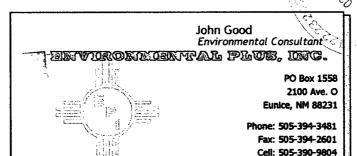


SITE INVESTIGATION, REMEDIATION, AND FINAL C-141 CLOSURE DOCUMENTATION

NM STATE M BATTERY

EOTT REF: #2001-11095


UL-C NE'4 OF THE NW'4 OF SECTION 29 T22S R37E

~5 MILES SOUTH-SOUTHWEST (BEARING 198.4°) OF EUNICE, LEA COUNTY, NEW MEXICO

LATITUDE: 32°22'02.82"N LONGITUDE: 103°11'10'40".W

JULY 2, 2003

PREPARED BY:

Email: enviplus1@aol.com

July 2, 2003

Mr. Larry Johnson Energy, Minerals, and Natural Resources Department **New Mexico Oil Conservation Division** 1625 North French Dr. Hobbs, New Mexico 88240

Subject:

EOTT "NM State M Battery" Final C-141 and Closure Documentation

EOTT Site Reference: 2001-11095

Dear Mr. Johnson:

Environmental Plus, Inc. (EPI), on behalf of EOTT Energy Company, submits for your consideration and approval the Final C-141 and Closure Documentation for the "NM State M Battery" remediation site (EOTT Reference: 2001-11095). This report documents the vertical and horizontal extents of hydrocarbon contamination at the site, removal of contaminated soils down to the 10-ft bgs excavation level, excavation expansion to a 85' X 45' X 10' configuration, replacement of 650-vd' of contaminated soil into the bottom of the expanded excavation, and installation of a 2-ft compacted clay barrier over the contaminated soils left in place consistent with the NMOCD approved "Closure Proposal and Risk Assessment" (April 15, 2003) for this project. Environmental Plus, Inc., on behalf of EOTT, therefore requests that the NMOCD consider the information provided within this documentation and require "no further action" at this site.

If there are any questions please call Mr. Ben Miller or myself at EPI's offices, or at 505-390-0288 or 505-390-9804 respectively. Mr. Frank Hernandez of EOTT Energy Company can be contacted at 432-638-3799.

VIRONMENTAL

All official correspondence should be addressed to:

Mr. Frank Hernandez **EOTT Energy Company** P.O. Box 1660 Midland, Texas 79703

Sincerely,

Mn Good

EPI Environmental Consultant

CC:

Frank Hernandez, EOTT Energy (w/enclosure)

William Von Drehle, EOTT Energy (w/enclosure)

Sherry Miller, EPI President

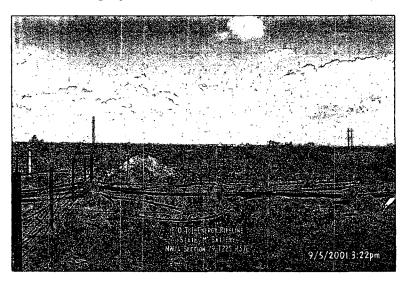
Ben Miller, EPI Vice President and General Manager

Pat McCasland, EPI Technical Manager

File

FAX 505+394+2601

Table of Contents


	Executive Summary	2
1.0	Introduction	2
2.0	Background	3
3.0	Site Description	4-5
	3.1 Site Location 4	
	3.2 Geohydrology 4	
	3.3 Ecology 5	
	3.4 Area Water Wells and Surface Water 5	
4.0	NMOCD Site Ranking	5-6
5.0	Subsurface Soil Investigation	6
6.0	Ground Water Investigation	6
7.0	Remediation	7
8.0	VADSAT Risk Assessment	8
9.0	Closure Justification	8
ATTAC	HMENTS	9-28-
	1 – Release Site Location	10
Plate	2 – Release Site Topography	11
Plate	3 - Initial Release Site and Excavation GPS Demarcation	12
Plate	4 – April-03 Site GPS Demarcation + Surface Damage	13
Plate	5 - Extended Excavation (regular rectangle)	14
Plate	6 - Boreholes 8-9 Contaminant Cross-Section	15
Plate	7 - Final Excavation and Backfill Profile	16
Plate	8 - Soil analyses: TPH and BTEX Data Table	17
Plate	9 - Soil Analyses Graphical Bar-Charts	18-19
Plate	10 - VADSAT Risk Assessment Charts	20
VAD	SAT Risk Assessment Input and Output Data	21-23
Plate	11 - Pettigrew & Associates Compaction Certification #1	24
Plate	12 - Pettigrew & Associates Compaction Certification #2	25
NMO	OCD Final Form C-141	26
Site 1	Metrics Form	27
Labo	ratory Analyses Reports	28>

Executive Summary

Environmental Plus, Inc. (EPI) was notified by EOTT Energy Company (EOTT) on September 3, 2001 regarding a crude oil pipeline release and remediation project at EOTT's "NM State M Battery"

(EOTT Reference 2001-11095). The crude petroleum release at this site is primarily historical in nature and can merely be estimated at >25 bbl in volume.

The initial characterization and remedial work at the site was performed by EPI during September, 2001. The site was closed under a "Clay Barrier – Risk Assessment" closure proposal approved by NMOCD on April 30, 2003. The "EOTT State M Battery" site is located ~5 miles south-southwest of Eunice, NM in UL-C, Section 29 T22S R37E. The initial surface extent of the spill was approximately 400-ft², however, it was expanded to ~1,700-ft²

after excavation. The vertical extent of contamination (>100 ppm TPH) was projected to extend to ~30-ft bgs. The NMOCD Site Characterization Matrix for this site is "20" due to an estimated depth to ground water of ~65-ft bgs. The spill occurred on property owned by the State of New Mexico and leased to the Millard Deck Estate.

Analytical data obtained from 9 boreholes (BH1-BH9; *Plates 3, 6, 8, 9, Attachments*) indicated that the central section of the excavation is significantly contaminated down to ~30-ft bgs. Borehole and composite soil analyses for this project were performed by Environmental Lab of Texas, Odessa, TX and AnalySys Inc., Austin, TX. Due to the engineering requirements and inordinate expense of extending the excavation to 30-ft bgs, EOTT opted to complete the remediation of the site with the installation of a 2-ft impermeable layer of compacted clay, with a requisite VADSAT Risk Assessment of the site

The VADSAT 3.0 Risk Assessment Model (1000-year projection, pages 20-23, Attachments) was generated for the site with, and without, the clay barrier installed. Results of the computer generated risk models indicate there is no risk presented to the aquifer at this site with the remediation option selected.

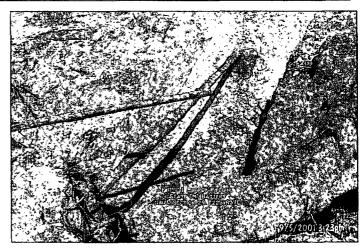
All stockpiled contaminated soil was placed under the installed clay barrier in this project. The excavation above the clay barrier was backfilled with clean caliche and topsoil that had been stockpiled for such purpose during the expansion of the excavation to allow for bottom placement of the contaminated soil. The site was contoured to prevent pooling over the excavation site. The final surface damaged area (22,800-ft²) is represented on *Plate 4* of the Attachments. The area will be evaluated for new vegetative growth in Spring-2004 and reseeded with natural grasses if determined necessary.

1.0 Introduction

This document addresses the initial site characterization, site excavation, vertical and horizontal contaminant delineation, and the final closure of this site with the installation of an impermeable clay barrier. Environmental Plus, Inc. (EPI), Eunice, New Mexico commenced the initial site

characterization and delineation process at this site on September 3, 2001. The following activities were undertaken to remediate and close this site:

- GPS demarcation of the release site and relevant surface features. (Plate 3, Attachments)
- ♦ Excavation and on-site stockpiling of ~650-yd³ of contaminated soil. The 10-ft deep excavation had an approximate areal extent of 1,750-ft². (Plate 4, Attachments)
- ♦ Drilling and sampling of 9 boreholes from the 2-ft bgs level down to 30-ft bgs within the extents of the excavation to determine the vertical extent of contamination. Lateral contaminant extent was determined by composite sidewall sampling. (Plates 3, 6, 8, 9, Attachments)
- ◆ Excavation and stockpiling of ~650-yd³ of additional clean soil from the lateral extents of the primary excavation to shape it into a regular rectangle (85-ft X 45-ft). This allowed for the placement of the stockpiled contaminated soil into the bottom of the excavation at a depth adequate to accommodate the installation of a 2-ft clay barrier and a 3-ft topsoil layer over the contaminated soil. The sidewalls of the expanded excavation were confirmed to be free of contamination with the use of a portable ionization detection (PID) unit. All sidewall VOC readings were <0.01 ppm. (Plates 4 and 7, Attachments).
- ◆ Placement of 650-yd³ of stockpiled contaminated soil in the bottom of the expanded excavation (depth 5-10-ft). (Plate 7, Attachments)
- ♦ Installation of a 2-ft compacted and certified clay barrier over the contaminated soil (depth 3-5-ft), with a 5-ft overlap perimeter. (Plate 7, Attachments)
- ♦ Backfill of the remaining excavation with clean soil that was stockpiled during the excavation expansion. The final site was smoothed and contoured to prevent pooling over the excavated area. Construction activity at the site was completed on April 30, 2003. (Plates 4 and 7, Attachments)


2.0 Background

Environmental Plus, Inc. (EPI) was notified by EOTT Energy Company (EOTT) on September 3, 2001 regarding a release and remediation project located immediately east of EOTT's State M Battery facility. The site is designated "NM State M Battery", and has the EOTT reference number of 2001-11095. The release is located on land owned by the State of New Mexico and leased to the Millard Deck Estate.

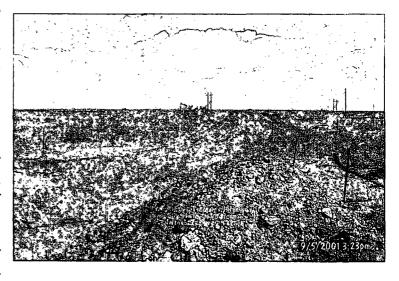
The initial response consisted of flow-path containment and recovery of 2-bbl of pooled crude oil. Vertical and horizontal delineation of the release extents was accomplished with the drilling and sampling of 9 boreholes (*Plate 3 - Attachments*). Approximately 650-yd³ of contaminated soil was excavated and stockpiled on a plastic liner extending southeast from the excavation (*Plate 4 - Attachments*). The original remediation plan for this project was to blend the stockpiled contaminated soil and return it to the excavation.

Borehole 9 exhibited a TPH concentration >500 ppm at a depth of 25-ft, thus it was projected that the remedial goal of <100 ppm could not have been achieved until the site was excavated to >30-ft depth. Deepening the excavation from 10-ft bgs to >30-ft was deemed to be impractical due to expense, engineering and safety concerns.

EPI, on behalf of EOTT Energy, conducted an approved remediation plan to extend the irregularly shaped excavation laterally to form a rectangular excavation (85-ft X 45-ft X 10-ft), with the clean materials being stockpiled as

backfill. The 650-yd³ of stockpiled contaminated soil was then placed on the bottom of the excavation, filling it up to the 5-ft bgs level. Once the contaminated stockpile occupied the bottom of the excavation and the sidewalls were confirmed to have VOC levels <0.01 ppm, a 5-ft overlap was excavated from the perimeter of the excavation sidewalls. A 2-ft, compacted and certified clay barrier was then installed over the excavation. The final layer of backfill was the clean soil that was removed when the excavation was transformed to the 85' X 45' rectangle (see Plates 5 and 7, Attachments). The 1000-year VADSAT Risk Assessment model for clay barrier closure of this site (Plate 9 – Attachments) predicts no risk to the water table (65-ft).

3.0 Site Description


3.1 Site Location

The EOTT "NM State M Battery" site is located in UL-C of Section 29 T22S R37E. The site is approximately 2300-ft from the west section line and 4317-ft from the south section line. The

Latitude and Longitude coordinates are: 32°22'02.82"N; 103°11'10.40"W. The land is owned by the State of New Mexico and leased to the Millard Deck Estate. (Plates 1 and 2, Attachments)

3.2 Geohydrology

The United States Geological Survey (USGS) Ground-Water Report 6, "Geology and Ground-Water Conditions in Southern Lea County, New Mexico," A. Nicholson and A. Clebsch, 1961, describes the near surface geology of southern Lea

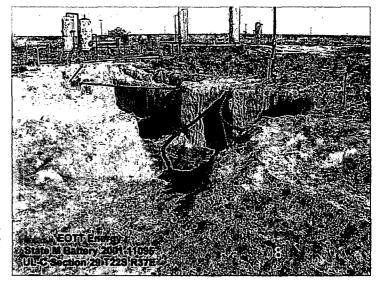
County as an intergrade of the Quaternary Alluvium (QA) sediments, i.e., fine to medium sand, with the mostly eroded Cenozoic Ogallala (CO) formation. Typically, the QA and CO formations in the area are capped by a thick interbed of caliche and generally overlain by sandy soil. The release site is located in the Eunice Plain physiographic subdivision, described by Nicholson & Clebsch as an area "underlain by a hard caliche surface and is almost entirely

covered by reddish-brown dune sand". The thickness of the sand cover ranges from 2-5 feet in most areas to as much as 20-30 feet in drift areas.

The subsurface at the site is composed of a hard caliche base covered with 5-6 feet of reddish sand/clay topsoil. The presence of ground water in this area of Lea County is best described as intermittent. Based on data obtained from the Office of the State Engineer, a conservative estimate of ground water depth at this site, if present, would be 65-ft bgs.

3.3 Ecology

The area is typical of the Upper Chihuahuan Desert Biome consisting primarily of hummocky sand hills covered with Harvard Shin Oak (Querqus harvardi) interspersed with Honey Mesquite (Prosopis glandulosa) along with typical desert grasses, flowering annuals and flowering perennials. Mammals represented, include Orrd's and Merriam's Kangaroo Rat, Deer Mouse, White Throated Wood Rat, Cottontail Rabbit, Black Tailed Jackrabbit, Mule Deer, Bobcat, Red Fox and Coyote. Reptiles, Amphibians, and Birds are numerous and typical of area. A survey of Listed, Threatened, or Endangered species was not conducted.


3.4 Area Water Wells and/or Surface Water Features

There are no water wells and/or surface water features within 1000-ft of the release site.

There are no surface water bodies within 1000-ft of the site.

4.0 NMOCD Site Ranking

Contaminant delineation and site characterization accomplished at this indicate that the chemical parameters of the soil and ground water were characterized consistent with the characterization remediation/abatement goals and objectives set forth in the New Mexico Oil Conservation Division (NMOCD) approved "General Work Plan for Remediation of E.O.T.T. Pipeline Spills, Leaks and Releases in New Mexico, July 2000" and the NMOCD guidelines published in the following documents:

- ♦ Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993)
- ♦ Unlined Surface Impoundment Closure Guidelines (February 1993)

Acceptable thresholds for contaminants/constituents of concern (CoCs), i.e., TPH^{8015m}, Benzene, and the mass sum of Benzene, Toluene, Ethyl Benzene, and total Xylene (BTEX), was determined based on the NMOCD Ranking Criteria as follows:

Depth to Ground water, i.e., distance from the lower most acceptable concentration to the ground water.

- Wellhead Protection Area, i.e., distance from fresh water supply wells.
- Distance to Surface Water Body, i.e., horizontal distance to all down gradient surface water bodies.

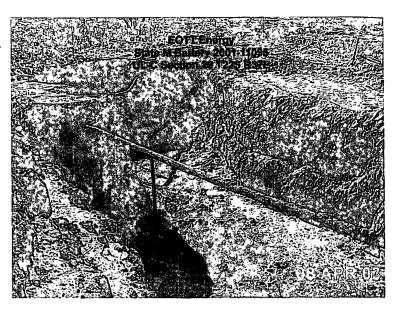
Based on the proximity of the site to protectable area water wells, surface water bodies, and depth to ground water from the lower most contamination, the NMOCD ranking score for the site is 20 points with the soil remedial goals highlighted in the Site Ranking Matrix presented as Table 1.

1. Ground	Nater	2. Wellhead Protection Area	3. Distance to Surface Water			
Depth to GW • 20 poin		If <1000' from water source, or; <200' from private domestic water	<200 horizontal feet: 20 points			
Depth to GW feet: 10 pc		source: 20 points	200-1000 horizontal feet: 10 points			
Depth to GW > 0 point		If >1000' from water source, or; >200' from private domestic water source: <i>0 point</i> s	>1000 horizontal feet: <i>0 point</i> s			
Ground Water S	Score = 20	Wellhead Protection Score = 0	Surface Water Score= 0			
	Site Ran	k (1+2+3) = 20 + 0 + 0 = 20 points (fo	or soil >15'bgs)			
Tot	al Site Rani	king Score and Acceptable Remedial	Goal Concentrations			
Parameter	2	0+ 10	0			
Benzene ¹	10	ppm 10 ppm	10 ppm			
BTEX1	50	ppm 50 ppm	50 ppm			
TPH	100	ppm 1000 ppm	5000 ppm			
1.	100 ppm field	VOC headspace measurement may be subs	tituted for lab analysis			

Table 1 - Site Ranking Matrix

5.0 Subsurface Soil Investigation

The subsurface soil analyses were accomplished on September 13-17, 2001 with the drilling and sampling of 9 boreholes (designated BH1-BH9) down to 30-ft bgs. Analyses results indicated that TPH and BTEX contamination above NMOCD remedial goals existed at the 15-30-ft depth zone within the area(s) delineated by Boreholes 8 and 9. (Lab analyses results for this sampling event are included in the Attachments as Plates 6, 8 and 9).

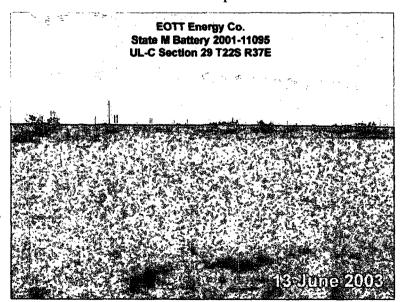

6.0 Ground Water Investigation

Ground water depth is conservatively projected to be 65-ft bgs at the site. The site was excavated to a maximum depth of 10-ft. All contaminated soil remaining within the excavation (see Section 7.0 below) was covered by a 2-ft impermeable layer of compacted clay. The remaining volume of the

excavation was backfilled with clean caliche and topsoil. Based on the clay barrier containment of the Constituents of Concern, VADSAT Risk Assessment Model and a remaining depth to ground water of >30-ft, there will be no need for further ground water investigation at this site.

7.0 Remediation

Remediation of the site commenced on September 3, 2001 and was completed on April 30, 2003. Remediation of the site consisted of excavation and on-site stockpiling of ~650 yd³ of contaminated soil from the immediate release area. (Plate 4, Attachments)



The original remediation plan for this site was to blend the contaminated soil to <1000 ppm TPH and return it to the excavation. Upon determination that the vertical extent of contamination went to approximately 30-ft bgs, thus altering the TPH remedial goal from 1000 ppm down to 100 ppm, it was decided to cease deeper excavation of the site and to scrap the plan to blend the contaminated soil previously excavated and stockpiled. An approved "Closure Proposal and Risk Assessment" was submitted to NMOCD on April 15, 2003. It was proposed to return the stockpiled contaminated soil to the bottom of a laterally expanded excavation and to isolate the contaminated soil with a 2-ft compacted clay barrier. The 10-ft bgs bottom of the contaminated area was composite sampled on 4/10/03. The analytical results indicated BTEX and Benzene levels below remedial goals, and TPH levels ranging from 570 mg/kg up to 10,270 mg/kg. The stockpiled contaminated soil was composite sampled on 4/12/03, of which, the results indicated a composite TPH level of ~2,700 mg/kg.

The 10-ft bgs excavation was expanded laterally to form a regular 85' X 45' rectangle (*Plates 5 and 7*, *Attachments*). The clean soil removed (~650-yd³) in this expansion was stockpiled and later used as backfill. This expansion allowed the placement of the contaminated stockpile into the bottom of the

excavation, leaving adequate vertical space for the installation of the clay barrier and adequate root-zone above the clay (Plate 7, Attachments).

The clay barrier was installed in two 1-ft lifts, occupying the 3-5-ft bgs zone of the excavation. The first clay lift was certified for compaction by Pettigrew and Associates, P.A. on April 24, 2003 with a 97.1% compaction with 13.3% moisture. The final lift was certified on April 28, 2003 with a compaction of 102.2% and 10% moisture (copies included in Attachments, pages 24-25). After the clay barrier was in place and certified, the remainder of the

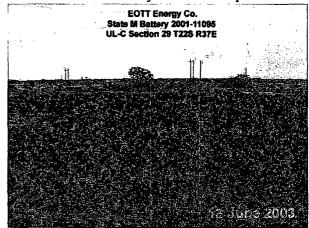
excavation (3-ft) was backfilled with the clean soil and topsoil that had been stockpiled. The site was smoothed and contoured on April 30, 2003. (Plate 4 - Attachments includes the final GPS delineation of the surface damage area).

8.0 VADSAT Risk Assessment

A very conservative 1000-year Risk Assessment of vertical hydrocarbon migration for this site was generated utilizing the American Petroleum Institute's VADSAT 3.0 software. Although the sampling protocol for this site does not show an inordinate presence of Benzene, it was the chemical species utilized to run the assessment because it is the lightest and fastest migrating of the chemical choices VADSAT offers. VADSAT calculates the Mean Infiltration Rate based on annual precipitation minus a runoff coefficient and the evaporation rate. This number must be positive, so VADSAT does not accommodate arid and semi-arid areas such as southeast NM where the evaporation rate exceeds the precipitation rate.

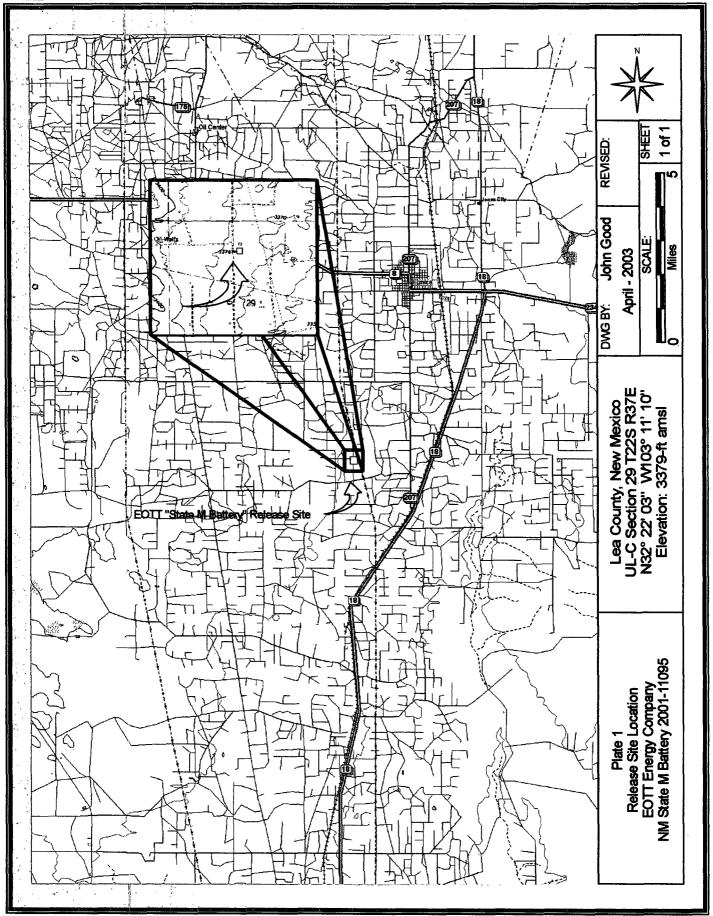
Although the water table is estimated to be 65-feet deep at this site, there is no empirical confirmation of this presumption. To allow for more conservancy in the VADSAT risk assessment modeling, the water table depth was set at 50-feet for both the assessment models presented with this site.

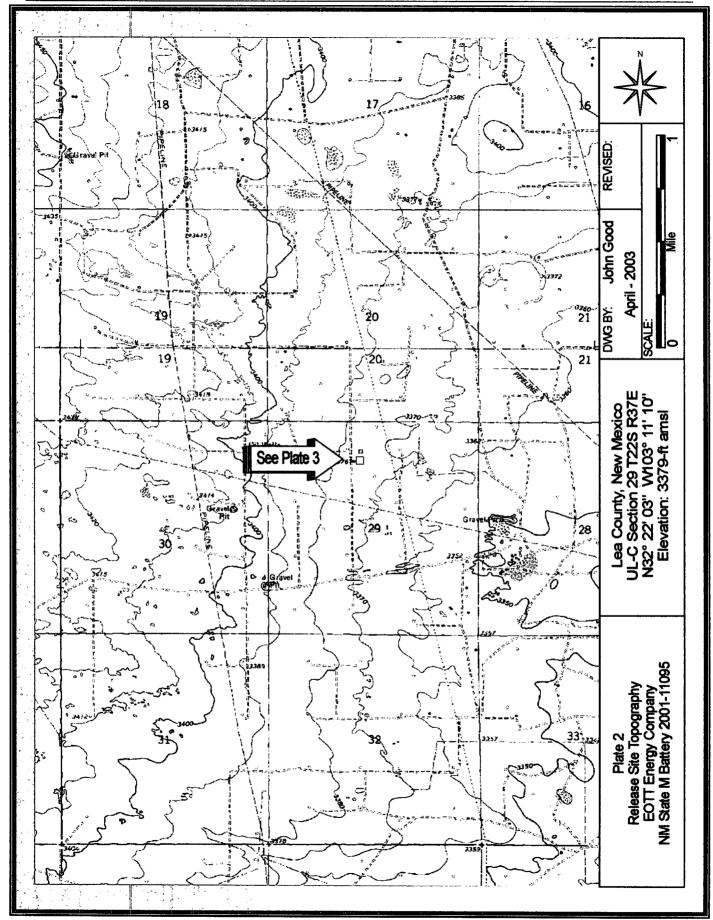
Two assessments were run for this site: one with no clay barrier present and one with a clay barrier present. Other than the presence of the clay barrier, the input parameters for each assessment are identical. The downstream receptors were set at 1-meter, 10-meters and 100-meters (X=1 X=10). The transverse offset (Y value) was set at 0-meters, and the depth into the aquifer (Z value) was set at 0.

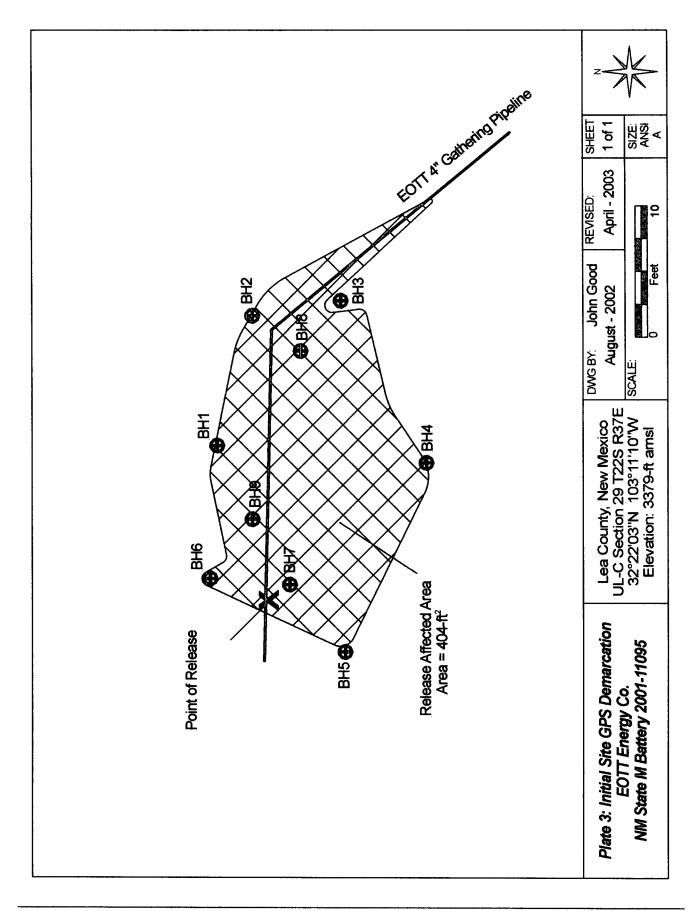

The results of the computer risk assessment modeling for the site without a clay barrier in place indicate that benzene present would reach the top of the aquifer directly under the site in approximately 100-years and reach its peak concentration of 9.63 X 10⁻⁴ mg/L 100-years later. The computer risk assessment modeling of the site with the clay barrier in place shows a flat-line of 0 values for the 1000-year period modeled, thus the contaminant migration is projected to never reach the aquifer.

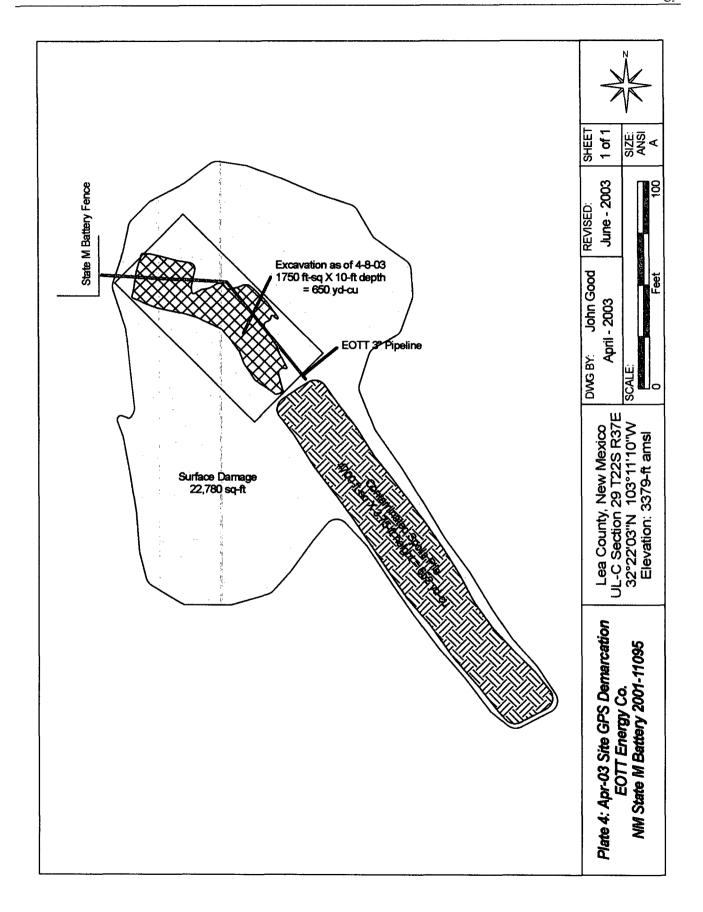
The raw data generated by the VADSAT program is included in the Attachments (pages 20-22). This data includes the parameters of the two models and the data points generated for the 1000-year span. *Plate 10* is the graphical representation of both assessment models that were generated.

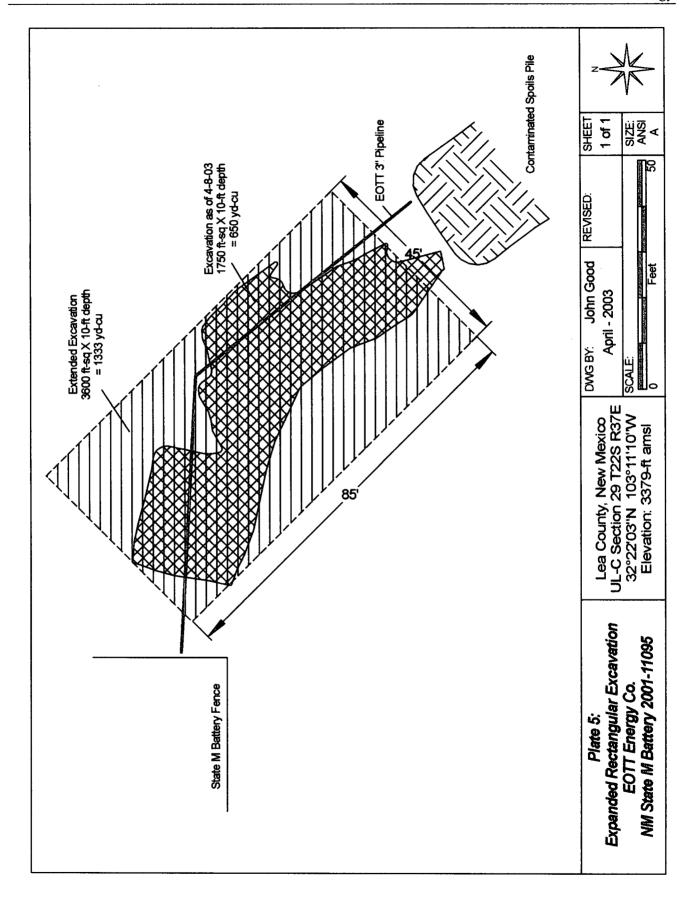
9.0 Closure Justification

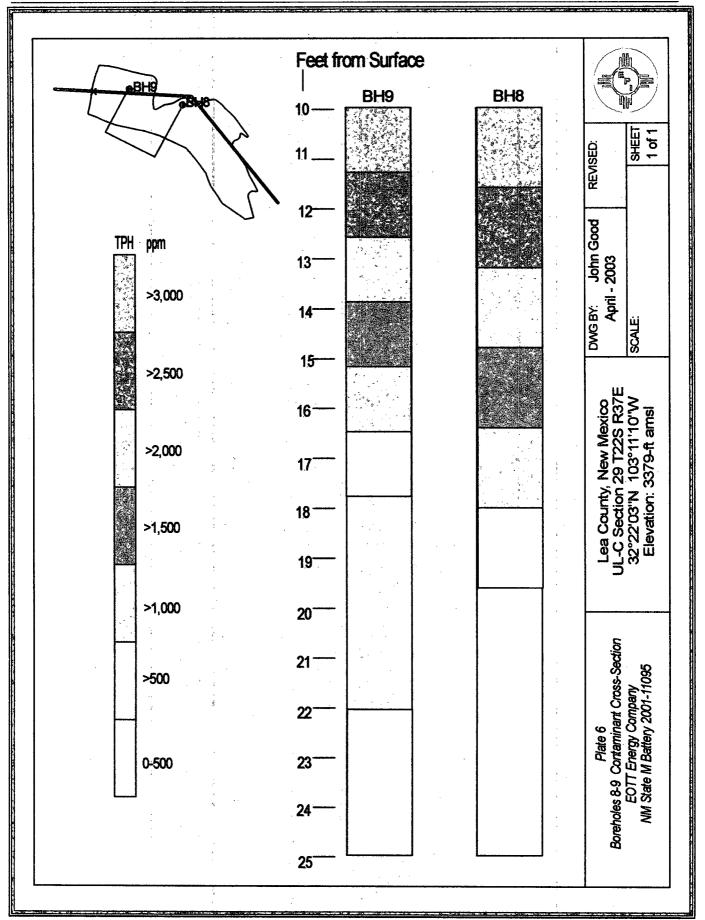

This report documents successful implementation of the Remediation Plan and Closure Proposal approved by NMOCD for this release site. A 2-ft compacted and certified clay barrier was placed over


all contaminated soil that was allowed to remain in place in the excavation. The VADSAT 3.0 Risk Assessment model for this site, with a conservative parameter basis, indicates that there is no risk inherent to leaving the contaminants in-place and that no threat to any existing aquifer beneath the site presents itself. The excavation was backfilled with clean caliche and topsoil and properly contoured to provide adequate drainage. Based on the data presented in this report, Environmental Plus, Inc., on behalf of EOTT Energy Company, requests that the NMOCD require "no further action" at this site.




Attachments: (pages 10-28+)


Plate 1 – Release Site Location	10
Plate 2 – Release Site Topography	11
Plate 3 – Initial Release Site and Excavation GPS Demarcation	12
Plate 4 – April-03 Site GPS Demarcation + Surface Damage	13
Plate 5 – Extended Excavation (regular rectangle)	14
Plate 6 – Boreholes 8-9 Contaminant Cross-Section	15
Plate 7 – Final Excavation and Backfill Profile	16
Plate 8 – Soil analyses: TPH and BTEX Data Table	17
Plate 9 - Soil Analyses Graphical Bar-Charts	18-19
Plate 10 - VADSAT Risk Assessment Charts	20
VADSAT Risk Assessment Input and Output Data	21-23
Plate 11 - Pettigrew & Associates Compaction Certification #1	24
Plate 12 - Pettigrew & Associates Compaction Certification #2	25
NMOCD Final Form C-141	26
Site Metrics Form	27
Laboratory Analyses Reports	28>



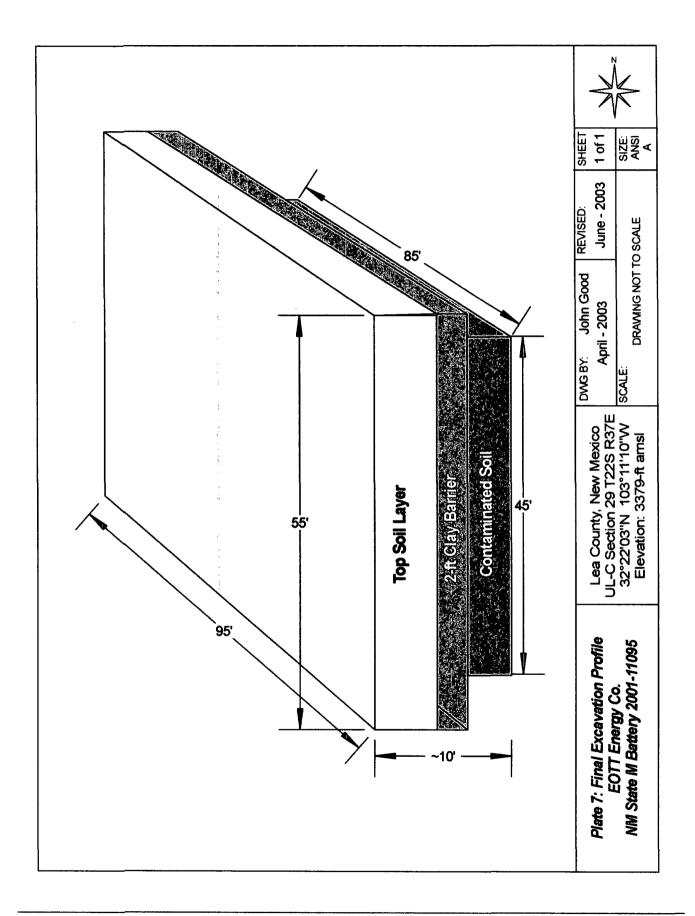
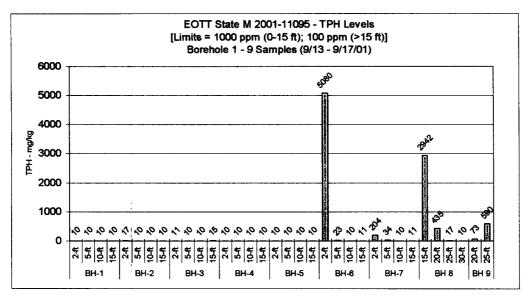
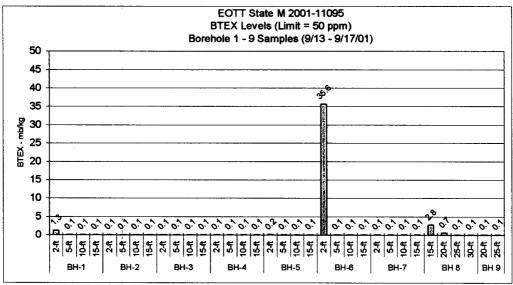
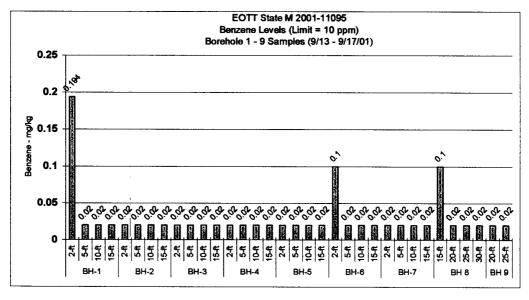


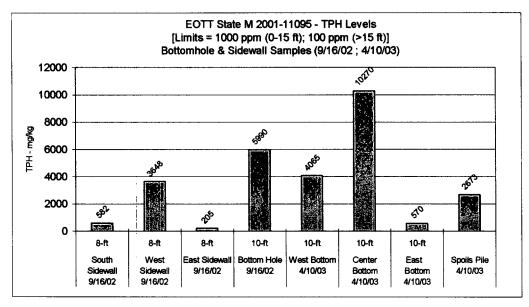
Plate 8 - Soil Analysis Results (TPH & BTEX)

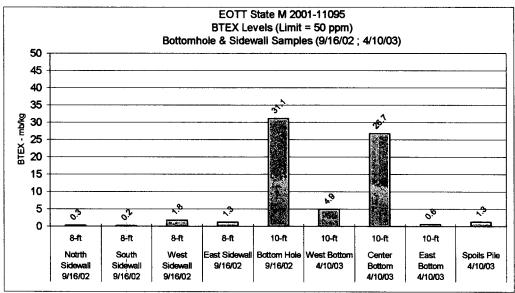
,. <u> </u>		_	Energy Co State				_					
Bold	highlighted cells indic	ate values i	n excess of the NMOCD rem	edial action	<u> </u>	resholds: TF	PH = 100/100	00 mg/Kg; B	lenzene = 10	mg/Kg; BT	EX = 50 mg/	Kg Total
Sample	Excavation	Depth	SAMPLE ID#	VOC2	GRO ³	DRO ⁴	TPH⁵	BTEX ⁶	Benzene	Toluene	Benzene	Xylenes
Date	Sampling Area	(ft - bgs ¹)		ppm	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
9/13/01	BH-1	2	ESM91301BH1-2	1.5	5	5	10	1.277	0.194	0.215	0.220	0.64
9/13/01		5	ESM91301BH1-5'	0.7	5	5	10	0.100	0.020	0.020	0.020	0.04
9/13/01		10	ESM91301BH1-10	0.7	5	5	10	0.100	0.020	0.020	0.020	0.04
9/13/01		15	ESM91301BH1-15'	0.3	5	5	10	0.100	0.020	0.020	0.020	0.04
9/13/01	BH-2	2	ESM91301BH2-2	1.1	5	12	17	0.100	0.020	0.020	0.020	0.04
9/13/01		5	ESM91301BH2-5	0.8	5	5	10	0.100	0.020	0.020	0.020	0.04
9/13/01		10	ESM91301BH2-10	0.3	5	5	10	0.100	0.020	0.020	0.020	0.04
9/13/01		15	ESM91301BH2-15	0.2	5	5	10	0.100	0.020	0.020	0.020	0.04
9/13/01	BH-3	2	ESM91301BH3-2	0.8	6	5	11	0.100	0.020	0.020	0.020	0.04
9/13/01		5	ESM91301BH3-5'	0.5	5	5	10	0.100	0.020	0.020	0.020	0.04
9/13/01		10	ESM91301BH3-10	0.6	5	5	10	0.100	0.020	0.020	0.020	0.04
9/13/01		15	ESM91301BH3-15'	0.4	10	5	15	0.100	0.020	0.020	0.020	0.04
9/13/01	BH-4	2	ESM91301BH4-2	0.9	5	5	10	0.100	0.020	0.020	0.020	0.04
9/13/01		5	ESM91301BH4-5'	0.5	5	5	10	0.101	0.020	0.020	0.020	0.04
9/13/01		10	ESM91301BH4-10'	0.7	5	5	10	0.100	0.020	0.020	0.020	0.04
9/13/01		15	ESM91301BH4-15'	0.5	5	5	10	0.100	0.020	0.020	0.020	0.04
9/14/01	BH-5	2	ESM91401BH5-2	19	5	5	10	0.174	0.020	0.035	0.037	0.08
9/14/01	···	5	ESM91401BH5-5'	3.8	5	5	10	0.100	0.020	0.020	0.020	0.04
9/14/01		10	ESM91401BH5-10'	3	5	5	10	0.100	0.020	0.020	0.020	0.04
9/14/01		15	ESM91401BH5-15'	2.7	5	5	10	0.100	0.020	0.020	0.020	0.04
9/14/01	BH-6	2	ESM91401BH6-2	104.6	1670	3410	5080	35.610	0.100	3.810	8.820	22.88
9/14/01		5	ESM91401BH6-5'	30.9	5	18	23	0.100	0.020	0.020	0.020	0.04
9/14/01		10	ESM91401BH6-10	17.5	5	5	10	0.100	0.020	0.020	0.020	0.04
9/14/01		15	ESM91401BH6-15'	9.4	5	6	11	0.100	0.020	0.020	0.020	0.0
9/14/01	BH-7	2	ESM91401BH7-2	43.6	12	192	204	0.101	0.020	0.020	0.020	0.0
9/14/01		5	ESM91401BH7-5	34.7	5	29	34	0.100	0.020	0.020	0.020	0.0
9/14/01		10	ESM91401BH7-10	7.9	5	5	10	0.100	0.020	0.020	0.020	0.0
9/14/01		15	ESM91401BH7-15'	7.1	5	6	11	0.100	0.020	0.020	0.020	0.0
9/17/01	BH-8	15	ESM91701BH8-15'	158	402	2540	2942	2.751	0.100	0.498	0.598	1.50
9/17/01		20	ESM91701BH8-20	95.4	77	358	435	0.654	0.020	0.064	0.150	0.42
9/17/01		25	ESM91701BH8-25'	37.9	5	12	17	0.100	0.020	0.020	0.020	0.0
9/17/01		30	ESM91701BH8-30	9.7	5	5	10	0.100	0.020	0.020	0.020	0.0
9/17/01	BH-9	20	ESM91701BH9-20'	10.7	5	68	73	0.100	0.020	0.020	0.020	0.0
9/17/01		25	ESM91701BH9-25	10	28	562	590	0.100	0.020	0.020	0.020	0.0
9/16/01	Notrth Sidewall	8	SESM91602NSW8		25	387	412	0.292	0.025	0.050	0.048	0.10
9/16/01	South Sidewall	8	SESM91602SSW8		25	557	582	0.247	0.025	0.057	0.039	0.12
9/16/01	West Sidewall	8	SESM91602WSW8		238	3410	3648	1.811	0.025	0.322	0.228	1.23
9/16/01	East Sidewall	8	SESM91602ESW8		10	195	205	1.259	0.044	0.256	0.238	0.72
9/16/01	BottomHole	10	SESM91602BH10		1530	4460	5990	31.141	0.231	6.580	3.920	20.4
4/10/2003	West BottomHole	10	ESSM041003WBHC-10		3240	825	4065	4.912	0.020	0.432	1.100	3.3
4/10/2003	Center BottomHole	10	ESSM041003MBHC-10		7460	2810	10270	26.711	0.061	2.710	5.910	18.03
4/10/2003	East BottomHole	10	ESSM041003EBHC-10		553	17	570	0.560	0.020	0.020	0.128	0.39
4/21/2003	Spoils Pile	0-10	ESSM042103SPC		413	2260	2673	1.328	0.020	0.020	0.061	1.22


bgs = below ground surface 2 VC


GRO - Gasoline Range Organics (Detection Limit = 10 mg/Kg)


² VOC = Volatile Organic Constituents; (note: 100 ppm Isobutylene calibration gas = 101 ppm)


⁴ DRO - Diesel Range Organics (Detection Limit = 10 mg/Kg) ⁵ TPH - Total Petroleum Hydrocarbon (GRO+DRO)


BTEX = Sum of CoC's (Detection Limits = 0.005 mg/Kg; 0.015 mg/Kg) Note: Reported detection limits are considered "de minimus" values and are included in the TPH and BTEX summations.

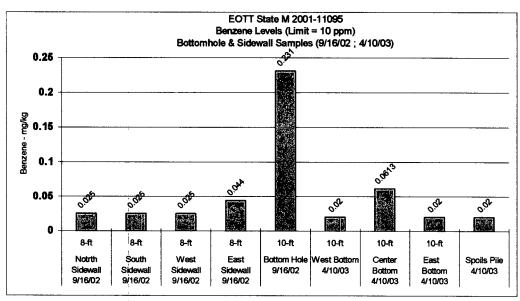
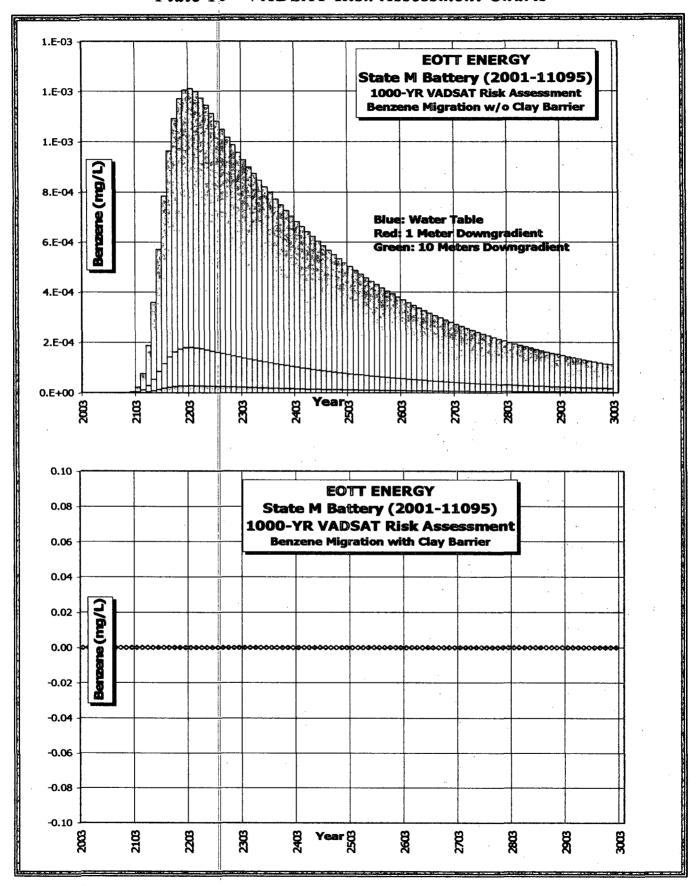



Plate 10 - VADSAT Risk Assessment Charts

VADȘAT Data (without a clay barrier)

ı			10 14010	· · · · · · · · · · · · · · · · · · ·			1 Motor	10 Motor	100 Motor
	144-1	1 Meter		100 Meter		Motor			100 Meter
	Water	Down	Down	Down	7/	Water	Down	Down	Down
Year	Table			Gradient	Year	Table	Gradient		
				0.00E+00	2503		7.44E-05		1.30E-07
				0.00E+00	2513		7.21E-05		1.26E-07
				0.00E+00	2523		6.99E-05		
				0.00E+00		4.58E-04			
				0.00E+00		4.44E-04			
2053	5.99E-13	8.48E-14	1.13E-14	4.18E-17		4.30E-04			
2063	2.60E-10	3.73E-11	5.15E-12	2.61E-14		4.17E-04			
2073	1.89E-08	2.73E-09	3.87E-10	2.44E-12		4.05E-04			
2083	4.19E-07	6.11E-08	8.80E-09	6.46E-11	2583	3.92E-04	5.81E-05	8.78E-06	1.02E-07
2093	4.07E-06	5.96E-07	8.69E-08	7.15E-10	2593	3.81E-04	5.64E-05	8.51E-06	9.85E-08
2103	2.18E-05	3.21E-06	4.72E-07	4.22E-09	2603	3.69E-04	5.47E-05	8.25E-06	9.55E-08
2113	7.54E-05	1.11E-05	1.64E-06	1.57E-08	2613	3.58E-04	5.30E-05	8.00E-06	9.26E-08
2123	1.87E-04	2.75E-05	4.10E-06	4.11E-08	2623	3.47E-04	5.14E-05	7.76E-06	8.98E-08
2133				8.27E-08		3.37E-04			
	5.71E-04					3.26E-04			8.44E-08
	7.84E-04					3.17E-04		7.08E-06	
				2.39E-07		3.07E-04			
				2.75E-07		2.98E-04			
				2.98E-07		2.89E-04			
			 	3.09E-07	· -	2.80E-04		-	
and the second s				3.12E-07) <u> </u>	2.71E-04			
				3.09E-07	·	2.63E-04			-
				3.03E-07	·	2.55E-04			-
2233				2.96E-07		2.48E-04		5.54E-06	
				2.98E-07					
2243						2.40E-04			
2253			-	2.80E-07		2.33E-04			
2263				2.71E-07	2763		3.34E-05		
2273		1.51E-04			2773				
2283		1.46E-04			2783				
2293		1.42E-04			2793				
2303				2.40E-07	2803		2.96E-05		
2313				2.33E-07	·	1.94E-04			
			-	2.26E-07		1.88E-04			
				2.19E-07	·	1.82E-04			
				2.12E-07	1	1.77E-04			
				2.06E-07	ł ———	1.71E-04			
				2.00E-07	·	1.66E-04			
2373	7.48E-04	1.11E-04	1.67E-05	1.94E-07	2873	1.61E-04	2.39E-05	3.60E-06	4.17E-08
2383	7.26E-04	1.08E-04	1.62E-05	1.88E-07	2883	1.56E-04	2.31E-05	3.49E-06	4.04E-08
2393	7.04E-04	1.04E-04	1.57E-05	1.82E-07	2893	1.51E-04	2.24E-05	3.39E-06	3.92E-08
2403				1.77E-07	()	1.47E-04		+	
				1.71E-07		1.42E-04			
				1.66E-07	· ————	1.38E-04			
				1.61E-07		1.34E-04			
2443				1.56E-07		1.30E-04			
2453				1.51E-07		1.26E-04			
				1.47E-07		1.22E-04			3.16E-08
	5.50E-04	7				1.18E-04			3.06E-08
	5.34E-04		·				1.70E-05		2.97E-08
	5.18E-04						1.65E-05		
	J.10L 01	_ 7.07 L-03	1 1.10L-03	T 1137L-0/	2333	1.110-04			2.000-00

VADSAT Risk Assessment Criteria and Data

VADSAT Version 3.0 + A Monte Carlo Model for Assessing the Effects of Soil + Contamination on Groundwater Quality + + Developed by: Environmental Systems and Technologies Inc. Blacksburg, Virginia Tel: 703-552-0685, Fax: 703-951-5307 For The American Petroleum Institute 1995

PROJECT TITLE:EOTT STATE M BATTERY

SOURCE AND CHEMICAL DATA ****

DEPTHM, MEAN THICKNESS OF WASTE ZONE (m) = 6.09600

DEPSTD, STD.DEV. OF THICKNESS OF WASTE ZONE = 0.00000

AREAM, MEAN WASTE ZONE AREA (m^2) = 18.58100 STDA, STD.DEV. OF WASTE ZONE AREA = 0.00000

RLWM, MEAN LW RATIO (-) = 1.00000 STDRLW, STD.DEV. OF LW RATIO = 0.00000

CVRTHM, MEAN VALUE OF COVER THICKNESS (m) = 3.04800 CVRTHS, STD.DEV. OF COVER THICKNESS = 0.00000

KOCM, MEAN ORG. CARBON PARTITION COEF (cm³/g)= 83.20000 STDKOC, STD.DEV. OF ORG.CARBON PARTITION COEF= 0.00000

FMOLM, MEAN INIT.VOL.FRAC. OF CONTAMINANT(-) = 0.00034 FMOLSTD, STD.DEV. OF VOL.FRAC. OF CONTAMINANT= 0.00000

CMFM, MASS OF CONTAMINANT PER MASS OF WASTE(mg/kg) = 1.00000 CMFSD, STD.DEV. OF MASS CONTAMINANT PER MASS WASTE = 0.00000

HCCONM, HYDCARBON MASS FRAC. IN WASTE (mg/kg)= 2900.00000 HCCONS, STD OF HYDCARBON MASS FRAC. IN WASTE = 0.00000

CHEMICAL SPECIES

benzene

MOLW, MOLECULAR WT. OF CONTAMINANT (g/mole) = 78.10000

AVERMW, AVG. MOL. WT. OF OILY WASTE (g/mole) = 100.00000

RHO, DENSITY OF CONTAMINANT (g/cm 3) = 0.87600

RHOG, AVERAGE DENSITY OF HYDROCARBON (g/cm^3)= 0.90000

SOL, AQUEOUS SOLUB. OF CONTAMINANT (g/m^3) = 1790.00000

HENRYC, HENRY'S CONSTANT (-) = 0.23000

DIFFA, DIFFUSION COEF. IN FREE AIR (m^2/day) = 0.77000

HYDROGEOLOGICAL PROPERTIES

** UNSATURATED ZONE INPUT PARAMETERS **
GAMMAM, MEAN UNSAT ZONE DECAY COEF (1/day) = 0.00010
STDGAM, STD.DEV. OF UNSAT ZONE DECAY COEF = 0.00000

UNFOCM, MEAN UNSAT ZONE ORGANIC CARBON FRACTION (-) = 0.00000 UNFOCS, STD.DEV. OF UNSAT ZONE ORGANIC CARBON FRAC. = 0.00000

FKSW, MEAN SAT. CONDUCTIVITY (m/day) = 0.02900 STDFKS, STD.DEV. OF SAT. CONDUCTIVITY = 0.000

DISTM, MEAN DEPTH TO GROUNDWATER (m) = 15.24000 STDDST, STD.DEV. OF DEPTH TO GROUNDWATER = 0.00000

UNPORM, MEAN VADOSE ZONE POROSITY (-) = 0.38000 SUNPOR, STD.DEV. OF VADOSE ZONE POROSITY = 0.00000

PARNM, MEAN VALUE OF VG PARAMETER N (-) = 1.23000 SDPARN, STD.DEV. OF VG PARAMETER N = 0.00000

RESWCM, MEAN RESIDUAL WATER CONTENT (-) = 0.01110 RESWCS, STD.DEV. OF RESIDUAL WATER CONTENT = 0.00000

ALFINM = 0, UNSAT DISPERSIVITY CALCULATED INTERNALLY
** SATURATED ZONE INPUT PARAMETERS **

LAMBW, MEAN SAT. ZONE DECAY COEFF. (1/day) = 0.00010 SLAMB, STD.DEV. OF SAT. ZONE DECAY COEFF. = 0.00000

PORM, MEAN SAT. ZONE POROSITY (-) = 0.20000 STDPOR, STD.DEV. OF SAT. ZONE POROSITY = 0.00000

FOCM, MEAN SAT. ZONE ORG. CARBON FRAC. (-) = 0.00000 STDFOC, STD.DEV. SAT. ZONE ORG. CARBON FRAC. = 0.00000

ALRLTM, MEAN DISPERS, RATIO LONG/TRANSV. (-) = 3.00000 SALRLT, STD.DEV. OF DISP. RATIO LONG/TRANSV. = 0.00000

ALRTVM, MEAN DISPERS. RATIO TRANSV/VERT. (-) = 87.00000 SALRTV, STD.DEV. OF DISP. RATIO TRANSV/VERT. = 0.00000

CONDS, SAT. HYDRAULIC COND. (m/day) = 1.03000 SCONDS, STD.DEV. OF SAT HYDRAULIC COND. = 0.00000

GRADS, HYDRAULIC GRADIENT (m/m) = 0.02700 SGRADS, STD.DEV. OF HYDRAULIC GRADIENT = 0.00000

HMEAN, MEAN AQUIFER THICKNESS (m) = 15.24000 STDH, STD.DEV. OF AQUIFER THICKNESS = 0.00000

QINM, MEAN INFILTRATION RATE (m/day) = 0.00011 QINSTD. STD.DEV. OF INFILTRATION RATE = 0.00000

LOCATION OF RECEPTORS:

X (M) Y (M) Z (M)

RECEPTOR(1) 1.0 0.0 0.0

RECEPTOR(2) 10.0 0.0 0.0

RECEPTOR(3) 100.0 0.0 0.0

Plate 11 - Compaction Certification (Clay Layer #1)

LABORATORY TEST REPORT PETTIGREW and ASSOCIATES, P.A.

1110 N. GRIMES HOBBS, NM 88240 (505) 393-9827

DEBRA P. HICKS, P.E.A.S.I. WILLIAM M. HICKS, III, P.E./P.S.

To:

Environmental Plus

Attn: Roger Boone P.O. Box 1558

Eunice, NM 88231

Material:

Red Clay

Project:

NM State EOT

Test Method:

ASTM: D 2922

Date of Test:

April 24, 2003

Depth:

1' Below Finished Subgrade

Dry Density Test No. % Maximum Depth Location % Moisture SG-1 97.1

15' N. & 25' E. of the SW Corner of Pit

13.3

Control Density:

110.4

ASTM: D 698

Optimum Moisture:

15.6%

Required Compaction:

96%

Lab No.:

03 2427-2428

Copies To:

Environmental Plus

PETTIGREW and ASSOCIATES

Plate 12 - Compaction Certification (Clay Layer #2)

LABORATORY TEST REPORT PETTIGREW and ASSOCIATES, P.A. 1110 N. GRIMES

HOBBS, NM 88240 (505) 393-9827

DEBRA P. HICKS, P.B./L.S.L WILLIAM M. RECKS, III, P.E./P.S.

To:

Environmental Plus

Attn: Roger Boone

P.O. Box 1558

Eunice, NM 88231

Material:

Red Ctay

Test Method:

ASTM: D 2922

Project:

NM State EOT

Date of Test:

April 28, 2003

Depth:

Finished Subgrade

Dry Density Losstion Test No. % Maximum

% Moisture Depth

SG-2

15' N. & 25' E. of the SVV Corner of Pit

102.2

10.0

Control Density:

110.4

ASTM: D 698

Optimum Moisture:

15.6%

Required Compaction:

95%

Lab No.: Copies To: 03 2468-2469

Environmental Plus

PETTIGREW and ASSOCIATES

District I

1625 N. French Dr., Hobbs, NM 88240

State of New Mexico **Energy Minerals and Natural Resources**

Form C-141 Revised March 17, 1999

1301 W. Grand Avenue, Artesia, NM 88210

District III

1000 Rio Brazos Road, Aztec, NM 87410

Oil Conservation Division

Submit 2 Copies to appropriate District Office in accordance

1000 Ido Diazo	s Roau, Azice,	MALGIAIO		1220 South	n St. Franci	is Dr.	District Cities at accordance			
District IV				Santa F	Fe, NM 8750	05	with Rule 116 on back			
1220 S. St. Fran	ıcis Dr., Santa l							side of form		
		Rele	ease Noti	fication a	and Corr	ective Action	,			
	C	PERATO	R			☐ Initial Report	☑ Final Report			
Name of Con		/4 4/44			Contact		<u>, </u>			
EOTT Energ		_P		ļ	Frank Herna	andez				
Address	50 .				Telephone No	0.				
P.O. Box 166	50		Midland, '	TX 79702	(915) 638-37					
Facility Name					Facility Type	;				
State M Batt	ery				Crude Oil G	Cathering Line				
				T						
Surface Own			1	Mineral Owr	ner		Lease No.			
State of New	Mexico			NA			NA			
r = + +		- 1.			OF RELEA		1			
Unit Letter	Section	Township	Range	Feet from	Feet from	Longitude	Latitude	County:		
С	29	22S	37E	South Line 4317	West Line 2300	103°11'10"W	32°22'03"N	Lea		
l		<u>. </u>	N	 	F RELEAS	L		·		
Type of Relea				AIUNE	Volume of R		Volume Recovered			
Crude Oil Release and associated components						istorical >25		bbl		
Source of Release					 	ur of Occurrence	Date and Hour of Discovery			
4" Steel Cru					9/3/2001		9/3/2001 4:30 PM			
Was Immedia					If YES, To V	Whom?				
D. 117ham 2	□ Yes	□ No	☑ Not Re	equired	Date and He					
By Whom?					Date and Ho	ur				
Was a Water	course Reach	ned?			If YES, Volu	me Impacting the W	Jatercourse.			
		☐ Yes	☑ No		NA	and	www.com.co.			
If a Watercou	rse was Impa	acted, Describ	e Fully.*		<u> </u>					
NA										
	073 11									
1		m and Remedi								
Internally C	orroaea 4 - F	pipeline (Eun	ке Сатпегш	g), repaireu	with clamp.					
Describe Are	a Affected ar	nd Cleanup Ac	etion Taken.*							
					Rank is 20.	The excavation was	s expanded to 85' X 4	45' X 10'		
		il was covered				I He vavaravion	vapanusva to ou	70 21 10		
				•	•					
I hereby certify	that the inform	mation given ab	ove is true and	complete to the	he best of my k	nowledge and understa	and that pursuant to NM	OCD rules and		
regulations all o	operators are re	equired to report	t and/or file cert	tain release notif	fications and per	rform corrective actions	s for releases which may o	endanger public		
							lieve the operator of liabil			
							er, surface water, human compliance with any other			
or local laws an				por	one o me oper	or or responding	bonipinano min any	A lowertay start,		
Siamatuma:	77	1.	7	7	T	OIL CONSERVA	ATION DIVISION			
Signature:	72	ank!	MOURON	194						
Printed Name		Frank Hern	andez		Annrowed by	/ District Supervisor:				
					Approved by	District Supervisor.	'T			
Title:	EOTT Distr	rict Environn	nental Supt.		Approval Da	ite:	Expiration Date:	1		
Date:	6/23/03	Phone:	(915) 6	3 8-37 99	Conditions o	of Approval:		Attached .		

Site Metrics Form

Incident Date and NMOCD Notified?

SITE: State M Battery Company: EOTT Energy Pipeline LP Street Address: 5805 East Highway 80 Mailing Address: P.O. Box 1660 City, State, Zip: Midland, TX 79702 Representative: Frank Hernandez Representative Telephone: (915) 638-3799 Telephone: Fluid volume released (bbls): vn - historid PLoid Volume released (bbls): vn - historid Source of contamination: 4" Steel Crude Oil Pipeline Land Owner, i.e., BLM, ST, Fee, Other: State of New Mexico State Land Office, Santa Fe LSP Dimensions: Site diagrams attached LSP Area: 1,750 -ft² Location of Reference Point (RP): Location distance and direction from RP: Latitude: 32"22"03"N Longitude: 103"11"10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Range: 37E Surface water body within 1000" radius of Site: 0													
Street Address: 5805 East Highway 80 Mailing Address: P.O. Box 1660 City, State, Zip: Midland, TX 79702 Representative: Frank Hernandez Representative Telephone: (915) 638-3799 Telephone: Fluid volume released (bbls): An - historid Recovered (bbls): 2													
Mailing Address: P.O. Box 1660 City, State, Zip: Midland, TX 79702 Representative: Frank Hernandez Representative Telephone: (915) 638-3799 Telephone: Fluid volume released (bbls): mn - historic Recovered (bbls): 2 25 bbls: Notify NMOCD verbally within 24 hrs and submit form C-141 within 15 days. 5-25 bbls: Submit form C-141 within 15 days (Also applies to unauthorized releases of 50-500 mcf Natural Gas) Leak, Spill, or Pit (LSP) Name: 2001-11095 Source of contamination: 4" Steel Crude Oil Pipeline Land Owner, i.e., BLM, ST, Fee, Other: State of New Mexico State Land Office, Santa Fe LSP Dimensions: Site diagrams attached LSP Area: 1,750 -ft² Location of Reference Point (RP): Location of Reference Point (RP): Location distance and direction from RP: Latitude: 32°22'03"N Longitude: 103°11'10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 4317 Feet from West Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 228 Location - Range: 37E													
City, State, Zip: Midland, TX 79702 Representative: Frank Hernandez Representative Telephone: (915) 638-3799 Telephone: Fluid volume released (bbls): wn - historid Recovered (bbls): 2 ->25 bbls: Notify NMCCD verbally within 24 hrs and submit form C-141 within 15 days. 5-25 bbls: Submit form C-141 within 15 days (Also applies to unauthorized releases of 50-500 md Natural Gas) Leak, Spill, or Pit (LSP) Name: 2001-11095 Source of contamination: 4" Steel Crude Oil Pipeline Land Owner, i.e., BLM, ST, Fee, Other: State of New Mexico: State Land Office, Santa Fe LSP Dimensions: Site diagrams attached LSP Area: 1,750 -ft² Location of Reference Point (RP): Location distance and direction from RP: Latitude: 32°22'03"N Longitude: 103°11'10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 228 Location - Range: 37E													
Representative: Frank Hernandez Representative Telephone: (915) 638-3799 Telephone: Fluid volume released (bbls): An - historiq													
Representative Telephone: (915) 638-3799 Telephone: Fluid volume released (bbls):													
Telephone: Fluid volume released (bbls):													
Fluid volume released (bbls): An - historic Recovered (bbls): 2 >25 bbls: Notify NMOCD verbelly within 24 hrs and submit form C-141 within 15 days. 5-25 bbls: Submit form C-141 within 15 days (Also applies to unauthorized releases of 50-500 mcf Natural Gas) Leak, Spill, or Pit (LSP) Name: 2001-11095 Source of contamination: 4" Steel Crude Oil Pipeline Land Owner, i.e., BLM, ST, Fee, Other: State of New Mexico State Land Office, Santa Fe LSP Dimensions: Site diagrams attached LSP Area: 1,750 -ft² Location of Reference Point (RP): Location distance and direction from RP: Latitude: 32°22'03"N Longitude: 103°11'10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 4317 Feet from West Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Range: 37E													
>25 bbls: Notify NMOCD verbally within 24 hrs and submit form C-141 within 15 days. 5-25 bbls: Submit form C-141 within 15 days (Also applies to unauthorized releases of 50-500 mcf Natural Gas) Leak, Spill, or Pit (LSP) Name: 2001-11095 Source of contamination: 4" Steel Crude Oil Pipeline Land Owner, i.e., BLM, ST, Fee, Other: State of New Mexico State Land Office, Santa Fe LSP Dimensions: Site diagrams attached LSP Area: 1,750 -ft² Location of Reference Point (RP): Location distance and direction from RP: Latitude: 32°22'03"N Longitude: 103°11'10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 4317 Feet from West Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 22S Location - Range: 37E													
5-25 bbls: Submit form C-141 within 15 days (Also applies to unauthorized releases of 50-500 mcf Natural Gas) Leak, Spill, or Pit (LSP) Name: 2001-11095 Source of contamination: 4" Steel Crude Oil Pipeline Land Owner, i.e., BLM, ST, Fee, Other: State of New Mexico State Land Office, Santa Fe LSP Dimensions: Site diagrams attached LSP Area: 1,750 -ft² Location of Reference Point (RP): Location distance and direction from RP: Latitude: 32°22'03"N Longitude: 103°11'10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 4317 Feet from West Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 228 Location - Range: 37E													
Leak, Spill, or Pit (LSP) Name: Source of contamination: Land Owner, i.e., BLM, ST, Fee, Other: LSP Dimensions: Site diagrams attached LSP Area: Location of Reference Point (RP): Location distance and direction from RP: Latitude: Size 22'03"N Longitude: 103°11'10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 4317 Feet from West Section Line: Location - Unit and 1/4 1/4: Location - Section: 29 Location - Range: 37E													
Source of contamination: Land Owner, i.e., BLM, ST, Fee, Other: State of New Mexico State Land Office, Santa Fe LSP Dimensions: Site diagrams attached LSP Area: LSP Area: Location of Reference Point (RP): Location distance and direction from RP: Latitude: 103°11'10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 4317 Feet from West Section Line: Location - Unit and 1/4 1/4: Location - Section: 29 Location - Township: 22S Location - Range: 37E													
Land Owner, i.e., BLM, ST, Fee, Other: LSP Dimensions: Site diagrams attached LSP Area: 1,750 -ft² Location of Reference Point (RP): Location distance and direction from RP: Latitude: 32°22'03"N Longitude: 103°11'10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 4317 Feet from West Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 22S Location - Range: 37E													
LSP Dimensions: LSP Area: 1,750 -ft² Location of Reference Point (RP): Location distance and direction from RP: Latitude: 32°22'03"N Longitude: 103°11'10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 4317 Feet from West Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 22S Location - Range: 37E													
LSP Area: 1,750 -ft² Location of Reference Point (RP):													
Location of Reference Point (RP): Location distance and direction from RP: Latitude: 32°22'03"N Longitude: 103°11'10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 4317 Feet from West Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 22S Location - Range: 37E													
Location distance and direction from RP: Latitude: 32°22'03"N Longitude: 103°11'10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 4317 Feet from West Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 22S Location - Range: 37E													
Latitude: 32°22'03"N Longitude: 103°11'10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 4317 Feet from West Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 22S Location - Range: 37E	Location of Reference Point (RP):												
Longitude: 103°11'10"W Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 4317 Feet from West Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 22S Location - Range: 37E	Location distance and direction from RP:												
Elevation above mean sea level: 3379 -ft amsl Feet from South Section Line: 4317 Feet from West Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 22S Location - Range: 37E													
Feet from South Section Line: 4317 Feet from West Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 22S Location - Range: 37E													
Feet from West Section Line: 2300 Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 22S Location - Range: 37E													
Location - Unit and 1/4 1/4: UL- C NE 1/4 of NW 1/4 Location - Section: 29 Location - Township: 22S Location - Range: 37E													
Location - Section: 29 Location - Township: 22S Location - Range: 37E													
Location - Township: 22S Location - Range: 37E													
Location - Range: 37E													
Surface water body within 1000' radius of Site: 0													
Surface water body within 1000' radius of Site: 0													
Domestic water wells within 1000' radius of Site: 0													
Domestic water wells within 1000' radius of Site: 0													
Agricultural water wells within 1000' radius of Site: 0													
Agricultural water wells within 1000' radius of Site: 0													
Public water supply wells within 1000' radius of Site: 0													
Public water supply wells within 1000' radius of Site: 0													
Depth (ft) from land surface to ground water (DG): 65													
Depth (ft) of contamination (DC): 30													
Depth (ft) to ground water (DG - DC = DtGW): 35													
1. Ground Water 2. Wellhead Protection Area 3. Distance to Surface Water B	ody												
If Depth to GW <50 feet: 20 points If <1000' from water source, or,													
15 Don'th to CIM 50 to 20 Soot 10 moints <200' from private domestic water													
source: 20 points 200-100 horizontal feet: 10 points If >1000' from water source, or,													
If Depth to GW >100 feet: 0 points >200' from private domestic water >1000 horizontal feet: 0 points													
source: 0 points													
Ground water Score: 20 Wellhead Protection Area Scor 0 Surface Water Score: 0													
Site Rank (1+2+3) = 20													
Total Site Ranking Score and Acceptable Concentrations													
Parameter 20 or > 10 0													
Benzene ¹ 10 ppm 10 ppm 10 ppm													
BTEX ¹ 50 ppm 50 ppm 50 ppm													
TPH 100 ppm 1000 ppm 5000 ppm													

LARORATORY SOIL ANALYSES REPORTS

AnalySys Inc. (Austin, TX)
Environmental Lab of Texas (Odessa, TX)

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 119364

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH1-2"

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Date Sampled: 09/13/2001 Time: 07:30

Client: Environmental Plus, Inc.

Attn: Pat McCasland Address: 1324 M.St Po Box

Eunice

NM 88231

Phone:

(505) 394-3481

FAX: (505) 394-2601

REPORT OF ANALYSIS

QUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.	J	3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/20/01	8260b		¥			
Benzene	194	μg/Kg	20	<20	09/20/01	8260b		15	94.4	96.7	93.4
Ethylbenzene	220	μg/Kg	20	<20	09/20/01	8260b		3.6	91.1	97.1	94.6
m,p-Xylenes	437	μg/Kg	20	<20	09/20/01	8260b		3.9	92.3	97.4	94.6
o-Xylene	211	μg/Kg	20	<20	09/20/01	8260Ъ		9.7	90.7	96.9	95.5
Toluene	215	μg/Kg	20	<20	09/20/01	8260ъ		15.1	93	96.6	90.4

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Report Date: 09/25/01 Page#: 1

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

OHALITY ASSURANCE DATA!

Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Client:

Eunice

NM 88231

Phone: (505) 394-3481

FAX: (505) 394-2601

Report#/Lab ID#: 119365

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH1-5"

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Date Sampled: 09/13/2001 Time: 07:55

REPORT OF ANALYSIS

REPORT OF ANALISIS	OUADITI ASSURANCE DATA										
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/20/01	8260b					
Benzene	<20	μg/Kg	20	<20	09/20/01	8260ъ		15	94.4	96.7	93.4
Ethylbenzene	<20	μg/Kg	20	<20	09/20/01	8260ъ		3.6	91.1	97.1	94.6
m,p-Xylenes	<20	μg/Kg	20	<20	09/20/01	8260b	J	3.9	92.3	97.4	94.6
o-Xylene	<20	μg/Kg	20	<20	09/20/01	8260ъ	 	9.7	90.7	96.9	95.5
Toluene	<20	μg/Kg	20	<20	09/20/01	8260b		15.1	93	96.6	90.4

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted.

Richard La

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

Page#: 1 Report Date: 09/25/01

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

OUALITY ASSURANCE DATA¹

Environmental Plus, Inc.

Attn: Pat McCasland Address: 1324 M.St Po Box

Client:

Eunice

NM 88231

(505) 394-3481 Phone:

FAX: (505) 394-2601

Report#/Lab ID#: 119366

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH1-10"

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Time: 08:15 Date Sampled: 09/13/2001

REPORT OF ANALYSIS

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴						
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		3.3	126.6	88.6	114.6						
TPH by GC (as diesel-ext)					09/19/01	3540											
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2						
Volatile organics-8260b/BTEX					09/20/01	8260ъ											
Benzene	<20	μg/Kg	20	<20	09/20/01	8260b		15	94.4	96.7	93.4						
Ethylbenzene	<20	μg/Kg	20	<20	09/20/01	8260b		3.6	91.1	97.1	94.6						
m,p-Xylenes	<20	μg/Kg	20	<20	09/20/01	8260b	J	3.9	92.3	97.4	94.6						
o-Xylene	<20	μg/Kg	20	<20	09/20/01	8260b	 	9.7	90.7	96.9	95.5						
Toluene	<20	μg/Kg	20	<20	09/20/01	8260b	 	15.1	93	96.6	90.4						

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5, Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Page#: 1 Report Date: 09/25/01

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Eunice

REPORT OF ANALYSIS

NM 88231

Phone: (505) 394-3481 FAX: (505) 394-2601

Report#/Lab ID#: 119367 R

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH1-15'

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 **Date Sampled:** 09/13/2001 Time: 08:45

QUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540	ll				
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.	 	14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/20/01	8260b					
Benzene	<20	μg/Kg	20	<20	09/20/01	8260b		15	94.4	96.7	93.4
Ethylbenzene	<20	μg/Kg	20	<20	09/20/01	8260b		3.6	91.1	97.1	94.6
m,p-Xylenes	<20	μg/Kg	20	<20	09/20/01	8260ъ	J	3.9	92.3	97.4	94.6
o-Xylene	<20	μg/Kg	20	<20	09/20/01	8260b		9.7	90.7	96.9	95.5
Toluene	<20	μg/Kg	20	<20	09/20/01	8260b		15.1	93	96.6	90.4

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted.

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

Page#: 1 Report Date: 09/25/01

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 119368

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH2-2

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25
Date Sampled: 09/13/2001 Time: 09:20

Client: Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481

FAX: (505) 394-2601

REPORT OF ANALYSIS

OUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.	***	3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)		***			09/19/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/20/01	8260ъ					
Benzene	<20	μg/Kg	20	<20	09/20/01	8260b		15	94.4	96.7	93.4
Ethylbenzene	<20	μg/Kg	20	<20	09/20/01	8260b	J	3.6	91.1	97.1	94.6
m,p-Xylenes	<20	μg/Kg	20	<20	09/20/01	8260b	J	3.9	92.3	97.4	94.6
o-Xylene	<20	μg/K.g	20	<20	09/20/01	8260b		9.7	90.7	96.9	95.5
Toluene	<20	μg/Kg	20	<20	09/20/01	8260b		15.1	93	96.6	90.4

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Liste

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

Page#: 1 Report Date: 09/25/01

Address: 1324 M.St Po Box

Eunice

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 (512) 444-5896 •

Report#/Lab ID#: 119369

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH2-5

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Date Sampled: 09/13/2001 Time: 09:40

Client:

Phone:

Attn:

(505) 394-3481

Pat McCasland

Environmental Plus, Inc.

FAX: (505) 394-2601

NM 88231

REPORT OF ANALYSIS

QUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	11.8	mg/Kg	5	<5	09/20/01	8015 mod.		3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/21/01	8260ъ					
Benzene	<20	μg/Kg	20	<20	09/21/01	8260b	***	15	94.4	96.7	93.4
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260b	J	3.6	91.1	97.1	94.6
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260ъ	J	3.9	92.3	97.4	94.6
o-Xylene	<20	μg/Kg	20	<20	09/21/01	8260b		9.7	90.7	96.9	95.5
Toluene	<20	μg/Kg	20	<20	09/21/01	8260ъ		15.1	93	96.6	90.4

This analytical report is respectfully submitted by AnalySvs. Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Report Date: 09/25/01 Page#: 1

QUALITY ASSURANCE DATA¹

15.1

96.6

90.4

Client: Environmental Plus, Inc.

Attn: Pat McCasland Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481 FAX: (505) 394-2601

Report#/Lab ID#: 119370

Report Date: 09/25/01

Project ID:

8260b

Sample Name: ESM91301BH2-10

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Date Sampled: 09/13/2001 Time: 10:00

REPORT OF ANALYSIS

o-Xylene

Toluene

Prec.2 Recov.3 Result Units ROL⁵ Blank Date Method 6 Data Oual 7 CCV⁴ LCS4 Parameter <5 5 <5 09/20/01 8015 mod. 3.3 126.6 88.6 114.6 TPH by GC (as diesel) mg/Kg TPH by GC (as diesel-ext) 09/19/01 3540 ------------5 <5 09/20/01 8015 mod. 115.1 87.5 89.2 TPH by GC (as gasoline) <5 mg/Kg 14.4 09/20/01 Volatile organics-8260b/BTEX 8260b ---<20 20 <20 09/20/01 8260b 15 94.4 96.7 93.4 µg/Kg Benzene ---<20 Ethylbenzene <20 ug/Kg 20 09/20/01 8260b 3.6 91.1 97.1 94.6 20 <20 09/20/01 8260b 3.9 92.3 97.4 94.6 m,p-Xylenes <20 μg/Kg <20 <20 20 09/20/01 8260b 9.7 90.7 96.9 95.5

<20

09/20/01

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

μg/Kg

µg/Kg

20

Richard Laster

<20

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are I = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

QUALITY ASSURANCE DATA¹

Report#/Lab ID#: 119371

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH2-15

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Time: 10:20 Date Sampled: 09/13/2001

Client: Environmental Plus, Inc.

Pat McCasland Attn: Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481 FAX: (505) 394-2601

REPORT OF ANALYSIS

KEI OKI OF ANALIBID							QUALITI I				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540	 				
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/20/01	8260b	***				
Benzene	<20	μg/Kg	20	<20	09/20/01	8260ь	*	15	94.4	96.7	93.4
Ethylbenzene	<20	μg/Kg	20	<20	09/20/01	8260b		3.6	91.1	97.1	94.6
m,p-Xylenes	<20	μg/Kg	20	<20	09/20/01	8260Ъ	J	3.9	92.3	97.4	94.6
o-Xylene	<20	μg/Kg	20	<20	09/20/01	8260Ъ		9.7	90.7	96.9	95.5
Toluene	<20	µg/Кg	20	<20	09/20/01	8260b		15.1	93	96.6	90.4

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5, Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Client: Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481

REPORT OF ANALYSIS

FAX: (505) 394-2601

Report#/Lab ID#: 119372

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH3-2

Sample Matrix: soil

OUALITY ASSURANCE DATA¹

NOT ONLY OF THE PERSON							<u> </u>				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/20/01	8260b	***				
Benzene	<20	μg/Kg	20	<20	09/20/01	8260ь		15	94.4	96.7	93.4
Ethylbenzene	<20	μg/Kg	20	<20	09/20/01	8260b	J	3.6	91.1	97.1	94.6
m,p-Xylenes	<20	μg/Kg	20	<20	09/20/01	8260ъ	J	3.9	92.3	97.4	94.6
o-Xylene	<20	μg/Kg	20	<20	09/20/01	8260b		9.7	90.7	96.9	95.5
Toluene	<20	μg/Kg	20	₹ 20	09/20/01	8260b		15.1	93	96.6	90.4

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

ichard Faster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limit. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Client: Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481

FAX: (505) 394-2601

Report#/Lab ID#: 119373

Report Date: 09/25/01

.ab ID#: 119373 Report Date: 0

Project ID:

Sample Name: ESM91301BH3-5'

Sample Matrix: soil

REPORT OF ANALYSIS

QUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.	1	3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540					
TPH by GC (as gasoline)	6.47	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/20/01	8260b	1				
Benzene	<20	μg/Kg	20	<20	09/20/01	8260b		15	94.4	96.7	93.4
Ethylbenzene	<20	μg/Kg	20	<20	09/20/01	8260ъ	J	3.6	91.1	97.1	94.6
m,p-Xylenes	<20	μg/Kg	20	<20	09/20/01	8260ъ	∥ J	3.9	92.3	97.4	94.6
o-Xylene	<20	μg/Kg	20	<20	09/20/01	8260ъ		9.7	90.7	96.9	95.5
Toluene	<20	μg/Kg	20	<20	09/20/01	8260b		15.1	93	96.6	90.4

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted.

Richard Later

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

Client: Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481

FAX: (505) 394-2601

Report#/Lab ID#: 119374

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH3-10'

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 **Date Sampled:** 09/13/2001 Time: 11:47

REPORT OF ANALYSIS

QUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ³	Blank	Date	Method ⁶	Data Qual ⁷	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.	***	3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/20/01	8260b			***		
Benzene	<20	μg/Kg	20	<20	09/20/01	8260b		15	94.4	96.7	93.4
Ethylbenzene	<20	μg/Kg	20	<20	09/20/01	8260b		3.6	91.1	97.1	94.6
m,p-Xylenes	<20	μg/Kg	20	<20	09/20/01	8260ъ		3.9	92.3	97.4	94.6
o-Xylene	<20	μg/Kg	20	<20	09/20/01	8260b		9.7	90.7	96.9	95.5
Toluene	<20	μg/Kg	20	<20	09/20/01	8260ъ	•••	15.1	93	96.6	90.4

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Faster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

Address: 1324 M.St Po Box Eunice

Environmental Plus, Inc.

Pat McCasland

(505) 394-3481

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 119375

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH3-15

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25

Time: 12:10 Date Sampled: 09/13/2001

REPORT OF ANALYSIS

Client:

Phone:

Attn:

OUALITY ASSURANCE DATA¹

							-				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540					
TPH by GC (as gasoline)	10.2	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/20/01	8260ъ				***	
Benzene	<20	μg/Kg	20	<20	09/20/01	8260b		15	94.4	96.7	93.4
Ethylbenzene	<20	μg/Kg	20	<20	09/20/01	8260Ъ		3.6	91.1	97.1	94.6
m,p-Xylenes	<20	μg/Kg	20	<20	09/20/01	8260ъ	J	3.9	92.3	97.4	94.6
o-Xylene	<20	μg/Kg	20	<20	09/20/01	8260b		9.7	90.7	96.9	95.5
Toluene	<20	μg/K.g	20	<20	09/20/01	8260b		15.1	93	96.6	90.4

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

NM 88231

FAX: (505) 394-2601

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Report Date: 09/25/01 Page#: 1

Report#/Lab ID#: 119376

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH4-2

Sample Matrix: soil

Client: Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481

FAX: (505) 394-2601

REPORT OF ANALYSIS

QUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540	 				
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.	 	14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX	746				09/20/01	8260b					
Benzene	<20	μg/Kg	20	<20	09/20/01	8260b		15	94.4	96.7	93.4
Ethylbenzene	<20	μg/Kg	20	<20	09/20/01	8260ъ	H	3.6	91.1	97.1	94.6
m,p-Xylenes	<20	μg/Kg	20	<20	09/20/01	8260b	 	3.9	92.3	97.4	94.6
o-Xylene	<20	μg/Kg	20	<20	09/20/01	8260ъ	 	9.7	90.7	96.9	95.5
Toluene	<20	μg/Kg	20	<20	09/20/01	8260b		15.1	93	96.6	90.4

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Client: Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481

FAX: (505) 394-2601

Report#/Lab ID#: 119377

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH4-5

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25
Date Sampled: 09/13/2001 Time: 14:00

REPORT OF ANALYSIS

QUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540	***				
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/20/01	8260b	***				
Benzene	<20	μg/K.g	20	<20	09/20/01	8260ъ		1	89.8	93.4	109.5
Ethylbenzene	<20	μg/Kg	20	<20	09/20/01	8260b	Ј	3.7	93.1	94.6	89.4
m,p-Xylenes	20.9	μg/Kg	20	<20	09/20/01	8260ъ		3.1	93.8	94.6	90.4
o-Xylene	<20	μg/Kg	20	<20	09/20/01	8260ъ		2.9	92	95.5	89.7
Toluene	<20	μg/Kg	20	<20	09/20/01	8260ъ	***	0.8	88.9	90.4	107.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

Client: Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481

FAX: (505) 394-2601

Report#/Lab ID#: 119378

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH4-10

Sample Matrix: soil

REPORT OF ANALYSIS

QUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/21/01	8260b	•••				
Benzene	<20	μg/Kg	20	<20	09/21/01	8260ъ		1	89.8	93.4	109.5
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260b	J	3.7	93.1	94.6	89.4
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260b	J	3.1	93.8	94.6	90.4
o-Xylene	<20	μg/Kg	20	<20	09/21/01	8260b		2.9	92	95.5	89.7
Toluene	<20	μg/Kg	20	<20	09/21/01	8260Ъ	***	0.8	88.9	90.4	107.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Report#/Lab ID#: 119379

Report Date: 09/25/01

Project ID:

Sample Name: ESM91301BH4-15

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 **Date Sampled:** 09/13/2001 Time: 14:35

Client: Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481

FAX: (505) 394-2601

REPORT OF ANALYSIS

QUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)		***			09/19/01	3540			***		
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/20/01	8260b					
Benzene	<20	μg/Kg	20	<20	09/20/01	8260b	***	1	89.8	93.4	109.5
Ethylbenzene	<20	μg/Kg	20	<20	09/20/01	8260b		3.7	93.1	94.6	89.4
m,p-Xylenes	<20	μg/K.g	20	<20	09/20/01	8260b	J	3.1	93.8	94.6	90.4
o-Xylene	<20	μg/Kg	20	<20	09/20/01	8260b		2.9	92	95.5	89.7
Toluene	<20	μg/Kg	20	<20	09/20/01	8260b		0.8	88.9	90.4	107.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard faster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Report#/Lab ID#: 119380

Report Date: 09/25/01

Project ID:

Sample Name: ESM91401BH5-2'

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Date Sampled: 09/14/2001 Time: 07:00

Environmental Plus, Inc. Client: Pat McCasland Attn:

Address: 1324 M.St Po Box

Eunice

NM 88231

(505) 394-3481 Phone:

FAX: (505) 394-2601

REPORT OF ANALYSIS

REPORT OF ANALYSIS	Result Units RQL 5 Blank GC (as diesel) <5 mg/Kg 5 <5 09 GC (as diesel-ext) 09							ASSUR	ANCE D	ATA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX		<u> </u>			09/21/01	8260b	1				
Benzene	<20	μg/Kg	20	<20	09/21/01	8260b	 	1	89.8	93.4	109.5
Ethylbenzene	36.5	μg/Kg	20	<20	09/21/01	8260ъ		3.7	93.1	94.6	89.4
m,p-Xylenes	60.1	μg/Kg	20	<20	09/21/01	8260ь		3.1	93.8	94.6	90.4
o-Xylene	22.4	μg/Kg	20	<20	09/21/01	8260b		2.9	92	95.5	89.7
Toluene	34.6	μg/Kg	20	<20	09/21/01	8260b		0.8	88.9	90.4	107.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

Report Date: 09/25/01 Page#: 1

OHALITY ASSIDANCE DATA!

Client: Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481

FAX: (505) 394-2601

Report#/Lab ID#: 119381

Report Date: 09/25/01

Project ID:

Sample Name: ESM91401BH5-5

Sample Matrix: soil

REPORT OF ANALYSIS

REPURI OF ANALISIS				OUALITI ASSURANCE DATA							
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		3.3	126.6	88.6	114.6
TPH by GC (as diesel-ext)					09/19/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		14.4	115.1	87.5	89.2
Volatile organics-8260b/BTEX					09/21/01	8260b	***				
Benzene	<20	μg/Kg	20	<20	09/21/01	8260b		1	89.8	93.4	109.5
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260Ъ		3.7	93.1	94.6	89.4
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260ъ	J	3.1	93.8	94.6	90.4
o-Xylene	<20	μg/Kg	20	<20	09/21/01	8260ъ		2.9	92	95.5	89.7
Toluene	<20	µg/Кg	20	<20	09/21/01	8260b		0.8	88.9	90.4	107.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

Report#/Lab ID#: 119382

Report Date: 09/25/01

Project ID:

Sample Name: ESM91401BH5-10'

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Date Sampled: 09/14/2001 Time: 07:35

QUALITY ASSURANCE DATA!

Client: Environmental Plus, Inc.

Attn: Pat McCasland Address: 1324 M.St Po Box

Eunice

NM 88231

Phone:

(505) 394-3481

FAX: (505) 394-2601

REPORT OF ANALYSIS

REPORT OF ANALISIS							Blank Date Method 6 Data Qual 7 Prec. 2 Recov. 3 CCV 4 LCS						
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴		
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		1.1	122.3	90.4	114.8		
TPH by GC (as diesel-ext)		[09/20/01	3540							
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		0.1	103.3	87.1	93.4		
Volatile organics-8260b/BTEX	***				09/21/01	8260b	1						
Benzene	<20	μg/Kg	20	<20	09/21/01	8260ъ		1	89.8	93.4	109.5		
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260ь	J	3.7	93.1	94.6	89.4		
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260ъ	ll 1	3.1	93.8	94.6	90.4		
o-Xylene	<20	μg/Kg	20	<20	09/21/01	8260Ъ	 	2.9	92	95.5	89.7		
Toluene	<20	μg/Kg	20	<20	09/21/01	8260ъ		0.8	88.9	90.4	107.7		

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

Report Date: 09/25/01 Page#: 1

OTIAL TTV ACCUIDANCE DATA 1

Report#/Lab ID#: 119383

Report Date: 09/25/01

Project ID:

Sample Name: ESM91401BH5-15'

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25
Date Sampled: 09/14/2001 Time: 07:50

Client: Environmental Plus, Inc.
Attn: Pat McCasland

Address: 1324 M.St Po Box

Eunice

NM 88231

Phone:

(505) 394-3481

FAX: (505) 394-2601

REPORT OF ANALYSIS

REPURI OF ANALISIS							QUALITY ASSURANCE DATA				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		1.1	122.3	90.4	114.8
TPH by GC (as diesel-ext)					09/20/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		0.1	103.3	87.1	93.4
Volatile organics-8260b/BTEX					09/21/01	8260b	***				
Benzene	<20	μg/Kg	20	<20	09/21/01	8260b		1	89.8	93.4	109.5
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260b	J	3.7	93.1	94.6	89.4
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260b	J	3.1	93.8	94.6	90.4
o-Xylene	<20	μg/Kg	20	<20	09/21/01	8260b		2.9	92	95.5	89.7
Toluene	<20	μg/Kg	20	<20	09/21/01	8260b		0.8	88.9	90.4	107.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceeds advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

QUALITY ASSURANCE DATA!

Report#/Lab ID#: 119384

Report Date: 09/25/01

Project ID:

Sample Name: ESM91401BH6-2'

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25
Date Sampled: 09/14/2001 Time: 08:10

Phone: (50

Client:

Attn:

(505) 394-3481 FA

Environmental Plus, Inc.

Pat McCasland

FAX: (505) 394-2601

NM 88231

REPORT OF ANALYSIS

Address: 1324 M.St Po Box

Eunice

REPURT OF ANALISIS							VUALITI.				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	3410	mg/Kg	50	<50	09/21/01	8015 mod.		1.1	122.3	90.4	114.8
TPH by GC (as diesel-ext)					09/20/01	3540					
TPH by GC (as gasoline)	1670	mg/Kg	5	<5	09/20/01	8015 mod.		0.1	103.3	87.1	93.4
Volatile organics-8260b/BTEX					09/21/01	8260b					
Benzene	<100	μg/K.g	100	<100	09/21/01	8260Ъ		1	89.8	93.4	109.5
Ethylbenzene	8820	μg/Kg	100	<100	09/21/01	8260ъ		3.7	93.1	94.6	89.4
m,p-Xylenes	16100	μg/Kg	100	<100	09/21/01	8260Ъ	ll	3.1	93.8	94.6	90.4
o-Xylene	6780	μg/Kg	100	<100	09/21/01	8260Ъ		2.9	92	95.5	89.7
Toluene	3810	μg/Kg	100	<100	09/21/01	8260Ъ		0.8	88.9	90.4	107.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

OTTATION ASSTIDANCE DATA1

Report#/Lab ID#: 119385

Report Date: 09/25/01

Project ID:

Sample Name: ESM91401BH6-5'

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Time: 08:25 Date Sampled: 09/14/2001

Environmental Plus, Inc. Client:

Pat McCasland Attn: Address: 1324 M.St Po Box

Eunice

NM 88231

(505) 394-3481 Phone:

FAX: (505) 394-2601

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	18.1	mg/Kg	5	<5	09/20/01	8015 mod.		1.1	122.3	90.4	114.8
TPH by GC (as diesel-ext)					09/20/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.	 	0.1	103.3	87.1	93.4
Volatile organics-8260b/BTEX					09/21/01	8260b					
Benzene	<20	μg/Kg	20	<20	09/21/01	8260ъ		1	89.8	93.4	109.5
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260ъ] J	3.7	93.1	94.6	89.4
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260ъ]]	3.1	93.8	94.6	90.4
o-Xylene	<20	μg/Kg	20	<20	09/21/01	8260ъ	 	2.9	92	95.5	89.7
Toluene	<20	μg/Kg	20	<20	09/21/01	8260ъ		0.8	88.9	90.4	107.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Environmental Plus, Inc.

Attn: Pat McCasland

Client:

Address: 1324 M.St Po Box

Eunice

NM 88231

(505) 394-3481 Phone:

FAX: (505) 394-2601

Report#/Lab ID#: 119386

Report Date: 09/25/01

Project ID:

Sample Name: ESM91401BH6-10'

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Time: 08:40 Date Sampled: 09/14/2001

OUALITY ASSURANCE DATA¹

REPORT OF ANALYSIS

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		1.1	122.3	90.4	114.8
TPH by GC (as diesel-ext)					09/20/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		0.1	103.3	87.1	93.4
Volatile organics-8260b/BTEX					09/21/01	8260ъ					
Benzene	<20	μg/Kg	20	<20	09/21/01	8260b		1	89.8	93.4	109.5
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260ъ	J	3.7	93.1	94.6	89.4
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260Ъ	J	3.1	93.8	94.6	90.4
o-Xylene	<20	μg/Kg	20	<20	09/21/01	8260Ъ		2.9	92	95.5	89.7
Toluene	<20	μg/Kg	20	<20	09/21/01	8260b		0.8	88.9	90.4	107.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX, All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted.

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

0.8

88.9

90.4

107.7

Report#/Lab ID#: 119387

Report Date: 09/25/01

Project ID:

8260b

Sample Name: ESM91401BH6-15'

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Time: 08:55 Date Sampled: 09/14/2001

Client: Environmental Plus, Inc.

Attn: Pat McCasland Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481

Toluene

FAX: (505) 394-2601

REPORT OF ANALYSIS

QUALITY ASSURANCE DATA¹ Units ROL 5 Blank Date Method 6 Data Qual 7 Prec.2 Recov.3 CCV⁴ LCS4 Result Parameter <5 09/20/01 TPH by GC (as diesel) 5.95 mg/Kg 5 8015 mod. 1.1 122.3 90.4 114.8 09/20/01 TPH by GC (as diesel-ext) 3540 ------5 <5 09/20/01 TPH by GC (as gasoline) <5 8015 mod. 0.1 103.3 87.1 93.4 mg/Kg 09/21/01 Volatile organics-8260b/BTEX 8260b 20 09/21/01 <20 μg/Kg <20 8260b 1 89.8 93.4 109.5 Benzene J <20 μg/Kg 20 <20 09/21/01 8260ъ 3.7 93.1 94.6 89.4 Ethylbenzene 20 <20 J 09/21/01 8260b m,p-Xylenes <20 µg/Kg 3.1 93.8 94.6 90.4 20 <20 09/21/01 o-Xylene <20 μg/Kg 8260b 2.9 92 95.5 89.7

<20

09/21/01

20

μg/Kg

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted.

Richard Laster

<20

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference,

Address: 1324 M.St Po Box

Eunice

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

OHALITY ASSURANCE DATA 1

Report#/Lab ID#: 119388

Report Date: 09/25/01

Project ID:

Sample Name: ESM91401BH7-2'

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25
Date Sampled: 09/14/2001 Time: 09:30

Phone:

Client:

Attn:

(505) 394-3481

Pat McCasland

Environmental Plus, Inc.

FAX: (505) 394-2601

NM

88231

REPORT OF ANALYSIS

KEI OKI OF ANALISIS								ABBUIL	AIICE DA	VIV.	
Parameter	Result	Units	RQL ³	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	192	mg/Kg	5	<5	09/20/01	8015 mod.		1.1	122.3	90.4	114.8
TPH by GC (as diesel-ext)					09/20/01	3540					
TPH by GC (as gasoline)	12.4	mg/Kg	5	<5	09/20/01	8015 mod.		0.1	103.3	87.1	93.4
Volatile organics-8260b/BTEX					09/21/01	8260Ъ					
Benzene	<20	μg/Kg	20	<20	09/21/01	8260b	1	4.3	91.3	116	91.9
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260b	J	8.3	97.6	92.6	88.1
m,p-Xylenes	21.1	μg/Kg	20	<20	09/21/01	8260ь	 	6.6	97.7	92.2	88.7
o-Xylene	<20	μg/K.g	20	<20	09/21/01	8260b		6.9	95.3	88.8	88.9
Toluene	<20	це/Ке	20	<20	09/21/01	8260b	II	5.8	92.2	118.4	91.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

QUALITY ASSURANCE DATA 1

Report#/Lab ID#: 119389

Report Date: 09/25/01

Project ID:

Sample Name: ESM91401BH7-5'

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 **Date Sampled:** 09/14/2001 Time: 09:50

Phone:

Client:

Attn:

(505) 394-3481

Pat McCasland

Environmental Plus, Inc.

FAX: (505) 394-2601

NM 88231

REPORT OF ANALYSIS

Address: 1324 M.St Po Box

Eunice

REPORT OF AMADIBIB							VUMLIII	ADDUK	AITCH DI	A I A	
Parameter	Result	Units	RQL 5	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	28.6	mg/Kg	5	<5	09/20/01	8015 mod.		1.1	122.3	90.4	114.8
TPH by GC (as diesel-ext)					09/20/01	3540	 				
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.	J	0.1	103.3	87.1	93.4
Volatile organics-8260b/BTEX			ļ		09/21/01	8260b	1				
Benzene	<20	μg/Kg	20	<20	09/21/01	8260b		1	89.8	93.4	109.5
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260b	J	3.7	93.1	94.6	89.4
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260Ъ	J	3.1	93.8	94.6	90.4
o-Xylene	<20	μg/Kg	20	<20	09/21/01	8260ъ		2.9	92	95.5	89.7
Toluene	<20	μg/Kg	20	<20	09/21/01	8260b	 	0.8	88.9	90.4	107.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted.

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

OUALITY ASSURANCE DATA¹

0.8

90.4

107.7

88.9

Report#/Lab ID#: 119390

Report Date: 09/25/01

Project ID:

8260b

Sample Name: ESM91401BH7-10

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25
Date Sampled: 09/14/2001 Time: 10:10

Client: Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481

Toluene

FAX: (505) 394-2601

REPORT OF ANALYSIS

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		1.1	122.3	90.4	114.8
TPH by GC (as diesel-ext)					09/20/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.	 	0.1	103.3	87.1	93.4
Volatile organics-8260b/BTEX					09/21/01	8260b					
Benzene	<20	μg/Kg	20	<20	09/21/01	8260b		1	89.8	93.4	109.5
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260Ъ	J	3.7	93.1	94.6	89.4
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260Ъ	J	3.1	93.8	94.6	90.4
o-Xylene	<20	μg/Kg	20	<20	09/21/01	8260b		2.9	92	95.5	89.7

<20

09/21/01

20

μg/Kg

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Faster

Richard Laster

<20

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 (512) 444-5896 •

Environmental Plus, Inc.

Attn: Pat McCasland Address: 1324 M.St Po Box

Client:

Eunice

NM 88231

Phone: (505) 394-3481 FAX: (505) 394-2601

Report#/Lab ID#: 119391

Report Date: 09/25/01

Project ID:

Sample Name: ESM91401BH7-15'

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Date Sampled: 09/14/2001 Time: 10:30

REPORT OF ANALYSIS						QUALITY ASSURANCE DATA ¹						
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴	
TPH by GC (as diesel)	6.43	mg/Kg	5	<5	09/20/01	8015 mod.		1.1	122.3	90.4	114.8	
TPH by GC (as diesel-ext)					09/20/01	3540						
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		0.1	103.3	87.1	93.4	
Volatile organics-8260b/BTEX					09/21/01	8260b						
Benzene	<20	μ g/K g	20	<20	09/21/01	8260Ъ		1	89.8	93.4	109.5	
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260ъ	J	3.7	93.1	94.6	89.4	
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260ъ	J	3.1	93.8	94.6	90.4	
o-Xylene	<20	μ g/K g	20	<20	09/21/01	8260Ъ		2.9	92	95.5	89.7	
Toluene	<20	μg/Kg	20	<20	09/21/01	8260ъ		0.8	88.9	90.4	107.7	

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Report Date: 09/25/01 Page#: 1

Report#/Lab ID#: 119392

Report Date: 09/25/01

Project ID:

Sample Name: ESM91701BH8-15

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Date Sampled: 09/17/2001 Time: 07:30

Client: Environmental Plus, Inc.

Attn: Pat McCasland Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481 FAX: (505) 394-2601

REPORT OF ANALYSIS

REPORT OF ANALYSIS									<u>OUALITY ASSURANCE DATA</u> ¹					
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴			
TPH by GC (as diesel)	2540	mg/Kg	5	<5	09/20/01	8015 mod.		1.1	122.3	90.4	114.8			
TPH by GC (as diesel-ext)					09/20/01	3540								
TPH by GC (as gasoline)	402	mg/Kg	5	<5	09/20/01	8015 mod.		0.1	103.3	87.1	93.4			
Volatile organics-8260b/BTEX		1			09/21/01	8260b	***							
Benzene	<100	μg/Kg	100	<100	09/21/01	8260b		1	89.8	93.4	109.5			
Ethylbenzene	598	μg/Kg	100	<100	09/21/01	8260Ъ		3.7	93.1	94.6	89.4			
m,p-Xylenes	1090	μg/Kg	100	<100	09/21/01	8260Ъ		3.1	93.8	94.6	90.4			
o-Xylene	465	μg/Kg	100	<100	09/21/01	8260Ъ		2.9	92	95.5	89.7			
Toluene	498	μg/Kg	100	<100	09/21/01	8260ъ	***	0.8	88.9	90.4	107.7			

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted.

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Report#/Lab ID#: 119393

Report Date: 09/25/01

Environmental Plus, Inc.

Pat McCasland

Address: 1324 M.St Po Box

Eunice

NM 88231

Phone:

Client:

Attn:

(505) 394-3481

FAX: (505) 394-2601

Project ID:

Sample Name: ESM91701BH8-20

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Time: 08:30 Date Sampled: 09/17/2001

REPORT OF ANALYSIS

QUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	358	mg/Kg	5	<5	09/20/01	8015 mod.	***	1.1	122.3	90.4	114.8
TPH by GC (as diesel-ext)					09/20/01	3540					
TPH by GC (as gasoline)	77.1	mg/Kg	5	<5	09/20/01	8015 mod.		0.1	103.3	87.1	93.4
Volatile organics-8260b/BTEX			***		09/21/01	8260ъ					
Benzene	<20	μg/K.g	20	<20	09/21/01	8260b		1	89.8	93.4	109.5
Ethylbenzene	150	μg/Kg	20	<20	09/21/01	8260b		3.7	93.1	94.6	89.4
m,p-Xylenes	289	μg/Kg	20	<20	09/21/01	8260ъ		3.1	93.8	94.6	90.4
o-Xylene	131	μg/K.g	20	<20	09/21/01	8260ъ		2.9	92	95.5	89.7
Toluene	63.9	μ g/K g	. 20	<20	09/21/01	8260b		0.8	88.9	90.4	107.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Environmental Plus, Inc.

Attn: Pat McCasland

Client:

Address: 1324 M.St Po Box

Eunice

NM 88231

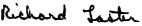
(505) 394-3481 Phone: DEDOUT OF ANALYSIS **FAX:** (505) 394-2601

Report#/Lab ID#: 119394

Report Date: 09/25/01

Project ID:

Sample Name: ESM91701BH8-25


Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Time: 09:00 Date Sampled: 09/17/2001

OHALITY ASSURANCE DATA 1

REPURT OF ANALISIS							VUALITI	ASSUR	AITCE DA	IIA-	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	11.5	mg/Kg	5	<5	09/20/01	8015 mod.	***	1.1	122.3	90.4	114.8
TPH by GC (as diesel-ext)				***	09/20/01	3540					
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		0.1	103.3	87.1	93.4
Volatile organics-8260b/BTEX	***				09/21/01	8260b					
Benzene	<20	μg/Kg	20	<20	09/21/01	8260ъ	***	1	89.8	93.4	109.5
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260Ъ	J	3.7	93.1	94.6	89.4
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260ъ	l l	3.1	93.8	94.6	90.4
o-Xylene	<20	μg/Kg	20	<20	09/21/01	8260Ъ	 	2.9	92	95.5	89.7
Toluene	<20	μ g/ Kg	20	<20	09/21/01	8260Ъ		0.8	88.9	90.4	107.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Report Date: 09/25/01 Page#: 1

OFFAT TIPEZ A CICITIDA NICIDA NATORA 1

Report#/Lab ID#: 119395

Report Date: 09/25/01

Project ID:

Sample Name: ESM91701BH8-30

Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25
Date Sampled: 09/17/2001 Time: 09:25

Client: Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Eunice

NM 88231

Phone:

(505) 394-3481 FAX: (505) 394-2601

REPORT OF ANALYSIS

REPORT OF ANALYSIS							QUALITY	ASSUR/	ANCE DA	ATA I	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		1.1	122.3	90.4	114.8
TPH by GC (as diesel-ext)		***			09/20/01	3540	∥				
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/20/01	8015 mod.		0.1	103.3	87.1	93.4
Volatile organics-8260b/BTEX	*	***************************************		***************************************	09/21/01	8260b					
Benzene	<20	μg/Kg	20	<20	09/21/01	8260ъ		1	89.8	93.4	109.5
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260Ъ	J	3.7	93.1	94.6	89.4
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260Ъ	J	3.1	93.8	94.6	90.4
o-Xylene	<20	μg/Kg	20	<20	09/21/01	8260b		2.9	92	95.5	89.7
Toluene	<20	μg/Kg	20	<20	09/21/01	8260ъ		0.8	88.9	90.4	107.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 (512) 444-5896 •

Report#/Lab ID#: 119396

Report Date: 09/25/01

Project ID:

Sample Name: ESM91701BH9-20'

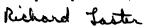
Sample Matrix: soil

Date Received: 09/19/2001 Time: 12:25 Date Sampled: 09/17/2001 Time: 10:20

Client: Environmental Plus, Inc.

Pat McCasland Attn: Address: 1324 M.St Po Box

Eunice


88231 NM

Phone: (505) 394-3481

FAX: (505) 394-2601

REPORT OF ANALYSIS	PORT OF ANALYSIS											
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴	
TPH by GC (as diesel)	68	mg/Kg	5	<5	09/21/01	8015 mod.		1.1	122.3	90.4	114.8	
TPH by GC (as diesel-ext)					09/20/01	3540						
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	09/21/01	8015 mod.	1	0.1	103.3	87.1	93.4	
Volatile organics-8260b/BTEX					09/21/01	8260b	1					
Benzene	<20	μg/Kg	20	<20	09/21/01	8260ъ		1	89.8	93.4	109.5	
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260ъ	J	3.7	93.1	94.6	89.4	
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260ъ	J	3.1	93.8	94.6	90.4	
o-Xylene	<20	μg/Kg	20	<20	09/21/01	8260ъ		2.9	92	95.5	89.7	
Toluene	<20	μ g/ Kg	20	<20	09/21/01	8260b		0.8	88.9	90.4	107.7	

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Report Date: 09/25/01 Page#: 1

QUALITY ASSURANCE DATA¹

2.9

92

88.9

95.5

90.4

89.7

107.7

Client: Environmental Plus, Inc.

Attn: Pat McCasland
Address: 1324 M.St Po Box

Eunice

NM 88231

Phone: (505) 394-3481

FAX: (505) 394-2601

Report#/Lab ID#: 119397

Report Date: 09/25/01

Project ID:

8260ъ

8260b

Sample Name: ESM91701BH9-25'

Sample Matrix: soil

REPORT OF ANALYSIS

o-Xylene

Toluene

The state of the s											
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	562	mg/Kg	5	<5	09/21/01	8015 mod.		1.1	122.3	90.4	114.8
TPH by GC (as diesel-ext)					09/20/01	3540					
TPH by GC (as gasoline)	27.6	mg/Kg	5	<5	09/21/01	8015 mod.		0.1	103.3	87.1	93.4
Volatile organics-8260b/BTEX					09/21/01	8260b					
Benzene	<20	μg/Kg	20	<20	09/21/01	8260ъ		1	89.8	93.4	109.5
Ethylbenzene	<20	μg/Kg	20	<20	09/21/01	8260Ъ	J	3.7	93.1	94.6	89.4
m,p-Xylenes	<20	μg/Kg	20	<20	09/21/01	8260Ъ	1	3.1	93.8	94.6	90.4

<20

<20

09/21/01

09/21/01

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard La

<20

<20

μg/Kg

μg/Kg

20

20

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

end Reports To company Name ddress	State State Fax st be confirm	Zip	ıh mar):	Com Adda City ATT Phor	pany ress _ N: _ ne		StateFax		Cip_			- -	4221 Freidrich Lane, Suite 19 (512) 444-5 Analyses Re Please attach explanatory				squested (1)	
roject Name/PC		Date	Time	No. of			Lab I.D. #	ر ا	AU .	dela	100					///		
Description/Ide	ntification "					Water Wast	e (Lab only)	4	7	2		4	4	4		<u>C</u>	omments	
ESM91301	F		7:30		X		119364	Z	X					_				
ESM9BOIB	HI-5	9-13.01			X		119365	~	X					_				
ESM917018	H1-10"	9-13-01	8:15	ı	X		119366	y	X									
ESM91301 BH	1-15'	9-13-01	8:45		X		119367	\	X			<u> </u>	<u> </u>	<u> </u> 				,
E3M91301 BH	J-2	9-13-01	9:20	ı	χ		119368	γ	X									
ESM9BOIBH		9-13-01	9140	t	X		119369	٠,	V							·		
ESM913018	1	9-13-01	10:00	1	X		119370	X	X									
ESM913018		9-13-01	10.20	- 1	X		119371	χ	X									
)Unless specifically required in the MDL/PQL). For G SI's HSL list at ASI's option in the Market Name	C/MS volatiles and ion. Specific comp	extractables, upound lists must receive the Relingui	mless specific to be supplied shed By	e analytical pa for all GC pro	rameter	lists are specif	ied on this chain-of	-custo		Se	d to th <u>ن</u>	is cha le R	in-of-	custod				utants
Berth Blei	/mattlet	# 2 (V 4)			 '		Delanie He		skar		AS				00	1/19/01	122	
Tendering of above	described san	nples to Ana	alySys, Inc	c. for analy	tical (U	, 			Anal	ySys				<u></u>

CHAIN-OF-CUSTO	DY												ſ	70	aly (= 45
Send Reports (Environ	nmandal á	Dug Tr	Bill	to (if	diffe	ren									(TINC.
Company Name Euri	EDERSU	1002	_ Con	ipany	Name	e <i><u> </u></i>	III Ener	21					21 Freid		ne, Suite 190, A (512) 444-5896	ustin, TX 787
Address_2WD AVE D			Add	ress j	Andle	MA	+ 5805	EAT	Lh	ghu	24/	0		,	J12) 474- J070	
City Emile State	IM Zip	94231	_ City		تبصفا			_ Z	ip J	970	1	,				
ATTN: PAT McCooland			_ AT	rn: <u>i</u>	VAyne	Br	unette					•			yses Reque	
Phone <u>374-3481</u> Fax	394-1601		_ Pho	ne <u>91</u>	5-55	6-019	D Fax 4	15-1	284-	3456		_/	Pleas	e attach	explanatory infor	mation as requi
Rush Status (must be confirm Project Name/PO#: 2001-	-11095	Samp	ler: Tra	dky	Älle	, ,			/	a Tex	Wall Wall					
Client Sample No. Description/Identification	Date Sampled	Time	No. of Containers	Sell	Water	Waste	Lab i.D. # (Lab only)		Tell 2	101	_	_			Co	mments
ESM91701848-15	9-17-01	2:30	1	X			119392	X	X	,						
Esm91701848-20	9-19-01	8:30	· f	X			119393	X	X							
ESM91901BH8-25	9-19-31	9:00	1	X			119394	X	X						<u> </u>	
ESM91701849.30	9-12-01	9:25	1	X			119395	χ	X							
				ļ												
ESN91701 BH9-20	9-19.01	10:20	1	X			119396	X	X							
ESM91701849-25	9-19-01	11:00	1	X			119397	ì	X							2.00
				 				_								
	_			<u> </u>				 								
			<u> </u>		<u> </u>	<u> </u>									'	
(1)Unless specifically requested otherwise or limits (MDL/PQL). For GC/MS volatiles and ASI's HSL list at ASI's option. Specific com	d extractables, u	nless specific	analytical pa	rameter	lists are	nnalyses specifie	will be conducted on this chain-of	r-custo	g ASI's dy or a	itache	d to thi	is chai	n-of-cus	ata will b ody, AS	e reported to ASI I will default to P	l's normal repor riority Pollutan
Sample	Relinqui	shed By	· · · · · · · · · · · · · · · · · · ·					سنتاس					eceive	d By	•	
Name Affili	ation	Ī)ate	T	ime		Name	T		1A	Tiliat	ion			Date	Time

[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

ANALYTICAL REPORT

Prepared for:

FRANK HERNANDEZ **ENRON TRANSPORTATION SYSTEMS** 5805 E. HWY. 80 MIDLAND, TX 79706

Project:

New Mexico State M

PO#:

2001-11095

Order#:

G0204547

Report Date: 09/24/2002

Certificates

US EPA Laboratory Code TX00158

SAMPLE WORK LIST

ENRON TRANSPORTATION SYSTEMS

5805 E. HWY. 80

MIDLAND, TX 79706

915-684-3456

Order#:

G0204547

Project:

2001-11095

Project Name: New Mexico State M

Location:

None Given

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Lab ID:	Sample:	Matrix:		Date / Time Collected	Date / T		Preservative
0204547-01	SESM91602NSW8'	SOIL		9/16/02 10:00	9/18/ 15:2		Ice
<u>La</u>	b Testing:	Rejected:	No	Te	mp: 1.5	С	
	8015M						
	8021B/5030 BTEX						
0204547-02	SESM91602SSW8'	SOIL		9/16/02 10:10	9/18/ 15:2	•	Ice
<u>La</u>	b Testing:	Rejected:	No	Te	mp: 1.5	С	
	8015M 8021B/5030 BTEX						
0204547-03	SESM91602WSW8'	SOIL		9/16/02 10:20	9/18/ 15:2	· ·	Ice
<u>La</u>	b Testing:	Rejected:	No	Te	mp: 1.5	С	
	8015M						
	8021B/5030 BTEX						
0204547-04	SESM91602ESW8'	SOIL		9/16/02 10:30	9/18/ 15:2	~	Ice
<u>La</u>	b Testing:	Rejected:	No	Te	mp: 1.5	С	
	8015M						
*	8021B/5030 BTEX			,			
0204547-05	SESM91602BH10'	SOIL		9/16/02 10:40	9/18/ 15:2	_	Ice
<u>La</u>	b Testing:	Rejected:	No	Те	mp: 1.5	С	
	8015M						
	8021B/5030 BTEX						

ANALYTICAL REPORT

FRANK HERNANDEZ

ENRON TRANSPORTATION SYSTEMS

5805 E. HWY. 80

MIDLAND, TX 79706

Order#:

G0204547

Project:

2001-11095

Project Name:

New Mexico State M

Location:

None Given

Lab ID:

0204547-01

Sample ID:

SESM91602NSW8'

8015M

1

Method Blank

Date Prepared

Date Analyzed 9/19/02

Sample Amount Dilution

Factor 1

Analyst

 $\mathbf{C}\mathbf{K}$

Method 8015M

Result **Parameter** RLmg/kg GRO, C6-C12 10.0 24.9 DRO, >C12-C35 387 10.0 TOTAL, C6-C35 412 10.0

8021B/5030 BTEX

Method Blank 0003199-02

Date Prepared

Date **Analyzed** 9/23/02

14:06

Sample Amount Dilution **Factor** 25

Analyst CK

Method 8021B

Result **Parameter** RL mg/kg 0.025 < 0.025 Benzene Ethylbenzene 0.050 0.025 Toluene 0.048 0.025 0.144 0.025 p/m-Xylene o-Xylene 0.025 0.025

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	100%	80	120
Bromofluorobenzene	108%	80	120

ANALYTICAL REPORT

FRANK HERNANDEZ

ENRON TRANSPORTATION SYSTEMS

5805 E. HWY. 80

MIDLAND, TX 79706

Order#:

G0204547

Project:

2001-11095

Project Name:

New Mexico State M

Location:

None Given

Lab ID:

0204547-02

Sample ID:

SESM91602SSW8'

8015M

Method Blank Date Prepared Date <u>Analyzed</u>

9/19/02

Sample <u>Amount</u> Dilution Factor

1

ı <u>Analyst</u>

Method

Method

8021B

1

CK 8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	25.1	10.0
DRO, >C12-C35	557	10.0
TOTAL, C6-C35	582	10.0

8021B/5030 BTEX

Method Date Date Sample Dilution Amount Prepared Analyzed **Factor** Analyst Blank 9/23/02 1 25 CK 0003199-02 14:28

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	0.057	0.025
Toluene	0.039	0.025
p/m-Xylene	0.092	0.025
o-Xylene	0.034	0.025

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	95%	80	120
Bromofluorobenzene	100%	80	120

ANALYTICAL REPORT

FRANK HERNANDEZ

ENRON TRANSPORTATION SYSTEMS

5805 E. HWY. 80

MIDLAND, TX 79706

Order#:

G0204547

Project:

2001-11095

Project Name:

New Mexico State M

Location:

None Given

Lab ID:

0204547-03

Sample ID:

SESM91602WSW8'

8015M

Method Blank

Date **Prepared**

Date **Analyzed** 9/19/02

Sample Amount

1

Dilution

1

Factor

Analyst

CK

Method 8015M

Result RL **Parameter** mg/kg GRO, C6-C12 238 10.0 DRO, >C12-C35 3,410 10.0 TOTAL, C6-C35 3,648 10.0

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
<u>Blank</u>	Prepared	Analyzed	Amount	<u>Factor</u>	<u>Analyst</u>	Method
0003199-02		9/22/02	1	25	CK	8021B
		0:52				

Parameter	Result mg/kg	RL
Benzene	0.025	0.025
Ethylbenzene	0.322	0.025
Toluene	0.228	0.025
p/m-Xylene	0.914	0.025
o-Xylene	0.322	0.025

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	118%	80	120
Bromofluorobenzene	109%	80	120

ANALYTICAL REPORT

FRANK HERNANDEZ

ENRON TRANSPORTATION SYSTEMS

5805 E. HWY. 80

MIDLAND, TX 79706

Order#:

G0204547

Project:

2001-11095

Project Name:

New Mexico State M

Location:

None Given

Lab ID:

0204547-04

Sample ID:

SESM91602ESW8'

8015M

Method Blank Date Prepared Date
Analyzed
9/19/02

Sample Amount 1 Dilution

1

Factor Analyst

Method

CK 8015M

Parameter	Result mg/kg	RL 10.0	
GRO, C6-C12	<10.0		
DRO, >C12-C35	195	10.0	
TOTAL, C6-C35	195	10.0	

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
Blank	Prepared	<u>Analyzed</u>	Amount	<u>Factor</u>	Analyst	Method
0003199-02		9/22/02	1	25	CK	8021B
		1:14				

Parameter	Result mg/kg	RL	
Benzene	0.044	0.025	
Ethylbenzene	0.256	0.025	
Toluene	0.238	0.025	
p/m-Xylene	0.575	0.025	
o-Xylene	0.146	0.025	

Surrogates	% Recovered	QC Limits (%	
aaa-Toluene	118%	80	120
Bromofluorobenzene	113%	80	120

ENVIRONMENTAL LAB OF TEXAS

ANALYTICAL REPORT

FRANK HERNANDEZ

ENRON TRANSPORTATION SYSTEMS

5805 E. HWY. 80

MIDLAND, TX 79706

Order#:

G0204547

Project:

2001-11095

Project Name:

New Mexico State M

Location:

None Given

Lab ID;

0204547-05

Sample ID:

SESM91602BH10'

8015M

Method Blank

Date Prepared

TOTAL, C6-C35

Date Analyzed 9/19/02

Sample **Amount** 1

5990

Dilution **Factor**

5

Analyst

50.0

CK

Method 8015M

Result RLParameter mg/kg GRO, C6-C12 1530 50.0 50.0 DRO, >C12-C35 4460

8021B/5030 BTEX

Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution <u>Factor</u>	Analyst	Method
0003199-02		9/22/02 1:37	1	25	CK	8021B

Parameter	Result mg/kg	RL
Benzene	0.231	0.025
Ethylbenzene	6.58	0.025
Toluene	3.92	0.025
p/m-Xylene	13.8	0.025
o-Xylene	6.61	0.025

Surrogates	% Recovered	QC Limits (%)					
aaa-Toluene	318%	80	120				
Bromofluorobenzene	146%	80	120				

Approval:

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director

Jeanne McMurrey, Inong Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

Page 5 of 5

ENVIRONMENTAL LAB OF TEXAS

QUALITY CONTROL REPORT

8015M

Order#:	G0204547
	COLOTOTI

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0003201-02			<10.0		
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0204546-02	0	952	1180	123.9%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0204546-02	0	952	1190	125.%	0.8%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0003201-05		1000	1220	122.%	

ENVIRONMENTAL LAB OF TEXAS

QUALITY CONTROL REPORT

8021B/5030 BTEX

Order#: G0204547

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0003199-02			<0.025		
Ethylbenzene-mg/kg		0003199-02	,		<0.025		
Toluene-mg/kg		0003199-02			<0.025		
p/m-Xylene-mg/kg		0003199-02			<0.025		
o-Xylene-mg/kg		0003199-02			<0.025		
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0204546-13	0	0.1	0.110	110.%	·····
Ethylbenzene-mg/kg		0204546-13	0	0.1	0.115	115.%	
Toluene-mg/kg		0204546-13	0	0.1	0.114	114.%	
p/m-Xylene-mg/kg		0204546-13	0	0.2	0.230	115.%	
o-Xylene-mg/kg		0204546-13	0	0.1	0.113	113.%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0204546-13	0	0.1	0.108	108.%	1.8%
Ethylbenzene-mg/kg		0204546-13	0	0.1	0.113	113.%	1.8%
Toluene-mg/kg		0204546-13	0	0.1	0.112	112.%	1.8%
p/m-Xylene-mg/kg		0204546-13	0	0.2	0.228	114.%	0.9%
o-Xylene-mg/kg		0204546-13	0	0.1	0.111	111.%	1.8%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0003199-05		0.1	0.104	104.%	·
Ethylbenzene-mg/kg		0003199-05		0.1	0.109	109.%	,
Toluene-mg/kg	.=	0003199-05		0.1	0.108	108.%	
p/m-Xylene-mg/kg		0003199-05		0.2	0.230	115.%	
o-Xylene-mg/kg		0003199-05		0.1	0.108	108.%	

CASE NARRATIVE

ENVIRONMENTAL LAB OF TEXAS

Prepared for:

ENRON TRANSPORTATION SYSTEMS 5805 E. HWY. 80

MIDLAND, TX 79706

Order#: G0204547

Project: New Mexico State M

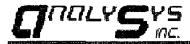
The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
SESM91602NSW8'	0204547-01	SOIL	09/16/2002	09/18/2002
SESM91602SSW8'	0204547-02	SOIL	09/16/2002	09/18/2002
SESM91602WSW8'	0204547-03	SOIL	09/16/2002	09/18/2002
SESM91602ESW8'	0204547-04	SOIL	09/16/2002	09/18/2002
SESM91602BH10'	0204547-05	SOIL	09/16/2002	09/18/2002

Surrogate recoveries are outside control limits due to interference from coeluting compounds

The enclosed results of analyses are representative of the s	samples as received by the laboratory. Environmental Lab of Texas
	is of sample collection, sample identification, or transportation
handling procedures used prior to our receipt of samples.	To the best of my knowledge, the information contained in this
report is accurate and complete // // /	, ,

Approved By


Environmental Lab of Texas I, Ltd.

Environmental Lab of Texas, Inc. 12600 West I-20 East Phone: 915-563-1800

Odessa Texas 79763

915-563-1713 Fax:

Project Mana	ager: FRANK HERNANDE	Z												Proj	ect :	Nan	ne:		Nev	w M	exic	o St	ate	M					····		_
Company Na	ame: <u>EOTT ENERGY PIPE</u>	LINE													Pro	ject	; #: _		200	1-1	1098	5								·	_
Company Addi	ress: <u>5805 E. HIGHWAY 80</u>)												P	roje	ct L	oc:														_
City/State/	/Zip: MIDLAND TX	79701																													_
Telephone	No: <u>915-638-3799</u>																														
Sampler Signat	No: <u>915-638-3799</u>	ne														_															
	0				#zgless													mo:	<u> </u>	1		An	aly	ze F	or			$\overline{}$		7	
					96)										ŀ		TC: FOI			\dashv	\dashv		_			1			1	
					*			-				_				7	ਹ	T	_	$\overline{}$	\dashv	\dashv		30						1	
201547			Date Sampled	Time Sampled	No. of Containers	ICE	HNO	HCI	NaOH	HSO	None	Other (Specify)	Water	Sludge	Soil	Other (Specify)	TDS/CL/SAR/E	TPH 418.1	TPH TX1005EXT	TPH 8015M GRO/DRO	Metals	Volatiles	Semivolatiles	BTEX 8021B/5030	Reactivity	Corrosivity	Ignitiabilty			RUSH TAT	Standard TAT
ol ses	M91602NSW8'		09/16/2002	10:00	1	X									X					X		\Box		X			\Box	コ	\Box	工	工
02 SES	M91602SSW8'		09/16/2002	10:10_	1_	_X.			_		_	_			X	_				X	_	_		X			\dashv	_		┷	_
o3 SES	M91602WSW8'		09/16/2002	10:20	1	X	<u> </u>	\vdash			\dashv			\vdash	X	_	_			X	\dashv			X	\dashv	_	\dashv	-	+	┿	┿
09 SES	M91602ESW8'		09/16/2002 09/16/2002	10:30 10:40	1	X					\dashv			$\vdash \vdash$	X	-	\dashv	-		X				X		-	\dashv	\dashv	-+-	╀	┼
N S S S S S S S S S S S S S S S S S S S	M91002BH10		09/10/2002	10.40	-	Δ.	-	\vdash	\dashv	-	\dashv	-		\vdash	$\stackrel{\Delta}{\longrightarrow}$	+	\dashv			^	\dashv	-		^		-	+	+	+	十	+-
		· · · · · · · · · · · · · · · · · · ·		<u> </u>	 	\vdash	\vdash				-	\dashv		\vdash	\dashv	┪			_		\neg	\dashv	\neg		_	_	\dashv	+	+	+	+
						—															\exists				\dashv		十	十	+	+	+
200 C 10 C 10 C																														1	
134									_		_	_]							\perp	\perp	\perp
Market L			ļ				ļ								_	\dashv	_	_			_	_			_		_	_			┷
31095 N/AS					<u> </u>	 	_	- 1	-	\dashv		\dashv				-			_		_				\dashv			\dashv	_	+	+
			ļ	<u> </u>	-	\vdash		+						┵	\dashv	\dashv	\dashv	-			\dashv	\dashv	{		\dashv	\dashv	\dashv	+	+	+	+-
			<u> </u>			\vdash	-			\vdash	┪			Н	\dashv	-	\dashv		-		\dashv	-	\dashv		\dashv	\dashv	\dashv	+	+	+	+
	· · · · · · · · · · · · · · · · · · ·				 -	\vdash						\neg		\vdash	\dashv	\dashv	_	\dashv	_	\dashv	\dashv	\neg			\dashv	_	\dashv	+	+	十	+-
Carrie Carrie									\neg			\neg				1	_	_	\neg		寸	_					\dashv	+	十	+	+
											\neg				\neg												十	十	十	+	+
*******					L																						\neg			1	1
Was att																													$oxed{oxed}$		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		·			<u> </u>				\Box						\perp						l		لـــــا						\perp		
Special Instruct																							San	nple	Co	ntai	ners	<u> I(7</u>	Ō	N	
	FAX	RESULTS	TO PAT M				NP.																						quest	t	
Relinquished:	Boone	Date 9-18	Time //. 45	Received	l by:	6	~ ~									\int	Γ	ate		7	ime	•	Lab	ora	tory	Co	nme	ents: /	: 1,5 '	<i>ان</i>	
Relipquished:()		Date	Time	Received	l by:											\dashv		ate	- 1		ime								1)		
Motto	ry	9-18-02	ISZU	Ze	1	<u>e</u> _	m	S	ne	w	7						9-	180	2	l.	520										

John Good

Environmental Plus, Inc.

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Report#/Lab 1D#: 141255

Report Date: 04/28/03

Project 1D: State M Battery 2001-11095 Sample Name: ESSM041003WBHC-10

Sample Matrix: soil

Date Received: 04/15/2003 Time: 09:15 **Date Sampled:** 04/10/2003 Time: 08:00

Phone: 505 394-3481

Address: P.O. Box 1558

Eunice.

Client:

Attn:

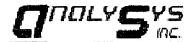
FAX: 505 394-2601

NM

88231

DEPORT OF ANALYSIS

REPORT OF ANALYSIS						QUALITY ASSURANCE DATA ¹							
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS ⁴		
TPH by GC (as diesel)	3240	mg/Kg	50	<50	04/23/03	8015 mod.		13.8	94.8	79.5	72.6		
TPH by GC (as diesel-ext)					04/22/03	3540							
TPH by GC (as gasoline)	825	mg/Kg	50	<50	04/23/03	8015 mod.		6.7	76.4	75.3	74.3		
Volatile organics-8260b/BTEX					04/17/03	8260b							
Benzene	<20	μg/Kg	20	<20	04/17/03	8260b	II	2	92.2	91.6	91.5		
Ethylbenzene	1100	μg/Kg	20	<20	04/17/03	8260b		3.9	104.9	103.8	98.8		
m,p-Xylenes	2210	μg/Kg	20	<20	04/17/03	8260b		5	105.2	100.5	99		
o-Xylene	1150	μg/Kg	20	<20	04/17/03	8260b		4	107.5	102.2	102.2		
Toluene	432	μg/Kg	20	<20	04/17/03	8260b		3	101.7	101.3	97.5		


This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Laster

Richard Laster

. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 #MS and/or MSD and PDS recoveries exceed advisory limits. P #Precision higher than advisory limit. M =Matrix interference.

Page#: 1 **Report Date:** 04/28/03

3512 Montopolis Drive, Austin. TX 78744 & 2269 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client:Environmental Plus, Inc.Project ID: State M Battery 2001-11095Report#/Lab ID#: 141255Attn:John GoodSample Name: ESSM041003WBHC-10Sample Matrix: soil

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1-Chlorooctane	8015 mod.	none/diluted	diluted @ 5X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 5X	D
1,2-Dichloroethane-d4	8260b	111	65-115	
Toluene-d8	8260b	91.6	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 **Report Date:** 04/28/03

Exceptions Report:

Report #/Lab 1D#: 141255 Matrix: soil

Client: Environmental Plus, Inc.

Attn: John Good

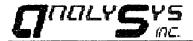
Project ID: State M Battery 2001-11095 **Sample Name:** ESSM041003WBHC-10

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- ☐ Sample received in appropriate container(s). State of sample preservation unknown.
- ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation...


J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
1-Chlorooctane 1-Chlorooctane		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

Notes:				

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

OUALITY ASSURANCE DATA¹

Client: Environmental Plus, Inc.

Attn: John Good
Address: P.O. Box 1558

Eunice. NM 88231

Phone: 505 394-3481 **FAX:** 505 394-2601

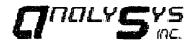
Project ID: State M Battery 2001-11095 **Sample Name:** ESSM041003MBHC-10

Sample Matrix: soil

REPORT OF ANALYSIS

						¥ 0.12011 1 7.130 210 11 0 2 2 11 1 11							
Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec.2	Recov.3	CCV ⁴	LCS ⁴			
7460	mg/Kg	50	<50	04/23/03	8015 mod.		13.8	94.8	79.5	72.6			
				04/22/03	3540								
2810	mg/Kg	50	<5()	04/23/03	8015 mod.		6.7	76.4	75.3	74.3			
				04/16/03	8260b								
61.3	μg/Kg	20	<20	04/17/03	8260b		2	92.2	91.6	91.5			
5910	μg/Kg	100	<100	04/16/03	8260b	 	3,9	104.9	103.8	98.8			
11700	μg/Kg	100	<100	04/16/03	8260b	 	5	105.2	100.5	99			
6330	μg/Kg	100	<100	04/16/03	8260b		4	107.5	102.2	102.2			
2710	μg/Kg	100	<100	04/16/03	8260b		3	101.7	101.3	97.5			
	7460 2810 61.3 5910 11700 6330	7460 mg/Kg mg/Kg mg/Kg f1.3 μg/Kg 5910 μg/Kg 11700 μg/Kg 6330 μg/Kg	7460 mg/Kg 50 2810 mg/Kg 50 61.3 μg/Kg 20 5910 μg/Kg 100 11700 μg/Kg 100 6330 μg/Kg 100	7460 mg/Kg 50 <50 2810 mg/Kg 50 <50 50	7460 mg/Kg 50 <50 04/23/03 04/22/03 2810 mg/Kg 50 <50	7460 mg/Kg 50 <50 04/23/03 8015 mod. 04/22/03 3540 2810 mg/Kg 50 <50	7460 mg/Kg 50 <50 04/23/03 8015 mod. 04/22/03 3540 2810 mg/Kg 50 <50	7460 mg/Kg 50 <50 04/23/03 8015 mod. 13.8 04/22/03 3540 2810 mg/Kg 50 <50	7460 mg/Kg 50 <50 04/23/03 8015 mod. 13.8 94.8 04/22/03 3540 2810 mg/Kg 50 <50	7460 mg/Kg 50 <50 04/23/03 8015 mod. 13.8 94.8 79.5 04/22/03 3540			

This analytical report is respectfully submitted by AnalySys. Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys. Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.


Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Page#: 1 Report Date: 04/28/03

John Good

Attn:

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client: Environmental Plus, Inc.

Project 1D: State M Battery 2001-11095 Sample Name: ESSM041003MBHC-10 Report#/Lab ID#: 141256 Sample Matrix: soil

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1-Chlorooctane	8015 mod.	none/diluted	diluted @ 5X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 5X	D
1,2-Dichloroethane-d4	8260b	100	65-115	
Toluene-d8	8260b	79.9	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 **Report Date:** 04/28/03

Exceptions Report:

Report #/Lab 1D#: 141256 Matrix: soil

Client: Environmental Plus, Inc.

Attn: John Good

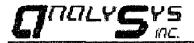
Project ID: State M Battery 2001-11095 **Sample Name:** ESSM041003MBHC-10

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- ☐ Sample received in appropriate container(s). State of sample preservation unknown.
- ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.


J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
1-Chlorooctane 1-Chlorooctane		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

Notes:	

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

QUALITY ASSURANCE DATA!

Client: Environmental Plus, Inc.

Attn: John Good Address: P.O. Box 1558

Eunice,

NM 88231

Phone: 505 394-3481

FAX: 505 394-2601

Report#/Lab ID#: 141257 Report Date: 04/28/03

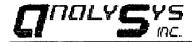
Project ID: State M Battery 2001-11095 Sample Name: ESSM041003EBHC-10

Sample Matrix: soil

REPORT OF ANALYSIS

			QUALITY ASSUMANCE DA												
Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec.2	Recov.3	CCV ⁴	LCS ⁴					
553	mg/K.g	5	<5	04/23/03	8015 mod.		13.8	94.8	79.5	72.6					
				04/22/03	3540	II									
17.4	mg/Kg	5	<5	04/23/03	8015 mod.		6.7	76.4	75.3	74.3					
				04/16/03	8260ს	II									
<20	μg/Kg	20	<20	04/16/03	8260Ь		2	92.2	91.6	91.5					
128	μg/Kg	20	<20	04/16/03	8260Ь		3.9	104.9	103.8	98.8					
291	μg/Kg	20	<20	04/16/03	8260b	II	5	105.2	100.5	99					
101	μg/Kg	20	<20	04/16/03	8260b		4	107.5	102.2	102.2					
<20	μg/Kg	20	<20	04/16/03	8260b	J	3	101.7	101.3	97.5					
	553 17.4 <20 128 291 101	553 mg/Kg 17.4 mg/Kg <20 μg/Kg 128 μg/Kg 291 μg/Kg 101 μg/Kg	553 mg/Kg 5 17.4 mg/Kg 5 <20 μg/Kg 20 128 μg/Kg 20 291 μg/Kg 20 101 μg/Kg 20	553 mg/Kg 5 <5	553 mg/Kg 5 <5 04/23/03 17.4 mg/Kg 5 <5 04/22/03 17.4 mg/Kg 5 <5 04/23/03 04/16/03 <20 μg/Kg 20 <20 04/16/03 128 μg/Kg 20 <20 04/16/03 291 μg/Kg 20 <20 04/16/03 101 μg/Kg 20 <20 04/16/03	553 mg/Kg 5 <5 04/23/03 8015 mod. 17.4 mg/Kg 5 <5	553 mg/Kg 5 <5 04/23/03 8015 mod. 17.4 mg/Kg 5 <5	553 mg/Kg 5 <5	553 mg/Kg 5 <5 04/23/03 8015 mod. 13.8 94.8 17.4 mg/Kg 5 <5	553 mg/Kg 5 <5 04/23/03 8015 mod. 13.8 94.8 79.5 17.4 mg/Kg 5 <5 04/23/03 8015 mod. 6.7 76.4 75.3 04/16/03 8260b 2 92.2 91.6 128 μg/Kg 20 <20 04/16/03 8260b 3.9 104.9 103.8 291 μg/Kg 20 <20 04/16/03 8260b 5 105.2 100.5 101 μg/Kg 20 <20 04/16/03 8260b 5 105.2 100.5 102.2					

This analytical report is respectfully submitted by AnalySys. Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.


Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

Page#: 1 Report Date: 04/28/03

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client: Environmental Plus, Inc.

John Good

Attn:

Project 1D: State M Battery 2001-11095 Sample Name: ESSM041003EBHC-10 Report#/Lab ID#: 141257 Sample Matrix: soil

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1-Chlorooctane	8015 mod.	62.9	50-150	
p-Terphenyl	8015 mod.	51.1	50-150	
1,2-Dichloroethane-d4	8260b	115	65-115	
Toluene-d8	8260b	99	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 04/28/03

Exceptions Report:

Report #/Lab 1D#:141257 Matrix: soil	
Client: Environmental Plus, Inc.	Attn: John Good
Project ID: State M Battery 2001-11095	
Sample Name: ESSM041003EBHC-10	

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

■ Sample received in appropriate container(s) and appear to be appropriately preserved.
☐ Sample received in appropriate container(s). State of sample preservation unknown.
☐ Sample received in inappropriate container(s) and/or with unknown state of preservation

J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Qualif	Comment
J	See J-flag discussion above.
~	

Chain of Custody Form

Analysis Inc.

512-444-5896 FAX: 512-447-4766

4221 Freidrich Lane, Suite 190, Austin, TX 78744

2209 N. Padre Island Dr., Corpus Christi, TX 78408

Company Name	Environmental	Plus, Inc						10		11.5	Bill	To		·			基基。	AN	ALY	SIS	RE	QUE	ST			1
EPI Project Mana	ger John Good					Ī	باخداد الاست					نساستان			Î	Ī	<u> </u>		Γ				T	T	T	٦
Mailing Address	P.O. BOX 1558	3		الشعد بدار فدالا		1																			-	۱
City, State, Zip	Eunice New M	exico 882	231			1	A STATE OF	Marie Marie																		١
EPI Phone#/Fax# 505-394-3481 / 505-394-2601						1	1	3018	u. ke ^{jarr} i,	i i jiha e engi	-	> p-	OKO	4 1		•									1	
Client Company	EOTT Energy Co	0.]	1495 <u>1</u> 1	W.,,	i il.	\$ <u>}</u> {	i. C	- I	nerç	У												l
Project Name (In	v Ref) State M Batte	对200年	109	15																						l
Project Location	UL-C SECTIOI	N 29 T22	S R	37E]																				ı
EPI Sampler Nam	ne John Good																									۱
						MA.	TRIX			PR	ESE	RV.	SAMP	LING]								ı			
LAB I.D.	SAMPLE I.D.	(G)RAB OR (C)OMP	# CONTAINERS	GROUND WATER	WASTEWATER	SOIL	CRUDE OIL	SLUDGE	OTHER:	ACID/BASE	ICE/COOF	OTHER	DATE	TIME	BTEX 8021B	TPH 8015M	CHLORIDES (CF)	SULFATES (SO4")	Hd	TCLP	OTHER >>>					
1412551	ESSM041003WBHC-10	G	1			X					X		10-Apr	8:00	X	X										1
	ESSM041003MBHC-10	G	1			X					X		10-Apr	8:05	X	X]
1412573	E88M041003EBHC-10	G	1			X					X		10-Apr	8:10	X	X										
4																										
5														-				<u> </u>								
6															<u> </u>		<u> </u>									brack
7					<u> </u>		<u> </u>								<u> </u>			<u></u>		<u> </u>						l
8			1	ــــــــــــــــــــــــــــــــــــــ		<u> </u>	<u> </u>				<u></u>							<u> </u>								┛
9			1	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	_		<u></u>				<u> </u>			<u> </u>		<u> </u>	Ļ	<u> </u>	<u> </u>						┛
10				<u> </u>	1_	<u>L</u>	L.,		<u> </u>		Ļ	<u></u>			<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u>L</u>	لبل					
					6-1 1			44	111				118916			3 4	5									
	en fran Time 4	1:00.5	ceive	·	1							IARKS			505-	394-	2601	ı								
Relinquished by Parks 115/03 Received By: (lab sta			211) 1	1		Ĺ	ارد			T= 5.	4,0															
Delivered by: Sample Cool & Intact Yes No			w		kan Chi	ecked	Nン By:	3						- بنوست												

District I

1625 N. French Dr., Hobbs, NM 88240

State of New Mexico Energy Minerals and Natural Resources

Form C-141

Revised March 17, 1999

District II

1301 W. Grand Avenue, Artesia, NM 88210

District III

1000 Rio Brazos Road, Aztec, NM 87410

District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back

side of form

		Kele	ease Noti	incation :	and Corr	ective Action							
	(PERATO	R			☐ Initial Report	☑ Final Report						
Name of Com				······································	Contact								
EOTT Energ	zy Pipeline L	P			Frank Herns	ındez							
Address			***************************************		Telephone No.								
P.O. Box 166	50		Midland,	TX 79702	1 •								
Facility Name	e				Facility Type								
State M Batt					Crude Oil Gathering Line								
					1, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Surface Own	er			Mineral Own	ner		Lease No.						
State of New	Mexico			NA		_	NA						
			L	CATION	OF RELEA	SE							
Unit Letter	Section	Township	Range	Feet from	Feet from	Longitude	Latitude	County:					
c	29	22S	37E	South Line	West Line	103°11'10"W	32°22'03"N	Lea					
<u> </u>	47	220	3/15	4317	2300	103-11 10 W	32°22 63 N	Lea					
			1	NATURE O	F RELEAS	E							
Type of Relea					Volume of R	elease	Volume Recovered						
		sociated com	ponents	····	unknown - h			bbl					
Source of Re						er of Occurrence	Date and Hour of Di	scovery					
4" Steel Cru Was Immedia					9/3/2001	n 0	9/3/2001 4:30 PM	···, ·/ <u>.</u>					
	ne Nouce Gr □ Yes	ven≀ □ No	☑ Not R	equired	If YES, To W	/nom?							
By Whom?	<u> </u>		<u> </u>	сушки	Date and Ho	tr	3 - 12 3 4 5						
Dy whom:							21-12345						
Was a Water	course Reach	ed?		•	If YES, Volu	me Impacting the W	atercourse.	- 18°C					
<u> </u>		□ Yes	☑ No		NA	/		1 0 1					
If a Watercou	irse was Impa	cted, Describ	e Fully.*			15	1 1	3/					
NA						(50		12					
						/2	000	- E3/-					
		n and Remedi				/	7	10157					
Internally C	orroded 4" p	oipeline (Eun	ice Gatherin	g), repaired	with clamp.		/çç ^z /	NS7/					
Describe Are	a Affected or	d Cleanup A	tion Taken			····	1819202181	1)					
T .					D1:- 20 7	N	expanded to 85' X 4	E V 101					
		id water occu il was covered				ne excavation was	expanded to 92. Y 4	12. Y 10.					
and the cont	ammacu su	I MW2 COACIC	ı widi 2-it d	mpacieu cia	y Dailiei.								
71	. 4 . 4 . : - C .			11-4- 4- 4	6 1		-1.4. A	00D11					
							nd that pursuant to NM tions for releases which						
							loes not relieve the oper						
		•	• •				und water, surface water	•					
1			•	C-141 report	does not relieve	the operator of respon	nsibility for compliance	with any other					
lederal, state, c	A local laws an	d/or regulations	.	, 	,								
Signature:	A	ank'	perman	14E]	OIL CONSERVA	ATION DIVISION						
Printed Nam	e:	Frank Hern	andez		Approved by District Supervisor:								
Title:	EOTT Dista	rict Environn	nental Supt.		Approval Da	oval Date: Expiration Date:							
Date:	6/23/03	Phone:	(432)					Attached .					
			(Conditions of	f Approval:	· · · · · · · · · · · · · · · · · · ·						