0     |           | 75.4        | 70-130 |      |       |       |
| Calibration Check (EE51003-CCV1)   |              |           |           | Prepared | & Analyze | ed: 05/10/  | 05     |      |       |       |
| Gasoline Range Organics C6-C12     | 498          |           | mg/kg     | 500      |           | 99.6        | 80-120 |      |       |       |
| Diesel Range Organics >C12-C35     | 514          |           | H         | 500      |           | 103         | 80-120 |      |       |       |
| Total Hydrocarbon C6-C35           | 1010         |           | н         | 1000     |           | 101         | 80-120 |      |       |       |
| Surrogate: 1-Chlorooctane          | 42.4         |           | "         | 50.0     |           | 84.8        | 70-130 |      |       |       |
| Surrogate: 1-Chlorooctadecane      | 36.5         |           | "         | 50.0     |           | <i>73.0</i> | 70-130 |      |       |       |

Project: Duke/ Lateral of C Line

Project Number: 2301 Project Manager: Ike Tavarez Fax: (432) 682-3946

**Reported:** 05/12/05 13:49

| Analyte                           | Result       | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD         | RPD<br>Limit | Notes  |
|-----------------------------------|--------------|--------------------|-----------|----------------|------------------|-------------|----------------|-------------|--------------|--------|
|                                   | 1103UII      | - Limit            |           |                | 1103411          | , vi (L) C  | Diffits        | 10.0        | Dillik       | 140163 |
| Batch EE51116 - EPA 5030C (GC)    |              |                    |           |                | · <u>-</u>       |             |                |             |              |        |
| Blank (EE51116-BLK1)              |              |                    |           | Prepared       | & Analyze        | ed: 05/11/0 | 05             |             |              |        |
| Benzene                           | ND           | 0.0250             | mg/kg wet |                |                  |             |                |             |              |        |
| Toluene                           | ND           | 0.0250             | **        |                |                  |             |                |             |              |        |
| Ethylbenzene                      | ND           | 0.0250             | "         |                |                  |             |                |             |              |        |
| Xylene (p/m)                      | ND           | 0.0250             | *         |                |                  |             |                |             |              |        |
| Xylene (o)                        | ND           | 0.0250             | **        |                |                  |             |                |             |              | 4      |
| Surrogate: a,a,a-Trifluorotoluene | 82.5         |                    | ug/kg     | 100            |                  | 82.5        | 80-120         |             |              |        |
| Surrogate: 4-Bromofluorobenzene   | 82.7         |                    | "         | 100            |                  | 82.7        | 80-120         |             |              |        |
| LCS (EE51116-BS1)                 |              |                    |           | Prepared       | & Analyz         | ed: 05/11/  | 05             |             |              |        |
| Benzene                           | 84.3         |                    | ug/kg     | 100            | <del>-</del>     | 84.3        | 80-120         |             |              |        |
| Toluene                           | 82.7         |                    | n         | 100            |                  | 82.7        | 80-120         |             |              |        |
| Ethylbenzene                      | 82.2         |                    | n         | 100            |                  | 82.2        | 80-120         |             |              |        |
| Xylene (p/m)                      | 186          |                    | "         | 200            |                  | 93.0        | 80-120         |             |              |        |
| Xylene (o)                        | 91.6         |                    | "         | 100            |                  | 91.6        | 80-120         |             |              |        |
| Surrogate: a,a,a-Trifluorotoluene | 100          |                    | "         | 100            |                  | 100         | 80-120         |             |              |        |
| Surrogate: 4-Bromofluorobenzene   | 91.4         |                    | "         | 100            |                  | 91.4        | 80-120         |             |              |        |
| Calibration Check (EE51116-CCV1)  |              |                    |           | Prepared       | & Analyz         | ed: 05/11/  | 05             |             |              |        |
| Benzene                           | 98.7         |                    | ug/kg     | 100            |                  | 98.7        | 80-120         | <del></del> |              |        |
| Toluene                           | 91.2         |                    | 11        | 100            |                  | 91.2        | 80-120         |             |              |        |
| Ethylbenzene                      | 85.7         |                    | n         | 100            |                  | 85.7        | 80-120         |             |              |        |
| Xylene (p/m)                      | 191          |                    | н         | 200            |                  | 95.5        | 80-120         |             |              |        |
| Xylene (o)                        | , 90.0       |                    | n         | 100            |                  | 90.0        | 80-120         |             |              |        |
| Surrogate: a,a,a-Trifluorotoluene | 95.5         |                    | "         | 100            |                  | 95.5        | 80-120         |             |              |        |
| Surrogate: 4-Bromofluorobenzene   | <b>87</b> .7 |                    | "         | 100            |                  | 87.7        | 80-120         |             |              |        |
| Matrix Spike (EE51116-MS1)        | So           | urce: 5E110        | 01-06     | Prepared       | & Analyz         | ed: 05/11/  | 05             |             |              |        |
| Benzene                           | 98.7         |                    | ug/kg     | 100            | ND               | 98.7        | 80-120         |             |              |        |
| Toluene                           | 94.6         |                    | 11        | 100            | ND               | 94.6        | 80-120         |             |              |        |
| Ethylbenzene                      | 94.6         |                    | n         | 100            | ND               | 94.6        | 80-120         |             |              |        |
| Xylene (p/m)                      | 222          |                    |           | 200            | 44.1             | 89.0        | 80-120         |             |              |        |
| Xylene (o)                        | 98.7         |                    | n         | 100            | ND               | 98.7        | 80-120         |             |              |        |
| Surrogate: a,a,a-Trifluorotoluene | 91.2         |                    | "         | 100            |                  | 91.2        | 80-120         |             |              |        |
| Surrogate: 4-Bromofluorobenzene   | 104          |                    | "         | 100            |                  | 104         | 80-120         |             |              |        |

1910 N. Big Spring St. Midland TX, 79705 Project: Duke/ Lateral of C Line

.

Fax: (432) 682-3946

**Reported:** 05/12/05 13:49

Project Number: 2301 Project Manager: Ike Tavarez

|         |        | Reporting |       | Spike | Source | ·    | %REC   |     | RPD   |       |
|---------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |

| Batch | EE511 | 116 - | <b>EPA</b> | 5030C | (GC) |
|-------|-------|-------|------------|-------|------|
|       |       |       |            |       |      |

| Matrix Spike Dup (EE51116-MSD1)   | Source: | 5E11001-06 | Prepared | & Analyze |      |        |       |    |
|-----------------------------------|---------|------------|----------|-----------|------|--------|-------|----|
| Benzene                           | 100     | ug/kg      | 100      | ND        | 100  | 80-120 | 1.31  | 20 |
| Toluene                           | 96.3    | "          | 100      | ND        | 96.3 | 80-120 | 1.78  | 20 |
| Ethylbenzene                      | 96.3    | **         | 100      | ND        | 96.3 | 80-120 | 1.78  | 20 |
| Xylene (p/m)                      | 221     | "          | 200      | 44.1      | 88.4 | 80-120 | 0.676 | 20 |
| Xylene (o)                        | 102     | "          | 100      | ND        | 102  | 80-120 | 3.29  | 20 |
| Surrogate: a,a,a-Trifluorotoluene | 101     | "          | 100      |           | 101  | 80-120 |       |    |
| Surrogate: 4-Bromofluorobenzene   | 106     | "          | 100      |           | 106  | 80-120 |       |    |

Highlander Environmental Corp. 1910 N. Big Spring St.

Project: Duke/ Lateral of C Line

Fax: (432) 682-3946

1910 N. Big Spring St. Midland TX, 79705

Project Number: 2301 Project Manager: Ike Tavarez **Reported:** 05/12/05 13:49

#### General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

| Result       | Reporting<br>Limit       | Units                                              | Spike<br>Level                                                 | Source<br>Result                                                                                                                                                            | %REC                                                                                                                                                                                                           | %REC<br>Limits                                                                                      | RPD                                                                                                                                                                                                                                                                                              | RPD<br>Limit                                                                                                                                                                                                                                                                                 | Notes                                                                                                                                                                                                                                                                                                                      |
|--------------|--------------------------|----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ation (Prep) |                          |                                                    |                                                                |                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                            |
|              |                          |                                                    | Prepared:                                                      | 05/10/05                                                                                                                                                                    | Analyzed                                                                                                                                                                                                       | : 05/11/05                                                                                          |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                            |
| ND           | 0.1                      | %                                                  |                                                                |                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                            |
| So           | urce: 5E1000             | 1-01                                               | Prepared:                                                      | 05/10/05                                                                                                                                                                    | Analyzed                                                                                                                                                                                                       | : 05/11/05                                                                                          |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                            |
| 11.1         | 0.1                      | %                                                  |                                                                | 10.5                                                                                                                                                                        |                                                                                                                                                                                                                |                                                                                                     | 5.56                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                            |
|              | ation (Prep)<br>ND<br>So | Result Limit  ation (Prep)  ND 0.1  Source: 5E1000 | Result Limit Units  ation (Prep)  ND 0.1 %  Source: 5E10001-01 | Result         Limit         Units         Level           ation (Prep)         Prepared:           ND         0.1         %           Source: 5E10001-01         Prepared: | Result         Limit         Units         Level         Result           ation (Prep)           Prepared: 05/10/05           ND         0.1         %           Source: 5E10001-01         Prepared: 05/10/05 | Ation (Prep)  Prepared: 05/10/05 Analyzed  ND 0.1 %  Source: 5E10001-01 Prepared: 05/10/05 Analyzed | Result         Limit         Units         Level         Result         %REC         Limits           ation (Prep)           Prepared: 05/10/05         Analyzed: 05/11/05           ND         0.1         %           Source: 5E10001-01         Prepared: 05/10/05         Analyzed: 05/11/05 | Result         Limit         Units         Level         Result         %REC         Limits         RPD           ation (Prep)           Prepared: 05/10/05 Analyzed: 05/11/05           ND         0.1         %           Source: 5E10001-01         Prepared: 05/10/05 Analyzed: 05/11/05 | Result         Limit         Units         Level         Result         %REC         Limits         RPD         Limit           ation (Prep)           Prepared: 05/10/05         Analyzed: 05/11/05           ND         0.1         %           Source: 5E10001-01         Prepared: 05/10/05         Analyzed: 05/11/05 |

Project: Duke/ Lateral of C Line

Fax: (432) 682-3946 Reported: 05/12/05 13:49

Midland TX, 79705

Project Number: 2301 Project Manager: Ike Tavarez

**Notes and Definitions** 

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

Analyte DETECTED DET

Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

Laboratory Control Spike LCS

MS Matrix Spike

Dup Duplicate

> Kalandkoul Report Approved By:

Date: 5-12-05

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

# Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

| Client: Highlander                                        |         |       |                  |             |
|-----------------------------------------------------------|---------|-------|------------------|-------------|
| Date/Time: 5/10/05/8:00                                   |         |       |                  |             |
| Order #: 5                                                | •       |       |                  |             |
| Initials:                                                 | •       |       |                  |             |
| Sample Receipt                                            | Checkli | ist _ |                  |             |
| Temperature of container/ccoler?                          | Yes     | No    | 1 4.0 CI         |             |
| Shipping container/cooler in good condition?              | (Yes    | No    |                  |             |
| Custody Seals intact on shipping container/cooler?        | Yes     | No    | Not present      |             |
| Custody Seals intact on sample bottles?                   | Yes     | No    | Not present      | •••         |
| Chain of custody present?                                 | des     | No    |                  |             |
| Sample Instructions complete on Chain of Custody?         | X555    | No    |                  |             |
| Chain of Custody signed when relinquished and received?   | (E3)    | No    |                  |             |
| Chain of custody agrees with sample label(s)              | /es     | No    |                  |             |
| Container labels legible and intact?                      | 739     | No    |                  |             |
| Sample Matrix and properties same as on chain of custody? | 78      | No    |                  |             |
| Samples in proper container/bottle?                       | 1795    | Nic   | i                |             |
| Samples properly preserved?                               | (Fes    | Nc    |                  |             |
| Sample bottles intact?                                    | 12051   | Nic   | 1                |             |
| Preservations documented on Chain of Custody?             | 1 Xes   | Nio   |                  |             |
| Containers documented on Chain of Custody?                | THE I   | No    |                  |             |
| Sufficient sample amount for indicated test?              | Yas     | No    | <u> </u>         |             |
| All samples received within sufficient hold time?         | 1       | No    |                  | •           |
| VOC samples have zero headspace?                          | /YES    | Nic   | i Not Applicable |             |
| Other observations:                                       |         |       |                  |             |
| Variance Docur Contact Person: Date/Time: Regarding:      |         |       | Contacted by: _  | ·           |
|                                                           |         |       |                  |             |
| Corrective Action Taken:                                  |         |       |                  | -           |
|                                                           |         |       |                  |             |
|                                                           |         |       |                  |             |
|                                                           |         | ··    |                  |             |
| <u> </u>                                                  |         |       |                  |             |
|                                                           |         |       |                  |             |
|                                                           |         |       | <del></del>      | <del></del> |
|                                                           |         |       |                  |             |
|                                                           |         |       |                  |             |

| Analysis Request and Chain of Custody Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                 |      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |      | PAGE:   OF:   ANALYSIS REQUEST |                                         |       |                     |            |             |      |      |               |      |                     |            |                |                |                     |          |                           |                |               |                |           |                |              |  |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------|--------------------------------|-----------------------------------------|-------|---------------------|------------|-------------|------|------|---------------|------|---------------------|------------|----------------|----------------|---------------------|----------|---------------------------|----------------|---------------|----------------|-----------|----------------|--------------|--|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |      |                                |                                         |       |                     | +          |             |      | 1    | Circ          |      |                     |            |                |                |                     | l No     | j.)                       |                |               |                |           |                |              |  |   |
| HIGHLANDER ENVIRONMENTAL 1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 Fax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |      |                                |                                         |       |                     |            |             | 3940 | 5    |               |      | > 170005            | 10 de      | Hg Se          | т т            |                     |          |                           |                |               |                |           |                |              |  |   |
| CLIENT NAME: Dike SITE MANAGER.  IK lance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                 |      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |      |                                |                                         | INERS | PRESERVATIVE METHOD |            |             |      |      |               |      | 8015 MOD:           | 3          |                |                |                     | 7007 000 | 8270/825                  |                |               | Chloride       |           |                |              |  |   |
| PROJECT NO.: 2301 PROJECT NAME:  Whe / WH Have Coted line of Chine.  Lea Co. N. m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                 |      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |      | OF CONTAINERS                  |                                         |       |                     |            |             | 808/ | l l  |               | 7 77 | 2                   | iles       | Volatile       | 0/ 0/ 00       | d. Vol. 6           | 909/     | 808                       | pH, 170S,      | A (ALF.)      | etos)          |           |                |              |  |   |
| LAB I.D.<br>NUMBER<br>1000 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TDÆ | MATRIX<br>COMP. | GRAB | ,               | SAMPLE IDENTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |          |      |                                |                                         |       |                     |            | HNO3        | ICE  | NONE | BTEX 8020/602 |      | <b>179H</b> ≥ 418.1 | PAH 6270   | TCIP Metals Ag | TCLP Volatiles | TCLP Semi Volatiles | RCI      | GC.MS Semi. Vol. 8270/629 | PCB's 8080/808 | Pest. 808/608 | BOD, TSS, p.H. | Alpha Bet | PLM (Asbestos) |              |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 5 Y             |      | ava             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /    |          |      |                                |                                         | 1     |                     |            |             |      |      | X             |      | Y                   |            |                |                |                     |          |                           |                |               |                |           |                |              |  |   |
| -015-605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | ) Y             | 1    | ave             | , el :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z    |          |      |                                |                                         | (     |                     |            |             | 1    |      | X             |      |                     |            |                |                |                     |          |                           |                |               |                |           |                | $oxed{oxed}$ |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |      |                                |                                         |       |                     |            |             |      |      |               |      |                     |            |                |                |                     |          |                           |                |               |                |           |                |              |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |      |                                |                                         |       |                     |            |             |      |      |               |      |                     |            |                |                |                     |          |                           |                |               |                |           |                |              |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |      |                 | AND THE RESIDENCE OF THE PROPERTY OF THE PROPE |      |          |      |                                |                                         |       |                     |            |             |      |      |               |      |                     |            |                |                |                     |          |                           |                |               |                |           |                |              |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |      |                                | *************************************** |       |                     |            |             |      |      |               |      |                     |            |                |                |                     |          |                           |                |               |                |           | П              |              |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |      | · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | _        |      |                                |                                         |       |                     |            |             |      |      |               |      |                     |            |                |                |                     |          |                           |                |               |                |           | П              |              |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |      |                                |                                         |       |                     |            |             |      |      |               |      |                     |            |                |                |                     |          |                           |                |               |                |           | П              |              |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |      |                                |                                         |       |                     |            |             |      |      |               |      |                     |            |                |                |                     |          |                           |                |               |                |           |                |              |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7   |                 |      |                 | -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-   |          |      |                                |                                         |       |                     |            |             |      |      |               |      |                     |            |                |                |                     |          |                           |                |               |                |           |                |              |  |   |
| RELINOUTSHOWD BY: (Sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | محط |                 |      | Date:<br>Time:  | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 185_ | <u> </u> |      |                                | gnature)                                |       |                     | Dai<br>Tin | 16:         |      |      | _             |      |                     | $\Delta C$ | BX:            | 0              | <u> </u>            |          |                           |                |               | Dat<br>Tim     |           |                |              |  |   |
| RELINQUISHED BY: (Sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                 |      | Date:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |      |                                | gnature)                                |       |                     |            | 20:         | -    |      | _             | 1    | TEDE                | X          | SHIP!          |                | BY:                 |          | BUS                       |                |               |                | LL#<br>R: |                |              |  | - |
| CITY: STATE: ZIP: C/C/A S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                 |      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | andr |                                |                                         | 26:   |                     | lig        | Authorised: |      |      |               |      |                     |            |                |                |                     | io       |                           |                |               |                |           |                |              |  |   |
| Thouse the second secon |     |                 |      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |      |                                | EMAR                                    |       |                     | <u> </u>   | 1           |      |      |               |      |                     |            |                |                |                     |          |                           |                |               |                |           |                |              |  |   |