

Japan 10-05

SITE CHARACTERIZATION

AND

Proposal for Risk-Based Closure

G-28-4 (REF. #130002)

UL-P (SE% of the SE%) of Section 21 T22S R36E ~7.7 MILES SOUTHWEST (BEARING 227°) OF EUNICE LEA COUNTY, NEW MEXICO

LATITUDE: N32° 22' 23.073"

LONGITUDE: W103° 15' 52.003"

OCTOBER 2005

PREPARED BY:

Environmental Plus, Inc.

2100 Avenue O P.O. Box 1558 Eunice, NM 88231

Phone: (505)394-3481 FAX: (505)394-2601 iolness@envplus.net

STANDARD OF CARE

Site Characterization and Proposal for Risk-Based Closure

G-28-4 Ref. # 130002

The information provided in this report was collected consistent with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993), the NMOCD Unlined Surface Impoundment Closure Guidelines (February 1993), and the Environmental Plus, Inc. (EPI) Standard Operating Procedures and Quality Assurance/Quality Control Plan. The conclusions are based on field observations and laboratory analytical reports as presented in the report. Recommendations follow NMOCD guidance and represent the professional opinions of EPI staff. These opinions were arrived at with currently accepted geologic, hydrogeologic and engineering practices at this time and location. The report was prepared or reviewed by a certified or registered EPI professional with a background in engineering, environmental, and/or the natural sciences.

This report was prepared by:	
Pain A Oeres	70etober 2005
Iain A. Olness, P.G.	Date
Hydrogeologist	
This report was reviewed by:	
John Castan	10-7.05
Pat McCasland	Date
Environmental Consultant	. Mr. P. S
	5 cm
	Date LINE ITAD
	LINE
	L 1.

Distribution List

Name	Title	Company or Agency	Mailing Address	e-mail
Larry Johnson	Environmental Engineer	NMOCD	1625 North French Drive Hobbs, NM 88240	lwjohnson@state.nm.us
Steve Weathers	Senior Environmental Specialist	DEFS	370 17th Street, Suite 2500 Denver, Colorado 80202	swweathers@duke-energy.com
Lynn Ward	Senior Environmental Specialist	DEFS	10 Desta Drive, Suite 400-W Midland, TX 79705	lcward@duke-energy.com
Mark Owens	Construction Maintenance Supervisor	DEFS	1625 West Marland Hobbs, NM 88240	mrowens@duke-energy.com
File		EPI	P.O. Box 1558 Eunice, NM 88231	iolness@envplus.net

NMOCD - New Mexico Oil Conservation Division

DEFS - Duke Energy Field Services

EPI – Environmental Plus, Inc.

Table of Contents

Proje	ect Si	ımmary	1
1.0	Intro	oduction & Background	2
2.0	Site	Description	3
	2.1	Historical Use	3
	2.2	Legal Description	3
	2.3	Photographic Documentation	3
	2.4	Geological Description	3
	2.5	Ecological Description	3
	2.6	Area Groundwater	3
	2.7	Area Water Wells	4
	2.8	Area Surface Water Bodies	4
3.0	Envi	ronmental Media Characterization	4
	3.1	Area Groundwater Levels	4
	3.2	Depth to Groundwater Calculation	4
	3.3	Groundwater Gradient	4
	3.4	Wellhead Protection Area	.5
	3.5	Distance to Nearest Surface Water Body	5
	3.6	Identification of Remedial Action Levels	5
		3.6.1 Site Ranking	5
		3.6.2 Remedial Action Levels	5
4.0	Sub	surface Soil Investigation	6
5.0	Soil	Remediation	6
6.0	Gro	undwater Investigation	6
7.0	Clos	ure Proposal	.7
8.0	Risk	/ Exposure Assessment	.7
	8.1	Contaminated Soil Distribution	.7
	8.2	Engineered Barrier	.7
	8.3	Conservative Model Inputs	. 7
	8.4	Simulation I: Nor Barrier	8
	8.5	Simulation II: Barrier	8.
9.0	Con	clusions	.8
10.0	Rece	nmmendations	R

Fi	gures	
	Euro	

Figure 1	Area Location Map
Figure 2	Site Location Map
Figure 3	Site Map
Figure 4	Soil Boring Location Map
Figure 5	Sampling Location Map
Figure 6	Contaminant concentrations in the Sources Area With and Without an Engineered Barrier
Figure 7	Contaminant concentrations at the Watertable With and Without an Engineered Barrier

Tables

Table 1	Summary of Excavation Analytical Results
Table 2	Summary of Soil Boring Analytical Results
Table 3	Well Information Report
Table 4	Contaminant Concentrations in the Soil at the Source Area
Table 5	Contaminant Concentrations in the Soil at the Watertable

Appendices

Appendix I	Laboratory Analytical Reports and Chain-of-Custody Forms
Appendix II	Site Photographs
Appendix III	Risk / Exposure Assessment Input Data
Appendix IV	Site Information and Metrics Form and Initial C-141

Project Summary

Site Specific:

♦ Company Name: Duke Energy Field Services

♦ Facility Name: G-28-4

♦ Project Reference: 130002

♦ Company Contact: Steve Weathers

♦ Site Location: WGS84: N 32° 22' 23.073" and W 103° 15' 52.003"

Legal Description: UL-P (SE¹/₄ of the SE¹/₄) of Section 21, T 22 S, R 36 E

◆ General Description: ~7.7 miles southwest of Eunice, Lea County, New Mexico

♦ Elevation: 3,507-ft amsl

Depth to Ground Water: ~160-ft

♦ Land Ownership:

Millard Deck Estate

◆ EPI Personnel:

Project Consultant - Iain Olness

Project Foreman – Morris Burkett

Release Specific:

♦ Product Released: Natural Gas & NGL

Volume Released: Unknown

Volume Recovered: 0 bbl

Time of Occurrence: Unknown

Time of Discovery: 14 April 2004

♦ Release Source: 8" Steel Pipeline

♦ Initial Surface Area Affected: ~2,010-ft²

Remediation Specific:

♦ Final Vertical extent of contamination: 120-ft bgs; Remaining depth to ground water: ~40-ft

♦ Water wells within 1000-ft: 0

Surface water bodies within 1000-ft: 0

♦ NMOCD Site Ranking Index: 10 points (water table between 50 and 100 feet)

♦ Remedial goals for Soil: 0-59-ft bgs TPH - 5,000 ppm; BTEX - 50 ppm; Benzene - 10 ppm; Chlorides – 250 ppm; Sulfates – 600 ppm.

60-109-ft bgs TPH – 1,000 ppm; BTEX – 50 ppm; Benzene – 10 ppm; Chlorides – 250

ppm; Sulfates – 600 ppm.

110-160-ft bgs TPH – 100 ppm; BTEX – 50 ppm; Benzene – 10 ppm; Chlorides – 250 ppm; Sulfates – 600 ppm.

♦ RCRA Waste Classification: Exempt

• Remediation Option Selected: a) Excavation and transport of soil impacted above NMOCD remedial goals to an approved land farm; b) Vertical delineation of soil contamination; c) Riskbased closure assessment; d) Installation of impermeable layer (i.e., clay barrier or poly liner) and backfill with clean soil upon NMOCD approval.

♦ Disposal Facility: NM-01-0013

Volume disposed of: ~1,190 yds³

Project Completion Date: NA

1.0 Introduction & Background

This report addresses the site investigation and remediation of the Duke Energy Field Services (DEFS) G-28-4 (Ref. #130002) natural gas discharge line remediation site. On April 5, 2004, Environmental Plus, Inc. (EPI), Eunice-NM, was notified by DEFS regarding a natural gas and associated natural gas liquid (NGL) release at this site. The initial C-141 Form submitted to NMOCD (May 3, 2004) reports the release volume (NGL) as unknown with no recovery. On April 14, 2004, EPI mobilized to the site and commenced GPS delineation, photography and preliminary evaluation of the site. The overall affected site consisted of a ~1,190-ft² release area with a small (~880-ft²) historical release area (reference Figure 3). Remediation of this release site consisted of the excavation and disposal (at a State of New Mexico Land Treatment Facility) of the visibly contaminated soil from the release areas to a depth of approximately 7 feet below ground surface (bgs). Samples were collected at 5 and 10 feet bgs to determine the extents and magnitude of contamination associated with the release site. The samples were analyzed in the field for the presence of organic vapors utilizing an UltraRaeTM photoionization detector (PID) equipped with a 9.8 electron volt (eV) lamp. Hydrocarbon contaminant concentrations were confirmed at the 5-foot, and 10-foot depths with composite samples and lab analyses (reference Table 1 and Appendix I). Additionally, analyses of the 5-foot and 10-foot samples for chlorides indicated that this inorganic contaminant was of no concern at this site. The excavation was expanded laterally in all directions to a surface area of ~1,910-ft². The contaminated soil was transported to the Environmental Plus, Inc. (EPI) land treatment facility located south of Eunice, New Mexico.

Due to the high concentrations of total petroleum hydrocarbons (TPH) situated at 5 and 10 feet bgs, a soil boring was advanced to delineate the vertical extent of contamination. Soil boring SB-1 was advanced to a depth of 74 feet bgs, the maximum depth for the drilling rig. The last sample analyzed was collected from the 62-64 feet bgs sampling interval with analytical results indicating TPH concentrations in excess of the NMOCD remedial thresholds for this site. Based on this, a larger drilling rig was utilized to advance a second soil boring at the site to further delineate the vertical extent of contaminated soil. The second soil boring, SB-2, was advanced to a depth of 70 feet bgs and samples collected at 60, 65 and 70 feet bgs. Field and laboratory analyses indicated contaminant concentrations were below NMOCD remedial thresholds. However, due to the fact that the soil boring was advanced on the north side of the pipeline, approximately 15 feet from the original soil boring and conflicting analytical results, a third soil boring was advanced, SB-1A, was advanced adjacent to soil boring SB-1. This soil boring was advanced to a depth of 120 feet bgs, at which depth, field analyses indicated the vertical extent of contamination had been delineated. Analytical results for the sample collected from the 120 to 122 feet bgs sampling interval confirmed that the vertical extent of contamination had been delineated.

The natural gas and associated NGL release at this site was discovered on April 5, 2004 by DEFS personnel and reported to NMOCD on May 3, 2004 by Iain Olness of EPI, on behalf of DEFS. The Initial NMOCD C-141 Form was submitted on May 3, 2004 by EPI. The leak was the result of internal pipe corrosion and was repaired by replacement of a section of the pipeline.

2.0 Site Description

The site is located approximately 7.7 miles southwest of Eunice, Lea County, New Mexico on property owned by the Millard Deck Estate.

2.1 Historical Use

The area has historically been used for livestock grazing and access to oil and gas production facilities.

2.2 Legal Description

The legal description for the site is: Unit Letter-P (SE¼ of the SE¼) of Section 21, Township 22 South, Range 36 East at latitude N 32° 22' 23.073" and longitude W 103° 15' 52.003". The site is at an elevation of approximately 3,507 feet above mean sea level.

2.3 Photographic Documentation

Photographs are included as Appendix II.

2.4 Geological Description

The United States Geological Survey (USGS) Ground-Water Report 6, "Geology and Ground-Water Conditions in Southern Lea County, New Mexico," A. Nicholson and A. Clebsch, 1961, describes the near surface geology of southern Lea County as "an intergrade of the Quaternary Alluvium (QA) sediments, i.e., fine to medium sand, with the mostly eroded Cenozoic Ogallala (CO) formation. Typically, the QA and CO formations in the area are capped by a thick interbed of caliche and generally overlain by sandy soil."

The release site is located in the Eunice Plain physiographic subdivision, described by Nicholson & Clebsch as an area "underlain by a hard caliche surface and is almost entirely covered by reddish-brown dune sand". The thickness of the sand cover ranges from 2-5 feet in most areas to as much as 20-30 feet in drift areas.

2.5 Ecological Description

The area is typical of the Upper Chihuahuan Desert Biome consisting primarily of hummocky sand hills covered with Harvard Shin Oak (*Querqus harvardi*) interspersed with Honey Mesquite (*Prosopis glandulosa*) along with typical desert grasses, flowering annuals and flowering perennials. Mammals represented, include Orrd's and Merriam's Kangaroo Rat, Deer Mouse, White Throated Wood Rat, Cottontail Rabbit, Black Tailed Jackrabbit, Mule Deer, Bobcat, Red Fox and Coyote. Reptiles, Amphibians, and Birds are numerous and typical of area. A survey of Listed, Threatened, or Endangered species was not conducted.

2.3 Area Groundwater

The unconfined groundwater aquifer at this site is projected to be ~160-ft bgs based on water depth data obtained from the NM State Engineers Office data base for water wells located in this portion of Lea County. Groundwater gradient in this area is generally to the east-southeast.

2.4 Area Water Wells

All recorded wells are greater than 1,000 horizontal feet from the site.

2.5 Area Surface Water Features

No surface water bodies exist within 1,000 horizontal feet of the site.

3.0 Environmental Media Characterization

Contaminant delineation and remedial work done at this site indicate that the chemical parameters of the soil and the physical parameters of the ground water were characterized consistent with the characterization and remediation/abatement goals and objectives set forth in the following New Mexico Oil Conservation Division (NMOCD) publications:

- ♦ Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993)
- ♦ Unlined Surface Impoundment Closure Guidelines (February 1993)

Acceptable thresholds for contaminants/constituents of concern (CoCs) were determined based on the NMOCD Ranking Criteria as follows:

- ♦ Depth to Groundwater (i.e., distance from the lower most acceptable concentration to the groundwater);
- ♦ Wellhead Protection Area (i.e., distance from fresh water supply wells); and
- ♦ Distance to Surface Water Body (i.e., horizontal distance to all down gradient surface water bodies).

3.1 Area Groundwater Levels

The New Mexico Office of the State Engineer database indicates there are four water supply wells located within 8,000 feet of the release site (reference *Table 3*). The closest of these wells (CP 00485 EXP) is located approximately 1,800 feet northeast of the release site. Records from the New Mexico Office of the State Engineer indicate an average depth to water of approximately 160 feet bgs in the vicinity of the release. Drilling activities associated with delineating the vertical extent of hydrocarbon impacted soil extended to a depth of 120 feet bgs. During these activities, no groundwater or saturated soil was encountered; verifying the depth to groundwater at least exceeds 120 feet bgs.

3.2 Depth to Groundwater Calculation

The NMOCD requires the site to be ranked to determine applicable remedial thresholds for TPH, benzene and total BTEX. The depth to groundwater is defined as the vertical distance from the lowermost contaminants to the seasonal high groundwater elevation. Depth to groundwater at the release site is approximately 160 feet bgs. Soil samples collected during the advancement of soil borings at the site indicated contamination exists to depths of at least 117 feet bgs. The calculated NMOCD depth to groundwater is approximately 43 feet.

3.3 Groundwater Gradient

The groundwater gradient in the area of the release is generally to the southeast according to the USGS Groundwater Report #6 – Geology and Groundwater Conditions in Southern Lea County, New Mexico (Nicholson, Jr. and Clebsch, 1961).

FROM BOTTOM OF CONTAN.

3.4 Wellhead Protection Area

There are no water supply wells located within a 1,000-foot radius of the release site, based on information available from the New Mexico Office of the State Engineer.

3.5 Distance to Nearest Surface Water Body

There are no bodies of surface water located within a 1,000-foot radius of the release site.

3.6 Identification of Remedial Action Levels

Remedial goals for the impacted soil at this site were determined in accordance with the NMOCD Guidelines. The NMOCD depth to groundwater is calculated to be approximately 43 feet bgs.

3.6.1 Site Ranking

Based on the proximity of the site to protectable area water wells, surface water bodies, and depth to ground water from the lower most contamination, the NMOCD ranking score for the site varies with the depth of the contamination with the soil remedial goals highlighted in the Site Ranking table presented below.

1. Groundwater	2. Wellhead Protection Area	3. Distance to Surface Water
Depth to GW <50 feet: 20 points	If <1000' from water source, or; <200'	<200 horizontal feet: 20 points
Depth to GW 50 to 99 feet: 10 points	from private domestic water source: 20 points	200-1000 horizontal feet: 10 points
Depth to GW >100 feet: 0 points	If >1000' from water source, or; >200' from private domestic water source: 0 points	>1000 horizontal feet: 0 points
Groundwater Score = 0, 10 or 20 as outlined below	Wellhead Protection Score= 0	Surface Water Score= 0
$\underline{\mathbf{G}\mathbf{W}} + \underline{\mathbf{W}\mathbf{P}} + \underline{\mathbf{S}\mathbf{W}} = \mathbf{S}\mathbf{c}$	ore	#Wikiphatanguan mulifire H-Q1 ketilahan ummulifi AMATTI situ manguan ummulifi ketikangga paga intraksa pabup
Site Rank $(1+2+3) = 0 + 0 + 0 = 0$ poir	nts (for soil 0-59'bgs)	
Site Rank $(1+2+3) = 10 + 0 + 0 = 10$ p	oints (for soil 60-109'bgs)	
Site Rank $(1+2+3) = 20 + 0 + 0 = 20$ p	oints (for soil 110-160'bgs)	

3.6.2 Remedial Action Levels

Based on the Site Ranking, the remedial action levels for the soil at this site, according to NMOCD Guidelines, are:

	Total Site Ranking Score and Accep	table Remedial Goal Concentrations	
Parameter	20 or >	10	0
Benzene ¹	10 ppm	10 ppm	10 ppm
BTEX ¹	50 ppm	50 ppm	50 ppm
ТРН	100 ррт	1,000 ppm	5,000 ppm

The New Mexico Water Quality Control Commission (NMWQCC) groundwater maximum contaminant levels for TPH, BTEX and chloride are as follows:

Parameter	NMWQCC Groundwater Standard
ТРН	No standard
Benzene	10 micrograms per liter (µg/L)
Toluene	750 µg/L
Ethylbenzene	750 µg/L
Total Xylenes	620 μg/L
Chloride	250 micrograms per liter (mg/L)

4.0 Subsurface Soil Investigation

The vertical and lateral extents of hydrocarbon contamination at the site were determined by excavation of the release area to a depth of approximately 7 feet bgs and the advancement of a soil boring to a depth of 120 feet bgs. It was determined that the NGL had penetrated the soil to a depth of ~117 feet beneath the POR. The lateral extent of contamination was within a ~25 to 40 foot radius of the POR. Contamination extent was determined by utilizing PID to measure organic vapors in the soil samples collected during delineation activities. Discrete soil samples were submitted to an independent laboratory for quantification of total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and total xylenes (BTEX constituents) and chloride to confirm field analyses. Laboratory analyses indicated high levels of contaminants to a depth of ~102 feet bgs, with levels dissipating to non-detectable at a depth of 122 feet bgs (reference *Table* 2).

Soil samples collected from the sidewalls of the excavation indicated low levels of organic vapors present in the north, east and west sidewalls (i.e., <100 ppm) and moderate levels present in the south sidewall (i.e., <1,000 ppm). These samples were not submitted to an independent laboratory for quantification; however, soil samples will be submitted to ensure that the sidewalls of the excavation contain no contaminated soil. Should contaminated soil remain in the sidewall, excavation activities will resume and continue until such time that field and laboratory analyses indicate the successful removal of the contaminated soil.

5.0 Soil Remediation

The excavated soil, ~1,190 yds³, was transported to the Environmental Plus, Inc. (EPI) land treatment facility located south of Eunice, New Mexico.

6.0 Groundwater Investigation

The projected depth to groundwater at this site is ~160-ft bgs. Delineation activities determined that hydrocarbon impacts extend to a depth of approximately 117 feet bgs. Based on the depth to groundwater and analytical results obtained from soil samples collected during the advancement of the soil borings, it is believed that groundwater was not impacted due to this release. Therefore, no groundwater investigation is required.

7.0 Closure Proposal

Approximately 1,820 yds³ of hydrocarbon-impacted soil remain at the site and is represented by an inverted cone extending from the release area to a depth of approximately 117 feet bgs. It is proposed to isolate the remaining source term with an impermeable barrier constructed of dense compactable red clay with a minimum permeability of 1 X 10⁻⁵ cm/sec. The barrier will extend a minimum of three feet beyond the edges of soil impacted above the NMOCD remedial thresholds for this site and will be a minimum of one-foot thick. The barrier will be installed in six-inch lifts, compacted and tested to verify that the compaction has achieved a minimum of 95% of its Proctor Density. Installation of the clay barrier at a depth of approximately 7 feet bgs will protect the barrier from erosion and human intrusion for a term sufficient to allow natural biodegradation of contaminants in the soil. After the barrier has been installed and tested to be acceptable, the excavation will be backfilled with clean soil purchased from the land owner and currently stockpiled on site.

8.0 Risk / Exposure Assessment

To support and justify the closure proposal discussed in Section 7.0, a conservative risk/exposure assessment was conducted utilizing RISC Version 4.03, developed by Lynn R. Spence for BP Oil and previously provided to the NMOCD. The analytical information collected and the viable and conservative RISC risk/exposure assessment supports approval of this closure proposal addressing the soil contamination at the DEFS G-28-4 release site.

8.1 Contaminated Soil Distribution

It is estimated that approximately 1,820 yds³ of hydrocarbon-impacted soil remain, extending approximately 110 feet from the base of the current excavation. In addition, there appears, based on field analyses, to be a limited amount of impacted soil in the sidewall(s) of the excavation. The quantity of impacted soil remaining in the sidewall(s) has not been calculated; however, it will be removed prior to the placement of the clay barrier.

8.2 Engineered Barrier

The proposed compacted clay barrier will extend a minimum of three feet past the edges of soil impacted above the NMOCD remedial thresholds for this site, will be a minimum of one-foot thick following compaction, be installed in six-inch lifts and contoured radially to shed water. The oversized barrier will prevent further vertical migration of the hydrocarbon source term. The clay barrier will have a minimum permeability of 1 X 10⁻⁵ cm/sec and 95% of its Proctor Density. The barrier will be installed from 6 to 7 feet bgs and will be sufficiently isolated as to ensure the barrier will not be eroded nor penetrated inadvertently by human activity. A conservative groundwater risk/exposure assessment was conducted to demonstrate the effectiveness of the clay barrier in preventing groundwater impacts by isolating the remaining hydrocarbon source term and interrupting the vertical migration pathway.

8.3 Conservative Model Inputs

To ensure the closure proposal would prevent contaminants from impacting the area groundwater, conservative hydrogeologic parameters were used in the simulations. The input parameters/variables are included in Appendix IV.

8.4 Simulation I: No Barrier

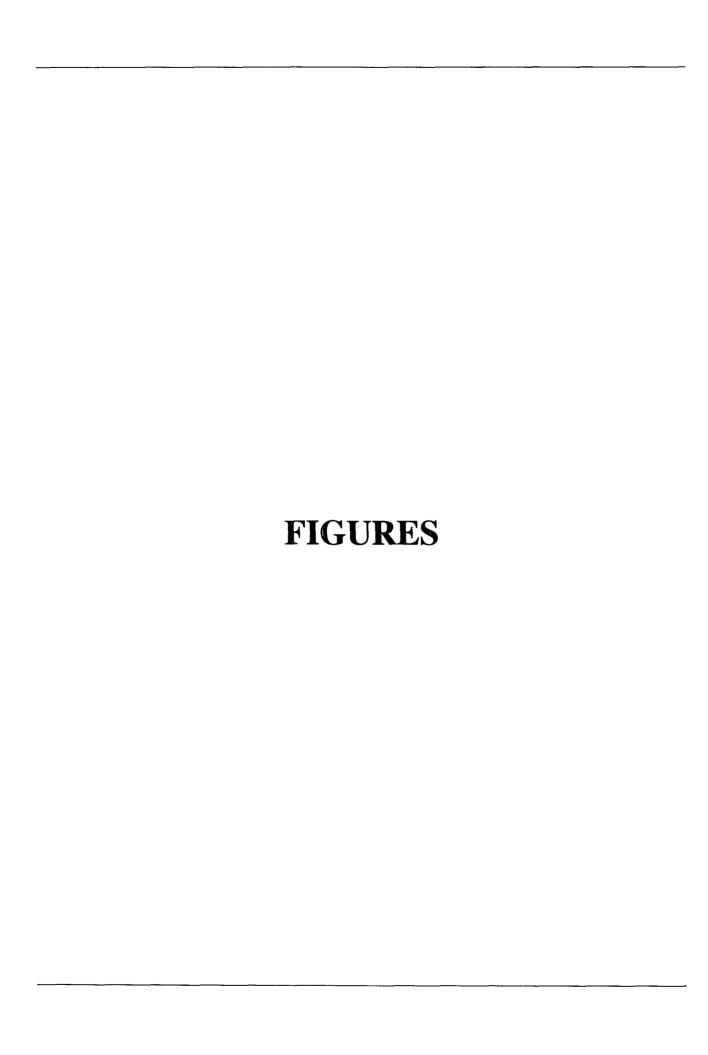
A model was completed to simulate existing conditions to determine if groundwater would be impacted by the release. The input parameters for this model are included in Appendix IV.

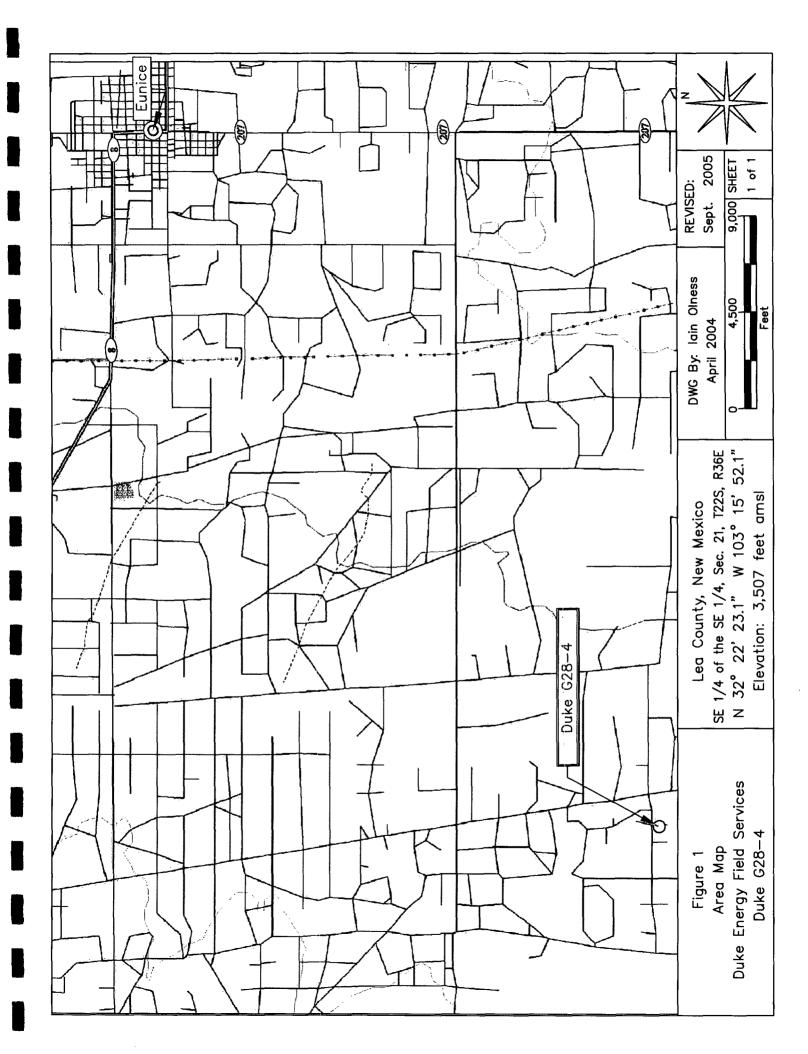
Results of the simulation indicated groundwater would be impacted in approximately 11 years, with concentrations exceeding the NMWQCC standards (reference *Tables 4 & 5* and *Figures 7 & 8*).

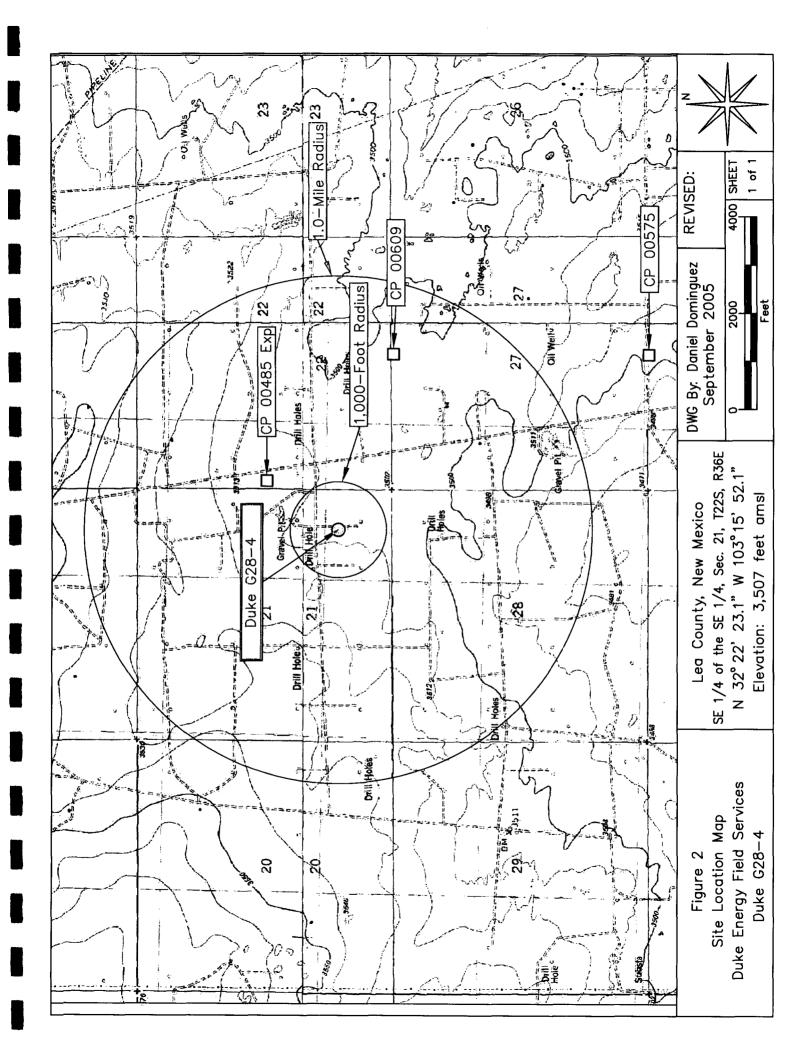
8.5 Simulation II: Barrier

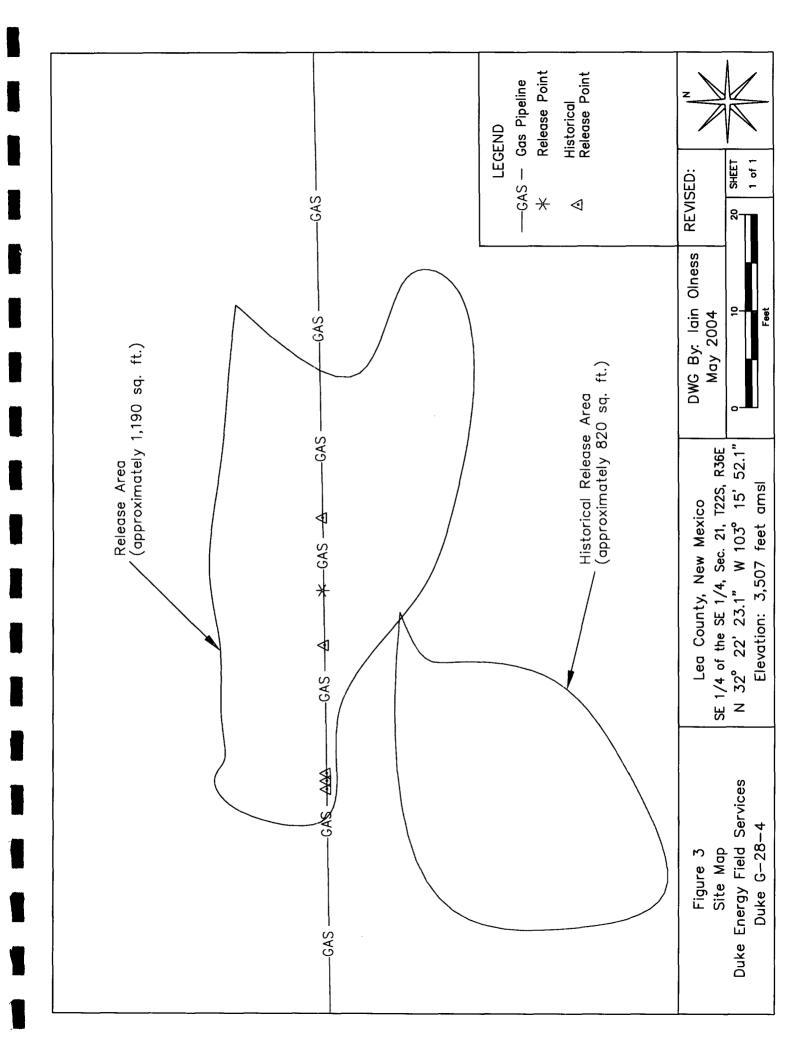
A model was completed to simulate the placement of a clay barrier in the excavation at a depth of approximately 7 to 8 feet bgs. The input parameters for this model are included in Appendix IV.

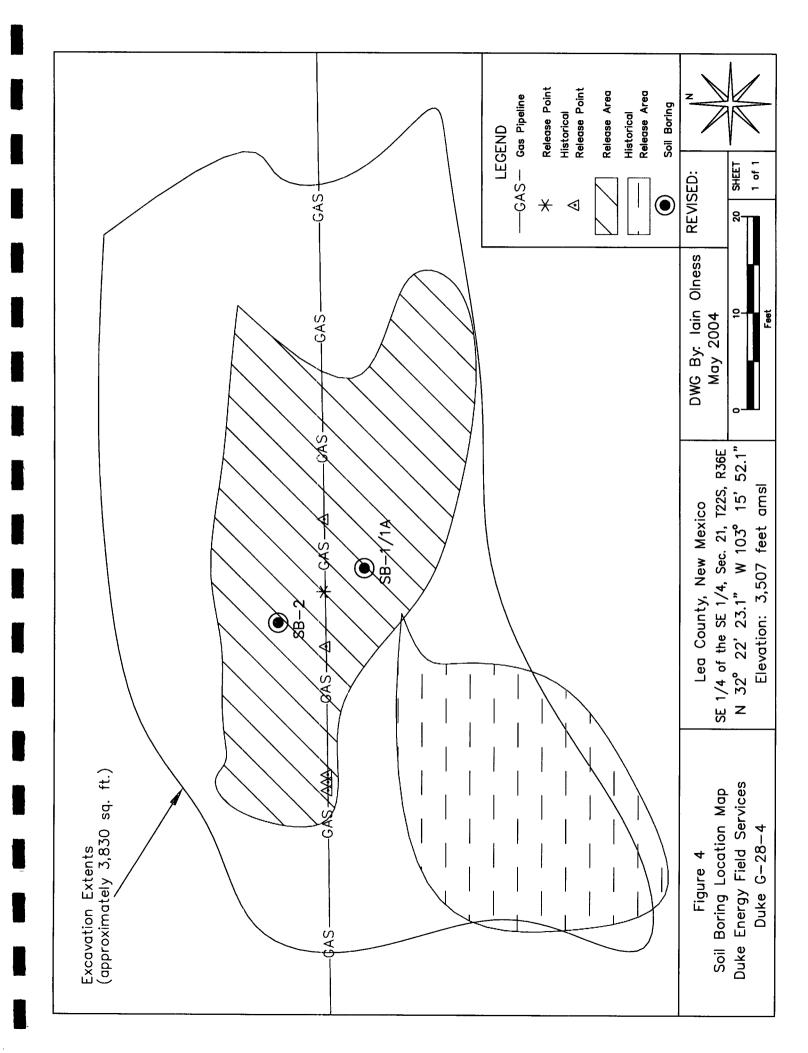
Results of this simulation indicate the barrier will be effective in eliminating the vertical transport mechanism (i.e., infiltration) and adequately isolate the remaining source term (reference *Tables 4 & 5* and *Figures 7 & 8*).

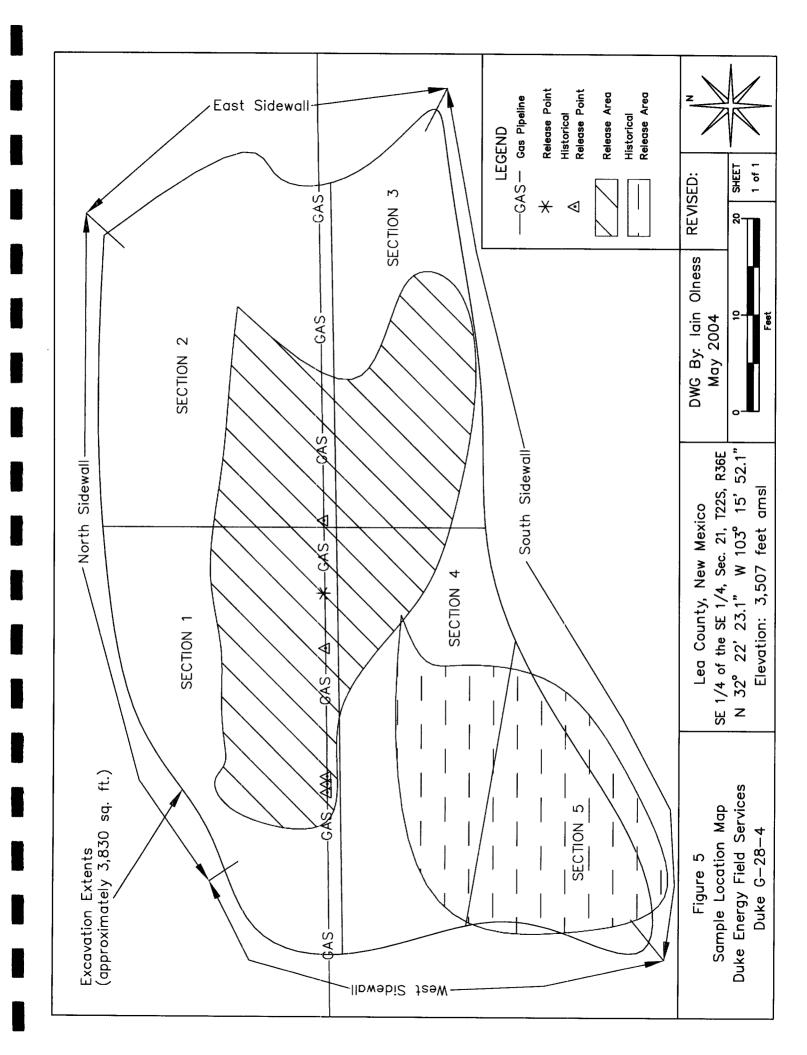

9.0 CONCLUSIONS

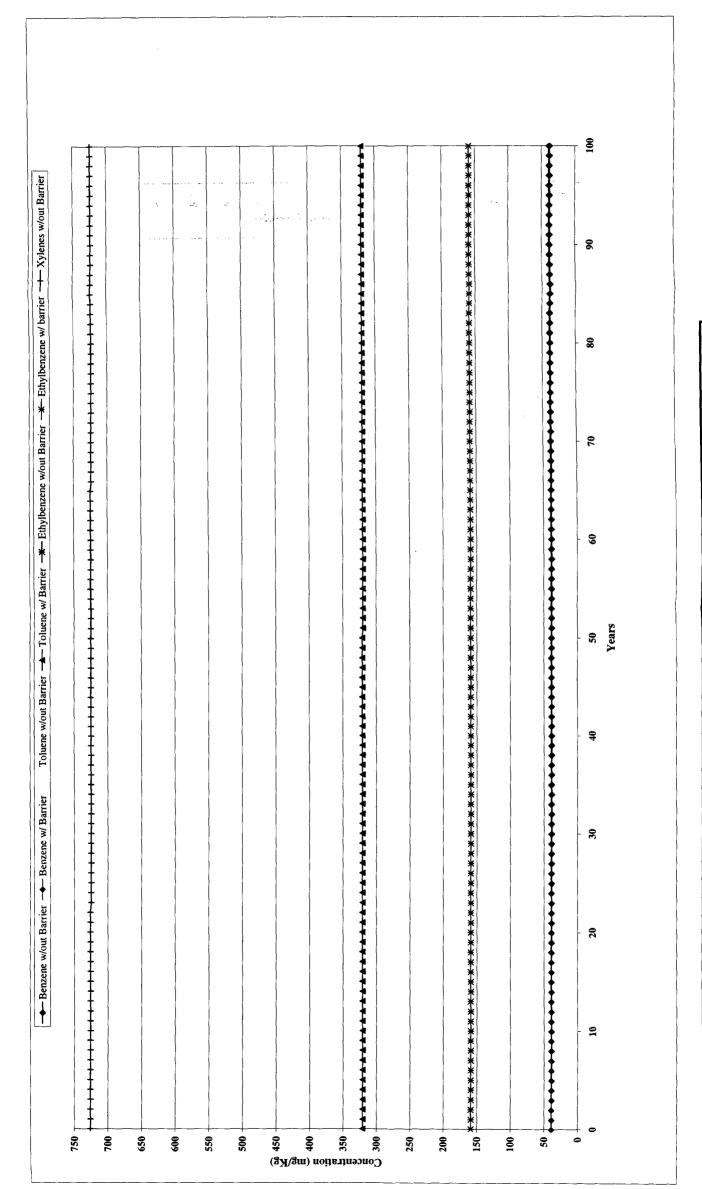

The computer modeling efforts illustrate that the installation of an engineered barrier will adequately protect groundwater from future impacts by permanently interrupting the vertical transport mechanism. In addition, the engineered barrier will serve to isolate the hydrocarbon source term from the environment for a duration sufficient to allow natural biodegradation of contaminant concentrations to below acceptable levels.


10.0 RECOMMENDATIONS


Based on the results of the computer modeling efforts, it is recommended that a clay barrier be installed in the base of the excavation. The clay barrier should be installed in 6-inch lifts, compacted and tested to verify the barrier has been compacted to a minimum of at least 95% of its Proctor Density. Prior to installing the clay barrier, hydrocarbon impacted soil remaining in the sidewalls of the excavation above the NMOCD remedial thresholds shall be removed and transported to EPI's Land Farm, located south of Eunice, New Mexico. The removal of the aforementioned soil shall be documented via laboratory analyses. Upon documentation that the impacted soil has been removed, the clay barrier should be installed.


Results of these proposed remedial activities will be documented in a final report submitted to DEFS and the NMOCD. EPI, on behalf of DEFS, requests formal written approval from the NMOCD to implement these proposed remedial activities.





Contaminant Concentrations in the Source Area With and Without an Engineered Barrier. Figure 6:

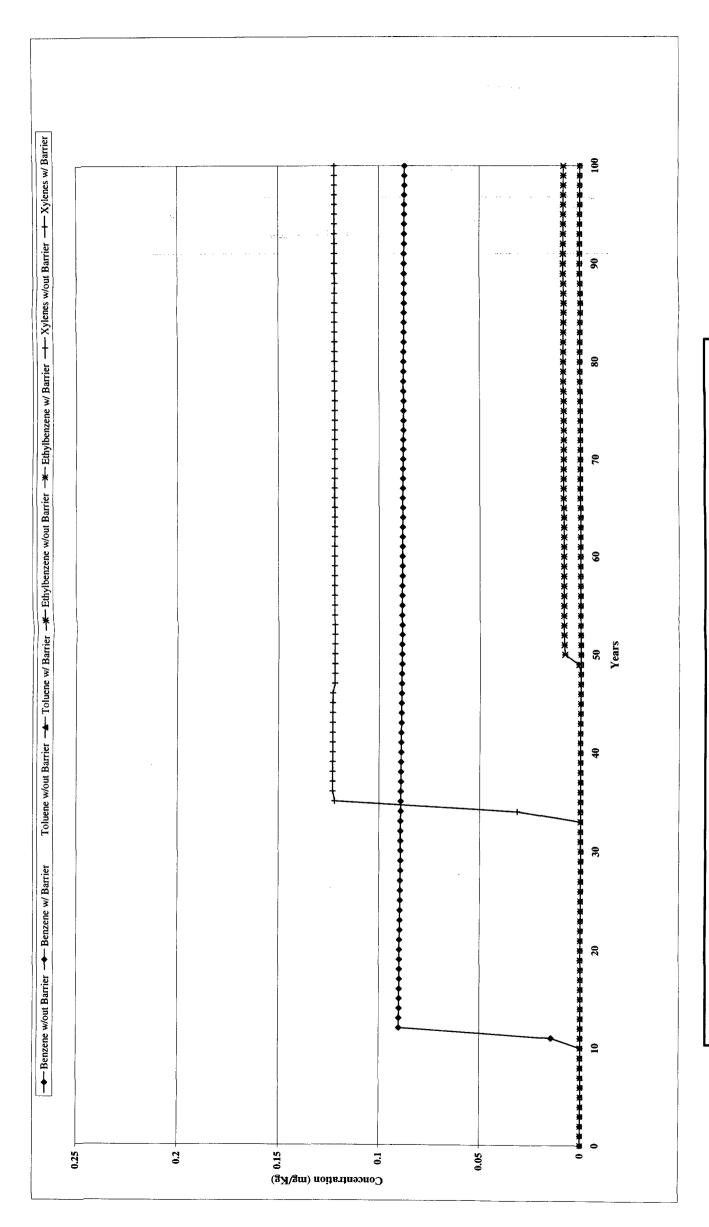


Figure 7: Contaminant Concentrations at the Watertable With and Without an Engineered Barrier.

Summary of Excavation Analytical Results

Duke G-28-4 (Ref. #130002)

	,	Sample			Soil Status	PID Analysis	GRO	DRO	Total TPH	Benzene	Toluene	Ethylbenzene	Total Xylenes	BTEX	Chloride
Sample Name	Date	Type	Location	Depth		(mdd)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(µg/Кg)	(mg/Kg)
G28-4#1compB.H.130002	22-Apr-04	Composite	Section 1 Bottomhole	3	Excavated	618	;		:	,	;	1	:	-	:
G28-4#2compB.H.130002	22-Apr-04	Composite	Section 2 Bottomhole	3	Excavated	728		-	:	,	1			;	!
G28-4#3compB.H.130002	22-Apr-04	Composite	Section 3 Bottomhole	3	Excavated	404			:	1	:	1	: ;	:	
G28-4#4compB.H.130002	22-Apr-04	Composite	Section 4 Bottomhole	3	Excavated	874		-	:	1	-	-	: 1.		-
G28-4#5compB.H.130002	22-Apr-04	Сотроѕів	Section 5 Bottomhole	2	Excavated	1,271	-	-	;	,	-		;	-	:
G28-4NSWC130002	22-Apr-04	Composite	North Sidewall	2	In Situ	16.2				,	:	-		:	
G28-4SSWC130002	22-Apr-04	Composite	South Sidewall	1.5	In Situ	737	:				;	-	:		-
G28-4ESWC130002	22-Apr-04	Composite	East Sidewall	2	In Situ	12.6			;	•	:	*	:		-
G28-4WSWC130002	22-Apr-04	Composite	West Sidewall	2	In Situ	61.1	:	;		•	;	-	-		-
SDG284042304BH1-5'	23-Apr-04	Composite	Section 1 Bottomhole	\$	Excavated	571	18,200	32,500	50,700	27.6	272	159	726	1,185	96
SDG284042304BH1-10'	23-Apr-04	Composite	Section 1 Bottomhole	01	In Situ	480	23,400	35,200	58,600	39	321	131	959	1,147	2
SDG284042304BH2-5'	23-Apr-04	Composite	Section 2 Bottomhole	S	Excavated	449		:	;		3 2		;	;	-
SDG284042304BH2-10'	23-Apr-04	Composite	Section 2 Bottomhole	10	In Situ	646			;	1	-	:	;	1	-
SDG284042304BH3-5'	23-Apr-04	Composite	Section 3 Bottomhole	\$	Excavated	706		1	-	•	;	1	-	-	-
SDG284042304BH3-10'	23-Apr-04	Composite	Section 3 Bottomhole	01	In Situ	109	:	1	;	t t		-	;	;	
SDG284042304BH4-5'	23-Apr-04	Composite	Section 4 Bottomhole	\$	Excavated	682	3,050	12,000	15,050	0.848	10.7	10.0	48.1	9.69	48
SDG284042304BH4-10	23-Apr-04	Composite	Section 4 Bottomhole	01	In Situ	626	3,120	11,000	14,120	0.422	9.04	10.7	56.4	76.6	112
SDG284042304BH5-5'	23-Apr-04	Composite	Section 5 Bottomhole	5	Excavated	27.8	<10.0	97.8	97.8	<0.005	<0.005	<0.005	<0.015	<0.030	48
SDG284042304BH5-10'	23-Apr-04	Composite	Section 5 Bottomhole	01	In Situ	17.3		1	;	-		-	:	:	
NMOCD Remedial Thresholds									5,000	10				50	250

ppm = parts per million, which is equivalent to milligrams per kilogram mg/Kg = milligrams per kilogram, which is equivalent to parts per million -- = Not Analyzed
Results in Bold are above the remedial action levels as set by the NMOCD.

TABLE 2

Summary of Soil Boring Analytical Results

Duke G-28-4 (Ref. #130002)

Borehole	Samole ID	Interval	Soil	PID Analysis	GRO	DRO	Total TPH	Benzene	Toluene	Ethylbenzene	Total Xylenes	BTEX
			Status	(mdd)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
		9-11	In Situ	2,999	• •							,
		12-14	In Situ	1,791				:		-		•
	SDEG284-051804-SB1(17)	17-19	In Situ	1,640	7,190	13,000	20,190	6.57	104	69.1	308	488
		22-24	In Situ	1,030							-;	,
		27-29	In Situ	1,448	:			:			-	
	SDEG284-051804-SB1(32')	32-34	In Situ	1,117	4,653	6,060	10,713	16.4	621	87	417	700
200		37-39	In Situ	866								,
3B-1		42-44	In Situ	096				-			;	;
	SDEG284-051804-SB1(47')	47-49	In Situ	842	3,240	5,750	066'8	1.95	45.6	32.3	154	234
		52-54	In Situ	469							-	
		57-59	In Situ	342								
	SDEG284-051804-SB1(62)	62-64	In Situ	350	6,530	11,700	18,230	10.1	172	78.6	420	681
		69-19	In Situ				-:-			-	,	•
		72-74	In Situ	• •				-		-		
	SB-2 (60')	<i>L</i> 9-59	In Situ	5.4	<10.0	65	99	<0.025	<0.025	<0.025	<0.050	<0.125
SB-2		70-72	In Situ	5.0			,			-	- 1	,
	SB-2 (70')	75-78	In Situ	9.2	5.98 ^A	26.5	26.5	<0.025	<0.025	<0.025	<0.050	<0.125
		35-37	In Situ	1,024				-				
	SB-1A (62')	60-62	In Situ	989	13,200	12,200	25.400 -:	34.9	110	35.7	150	331
		29-59	In Situ	286			/ ==					:
		70-72	In Situ	092	:					1	1	;
		75-77	In Situ	715			-		•	:	-	
		80-82	In Situ	808								:
41 02	SB-1A (87')	85-87	In Situ	965	10,800	10,000	20.800	22.8	103	38.1	167	331
SB-1A		60-95	In Situ	694						:		:
		62-97	In Situ	712								-
	SB-1A (102')	100-102	In Situ	629	7,150	8,550	15,700	12.9	2.99	28.0	125	233
		105-107	In Situ	649					-		,	; }
	SB-1A (112')	110-112	In Situ	64.8	33.6	188	222	<0.250	0.0353	0.0549	0.308	0.398
	SB-1A (117)	115-117	In Situ	56.1	95.3	175	270	<0.0250	0.188	0.236	1.37	1.79
	SB-1A (122')	120-122	In Situ	10.1	<10.0	<10.0	<10.0	<0.0250	<0.0250	<0.0250	<0.050	<0.125
					100		5,000	10				50

mg/Kg = miiligrams per kilogram, which is equivalent to parts per million ppm = parts per million, which is equivalent to milligrams per kilogram

⁻⁻ = Not Sampled Results in Bold are above the remedial action levels as set by the NMOCD.

^ADetected, but below the Reporting Limit; therefore, result is an estiamted concentration (CLP J-Flag)

TABLE 3

WELL INFORMATION REPORT*

Duke Energy Field Services G28-4 - Ref #130002

										200	Surface	Depth to
Well Number	Diversion	Owner	Use	Source	Twsp	Rng	Twsp Rng Secqqq	Latitude	Longitude	Magazinad	our race	
										Measured	Elevation	
CP 000702	3	MCVAY DRILLING CO.	STK	Shallow	22S	36E	16 1 2 2	N32° 23' 42.95"	W103° 16' 26.28"	05-Oct-72		170
CP 00485 EXP	E	HELPASO NATIORAL GASICOMPANY	NON	2	22S	36E	22.到43新版画	N3222237F19"			13,517	
CP 00609***		IDER CANHIUE COMPANY	DOM		22St C	36E	22=431	N32922211 77	W103°:1519923"	#28*Jun-80	第3507 章	22
CP 100575 ***	E	MILLARD DECK	STK	Shallow	22S	₹	27.43	N320.2119.49	W103°15'939"	F-13-Nov-78	3.507	- 190

* = Data obtained from the New Mexico Office of the State Engineer Website (http://iwaters.ose.state.nm.us:7001/iWATERS/wr_RegisServlet1) and USGS Database. Shaded well information indicates well location shown on Figure 2

A = in acre feet per annum

^B = Interpolated from USGS Topographical Map

STK = Livestock Watering

NON = Non-Profit Organizational Use

DOM = 72-12-1 Domestic One Household

(quarters are 1=NW, 2=NE, 3=SW, 4=SE)

(quarters are biggest to smallest - X Y are in Feet - UTM are in Meters)

TABLE 4

<u>Contaminant Concentrations in the Soil at the Source Area</u>

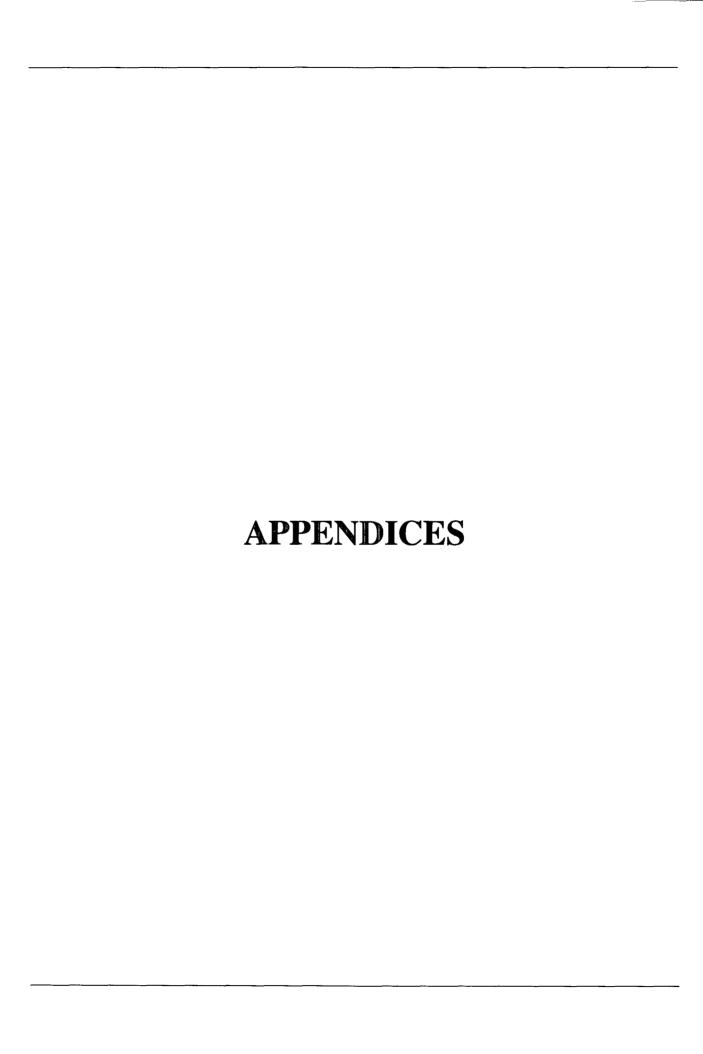
	Benz	ene	Tolu	iene	Ethylb	enzene	Total X	(ylenes
Time	Without Barrier	With Barrier						
(years)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/ Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
0	39.0	39.0	321	321	159	159	726	726
1	39.0	39.0	321	321	159	159	726	726
2	39.0	39.0	321	321	159	159	726	726
3	39.0	39.0	321	321	159	159	726	726
4	38.9	39.0	321	321	159	159	726	726
5	38.9	39.0	321	321	159	159	726	726
6	38.9	39.0	321	321	159	159	726	726
7	38.9	39.0	321	321	159	159	726	726
8	38.9	39.0	321	321	159	159	726	726
9	38.9	39.0	321	321	159	159	726	726
10	38.9	39.0	321	321	159	159	726	726
11	38.8	39.0	321	321	159	159	726	726
12	38.8	39.0	321	321	159	159	726	726
13	38.8	39.0	321	321	159	159	726	726
14	38.8	39.0	321	321	159	159	726	726
15	38.8	39.0	321	321	159	159	726	726
	38.8	39.0	321	321	159	159	726	726
16	38.8	39.0	320	321	159	159	726	726
				321				
18	38.7	39.0	320		159	159	726	726
19	38.7	39.0	320	321	159	159	726	726
20	38.7	39.0	320	321	159	159	726	726
21	38.7	39.0	320	321	159	159	726	726
22	38.7	39.0	320	321	159	159	726	726
23	38.7	39.0	320	321	159	159	725	726
24	38.7	39.0	320	321	159	159	725_	726
25	38.6	39.0	320	321	159	159	725	726
26	38.6	39.0	320	321	159	159	725	726
27	38.6	39.0	320	321	159	159	725	726
28	38.6	39.0	320	321	159	159	725	726
29	38.6	39.0	320	321	159	159	725	726
30	38.6	39.0	320	321	159	159	725	726
31	38.6	39.0	320	321	159	159	725	726
32	38.5	39.0	320	321	159	159	725	726
33	38.5	39.0	320	321	159	159	725	726
34	38.5	39.0	320	321	159	159	725	726
35	38.5	39.0	320	321	159	159	725	726
36	38.5	39.0	320	321	159	159	725	726
37	38.5	39.0	320	321	159	159	725_	726
38	38.5	39.0	320	321	159	159	725	726
39	38.4	39.0	320	321	159	159	725	726
40	38.4	39.0	320	321	159	159	725	726
41	38.4	39.0	320	321	159	159	725	726
42	38.4	38.9	320	321	159	159	725	726
43	38.4	38.9	320	321	159	159	725	726
44	38.4	38.9	320	321	159	159	725	726
45	38.4	38.9	320	321	159	159	725	726
46	38.3	38.9	320	321	159	159	725	726
47	38.3	38.9	319	321	159	159	725	726
48	38.3	38.9	319	321	159	159	725	726
49	38.3	38.9	319	321	159	159	725	726
50	38.3	38.9	319	321	159	159	725	726
51	38.3	38.9	319	320	159	159	725	726
52	38.3	38.9	319	320	159	159	725	726
53	38.2	38.9	319	320	159	159	725	726
54	38.2	38.9	319	320	159	159	725	726
55	38.2	38.9	319	320	159	159	725	726

TABLE 4

Contaminant Concentrations in the Soil at the Source Area

	Benze	ene	Tolu	iene	Ethylb	enzene	Total X	(ylenes
Time	Without Barrier	With Barrier						
(years)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/ Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
56	38.2	38.9	319	320	159	159	725	726
57	38.2	38.9	319	320	159	159	725	726
58	38.2	38.9	319	320	159	159	725	726
59	38.2	38.9	319	320	159	159	725	726
60	38.1	38.9	319	320	159	159	725	726
61	38.1	38.9	319	320	159	159	725	726
62	38.1	38.9	319	320	159	159	725	726
63	38.1	38.9	319	320	159	159	725	726
64	38.1	38.9	319	320	159	159	725	726
65	38.1	38.9	319	320	159	159	725	726
66	38.1	38.9	319	320	159	159	724	726
67	38.0	38.9	319	320	159	159	724	726
68	38.0	38.9	319	320	159	159	724	726
69	38.0	38.9	319	320	159	159	724	726
70	38.0	38.9	319	320	159	159	724	726
71	38.0	38.9	319	320	159	159	724	726
72	38.0	38.9	319	320	159	159	724	726
73	38.0	38.9	319	320	159	159	724	726
74	37.9	38.9	319	320	159	159	724	726
75	37.9	38.9	319	320	159	159	724	726
76	37.9	38.9	319	320	159	159	724	726
77	37.9	38.9	319	320	159	159	724	725
78	37.9	38.9	318	320	159	159	724	725
79	37.9	38.9	318	320	159	159	724	725
80	37.9	38.9	318	320	159	159	724	725
81	37.8	38.9	318	320	159	159	724	725
82	37.8	38.9	318	320	159	159	724	725
83	37.8	38.9	318	320	159	159	724	725
84	37.8	38.9	318	320	159	159	724	725
85	37.8	38.9	318	320	159	159	724	725
86	37.8	38.9	318	320	159	159	724	725
87	37.8	38.9	318	320	159	159	724	725
88	37.7	38.9	318	320	159	159	724	725
89	37.7	38.9	318	320	159	159	724	725
90	37.7	38.9	318	320	159	159	724	725
91	37.7	38.9	318	320	159	159	724	725
92	37.7	38.9	318	320	159	159	724	725
93	37.7	38.9	318	320	159	159	724	725
94	37.7	38.9	318	320	159	159	724	725
95	37.6	38.9	318	320	159	159	724	725
96	37.6	38.9	318	320	159	159	724	725
97	37.6	38.9	318	320	159	159	724	725
98	37.6	38.9	318	320	159	159	724	725
99	37.6	38.9	318	320	159	159	724	725
100	37.6	38.9	318	320	159	159	724	725

TABLE 5


<u>Contaminant Concentrations in the Soil at the Watertable</u>

	Benz	ene	Tolu	iene	Ethylb	enzene	Total X	ylenes
Time	Without Barrier	With Barrier						
(years)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
0	0.0	0.0	321	0.0	0.0	0.0	726	0.0
1	0.0	0.0	321	0.0	0.0	0.0	726	0.0
2	0.0	0.0	321	0.0	0.0	0.0	726	0.0
3	0.0	0.0	321	0.0	0.0	0.0	726	0.0
4	0.0	0.0	321	0.0	0.0	0.0	726	0.0
5	0.0	0.0	321	0.0	0.0	0.0	726	0.0
6	0.0	0.0	321	0.0	0.0	0.0	726	0.0
7	0.0	0.0	321	0.0	0.0	0.0	726	0.0
8	0.0	0.0	321	0.0	0.0	0.0	726	0.0
9	0.0	0.0	321	0.0	0.0	0.0	726	0.0
10	0.0	0.0	321	0.0	0.0	0.0	726	0.0
11	0.015	0.0	321	0.0	0.0	0.0	726	0.0
12	0.090	0.0	321	0.0	0.0	0.0	726	0.0
13	0.090	0.0	321	0.0	0.0	0.0	726	0.0
14	0.090	0.0	321	0.0	0.0	0.0	726	0.0
15	0.090	0.0	321	0.0	0.0	0.0	726	0.0
16	0.090	0.0	321	0.0	0.0	0.0	726	0.0
17	0.090	0.0	321	0.0	0.0	0.0	726	0.0
18	0.090	0.0	321	0.0	0.0	0.0	726	0.0
19	0.090	0.0	321	0.0	0.0	0.0	726	0.0
20	0.090	0.0	321	0.0	0.0	0.0	726	0.0
21	0.090	0.0	321	0.0	0.0	0.0	726	0.0
22	0.090	0.0	321	0.0	0.0	0.0	726	0.0
23	0.090	0.0	321	0.0	0.0	0.0	726	0.0
24	0.090	0.0	321	0.0	0.0	0.0	726	0.0
25	0.090	0.0	321	0.0	0.0	0.0	726	0.0
26	0.090	0.0	321	0.0	0.0	0.0	726	0.0
27	0.090	0.0	321	0.0	0.0	0.0	726	0.0
28	0.089	0.0	321	0.0	0.0	0.0	726	0.0
29	0.089	0.0	321	0.0	0.0	0.0	726	0.0
30	0.089	0.0	321	0.0	0.0	0.0	726	0.0
31	0.089	0.0	321	0.0	0.0	0.0	726	0.0
32	0.089	0.0	321	0.0	0.0	0.0	726	0.0
33	0.089	0.0	321	0.0	0.0	0.0	726	0.0
34	0.089	0.0	321	0.0	0.0	0.0	726	0.0
35	0.089	0.0	321	0.0	0.0	0.0	726	0.0
36	0.089	0.0	321	0.0	0.0	0.0	726	0.0
37	0.089	0.0	321	0.0	0.0	0.0	726	0.0
38	0.089	0.0	321	0.0	0.0	0.0	726	0.0
39 40	0.089 0.089	0.0	321 321	0.0	0.0	0.0	726	0.0
41	0.089	0.0	321	0.0	0.0	0.0	726	0.0
42	0.089	0.0	321	0.0		0.0	726	0.0
43	0.089	0.0	321	0.0	0.0	0.0	726	0.0
44	0.089	0.0	321	0.0	0.0		726	0.0
45	0.089	0.0	321	0.0	0.0	0.0	726 726	0.0
46	0.089	0.0	321	0.0	0.0	0.0	726	0.0
47	0.089	0.0	321	0.0	0.0	0.0	726	0.0
48	0.089	0.0	321	0.0	0.0	0.0	726	0.0
49	0.089	0.0	321	0.0	0.00093	0.0	726	0.0
50	0.089	0.0	321	0.0	0.00793	0.0	726	0.0
51	0.089	0.0	320	0.0	0.00828	0.0	726	0.0
52	0.089	0.0	320	0.0	0.00828	0.0	726	0.0
53	0.089	0.0	320	0.0	0.00828	0.0	726	0.0
54	0.089	0.0	320	0.0	0.00828	0.0	726	0.0
55	0.089	0.0	320	0.0	0.00828	0.0	726	0.0

TABLE 5

<u>Contaminant Concentrations in the Soil at the Watertable</u>

	Benz	ene	Tolu	iene	Ethylb	enzene	Total X	(ylenes
Time	Without Barrier	With Barrier	Without Barrier	With Barrier	Without Barrier	With Barrier	Without Barrier	With Barrier
(years)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/ Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
56	0.089	0.0	320	0.0	0.00828	0.0	726	0.0
57	0.089	0.0	320	0.0	0.00828	0.0	726	0.0
58	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
59	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
60	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
61	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
62	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
63	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
64	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
65	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
66	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
67	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
68	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
69	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
70	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
71	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
72	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
73	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
74	0.088	0.0	320	0.0	0.00828	0.0	726	0.0
75	0.088	0.0	320	0.0	0.00827	0.0	726	0.0
76	0.088	0.0	320	0.0	0.00827	0.0	726	0.0
77	0.088	0.0	320	0.0	0.00827	0.0	725	0.0
78	0.088	0.0	320	0.0	0.00827	0.0	725	0.0
79	0.088	0.0	320	0.0	0.00827	0.0	725	0.0
80	0.088	0.0	320	0.0			725	0.0
81	0.088	0.0	320	0.0	0.00827 0.00827 0.00827 0.00827	0.0	725	0.0
82	0.088	0.0	320	0.0		0.0	725	0.0
83	0.088	0.0	320	0.0		0.0	725	0.0
84	0.088	0.0	320	0.0	0.00827	0.0	725	0.0
85 86	0.088 0.088	0.0	320	0.0	0.00827	0.0	725	0.0
87	0.088		320	0.0	0.00827	0.0	725	0.0
88	0.088	0.0	320 320	0.0	0.00827	0.0	725 725	0.0
89	0.088	0.0	320	0.0	0.00827 0.00827	0.0	725	0.0
90	0.087	0.0	320	0.0	0.00827	0.0	725	0.0
91	0.087	0.0	320	0.0	0.00827	0.0	725	0.0
92	0.087	0.0	320	0.0	0.00827	0.0	725	0.0
93	0.087	0.0	320	0.0	0.00827	0.0	725	0.0
94	0.087	0.0	320	0.0	0.00827	0.0	725	0.0
95	0.087	0.0	320	0.0	0.00827	0.0	725	0.0
96	0.087	0.0	320	0.0	0.00827	0.0	725	0.0
97	0.087	0.0	320	0.0	0.00827	0.0	725	0.0
98	0.087	0.0	320	0.0	0.00827	0.0	725	0.0
99	0.087	0.0	320	0.0	0.00827	0.0	725	0.0
100	0.087	0.0	320	0.0	0.00827	0.0	725	0.0

APPENDIX A LABORATORY ANALYTICAL REPORTS AND **CHAIN-OF-CUSTODY FORMS**

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR ENVIRONMENTAL PLUS, INC.

ATTN: IAIN OLNESS P.O. BOX 1558 EUNICE, NM 88231 FAX TO: (505) 394-2601

Receiving Date: 04/26/04 Reporting Date: 04/28/04

Project Owner: DUKE ENERGY

Project Name: G 28-4

Project Location: NOT GIVEN

Sampling Date: 04/23/04 Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: GP Analyzed By: BC/GP

	GRO	DRO	
	(C_6-C_{10})	(>C ₁₀ -C ₂₈)	CI*
LAB NUMBER SAMPLE ID	(mg/Kg)	(mg/Kg)	(mg/Kg)

ANALYSIS	DATE	04/26/04	04/26/04	04/27/04
H8642-1	SDG284042304BH1-5'	18200	32500	96
H8642-2	SDG284042304BH1-10'	23400	35200	64
H8642-3	SDG284042304BH4-5'	3050	12000	48
H8642-4	SDG284042304BH4-10'	3120	11000	112
H8642-5	SDG284042304BH5-5'	<10.0	97.8	48
Quality Con	trol	790	762	1010
True Value	QC	1000	1000	1000
% Recovery	1	98.8	95.3	101
Relative Pe	rcent Difference	2.5	6.3	3.0

METHODS: TPH GRO & DRO: EPA SW-846 8015 M; CI: Std. Methods 4500-CIB *Analyses performed on 1:4 w:v aqueous extracts.

Chemist

Date

H8642A.XLS

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR ENVIRONMENTAL PLUS, INC.

ATTN: IAIN OLNESS P.O. BOX 1558 EUNICE. NM 88231

FAX TO: (505) 394-2601

Receiving Date: 04/26/04 Reporting Date: 04/28/04

Project Owner: DUKE ENERGY

Project Name: G 28-4

Project Location: NOT GIVEN

Sampling Date: 04/23/04 Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: GP

Analyzed By: BC

LAB NUMBER	SAMPLE ID	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL BENZENE (mg/Kg)	TOTAL XYLENES (mg/Kg)
ANALYSIS DA	ΓΕ	04/27/04	04/27/04	04/27/04	04/27/04
H8642-1	SDG284042304BH1-5'	27.6	272	159	726
H8642-2	SDG284042304BH1-10'	38.5	321	131	656
H8642-3	SDG284042304BH4-5'	0.848	10.7	10.0	48.1
H8642-4	SDG284042304BH4-10'	0.422	9.04	10.7	56.4
H8642-5	SDG284042304BH5-5'	<0.005	<0.005	<0.005	<0.015
Quality Control		0.100	0.092	0.086	0.258
True Value QC		0.100	0.100	0.100	0.100
% Recovery		99.9	92.4	86.2	85.9
Relative Percer	nt Difference	6.9	9.6	12.3	10.6

METHOD: EPA SW-846 8260

hemist//

Date

Cardinal Laboratories Inc.

IM 88240 -2476	Analysis Request							91(SAMPLING	TIME	3 9:00 X X X	3 9:05 X X X	3 9:30 X X X X	8 9:35 X X X X	9:40 X X			Fax Results To Iain Olness 505-394-2601 Remarks		
and, Hobbs, NM 88; Fax 505-393-2476	Bill To				1 101	Environmental Flus Inc.				PRESERV. SA	OTHER OTHER OTHER	X 4/23	X 4/23	X 4/23	X 4/23	X 4/23			Fax Results To Remarks		
101 East Marland, Hobbs, NM 88240 505-393-2326 Fax 505-393-2476					Ē	Environi				MATRIX	OLHEB: CODE OIF SOIF	X	X	X	X	X				aff)	Checked By:
						130002				-	(G)KAB OR (C)ON # COUTAIUERS WASTEWATER	C 1	C 1	C 1	C 1	C 1			Received By:	Received By: Jab sta	Sample Cool & Intact
Abilene, TX 79603 1915-673-7020	Duke Energy	Paul Mulkey					-4		Buch	2	E I.D.)4BH1-5')4BH1-10')4BH4-5')4BH4-10')4BH5-5'			Date4/71/14 F	Date (166)	Sample
od, A Fax	ne			$, \mathrm{Zip}$	#x	wner	me G 28-4	ation	ame Marie		SAMPLE I.D.	SDG284042304BH1-5	SDG284042304BH1-10	SDG284042304BH4-5	SDG284042304BH4-10	SDG284042304BH5-5			pished:	The state of the s	ر Delivered by Sampler
2111 Beechwo 915-673-7001	Company Name	Project Manager	Address	City, State, Zip	Phone#/Fax#	Project #/Owner	Project Name	Project Location	Sampler Name		LAB I.D.	1-22BH	7	7	<i>ħ</i> -	2			Sampler Relinquished	Relinquished by:	Delivere

PHONE (325) 673-7001 • 2111 BEECHWOOD • ABILENE, TX 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR ENVIRONMENTAL PLUS, INC.

ATTN: IAIN OLNESS P.O. BOX 1558 EUNICE, NM 88231 FAX TO: (505) 394-2601

Receiving Date: 05/19/04

Reporting Date: 05/21/04

Project Owner: DUKE ENERGY FIELD SERVICES

Project Name: G28-4 Project Location: 130002 Sampling Date: 05/18/04

Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: AH

86.3

5.9

86.3

7.9

Analyzed By: BC

LAB NO. SAMPLE ID	GRO (C_6-C_{10}) (mg/Kg)	DRO $(>C_{10}-C_{28})$ (mg/Kg)	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL BENZENE (mg/Kg)	TOTAL XYLENES (mg/Kg)
ANALYSIS DATE:	05/19/04	05/19/04	05/20/04	05/20/04	05/20/04	05/20/04
H8711-1 SDEG284-051804-SB1(17')	7190	13000	6.57	104	69.1	308
H8711-2 SDEG284-051804-SB1(32')	4653	6060	16.4	179	87.1	417
H8711-3 SDEG284-051804-SB1(47')	3240	5750	1.95	45.6	32.3	154
H8711-4 SDEG284-051804-SB1(62')	6530	11700	10.1	172	78.6	420
Quality Control	826	753	0.098	0.091	0.086	0.259
True Value QC	800	800	0.100	0.100	0.100	0.300

94.1

2.8

98.4

3.8

METHODS: TPH GRO & DRO - EPA SW-846 8015 M; BTEX - SW-846 8260.

103

2.5

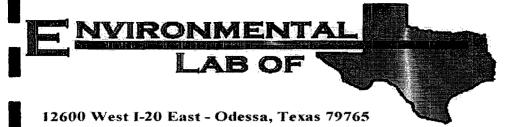
Burgess J.A. Cocke. Ph. D

Relative Percent Difference

% Recovery

Daté

90.9


5.1

Cardinal Laboratories Inc.

101 East Marland, Hobbs, NM 88240 505-393-2326 Fax 505-393-2476

2111 Beechwood, Abilene, TX 79603 915-673-7001 Fax 915-673-7020

							W				Γ	<u> </u>												
ANALYSIS REQUEST																								
ES											L													
ဝ						-				<u> </u>	L	_					Ш					i		
3. 2.	_									OTHER >>>	<u> </u>													
SiS)	_							,		TCLP														
AL	_									Hq	Ļ						Ц		Ц					
A						-				SULFATES (SO4")	-						Ш	Щ		_		2601		
	_				_					снговірєг (сі)								Ц	\dashv			394-		
	_									M3108 H9T	×		X	X	_			_	_	-		(202		
14. 55	_							_	Т	BTEX 8021B	×	X	X	×	H	Н	H	Н	\dashv	\dashv		8		
									LING	TIME	10:00	12:00	13:45	17:15							10.00	Olness		
		ž	Á						SAMPLING	DATE	18-May	18-May	18-May	18-May								Fax Results To lain Olness @ (505) 394-2601 REMARKS:		
0			#	e			10 to		>	ЯЭНТО	Ī				М		Н					RKS:		
311					1		80 at		PRESERV.	ICE/COOF	×	×	×	×			П					Fax Resi		
BIII-To						Ser.			18	ACID/BASE	Γ						П							į.
			- 2		Ł			ب م يد	<u>.</u>	энте:	,		_2E		.C.3		en siège	57-45 117	N. V.					A
			/ŝ		1	7				SFNDGE									*					Checked By:
					/				MATRIX	CKNDE OIL													77	ច័
				V					Z	SOIL	×	X	X	X										
							ĺ	١		MASTEWATER							,					\	ly: (lab staff)	
				Ξ					L	яэтам дипояэ							Ц		Ц			Long.	By: 0	ac Local
ე.			231	-260	ės	1		1	L	# СОИТАІИЕ В	┿┈	-	1	1						Ц		Received B	Received B	S Int
s, In			88	394	Zic				L	(G) RAB OR (C)OMP.	Ø	<u>ග</u>	9	9									A Resolution	S T
Environmental Plus, Inc.	S	1558	Eunice New Mexico 88231	505-394-3481 / 505-394-260	Duke Energy Field Services			onzales		Ġ	B1(17')	B1(32')	B1(47')	B1(62')								Date Time	Date 5/1910	Sample Cool & Intact
Environn	lain olness	P.O. BOX 1558	Eunice N	505-394-3	Duke Ener	G28-4	130002	Manuel Gonzales		SAMPLE I.D.	051804-S	051804-S	-051804-S	051804-S					0.6			**	i	
	ıger									Ø	SDEG284-051804-SB1(17"	2 SDEG284-051804-SB1(32)	SDEG284-051804-SB1(47")	SDEG284-051804-SB1(62')								Jours] -
Company Name	EPI Project Manager	Billing Address	City, State, Zip	EPI Phone#/Fax#	Client Company	Facility Name	Project Reference	FPI Sampler Name		LAB I.D.	H8711-1 1	-2 2	-33	+ /7 -	5	9	7	8	6	10		Sample Relinquished	Relikquished by:	Délivered by:

Analytical Report

Prepared for:

Iain Olness
Environmental Plus, Incorporated
2100 Avenue 6
Eunice, NM 88231

Project: DEFS G28-4 (130002)
Project Number: 130002

Location: UL-P Section 21 T22S R36E

Lab Order Number: 4F17008

Report Date: 06/21/04

2100 Avenue 6 Eunice NM, 88231 Project: DEFS G28-4 (130002)

Project Number: 130002 Project Manager: Iain Olness Fax: 505-394-2601

Reported: 06/21/04 16:59

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-2 (60')	4F17008-01	Soil	06/16/04 15:15	06/17/04 12:40
SB-2 (70')	4F17008-02	Soil	06/16/04 15:42	06/17/04 12:40

2100 Avenue 6 Eunice NM, 88231 Project: DEFS G28-4 (130002)

Project Number: 130002 Project Manager: Iain Olness Fax: 505-394-2601

Reported: 06/21/04 16:59

Organics by GC **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-2 (60') (4F17008-01) Soil								7	
Benzene	ND	0.0250	mg/kg dry	25	EF42112	06/19/04	06/21/04	EPA 8021B	
Toluene	ND	0.0250	H	"	11	"	**	и	
Ethylbenzene	ND	0.0250	19	11	n	"	н	11	
Xylene (p/m)	ND	0.0250	11	11	11	"	11		
Xylene (o)	ND	0.0250	н	н	Ħ	H	H .	'n	
Surrogate: a,a,a-Trifluorotoluene		88.2 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		91.1 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EF41705	06/17/04	06/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	65.0	10.0	11	•	**	n	ri .	11	
Total Hydrocarbon C6-C35	65.0	10.0	11	н	11	"	"	**	
Surrogate: 1-Chlorooctane		102 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		94.6 %	70-1	30	"	"	"	"	
SB-2 (70') (4F17008-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF42112	06/19/04	06/20/04	EPA 8021B	
Toluene	ND	0.0250	n	**	11	n	n n	**	
Ethylbenzene	ND	0.0250	"		н	**	н		
Xylene (p/m)	ND	0.0250	"		11	11	11	н	
Xylene (o)	ND	0.0250	"	*	11	H .	n	n	
Surrogate: a,a,a-Trifluorotoluene		90.7 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		88.5 %	80-1	20	"	n	"	n	
Gasoline Range Organics C6-C12	J [5.98]	10.0	mg/kg dry	1	EF41705	06/17/04	06/18/04	EPA 8015M	J
Diesel Range Organics >C12-C35	26.5	10.0	n	"	**	н	"	H	
Total Hydrocarbon C6-C35	26.5	10.0	n	**	11	**	11	Ħ	
Surrogate: 1-Chlorooctane	•	111 %	70-1	30	"	"	"	<u>"</u>	
Surrogate: 1-Chlorooctadecane		97.4 %	70-1	30	"	"	"	"	

2100 Avenue 6 Eunice NM, 88231 Project: DEFS G28-4 (130002)

Fax: 505-394-2601

Reported: 06/21/04 16:59

Project Number: 130002 Project Manager: Iain Olness

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-2 (60') (4F17008-01) Soil		.,,***	•						
% Solids	98.0		%	1	EF41806	06/17/04	06/17/04	% calculation	
SB-2 (70') (4F17008-02) Soil									
% Solids	98.0		%	1	EF41806	06/17/04	06/17/04	% calculation	

2100 Avenue 6 Eunice NM, 88231 Project: DEFS G28-4 (130002)

Project Number: 130002 Project Manager: Iain Olness Fax: 505-394-2601

Reported: 06/21/04 16:59

										
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF41705 - Solvent Extraction	(GC)									
Blank (EF41705-BLK1)				Prepared	& Analyze	d: 06/17/	04			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	11							
Total Hydrocarbon C6-C35	ND	10.0	tt							
Surrogate: 1-Chlorooctane	41.2		mg/kg	50.0		82.4	70-130			
Surrogate: 1-Chlorooctadecane	35 . 7		"	50.0		71.4	70-130			
Blank (EF41705-BLK2)				Prepared:	06/17/04	Analyzed	l: 06/18/04			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	11							
Total Hydrocarbon C6-C35	ND	10.0	н							
Surrogate: 1-Chlorooctane	40.4		mg/kg	50.0		80.8	70-130			
Surrogate: 1-Chlorooctadecane	35.1		"	50.0		70.2	70-130			
LCS (EF41705-BS1)				Prepared	& Analyze	ed: 06/1 7 /0	04			
Gasoline Range Organics C6-C12	480	10.0	mg/kg wet	500		96.0	75-125			
Diesel Range Organics >C12-C35	536	10.0	11	500		107	75-125			
Total Hydrocarbon C6-C35	1020	10.0	"	1000		102	75-125			
Surrogate: 1-Chlorooctane	57.0		mg/kg	50.0	-	114	70-130			
Surrogate: 1-Chlorooctadecane	38.2		"	50.0		76.4	70-130			
LCS (EF41705-BS2)				Prepared:	06/17/04	Analyzed	: 06/18/04			
Gasoline Range Organics C6-C12	461	10.0	mg/kg wet	500		92.2	75-125			
Diesel Range Organics >C12-C35	536	10.0	**	500		107	75-125			
Total Hydrocarbon C6-C35	997	10.0	**	1000		99.7	75-125			
Surrogate: 1-Chlorooctane	55.5		mg/kg	50.0		111	70-130			
Surrogate: 1-Chlorooctadecane	<i>36.8</i>		"	50.0		7 3 .6	70-130			
Calibration Check (EF41705-CCV1)				Prepared	& Analyze	ed: 06/17/0	04			
Gasoline Range Organics C6-C12	523		mg/kg	500		105	80-120			
Diesel Range Organics >C12-C35	562		**	500		112	80-120			
Total Hydrocarbon C6-C35	1090		и	1000		109	80-120			
Surrogate: 1-Chlorooctane	53.3			50.0		107	70-130			
Surrogate: 1-Chlorooctadecane	42.9		"	50.0		85.8	70-130			

2100 Avenue 6 Eunice NM, 88231 Project: DEFS G28-4 (130002)

Fax: 505-394-2601

Reported: 06/21/04 16:59

Project Number: 130002 Project Manager: Iain Olness

l. , .	ъ .	Reporting	¥7. *·	Spike	Source	0/550	%REC	m	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF41705 - Solvent Extraction	(GC)									
Calibration Check (EF41705-CCV2)				Prepared:	06/17/04	Analyzed	l: 06/18/04			
Gasoline Range Organics C6-C12	518		mg/kg	500		104	80-120			
Diesel Range Organics >C12-C35	570		n	500		114	80-120			
Total Hydrocarbon C6-C35	1090	•	Ħ	1000		109	80-120			
Surrogate: 1-Chlorooctane	54.5		"	50.0		109	70-130			
Surrogate: 1-Chlorooctadecane	46.7		"	50.0		93.4	70-130			
Matrix Spike (EF41705-MS1)	Sour	rce: 4F170	03-01	Prepared	& Analyzo	ed: 06/17/0	04			
Gasoline Range Organics C6-C12	595	10.0	mg/kg dry	538	ND	111	75-125	·		
Diesel Range Organics >C12-C35	657	10.0	n	538	ND	122	75-125			
Total Hydrocarbon C6-C35	1250	10.0	**	1080	ND	116	75-125			
Surrogate: 1-Chlorooctane	62.9		mg/kg	50.0		126	70-130			
Surrogate: 1-Chlorooctadecane	53.2		**	50.0		106	70-130			
Matrix Spike (EF41705-MS2)	Sour	rce: 4F170	07-02	Prepared:	06/17/04	Analyzed	: 06/18/04			
Gasoline Range Organics C6-C12	681	10.0	mg/kg dry	633	ND	108	75-125			
Diesel Range Organics >C12-C35	759	10.0	"	633	ND	120	75-125			
Total Hydrocarbon C6-C35	1440	10.0	u	1270	ND	113	75-125			
Surrogate: 1-Chlorooctane	58.3		mg/kg	50.0		117	70-130			
Surrogate: 1-Chlorooctadecane	49.3		"	50.0		98.6	70-130			
Matrix Spike Dup (EF41705-MSD1)	Sour	rce: 4F170	03-01	Prepared	& Analyze	ed: 06/17/0)4			
Gasoline Range Organics C6-C12	599		mg/kg dry	538	ND	111	75-125	0.670	20	
Diesel Range Organics >C12-C35	645	10.0	10	538	ND	120	75-125	1.84	20	
Total Hydrocarbon C6-C35	1240	10.0	11	1080	ND	115	75-125	0.803	20	
Surrogate: 1-Chlorooctane	63.0		mg/kg	50.0		126	70-130			
Surrogate: 1-Chlorooctadecane	52.7		"	50.0		105	70-130			
Matrix Spike Dup (EF41705-MSD2)	Sour	rce: 4F170		-		•	: 06/18/04			
Gasoline Range Organics C6-C12	677	10.0	mg/kg dry	633	ND	107	75-125	0.589	20	
Diesel Range Organics >C12-C35	777	10.0	n	633	ND	123	75-125	2.34	20	
Total Hydrocarbon C6-C35	1450	10.0	н	1270	ND	114	75-125	0.692	20	
Surrogate: 1-Chlorooctane	60.5		mg/kg	50.0		121	70-130			
Surrogate: 1-Chlorooctadecane	50.7		"	50.0		101	70-130			

2100 Avenue 6 Eunice NM, 88231 Project: DEFS G28-4 (130002)

Fax: 505-394-2601

Reported:

Project Number: 130002 Project Manager: Iain Olness 06/21/04 16:59

Analyte			Reporting	··	Spike	Source		%REC		RPD	
Blank (EF42112-BLK1)	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Benzene ND 0.0250 mg/kg wet wet <t< td=""><td>Batch EF42112 - EPA 5030C (GC)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td></t<>	Batch EF42112 - EPA 5030C (GC)							-			-
Toluene	Blank (EF42112-BLK1)				Prepared	& Analyze	d: 06/19/	04			
Ethylbenzene	Benzene	ND	0.0250	mg/kg we	<u> </u>						
Xylene (p/m) ND 0.0250 "		ND	0.0250	u							
No	Ethylbenzene	ND	0.0250	н							
Surrogale: a, a, a-Trifluorotoluene 85.6 ug/kg 100 83.6 80-120	Xylene (p/m)	ND	0.0250	#							
Surrogate: 4-Bromofluorobenzene 92.1	Xylene (0)	ND	0.0250	н							
LCS (EF42112-BS1) Prepared & Analyzed: 06/19/04	Surrogate: a,a,a-Trifluorotoluene	85.6		ug/kg	100		85.6	80-120			
Benzene 96.1 ug/kg 100 96.1 80-120 Toluene 92.5 " 100 92.5 80-120 Ethylbenzene 89.0 " 100 89.0 80-120 Xylene (o) 93.8 " 100 93.8 80-120 Xylene (o) 93.8 " 100 93.8 80-120 Surrogaie: a,a,a-Trifluorotoluene 86.4 " 100 86.4 80-120 Surrogaie: 4-Bromofluorobenzene 101 " 100 101 80-120 Benzene 90.9 ug/kg 100 90.9 80-120 Toluene 88.6 " 100 88.6 80-120 Ethylbenzene 83.7 " 100 88.6 80-120 Stylene (o) 88.0 " 100 88.0 80-120 Stylene (o) 88.0 " 100 88.0 80-120 Stylene (o) 88.0 " 100 88.0 80-120 Stylene (a) 88.0 " 100 88.0 80-120 Stylene (b) 88.0 " 100 88.0 80-120 Stylene (a) 88.0 " 100 88.0 80-120 Stylene (b) 88.0 " 100 88.0 80-120 Stylene (b) 88.0 " 100 88.0 80-120 Stylene (b) 87.2 80-120 Stylene (b) 87.2 80-120 Stylene (b) 87.2 80-120 Stylene (c) 2280 ug/kg 2500 36.8 89.7 80-120 Stylene (c) 2280 ug/kg 2500 36.8 89.7 80-120 Stylene (a) 2100 " 2500 32.5 85.1 80-120 Stylene (b) 2260 " 2500 21.7 89.5 80-120 Stylene (a) 2260 " 2500 21.	Surrogate: 4-Bromofluorobenzene	92.1		"	100		92.1	80-120			
Toluene 92.5 " 100 92.5 80-120 Ethylbenzene 89.0 " 100 89.0 80-120 Xylene (p/m) 180 " 200 90.0 80-120 Xylene (o) 93.8 " 100 93.8 80-120 Surrogaie: a,a,a-Trifluorotoluene 86.4 " 100 86.4 80-120 Surrogaie: 4-Bromofluorobenzene 101 " 100 86.4 80-120 Calibration Check (EF42112-CCV1) Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 90.9 ug/kg 100 88.6 80-120 Toluene 88.6 " 100 88.6 80-120 Toluene (p/m) 168 " 200 84.0 80-120 Xylene (p/m) 168 " 100 88.0 80-120 Xylene (p/m) 168 " 100 88.0 80-120 Xylene (p/m) 88.0 " 100 87.9 80-120 Xylene (p/m) 88.0 " 100 87.9 80-120 Xylene (p/m)	LCS (EF42112-BS1)				Prepared of	& Analyze	ed: 06/19/0	04			
Ethylbenzene 89.0 " 100 89.0 80-120 Xylene (p/m) 180 " 200 90.0 80-120 Xylene (o) 93.8 " 100 93.8 80-120 Surrogate: a,a,a-Trifluorotoluene 86.4 " 100 86.4 80-120 Surrogate: 4-Bromofluorobenzene 101 " 100 86.4 80-120 Calibration Check (EF42112-CCV1) Prepared: 06/19/04 Analyzed: 06/21/04 80-120 Benzene 90.9 ug/kg 100 90.9 80-120 Tolluene 88.6 " 100 88.6 80-120 Kylene (p/m) 168 " 200 84.0 80-120 Xylene (p/m) 168 " 100 87.9 80-120 Xylene (p/m) 88.0 " 100 87.9 80-120 Xylene (p/m) 87.9 " 100 87.9 80-120 Xylene (p/m) Source: 4F18007-23 Prepared: 06/19/04 <td< td=""><td>Benzene</td><td>96.1</td><td></td><td>ug/kg</td><td>100</td><td></td><td>96.1</td><td>80-120</td><td></td><td></td><td></td></td<>	Benzene	96.1		ug/kg	100		96.1	80-120			
Xylene (p/m) 180 " 200 90.0 80-120 Xylene (o) 93.8 " 100 93.8 80-120 Surrogate: a,a,a-Trifluorotoluene 86.4 " 100 86.4 80-120 Surrogate: 4-Bromofluorobenzene 101 " 100 80-120 Calibration Check (EF42112-CCV1) Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 90.9 ug/kg 100 90.9 80-120 Toluene 88.6 " 100 88.6 80-120 Ethylbenzene 83.7 " 100 88.6 80-120 Xylene (p/m) 168 200 84.0 80-120 Xylene (o) 88.0 " 100 88.0 80-120 Xylene (o) 87.9 " 100 87.9 80-120 Matrix Spike (EF42112-MS1) Source: 4F18007-23 Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 2280 ug/kg 2500 36.5 86.1 80-120 Xylene (p/m) 4390 " 2500 36.5 86.1 <th< td=""><td>Toluene</td><td>92.5</td><td></td><td>**</td><td>100</td><td></td><td>92.5</td><td>80-120</td><td></td><td></td><td></td></th<>	Toluene	92.5		**	100		92.5	80-120			
Xylene (o) 93.8 " 100 93.8 80-120 Surrogate: a,a,a-Trifluorotoluene 86.4 " 100 86.4 80-120 Calibration Check (EF42112-CCV1) Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 90.9 ug/kg 100 90.9 80-120 Toluene 88.6 " 100 88.6 80-120 Ethylbenzene 83.7 " 100 83.7 80-120 Xylene (p/m) 168 " 200 84.0 80-120 Xylene (o) 88.0 " 100 87.9 80-120 Surrogate: a,a,a-Trifluorotoluene 87.9 " 100 87.9 80-120 Matrix Spike (EF42112-MS1) Source: 4F18007-23 Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 2280 ug/kg 2500 36.8 89.7 80-120 Matrix Spike (EF42112-MS1) Source: 4F18007-23 Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 2280 ug/kg 2500 <td>•</td> <td>89.0</td> <td></td> <td>н</td> <td>100</td> <td></td> <td>89.0</td> <td>80-120</td> <td></td> <td></td> <td></td>	•	89.0		н	100		89.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	Xylene (p/m)	180		11	200		90.0	80-120			
Calibration Check (EF42112-CCV1) Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 90.9 ug/kg 100 90.9 80-120 Toluene 88.6 " 100 88.6 80-120 Ethylbenzene 83.7 " 100 83.7 80-120 Xylene (p/m) 168 " 200 84.0 80-120 Xylene (o) 88.0 " 100 87.9 80-120 Surrogate: a,a,a-Trifluorotoluene 87.9 " 100 87.9 80-120 Surrogate: 4-Bromofluorobenzene 87.2 " 100 87.2 80-120 Matrix Spike (EF42112-MS1) Source: 4F18007-23 Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 2280 ug/kg 2500 36.8 89.7 80-120 Toluene 2190 " 2500 36.5 86.1 80-120 Xylene (p/m) 4390 " 5000 123 85.3 80-120 Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,a-Trifl	Xylene (o)	93.8		11	100		93.8	80-120			
Calibration Check (EF42112-CCV1) Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 90.9 ug/kg 100 90.9 80-120 Toluene 88.6 " 100 88.6 80-120 Ethylbenzene 83.7 " 100 83.7 80-120 Xylene (p/m) 168 " 200 84.0 80-120 Xylene (o) 88.0 " 100 87.9 80-120 Surrogate: a,a,a-Trifluorotoluene 87.9 " 100 87.9 80-120 Surrogate: 4-Bromofluorobenzene 87.2 " 100 87.2 80-120 Matrix Spike (EF42112-MS1) Source: 4F18007-23 Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 2280 ug/kg 2500 36.8 89.7 80-120 Toluene 2190 " 2500 36.5 86.1 80-120 Xylene (p/m) 4390 " 5000 123 85.3 80-120 Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,	Surrogate: a,a,a-Trifluorotoluene	86.4		"	100		86.4	80-120			
Benzene 90.9 ug/kg 100 90.9 80-120	Surrogate: 4-Bromofluorobenzene	101		"	100		101	80-120			
Toluene 88.6 " 100 88.6 80-120 Ethylbenzene 83.7 " 100 83.7 80-120 Xylene (p/m) 168 " 200 84.0 80-120 Xylene (o) 88.0 " 100 88.0 80-120 Surrogate: a,a,a-Trifluorotoluene 87.9 " 100 87.9 80-120 Surrogate: 4-Bromofluorobenzene 87.2 " 100 87.2 80-120 Matrix Spike (EF42112-MS1) Source: 4F18007-23 Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 2280 ug/kg 2500 36.8 89.7 80-120 Toluene 2190 " 2500 36.5 86.1 80-120 Ethylbenzene 2160 " 2500 32.5 85.1 80-120 Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,a-Trifluorotoluene 84.3 " 100 84.3 80-120	Calibration Check (EF42112-CCV1)				Prepared:	06/19/04	Analyzed	: 06/21/04			
Ethylbenzene 83.7 " 100 83.7 80-120 Xylene (p/m) 168 " 200 84.0 80-120 Xylene (o) 88.0 " 100 87.9 80-120 Surrogate: a,a,a-Trifluorotoluene 87.9 " 100 87.2 80-120 Surrogate: 4-Bromofluorobenzene 87.2 " 100 87.2 80-120 Matrix Spike (EF42112-MS1) Source: 4F18007-23 Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 2280 ug/kg 2500 36.8 89.7 80-120 Toluene 2190 " 2500 36.5 86.1 80-120 Ethylbenzene 2160 " 2500 32.5 85.1 80-120 Xylene (p/m) 4390 " 5000 123 85.3 80-120 Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,a-Trifluorotoluene 84.3 " 100 84.3 80-120	Benzene	90.9		ug/kg	100		90.9	80-120	,		
Xylene (p/m) 168 " 200 84.0 80-120 Xylene (o) 88.0 " 100 88.0 80-120 Surrogate: a,a,a-Trifluorotoluene 87.9 " 100 87.9 80-120 Surrogate: 4-Bromofluorobenzene 87.2 " 100 87.2 80-120 Matrix Spike (EF42112-MS1) Source: 4F18007-23 Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 2280 ug/kg 2500 36.8 89.7 80-120 Toluene 2190 " 2500 36.5 86.1 80-120 Ethylbenzene 2160 " 2500 32.5 85.1 80-120 Xylene (p/m) 4390 " 5000 123 85.3 80-120 Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,a-Trifluorotoluene 84.3 " 100 84.3 80-120	Toluene	88.6		11	100		88.6	80-120			
Xylene (o) 88.0 " 100 88.0 80-120 Surrogate: a,a,a-Trifluorotoluene 87.9 " 100 87.9 80-120 Surrogate: 4-Bromofluorobenzene 87.2 " 100 87.2 80-120 Matrix Spike (EF42112-MS1) Source: 4F18007-23 Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 2280 ug/kg 2500 36.8 89.7 80-120 Toluene 2190 " 2500 36.5 86.1 80-120 Ethylbenzene 2160 " 2500 32.5 85.1 80-120 Xylene (p/m) 4390 " 5000 123 85.3 80-120 Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,a-Trifluorotoluene 84.3 " 100 84.3 80-120	Ethylbenzene	83.7		н	100		83.7	80-120			
Surrogate: a,a,a-Trifluorotoluene 87.9 " 100 87.9 80-120 Surrogate: 4-Bromofluorobenzene 87.2 " 100 87.2 80-120 Matrix Spike (EF42112-MS1) Source: 4F18007-23 Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 2280 ug/kg 2500 36.8 89.7 80-120 Toluene 2190 " 2500 36.5 86.1 80-120 Ethylbenzene 2160 " 2500 32.5 85.1 80-120 Xylene (p/m) 4390 " 5000 123 85.3 80-120 Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,a-Trifluorotoluene 84.3 " 100 84.3 80-120		168			200		84.0				
Surrogate: 4-Bromofluorobenzene 87.2 " 100 87.2 80-120 Matrix Spike (EF42112-MS1) Source: 4F18007-23 Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 2280 ug/kg 2500 36.8 89.7 80-120 Toluene 2190 " 2500 36.5 86.1 80-120 Ethylbenzene 2160 " 2500 32.5 85.1 80-120 Xylene (p/m) 4390 " 5000 123 85.3 80-120 Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,a-Trifluorotoluene 84.3 " 100 84.3 80-120	Xylene (o)	88.0		tr	100		88.0	80-120			
Matrix Spike (EF42112-MS1) Source: 4F18007-23 Prepared: 06/19/04 Analyzed: 06/21/04 Benzene 2280 ug/kg 2500 36.8 89.7 80-120 Toluene 2190 " 2500 36.5 86.1 80-120 Ethylbenzene 2160 " 2500 32.5 85.1 80-120 Xylene (p/m) 4390 " 5000 123 85.3 80-120 Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,a-Trifluorotoluene 84.3 " 100 84.3 80-120	Surrogate: a,a,a-Trifluorotoluene	87.9		"	100		87.9	80-120			
Benzene 2280 ug/kg 2500 36.8 89.7 80-120 Toluene 2190 " 2500 36.5 86.1 80-120 Ethylbenzene 2160 " 2500 32.5 85.1 80-120 Xylene (p/m) 4390 " 5000 123 85.3 80-120 Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,a-Trifluorotoluene 84.3 " 100 84.3 80-120	Surrogate: 4-Bromofluorobenzene	87.2		"	100		<i>87.2</i>	80-120			
Toluene 2190 " 2500 36.5 86.1 80-120 Ethylbenzene 2160 " 2500 32.5 85.1 80-120 Xylene (p/m) 4390 " 5000 123 85.3 80-120 Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,a-Trifluorotoluene 84.3 " 100 84.3 80-120	Matrix Spike (EF42112-MS1)	So	urce: 4F1800	07-23	Prepared:	06/19/04	Analyzed	: 06/21/04			
Ethylbenzene 2160 " 2500 32.5 85.1 80-120 Xylene (p/m) 4390 " 5000 123 85.3 80-120 Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,a-Trifluorotoluene 84.3 " 100 84.3 80-120	Benzene				2500	36.8	89.7	80-120			
Xylene (p/m) 4390 " 5000 123 85.3 80-120 Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,a-Trifluorotoluene 84.3 " 100 84.3 80-120		2190		Ħ	2500	36.5	86.1	80-120			
Xylene (o) 2260 " 2500 21.7 89.5 80-120 Surrogate: a,a,a-Trifluorotoluene 84.3 " 100 84.3 80-120	Ethylbenzene	2160		11	2500	32.5	85.1	80-120			
Surrogate: a,a,a-Trifluorotoluene 84.3 " 100 84.3 80-120	Xylene (p/m)					123		80-120			
	Xylene (o)	2260		"	2500	21.7	89.5	80-120			
Surrogate: 4-Bromofluorobenzene 97.0 " 100 97.0 80-120	Surrogate: a,a,a-Trifluorotoluene	84.3		"	100		84.3	80-120			
	Surrogate: 4-Bromofluorobenzene	97.0		"	100		97.0	80-120			

2100 Avenue 6 Eunice NM, 88231 Project: DEFS G28-4 (130002)

Fax: 505-394-2601

Reported:

Project Number: 130002 Project Manager: Iain Olness

06/21/04 16:59

Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF42112 - EPA 5030C (GC)									
Matrix Spike Dup (EF42112-MSD1)	Sou	rce: 4F18007-23	Prepared:	06/19/04	Analyzed	1: 06/21/04			
Benzene	2380	ug/kg	2500	36.8	93.7	80-120	4.36	20	
Toluene	2310	н	2500	36.5	90.9	80-120	5.42	20	
Ethylbenzene	2290	11	2500	32.5	90.3	80-120	5.93	20	
Xylene (p/m)	4650	U	5000	123	90.5	80-120	5.92	20	
Xylene (o)	2420	11	2500	21.7	95.9	80-120	6.90	20	
Surrogate: a,a,a-Trifluorotoluene	89.1		100		89.1	80-120			
Surrogate: 4-Bromofluorohenzene	98.6	n	100		98.6	80-120			

2100 Avenue 6

Project: DEFS G28-4 (130002)

Fax: 505-394-2601

Project Number: 130002

Reported: 06/21/04 16:59

Eunice NM, 88231

Project Manager: Iain Olness

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
ation (Prep)			·				<u></u>	-	-
			Prepared	& Analyzo	ed: 06/17/0	04			
100		%							
Sou	ırce: 4F1700	3-01	Prepared	& Analyzo	ed: 06/17/0	04			
93.0		%		93.0			0.00	20	
	ration (Prep)	Result Limit ration (Prep) 100 Source: 4F1700	Result Limit Units ration (Prep) 100 % Source: 4F17003-01	Result Limit Units Level ration (Prep) Prepared 100 % Source: 4F17003-01 Prepared	Result Limit Units Level Result ation (Prep) Prepared & Analyze 100 % Source: 4F17003-01 Prepared & Analyze	Result Limit Units Level Result %REC ration (Prep) Prepared & Analyzed: 06/17/ 100 % Source: 4F17003-01 Prepared & Analyzed: 06/17/	Result Limit Units Level Result %REC Limits	Result Limit Units Level Result %REC Limits RPD ration (Prep) Prepared & Analyzed: 06/17/04 100 % Source: 4F17003-01 Prepared & Analyzed: 06/17/04	Result Limit Units Level Result %REC Limits RPD Limit

Environmental Plus, Incorporated Project: DEFS G28-4 (130002) Fax: 505-394-2601

2100 Avenue 6Project Number: 130002Eunice NM, 88231Project Manager: Iain Olness

Reported: 06/21/04 16:59

Notes and Definitions

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By: Rolandk June

Date: (0-7-1-04

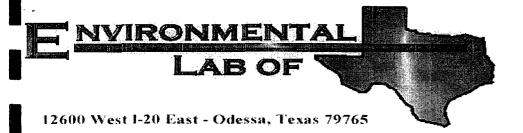
Raland K. Tuttle, QA Officer

Celey D. Keene, Lab Director, Org. Tech Director

Jeanne Mc Murrey, Inorg. Tech Director

James L. Hawkins, Chemist/Geologist Sara Molina, Chemist

Sandra Biezugbe, Lab Tech.


This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

								_			TAT DIE	RUSH Stand	├—	×										z >		
								L			92	Sulfat	_	Ĺ <u></u>	_				_		_			ا و نو	Į.	
	Ì							-				Chlori	-	-	_	-		\vdash	-		-	-	-	Sample Containers Intact?	its:	
	ļ						ļ	-				Ignitia			-	-	-			_			\vdash	ers	i i i	
							ľ	-			tivity	Corros						Γ			<u> </u>		_	ntain	ر کی کی گر	ノ
			3E				ō				vity	React													tory	Γ,
			Project Loc: UL-P Section 21 T22S R36E				Analyze For				8021B/5030		×	X										mple	Laboratory Comments:	727
	Project Name: DEFS G28-4 (130002)		_22S				naly	_	Щ	L	* selitslo		L				<u> </u>				<u> </u>		ļ.,	Sa	<u> </u>	
	8		21.1				^	_		_		litsloV	-				_			-	_	_	_	4	يو ا	g &
	8-4		tion				İ			O.	ew GRO/DF	Metals	×	×			-	_				<u> </u>	_	1	Time	Time /2%
	8	20	Sec				ì	۵	إبرا		9001/2001 X		<u> </u>	$\hat{}$			-	_		<u> </u>			-			
	띩	Project #: 130002	JL-P				l	TCLP	TOTAL			* HqT	\vdash		_		\vdash	<u> </u>				\vdash	-	1	Date	Date 6-170+
	ē.	#	ار ار	PO#:				ľ		-(SI/SAR/EC		 		-							\vdash	-	1	ď	5 0
	Nan	oject	r G	9					Н		(Specify)											\vdash		1		
	ject	ď	roje							Type		lio2	×	×												
	<u>P</u>		ш						Ì	Ţ	е	gbul2												<u>,</u> [
									- (Water		_						_			L	ENV. Paus		
	,	ı	,			1	1				(Specify)		_								_		<u> </u>	3		
										é		None	-			Ш	ļ							j		
						ant to a				rvati		OSH	-		\vdash		_		_				_	11.8		
		Ì				180				Preservative		И ⁹ ОН НСІ					-		-		-	_	-	1		17
	į					ြင်			- 1	Ъ		ONH										-		901		7
						enta						ICE	×	×										94-2	12	हें है
						100			•		Containers	lo .oN	1	1										5-3		by:
						Per - Envir				į	Sampled	: əwiT	15:15	15:42									S	s ASAP [505-394-2601]	Received	Received by:
3						doie Hor					pəldueg	Date 3	16-Jun	16-Jun										lain Olnes	Time ()93()	Time
Xas, Inc. 915-563-1800 915-563-1713		I Plus, Inc.		3231	1	Fadic Harper Environmental Consultant		•			ICATION													FAX RESULTS TO lain Olness	Date (1/2/10 to 1/2)	Date
al Lab of Tey Phone: Fax:	Project Manager: Iain Olness	Company Name: Environmental Plus, Inc.	Company Address: P.O. Box 1558	City/State/Zip: Eunice, NM 88231	Telephone No: (505) 394-3481	Sampler Signature:					SAMPLE IDENTIFICATION		2 (60')	-2 (70')										FAX		CON II
Environmental Lab of Texas, Inc. 12600 West I-20 East Phone: 915-563-180 Odessa Texas 79763 Fax: 915-563-171	Project Mar	Company N	Company Add	City/Stat	Telephon	Sampler Signs					<u>iva</u>	4517008		- ~2 SB-2 (70')										Special Instructions	Reimgulshed:	Relinguished:

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: Env. Plus loc.				,
Client: <u>Env. Plus Inc.</u> Date/Time: <u>06-17-04@1315</u>				
Order #: 4F 17008				
Initials: $\overline{\square} \wedge \wedge$				
Sample Receipt	Checkl	ist		
Temperature of container/cooler?	(Yes)	No	4,0 C	
Shipping container/cooler in good condition?	Yes	No	NA	
Custody Seals intact on shipping container/cooler?	Yes	No	Not present	
Custody Seals intact on sample bottles?	Yes	No	Not present	
Chain of custody present?	(Fes)	No		
Sample Instructions complete on Chain of Custody?	(Yes)	No		
Chain of Custody signed when relinquished and received?	Yes	No		
Chain of custody agrees with sample label(s)	Tes	No		
Container labels legible and intact?	Yes	No		
Sample Matrix and properties same as on chain of custody?	Xes	No		
Samples in proper container/bottle?	Yes	No		
Samples properly preserved?	Yes	No		
Sample bottles intact?	Yes	No		
Preservations documented on Chain of Custody?	(Yes)	No		
Containers documented on Chain of Custody?	(es)	No		
Sufficient sample amount for indicated test?	Yes	No		
All samples received within sufficient hold time?	(CES)	No		
VOC samples have zero headspace?	Yes	No	Not Applicable	
Other observations: Variance Docum Contact Person: Date/Time:			Contacted by:	
Regarding:				
Corrective Action Taken:				
		~		
	··· ·			

Analytical Report

Prepared for:

Iain Olness
Environmental Plus, Incorporated
P.O. Box 1558
Eunice, NM 88231

Project: Duke Energy- G-28-4 (ref. #130002)
Project Number: None Given
Location: UL p, Sec 21, T22S, R36E

Lab Order Number: 5B23008

Report Date: 02/25/05

P.O. Box 1558 Eunice NM, 88231 Project: Duke Energy- G-28-4 (ref. #130002)

Project Number: None Given

Fax: 505-394-2601

Reported: 02/25/05 11:08

ANALYTICAL REPORT FOR SAMPLES

Project Manager: Iain Olness

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1A (62')	5B23008-01	Soil	02/21/05 09:50	02/23/05 13:25
SB-1A (87')	5B23008-02	Soil	02/21/05 11:30	02/23/05 13:25
SB-1A (102')	5B23008-03	Soil	02/21/05 13:35	02/23/05 13:25
SB-1A (112')	5B23008-04	Soil	02/21/05 14:20	02/23/05 13:25
SB-1A (117')	5B23008-05	Soil	02/21/05 14:50	02/23/05 13:25
SB-1A (122)	5B23008-06	Soil	02/21/05 15:20	02/23/05 13:25

Environmental Plus, Incorporated P.O. Box 1558

Eunice NM, 88231

Project: Duke Energy- G-28-4 (ref. #130002)

Project Number: None Given Project Manager: Iain Olness

Fax: 505-394-2601

Reported: 02/25/05 11:08

Organics by GC Environmental Lab of Texas

Result	Reporting Limit	Units	Dilution	Batch	Prenared	Analyzed	Method	Notes
	·					. 2		
34.9	0.100	mg/kg dry	100	EB52408	02/23/05	02/23/05	EPA 8021B	
110	0.100	н	н	#	U	U	н	
35.7	0.100	n	"	н	н	0	n	
119	0.100	"	n	U	U	н	n	
30.6	0.100	"	"	Ħ	"		"	
	929 %	80-1	120	"	"	"	"	S-04
	90.4 %	80-	120	"	u	"	и	
13200	50.0	mg/kg dry	5	EB52307	02/23/05	02/24/05	EPA 8015M	
12200	50.0	**	H	"	11	"	H	
25400	50.0	n	11	11	"	H	it	
	59.4 %	70-	130	"	"	"	"	S-06
	18.7 %	70-1	130	"	"	"	"	S-06
22.8	0.100	mg/kg dry	100	EB52408	02/23/05	02/23/05	EPA 8021B	
103	0.100	Ħ		l)		II	11	
38.1	0.100	ti	11	"	II	11	n	
129	0.100	п	"	It	н	0	**	
37.9	0.100		"	**	11	н	11	
	815 %	80-	120	"	"	"	"	S-04
	90.9 %	80-	120	"	"	"	n	
10800	50.0	mg/kg dry	5	EB52307	02/23/05	02/24/05	EPA 8015M	
10000	50.0	H	11	и	н	11	11	
20800	50.0	"		"	"	н		
	47.2 %	70	130	"	"	"	"	S-06
	16.3 %	70	130	"	"	"	"	S-06
12.9	0.100	mg/kg dry	100	EB52408	02/23/05	02/23/05	EPA 8021B	
66.7	0.100	11	11	"	11	II	U	
28.0	0.100	II.	"	11	"	11	11	
97.7	0.100	"	11	"	n	u	**	
27.5	0.100		11	н	11	"	H	
	591 %	80-	120	"	"	"	"	S-04
	119 %	80-	120	"	"	"	"	
7150	50.0	mg/kg dry	5	EB52307	02/23/05	02/24/05	EPA 8015M	
8550	50.0	"	11	u	n	Ħ	н	
15700	50.0		н	11	11	u		
	34.9 110 35.7 119 30.6 13200 12200 25400 22.8 103 38.1 129 37.9 10800 10000 20800 12.9 66.7 28.0 97.7 27.5	Result Limit 34.9 0.100 110 0.100 35.7 0.100 119 0.100 929 % 90.4 % 90.4 % 13200 50.0 12200 50.0 59.0 25400 50.0 59.4 % 18.7 % 18.7 % 22.8 0.100 30.0 38.1 0.100 37.9 0.100 37.9 0.100 50.0 815 % 90.9 % 90.9 % 10800 50.0 50.0 47.2 % 16.3 % 12.9 0.100 50.0 47.2 % 16.3 % 12.9 0.100 50.0 27.5 0.100 591 % 119 % 7150 50.0 8550 50.0	Result Limit Units 34.9 0.100 mg/kg dry 110 0.100 " 35.7 0.100 " 119 0.100 " 30.6 0.100 " 92.9 % 80-1 80-1 90.4 % 80-1 80-1 13200 50.0 mg/kg dry 12200 50.0 " 25400 50.0 " 59.4 % 70-1 70-1 18.7 % 70-1 70-1 22.8 0.100 mg/kg dry 103 0.100 " 38.1 0.100 " 815 % 80-1 80-1 90.9 % 80-1 80-1 10800 50.0 mg/kg dry 1000 50.0 " 47.2 % 70-1 70-1 16.3 % 70-1 70-1 12.9 0.100 mg/kg dry 66.7 0.100 " 28.0 0.100 " 97.7 0.100 " 27.5 0.100 " 19 % 80-1 119 % 80-1 119 % 80-1 119 % 80-1<	Result Limit Units Dilution	Result Limit Units Dilution Batch	Result	Result	Result

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

P.O. Box 1558 Eunice NM, 88231 Project: Duke Energy- G-28-4 (ref. #130002)

Project Number: None Given Project Manager: Iain Olness

Fax: 505-394-2601

Reported: 02/25/05 11:08

Organics by GC **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1A (102') (5B23008-03) Soil							<u> </u>		
Surrogate: 1-Chlorooctane		39.6 %	70-	130	EB52307	02/23/05	02/24/05	EPA 8015M	S-06
Surrogate: 1-Chlorooctadecane		14.9 %	70-	130	"	"	"	"	S-06
SB-1A (112') (5B23008-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB52408	02/23/05	02/24/05	EPA 8021B	
Toluene	0.0353	0.0250	"	н	10	H	а	"	
Ethylbenzene	0.0549	0.0250	*	11	10	II .	"	**	
Xylene (p/m)	0.234	0.0250	*	н	11	IF	U	n	
Xylene (o)	0.0741	0.0250	ч	n	tt .	II .	D	U	
Surrogate: a,a,a-Trifluorotoluene		84.3 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	33.6	10.0	mg/kg dry	1	EB52307	02/23/05	02/24/05	EPA 8015M	
Diesel Range Organics >C12-C35	188	10.0	п		ŧı	"	"	11	
Total Hydrocarbon C6-C35	222	10.0	11	u	**	"	11	**	
Surrogate: 1-Chlorooctane		78.0 %	70-	130	n	"	"	"	
Surrogate: 1-Chlorooctadecane		81.0 %	70-	130	n	"	"	"	
SB-1A (117') (5B23008-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB52408	02/23/05	02/23/05	EPA 8021B	
Toluene	0.188	0.0250	n	**	It	11	H	11	
Ethylbenzene	0.236	0.0250	*	n	н	И	H	n	
Xylene (p/m)	1.01	0.0250	"	11	If	n	u	u	
Xylene (o)	0.358	0.0250	н	11	1)	II.	н	n	
Surrogate: a,a,a-Trifluorotoluene		87.1 %	80-	-120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	95.3	10.0	mg/kg dry	1	EB52307	02/23/05	02/24/05	EPA 8015M	
Diesel Range Organics >C12-C35	175	10.0			er er	n	**	**	
Total Hydrocarbon C6-C35	270	10.0	u	*	n	10	n	п	
Surrogate: 1-Chlorooctane		97.0 %	70-	-130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		86.2 %	70-	-130	"	"	"	"	

P.O. Box 1558 Eunice NM, 88231 Project: Duke Energy- G-28-4 (ref. #130002)

Project Number: None Given Project Manager: Iain Olness

Fax: 505-394-2601

Reported: 02/25/05 11:08

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1A (122) (5B23008-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB52408	02/23/05	02/23/05	EPA 8021B	
Toluene	ND	0.0250	11	If	"	n	**	O.	
Ethylbenzene	ND	0.0250	11	11	11	Ü	a	II.	
Xylene (p/m)	ND	0.0250	H.	17	H	11	ŧı	If	
Xylene (o)	ND	0.0250	11	u	It	11	ii	н	
Surrogate: a,a,a-Trifluorotoluene		80.4 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.9 %	80-1	20	n	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EB52307	02/23/05	02/24/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	**	н	**	**	u		
Total Hydrocarbon C6-C35	ND	10.0	n	11	11	It	н	o o	
Surrogate: 1-Chlorooctane		89.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		75.4 %	70-1	30	"	"	"	"	

P.O. Box 1558 Eunice NM, 88231 Project: Duke Energy- G-28-4 (ref. #130002)

Project Number: None Given Project Manager: Iain Olness

Fax: 505-394-2601

Reported: 02/25/05 11:08

General Chemistry Parameters by EPA / Standard Methods **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-1A (62') (5B23008-01) Soil									
Chloride	37.9	5.00	mg/kg	10	EB52503	02/24/05	02/24/05	EPA 300.0	
% Moisture	5.1	0.1	%	1	EB52401	02/23/05	02/24/05	% calculation	
SB-1A (87') (5B23008-02) Soil									
Chloride	22.4	5.00	mg/kg	10	EB52503	02/24/05	02/24/05	EPA 300.0	
% Moisture	4.2	0.1	%	1	EB52401	02/23/05	02/24/05	% calculation	
SB-1A (102') (5B23008-03) Soil				 					
Chloride	15.1	5.00	mg/kg	10	EB52503	02/24/05	02/24/05	EPA 300.0	
% Moisture	2.5	0.1	%	l	EB52401	02/23/05	02/24/05	% calculation	
SB-1A (112') (5B23008-04) Soil									
Chloride	15.0	5.00	mg/kg	10	EB52503	02/24/05	02/24/05	EPA 300.0	
% Moisture	1.9	0.1	%	1	EB52401	02/23/05	02/24/05	% calculation	
SB-1A (117') (5B23008-05) Soil									
Chloride	18.5	5.00	mg/kg	10	EB52503	02/24/05	02/24/05	EPA 300.0	
% Moisture	1.5	0.1	%	1	EB52401	02/23/05	02/24/05	% calculation	
SB-1A (122) (5B23008-06) Soil									
Chloride	15.8	5.00	mg/kg	10	EB52503	02/24/05	02/24/05	EPA 300.0	
% Moisture	1.6	0.1	%	1	EB52401	02/23/05	02/24/05	% calculation	

P.O. Box 1558 Eunice NM, 88231 Project: Duke Energy- G-28-4 (ref. #130002)

Project: Duke Energy- G-28-4 (ref. #130)
Project Number: None Given

Fax: 505-394-2601

Reported: 02/25/05 11:08

Organics by GC - Quality Control Environmental Lab of Texas

Project Manager: Iain Olness

_		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB52307 - Solvent Extraction	(GC)									
Blank (EB52307-BLK1)				Prepared:	02/23/05	Analyzed	: 02/24/05			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	IT							
Total Hydrocarbon C6-C35	ND	10.0	"							
Surrogate: 1-Chlorooctane	44.9		mg/kg	50.0		89.8	70-130			
Surrogate: 1-Chlorooctadecane	41.1		"	50.0		82.2	70-130			٠
LCS (EB52307-BS1)				Prepared:	02/23/05	Analyzed	: 02/24/05			
Gasoline Range Organics C6-C12	453	10.0	mg/kg wet	500		90.6	75-125			
Diesel Range Organics >C12-C35	460	10.0	11	500		92.0	75-125			
Total Hydrocarbon C6-C35	913	10.0	It	1000		91.3	75-125			
Surrogate: 1-Chlorooctane	46.7		mg/kg	50.0		93.4	70-130			
Surrogate: 1-Chlorooctadecane	36.7		"	50.0		73.4	70-130			
Calibration Check (EB52307-CCV1)				Prepared:	02/23/05	Analyzed	l: 02/24/05			
Gasoline Range Organics C6-C12	509		mg/kg	500		102	80-120			
Diesel Range Organics >C12-C35	565	,	11	500		113	80-120			
Total Hydrocarbon C6-C35	1070		*1	1000		107	80-120			
Surrogate: 1-Chlorooctane	48.6		"	50.0		97.2	70-130			
Surrogate: 1-Chlorooctadecane	47.8		"	50.0		95.6	70-130			
Matrix Spike (EB52307-MS1)	So	urce: 5B230	07-03	Prepared:	02/23/05	Analyzed	l: 02/24/05			
Gasoline Range Organics C6-C12	530	10.0	mg/kg dry	602	ND	88.0	75-125			
Diesel Range Organics >C12-C35	579	10.0	н	602	ND	96.2	75-125			
Total Hydrocarbon C6-C35	1110	10.0	н	1200	ND	92.5	75-125			
Surrogate: 1-Chlorooctane	37.3		mg/kg	50.0		74.6	70-130			
Surrogate: 1-Chlorooctadecane	39.3		"	50.0		78.6	70-130			
Matrix Spike Dup (EB52307-MSD1)	So	urce: 5B230	07-03	Prepared:	02/23/05	Analyzed	l: 02/24/05			
Gasoline Range Organics C6-C12	516	10.0	mg/kg dry	602	ND	85.7	75-125	2.68	20	
Diesel Range Organics >C12-C35	600	10.0	u u	602	ND	99.7	75-125	3.56	20	
Total Hydrocarbon C6-C35	1120	10.0		1200	ND	93.3	75-125	0.897	20	
Surrogate: 1-Chlorooctane	41.4		mg/kg	50.0		82.8	70-130			
Surrogate: 1-Chlorooctadecane	38.0		"	50.0		76.0	70-130			

Pı

Project: Duke Energy- G-28-4 (ref. #130002)

Fax: 505-394-2601

P.O. Box 1558 Eunice NM, 88231 Project Number: None Given

Project Manager: Iain Olness

Reported: 02/25/05 11:08

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB52408 - EPA 5030C (GC)										
Blank (EB52408-BLK1)				Prepared	& Analyze	ed: 02/23/0	05			
Benzene	· ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	n							
Xylene (p/m)	ND	0.0250	n							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	84.0		ug/kg	100		84.0	80-120			
Surrogate: 4-Bromofluorobenzene	97.1		"	100		97.1	80-120			
LCS (EB52408-BS1)				Prepared	& Analyze	ed: 02/23/	05			
Benzene	91.7		ug/kg	100		91.7	80-120			
Toluene	96.7		W	100		96.7	80-120			
Ethylbenzene	105		н	100		105	80-120			
Xylene (p/m)	237		**	200		118	80-120			
Xylene (o)	119		u	100		119	80-120			
Surrogate: a,a,a-Trifluorotoluene	89.5		"	100		89.5	80-120			
Surrogate: 4-Bromofluorobenzene	104		"	100		104	80-120			
Calibration Check (EB52408-CCV1)				Prepared:	02/23/05	Analyzed	1: 02/24/05			
Benzene	95.1		ug/kg	100		95.1	80-120			
Toluene	98.1		*1	100		98.1	80-120			
Ethylbenzene	100		"	100		100	80-120			
Xylene (p/m)	229		n	200		114	80-120			
Xylene (o)	117		10	100		117	80-120			
Surrogate: a,a,a-Trifluorotoluene	90.3		"	100		90.3	80-120			
Surrogate: 4-Bromofluorobenzene	99.0		"	100		99.0	80-120			
Matrix Spike (EB52408-MS1)	So	urce: 5B230	09-03	Prepared	& Analyze	ed: 02/23/	05			
Benzene	101		ug/kg	100	ND	101	80-120			
Toluene	104		n	100	ND	104	80-120			
Ethylbenzene	104		II.	100	ND	104	80-120			
Xylene (p/m)	236		"	200	ND	118	80-120			
Xylene (o)	116		11	100	ND	116	80-120			
Surrogate: a,a,a-Trifluorotoluene	93.7	<u>-</u>	"	100		93.7	80-120			
Surrogate: 4-Bromofluorobenzene	113		"	100		113	80-120			

Project: Duke Energy- G-28-4 (ref. #130002)

Fax: 505-394-2601

P.O. Box 1558

Project Number: None Given

Reported:

Eunice NM, 88231

Project Manager: Iain Olness

02/25/05 11:08

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

	Batch	EB52408 -	EPA 5030C	(GC)
--	-------	-----------	-----------	------

Matrix Spike Dup (EB52408-MSD1)	Source:	5B23009-03	Prepared	& Analyz	ed: 02/23/	05		
Benzene	90.4	ug/kg	100	ND	90.4	80-120	11.1	20
Toluene	94.5	11	100	ND	94.5	80-120	9.57	20
Ethylbenzene	102	"	100	ND	102	80-120	1.94	20
Xylene (p/m)	235	"	200	ND	118	80-120	0.00	20
Xylene (o)	117	It	100	ND	117	80-120	0.858	20
Surrogate: a,a,a-Trifluorotoluene	82.4	"	100		82.4	80-120		
Surrogate: 4-Bromofluorobenzene	114	"	100		114	80-120		

Project: Duke Energy- G-28-4 (ref. #130002)

Fax: 505-394-2601

P.O. Box 1558

Project Number: None Given

Reported:

Eunice NM, 88231

Project Manager: Iain Olness

02/25/05 11:08

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

A	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note-
Analyte	Result	Lunit	Units	Level	Result	70REC	Limits	KPD	Limit	Notes
Batch EB52401 - General Preparation	(Prep)									
Blank (EB52401-BLK1)				Prepared:	02/23/05	Analyzed	: 02/24/05			
% Moisture	ND	0.1	%							
Duplicate (EB52401-DUP1)	So	urce: 5B2300	1-01	Prepared:	02/23/05	Analyzed	: 02/24/05			
% Moisture	1.0	0.1	%		1.0			0.00	20	
Batch EB52503 - Water Extraction							· · · · · · · · · · · · · · · · · · ·			
Blank (EB52503-BLK1)				Prepared	& Analyze	d: 02/24/0	05			
Chloride	ND	0.500	mg/kg							
Blank (EB52503-BLK2)				Prepared	& Analyze	ed: 02/24/0	05			
Chloride	ND	0.500	mg/kg							
LCS (EB52503-BS1)				Prepared .	& Analyze	d: 02/24/0	05			
Chloride	10.3		mg/L	10.0		103	80-120	-		
LCS (EB52503-BS2)				Prepared -	& Analyze	ed: 02/24/0	05			
Chloride	10.4		mg/L	10.0		104	80-120			
Calibration Check (EB52503-CCV1)				Prepared	& Analyze	ed: 02/24/0	05			
Chloride	10.4		mg/L	10.0		104	80-120			
Calibration Check (EB52503-CCV2)				Prepared	& Analyze	ed: 02/24/0	05			
Chloride	10.4		mg/L	10.0		104	80-120			
Duplicate (EB52503-DUP1)	So	urce: 5B2200	6-01	Prepared	& Analyze	ed: 02/24/0	05			
Chloride	35.3	5.00	mg/kg		42.2			17.8	20	

Project: Duke Energy- G-28-4 (ref. #130002)

Fax: 505-394-2601

Reported: 02/25/05 11:08

P.O. Box 1558 Eunice NM, 88231

Project Number: None Given Project Manager: Iain Olness

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EB52503 - Water Extraction

Duplicate (EB52503-DUP2)	Sou	rce: 5B2400	2-02	Prepared & Analyzed: 02/24/05			
Chloride	17.2	5.00	mg/kg	17.1	0.583	20	

Environmental Plus, Incorporated Project: Duke Energy- G-28-4 (ref. #130002) Fax: 505-394-2601
P.O. Box 1558 Project Number: None Given Reported:
Eunice NM, 88231 Project Manager: Iain Olness 02/25/05 11:08

Notes and Definitions

The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or S-06 matrix interference's. The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. S-04 DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported Sample results reported on a dry weight basis dry RPD Relative Percent Difference LCS Laboratory Control Spike MS Matrix Spike Duplicate

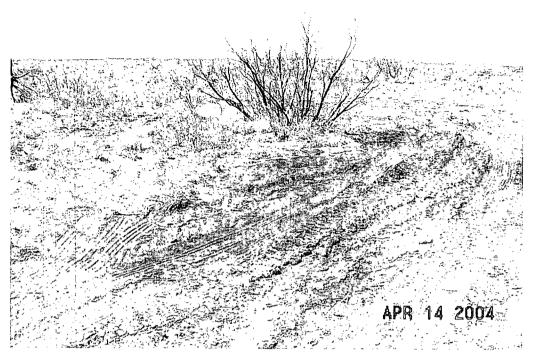
Report Approved By: Rolandk Juul Date: 2-25-05

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

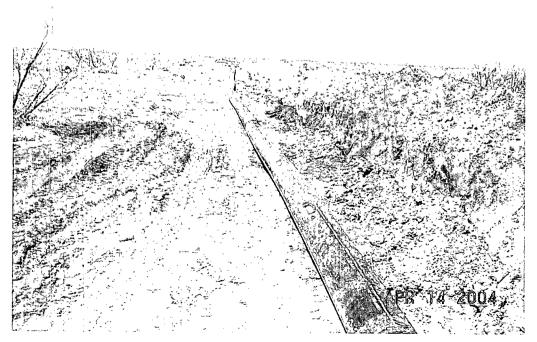
This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas, Inc.

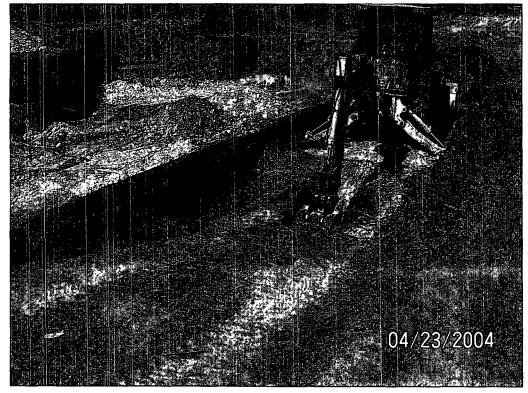

12600 West I-20 East, Odessa Texas 79763 432-563-1800 FAX: 432-563-1713

1000-1000	705 00																			
Company Name:	Environmental Plus, Inc.	, Inc.	arrai.				BII	ВШТО					ANALYSIS REQUEST	ZZ	YSK	三人	9	EST		4
EPI Project Manager:	ager: lain Olness										<u> </u>	\vdash	H	┝	-	_			┢	Γ
Mailing Address:	. P.O. BOX 1558													·					 	-
City, State, Zip:	Eunice New Mexico 88231	88231				•		الر	n				i		-	-				
EPI Phone#/Fax#		394-2601						7	ı										 	
Client Company:	Duke Energy Field Services	rvices											-	:					 	
Facility Name:	G-28-4 (Ref. #130002)	2)				Att	n: <u>lai</u> i	Attn: lain Olness	ess						T					
Project Location	: UL P, Sec 21,	T22S, R36E				Δ.	O Bo	PO Box 1558,	8											
EPI Sampler Name:	ne: Roger Boone					Eun	ice, I	Eunice, NM 88231	3231											
			=	MATRIX	إ	۲	PRESERV.	RV.	SAMPLING	LING		_	-						-	
CAB 1.De	SAMPLE I.D.	(G) RAB OR (C) OMF # CONTAINERS GROUND WATER	MASTEWATER	CBNDE OIF 20IF	SLUDGE	OTHER:	ICE\COOF	ЯЭНТО	DATE	TIME	BTEX 8021B	Maros HqT	CHLORIDES (CI')	SULFATES (SO ₄ ") Hq	ТСГР	OTHER >>>	НАЧ			
1 	1 SB-1A (62')	G 1		×			×	Ë	21-Feb	9:50	×	×	-	╄	_	_	+-		T	Τ
-00°2	SB-1A (87')	G 1		×		Ĥ	X X		21-Feb	11:30	×	×	×			<u> </u>			T	Γ
202 3	3 SB-1A (102')	G 1		×			Н		21-Feb	13:35	×	×	×		_					
	4 SB-1A (112')	- 5		×			×		21-Feb	14:20	×	×	×	Н						
1955	5 SB-1A(117')	- 5	_	×			×		21-Feb	14:50	×	×	×							
~ DIQ 6	D(0 6 SB-1A (122')	- 5		×			×	- 7	21-Feb	15:20	×	×	×							
7			1	\dashv	亅	\dashv	\dashv	士				+	\dashv	-	4					
8		+	#	+	1	+	4	1			_	\dashv	\dashv	+	4	4			7	T
6			1	\dashv	1	+	4	1			7	+	+	4	4	_			7	٦
10				\dashv		_	4					\dashv	\dashv	-						
Sample Relinquished:	Page 13 the 135 of Received By Time 1355 Received By Time 1355 Received By Time 1355 Received By All and 1355 Received By	الكار	(lab staff)		Checked By:	, ;; ;;	m R Ev	E-mail res REMARKS:	results to: iol $3.5^{\circ}C$	E-mail results to: iolness@hotmail.com $A, S \circ C$ $A \circ O \circ O$	otma	il.cor	Ę	,						
								!	!								ı	I		l


Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: ENVIRON. PUB, INC.	·		-		
Date/Time: 2/23/05 1:37					
Order #: 5823008			·	•	
Initials:					
Sample Receipt	Checkli	st			
Temperature of container/cooler?	Yes	No	3,5 C		
Shipping container/cooler in good condition?	(Yes)	No			
Custody Seals intact on shipping container/cooler?	Yes	No	Not present		
Custody Seals intact on sample bottles?	Yes	No	Not present		
Chain of custody present?	Xes	No	, , , , , , , , , , , , , , , , , , ,		
Sample Instructions complete on Chain of Custody?	Xes	No			
Chain of Custody signed when relinquished and received?	(68)	No			
Chain of custody agrees with sample label(s)	250	No			
Container labels legible and intact?	Yes	No			
Sample Matrix and properties same as on chain of custody?	200	No			
Samples in proper container/bottle?	res	No			
Samples properly preserved?	(FES)	No			
Sample bottles intact?	(res)	No			
Preservations documented on Chain of Custody?	(es)	No			
Containers documented on Chain of Custody?	Ves	No			
Sufficient sample amount for indicated test?	THE STATE OF THE S	No			
All samples received within sufficient hold time?	(Ves)	No			
VOC samples have zero headspace?	(Res)	No	Not Applicable		
Other observations:					
Variance Documentation: Contact Person: Date/Time: Contacted by: Regarding:					
Corrective Action Taken:			· · · · · · · · · · · · · · · · · · ·		
			 		
					
•					
			·.		


APPENDIX II SITE PHOTOGRAPHS


Photograph #1: Stained soil indicating release area, looking westerly.


Photograph #2: New pipeline being installed, looking westerly.

Photograph #3: Original line that was replaced, showing numerous clamps, looking westerly.

Photograph #4: Excavation and test trench, looking westerly.

Photograph #5: Advancement of original soil boring, looking southwesterly across the excavation.

Photograph #6: Advancement of original soil boring, looking southerly.

APPENDIX III RISK / EXPOSURE ASSESSMENT **INPUT DATA**

FATE AND TRANSPORT MODEL INPUT SUMMARY FILE

Model Description: Unsaturated zone model linked with saturated zone model Title: DEFS G-28-4: No Barrier Simulation time (years): 100 **Vadose Zone Source Parameters** Thickness of contamination (m)----- 34. Depth to top of contamination (m)---- 2.1 Length of source (m)----- 13. Width of source (m)----- 8.0 **Unsaturated Zone Properties** Total Porosity in vadose zone (cm³/cm³)----- 0.30 Residual water content (cm³/cm³)-----5.00E-02 Fraction organic carbon (g oc/g soil) ----- 2.00E-03 Soil bulk density (g/cm³) ------ 1.7 Infiltration Rate (cm/yr) ----- 36. Saturated conductivity (m/d)----- 5.0 Van Genuchten's N ----- 2.7 Thickness of vadose zone (m) ----- 49. **Aquifer Properties** Effective porosity (cm³/cm³)----- 0.30 Fraction organic carbon (g oc/g soil) -- 2.00E-03 Hydraulic conductivity (m/d) ----- 5.0 Soil bulk density (g/cm³) ----- 1.7 Hydraulic gradient (m/m) ----- 1.00E-03 ***Longitudinal dispersivity (m) ----- code calculated ***Transverse dispersivity (m)----- code calculated ***Vertical dispersivity (m) ----- code calculated **Receptor Well Location** Distance downgradient (m) ----- 0.10 Distance cross-gradient (m)----- 0.10 Depth to top of well screen (m)----- 49.

Depth to bottom of well screen(m)---- 55. Number of points used to calc. conc. -- 5

TPH Data for Unsaturated Zone Source	
Concentration of TPH in soil (mg/kg)	5 86F+04
Molecular weight of TPH (g/mol)	
CHEMICAL DATA FOR: TPH Aromatic C8-1	10
Diffusion coefficient in air (cm ² /s)	0.10
Diffusion coefficient in water (cm ² /s)	
Solubility (mg/l)	65.
Vapor pressure (mmHg)	4.8
KOC (L/kg)	
Henry's Law coefficient (-)	0.49
Molecular weight (g/mol)	
Degradation rate, saturated zone (1/d)	
Degradation rate, vadose zone (1/d)	
Source conc. for unsaturated zone model (mg/l	
Source cone. for unsaturated zone moder (mg)	kg)2.54L+04
CHEMICAL DATA FOR: TPH Aromatic C21	-35
Diffusion coefficient in air (cm ² /s)	0.10
Diffusion coefficient in water (cm ² /s)	1.00E-05
Solubility (mg/l)	
Vapor pressure (mmHg)	3.30E-06
KOC (L/kg)	
Henry's Law coefficient (-)	6.80E-04
Molecular weight (g/mol)	
Degradation rate, saturated zone (1/d)	
Degradation rate, vadose zone (1/d)	
Source conc. for unsaturated zone model (mg/l	
	<i>C</i> ,
CHEMICAL DATA FOR: Benzene	
Diffusion coefficient in air (cm ² /s)	8.80E-02
Diffusion coefficient in water (cm ² /s)	
Solubility (mg/l)	
Vapor pressure (mmHg)	
KOC (L/kg)	
Henry's Law coefficient (-)	
Molecular weight (g/mol)	
Degradation rate, saturated zone (1/d)	
Degradation rate, vadose zone (1/d)	
Source conc. for unsaturated zone model (mg/l	кд)39.

Diffusion coefficient in air (cm ² /s)	7.50E-02	
Diffusion coefficient in water (cm ² /s)	7.80E-06	
Solubility (mg/l)	1.69E+02	
Vapor pressure (mmHg)	9.6	
KOC (L/kg)	3.60E+02	
Henry's Law coefficient (-)		
Molecular weight (g/mol)	1.06E+02	
Degradation rate, saturated zone (1/d)		
Degradation rate, vadose zone (1/d)	3.00E-03	
Source conc. for unsaturated zone model (mg/l	kg)1.59E+02	
MICAL DATA FOR: Toluene		
Diffusion coefficient in air (cm²/s)	8.70E-02	
Diffusion coefficient in water (cm ² /s)	8.60E-06	
Solubility (mg/l)	5.26E+02	
Vapor pressure (mmHg)	28.	
KOC (L/kg)	1.80E+02	
Henry's Law coefficient (-)		
Molecular weight (g/mol)		
Degradation rate, saturated zone (1/d)	2.50E-02	
Degradation rate, vadose zone (1/d)	2.50E-02	
Source conc. for unsaturated zone model (mg/l	kg)3.21E+02	
MICAL DATA FOR: Xylenes		
Diffusion coefficient in air (cm²/s)	7.20E-02	
Diffusion coefficient in water (cm²/s)	8.50E-06	
Solubility (mg/l)	1.98E+02	
Vapor pressure (mmHg)	8.8	
KOC (L/kg)	2.40E+02	
Henry's Law coefficient (-)	0.29	
Molecular weight (g/mol)	1.06E+02	
Degradation rate, saturated zone (1/d)		
Degradation rate, vadose zone (1/d)	1.000.02	

FATE AND TRANSPORT MODEL INPUT SUMMARY FILE

Model Description: Unsaturated zone model linked with saturated zone model				
Title: DEFS G-28-4: Barrier				
Simulation time (years): 100				
Vadose Zone Source Parameters				
Thickness of contamination (m) 34. Depth to top of contamination (m) 2.1 Length of source (m) 13. Width of source (m) 8.0				
Unsaturated Zone Properties				
Total Porosity in vadose zone (cm³/cm³) 0.30 Residual water content (cm³/cm³) 5.00E-02 Fraction organic carbon (g oc/g soil) 2.00E-03 Soil bulk density (g/cm³) 1.7 Infiltration Rate (cm/yr) 1.00E-02 Saturated conductivity (m/d) 5.0 Van Genuchten's N 2.7 Thickness of vadose zone (m) 49.				
Thickness of lens (m)				
Effective porosity (cm3/cm3)0.30 Fraction organic carbon (g oc/g soil)2.00E-03 Hydraulic conductivity (m/d)				

Receptor Well Location
Distance downgradient (m)0.10
Distance cross-gradient (m)0.10
Depth to top of well screen (m)49.
Depth to bottom of well screen(m)55.
Number of points used to calc. conc5
TPH Data for Unsaturated Zone Source
Concentration of TPH in soil (mg/kg)5.86E+04 Molecular weight of TPH (g/mol)1.00E+02
CHEMICAL DATA FOR: Benzene
Diffusion coefficient in air (cm2/s)8.80E-02
Diffusion coefficient in water (cm2/s)9.80E-06
Solubility (mg/l)1.75E+03
Vapor pressure (mmHg)95.
KOC (L/kg)59.
Henry's Law coefficient (-)0.23
Molecular weight (g/mol)78.
Degradation rate, saturated zone (1/d)9.60E-04
Degradation rate, vadose zone (1/d)9.60E-04
Source conc. for unsaturated zone model (mg/kg)39.
CHEMICAL DATA FOR: Ethylbenzene
Diffusion coefficient in air (cm2/s)7.50E-02
Diffusion coefficient in water (cm2/s)7.80E-06
Solubility (mg/l)1.69E+02
Vapor pressure (mmHg)9.6
KOC (L/kg)3.60E+02
Henry's Law coefficient (-)
Molecular weight (g/mol)1.06E+02
Degradation rate, saturated zone (1/d)3.00E-03
Degradation rate, vadose zone (1/d)3.00E-03
Source conc. for unsaturated zone model (mg/kg)1.59E+02

CHEMICAL DATA FOR: Toluene	
Diffusion coefficient in air (cm2/s)	8.70E-02
Diffusion coefficient in water (cm2/s)	
Solubility (mg/l)	
Vapor pressure (mmHg)	28.
KOC (L/kg)	1.80E+02
Henry's Law coefficient (-)	0.27
Molecular weight (g/mol)	92.
Degradation rate, saturated zone (1/d)	2.50E-02
Degradation rate, vadose zone (1/d)	2.50E-02
Source conc. for unsaturated zone model (mg/kg)	3.21E+02
CHEMICAL DATA FOR: TPH Aromatic C10-12	
Diffusion coefficient in air (cm2/s)	0.10
Diffusion coefficient in water (cm2/s)	
Solubility (mg/l)	25.
Vapor pressure (mmHg)	0.48
KOC (L/kg)	2.50E+03
Henry's Law coefficient (-)	0.14
Molecular weight (g/mol)	1.30E+02
Degradation rate, saturated zone (1/d)	
Degradation rate, vadose zone (1/d)	0.0
Source conc. for unsaturated zone model (mg/kg)	2.34E+04
CHEMICAL DATA FOR: TPH Aromatic C21-35	
Diffusion coefficient in air (cm2/s)	0.10
Diffusion coefficient in water (cm2/s)	
Solubility (mg/l)	
Vapor pressure (mmHg)	3.30E-06
KOC (L/kg)	1.30E+05
Henry's Law coefficient (-)	6.80E-04
Molecular weight (g/mol)	2.40E+02
Degradation rate, saturated zone (1/d)	0.0
Degradation rate, vadose zone (1/d)	0.0
Source conc. for unsaturated zone model (mg/kg)	3.52E+04

CHEMICAL DATA FOR: Xylenes

Diffusion coefficient in air (cm2/s)	7.20E-02
Diffusion coefficient in water (cm2/s)	8.50E-06
Solubility (mg/l)	1.98E+02
Vapor pressure (mmHg)	8.8
KOC (L/kg)	2.40E+02
Henry's Law coefficient (-)	-0.29
Molecular weight (g/mol)	1.06E+02
Degradation rate, saturated zone (1/d)	1.90E-03
Degradation rate, vadose zone (1/d)	1.90E-03
Source conc. for unsaturated zone model (mg/kg)	7.26E+02

Incident Date: NMOCD Notified: Duke Energy Field Services Site 14 April 2004 03 May 2004 @ 0730 hrs Information and Metrics **Site:** G28-4 Assigned Site Reference #: 130002 Company: Duke Energy Field Services **Street Address:** Mailing Address: 11525 West Carlsbad Highway City, State, Zip: Hobbs, New Mexico 88240 Representative: Paul Mulkey (505) 397-5716 Representative Telephone: Telephone: Fluid volume released (bbls): unknown Recovered (bbls): 0 bbls >25 bbls: Notify NMOCD verbally within 24 hrs and submit form C-141 within 15 days. (Also applies to unauthorized releases >500 mcf Natural Gas) 5-25 bbls: Submit form C-141 within 15 days (Also applies to unauthorized releases of 50-500 mcf Natural Gas) Leak, Spill, or Pit (LSP) Name: G28-4 Source of contamination: 8" Steel Pipeline Land Owner, i.e., BLM, ST, Fee, Other: Miller Deck Estate LSP Dimensions: 47' x 27' $1,205 \text{ sqft } \text{ft}^2$ LSP Area: **Location of Reference Point (RP):** Location distance and direction from RP: Latitude: N 32º 22' 23.06" Longitude: W 103° 15' 52.09" Elevation above mean sea level: 3,510' amsl Feet from South Section Line: Feet from West Section Line: Location- Unit or 1/41/4: SE1/4 of the SE1/4 Unit Letter: P **Location- Section: 21 Location- Township: T22S Location- Range: R36E** Surface water body within 1000 'radius of site: none Surface water body within 1000 ' radius of site: none Domestic water wells within 1000' radius of site: none Domestic water wells within 1000' radius of site: none Agricultural water wells within 1000' radius of site: none Agricultural water wells within 1000' radius of site: none Public water supply wells within 1000' radius of site: none Public water supply wells within 1000' radius of site: none Depth from land surface to ground water (DG): 160 bgs Depth of contamination (DC): Unknown Depth to ground water (DG - DC = DtGW): Unknown, however, it is assumed to be greater than 100 feet. 1. Ground Water 2. Wellhead Protection Area 3. Distance to Surface Water Body If Depth to GW <50 feet: 20 points If <1000' from water source, or;<200' from <200 horizontal feet: 20 points If Depth to GW 50 to 99 feet: 10 points private domestic water source: 20 points 200-100 horizontal feet: 10 points If >1000' from water source, or; >200' from If Depth to GW >100 feet: 0 points >1000 horizontal feet: 0 points private domestic water source: 0 points $Ground\ water\ Score = 0$ Wellhead Protection Area Score = 0 Surface Water Score= 0 Site Rank (1+2+3) = 0**Total Site Ranking Score and Acceptable Concentrations** Parameter 0-9 >19 10-19 Benzene¹ 10 ppm 10 ppm 10 ppm BTEX1 50 ppm 50 ppm 50 ppm TPH 100 ppm 1000 ppm 5000 ppm 100 ppm field VOC headspace measurement may be substituted for lab analysis

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Revised March 17, 1999

Form C-141

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

O	PERAT(OR					: 🔲 Fina	Report
Name of Company			Conta	Contact				
Duke Energy Field Services			Paul N	Paul Mulkey				
Address			Telep	Telephone No.				
11525 West C	Carlsbad Hi	ghway Hobbs	, New Mex	ico 88240		397-5716		
Facility Name	e	· · · · ·			Facili	ty Type		···· ·
G28-4					8" Ste	el Pipeline		
			<u> </u>					
Surface Owner Miller Deck Estate Mineral Owner			Owner		Lease N	0.		
				LOCATIO	N OF REI	LEASE		
Unit Letter	Section	Township	Range	Feet from the N		Feet from the East/West L	ine County	Lea
P	21	T22S	R36E	Line				32° 22' 23.06" 103° 15' 52.09"
				NATURE	OF RELI	EASE		
Type of Releas					Volume	of Release	Volume Rec	overed
Natural Gas Pip						n barrels	0 barrels	
Source of Rele					t t	Hour of Occurrence		ur of Discovery
8" Steel Pipelin						ergy Field Services	04-14-04 @	600 hrs
Was Immediat	e Notice Giv		s 🛭 No	☐ Not Require		Γο Whom? unson		
By Whom?					Date and	Hour		
Iain Olness, EP					3 May 20	004 @ 0730 hrs		
Was a Watercourse Reached? ☐ Yes ☒ No ☐ If YES, Volume Impacting the Watercourse. NA								
If a Watercour	se was Imp	acted, Describ	e Fully.*					
INA								
Describe Caus	e of Problen	n and Remedia	al Action Ta	ken.*	70			
				replaced and lin	e tested.			
Describe Area	Affected an	d Cleanup Ac	tion Taken.	k				
					nd were affect	ed by the release. Soil contar	ninated above t	he NMOCD
						Remedial Goals: TPH 8015r	n = 5,000 mg/K	g, Benzene = 10
mg/Kg, and BT	EX, i.e., the	mass sum of B	enzene, Ethy	d Benzene, Tolu	ene, and Xyler	es = 50 mg/Kg.		
I hamalus auntifess	shas sha in Co		-L :- 4		41-1-4-6	knowledge and understand	.1	NIMOOD I
						nd perform corrective action		
						narked as "Final Report" doe		
should their ope	erations have	failed to adequ	uately invest	igate and remedi	ate contaminat	ion that pose a threat to grou	nd water, surfac	ce water, human
health or the en	vironment.	In addition, NN	10CD accep	tance of a C-141	report does no	t relieve the operator of resp	onsibility for co	ompliance with any
other federal, state, or local laws and/or regulations.								
Signature: OIL CONSERVATION DIVISION				<u>VISION</u>				
Printed Name: Paul Mulkey		Appro	ved by District Supervisor	•				
E-mail Address: pdmulkey@duke-energy.com								
Title: Mainten	ance Constru	action Supervis	or		Appro	val Date:	Expiration	Date:
Date: 3 May	2004	Pho	ne: (505) 39	97-5716	16 Conditions of Approval:			
* Attach Additional Sheets If Necessary								