Basin Environmental Service Technologies, LLC

P. O. Box 301 Lovington, New Mexico 88260 kdutton@basinenv.com

Office: (505) 396-2378 Fax: (505) 396-1429

PRELIMINARY SITE INVESTIGATION REPORT and REMEDIATION/CLOSURE PLAN

PLAINS MARKETING, L.P. (231735)

North Hobbs 8-Inch Site

Lea County, New Mexico

Plains SRS # 2006-059

UNIT M (SW/SW), Section 29, Township 18S, Range 38E

Latitude 32°, 42′, 40.2″ North, Longitude 103°, 10′, 41.7″ West

Prepared For:

Plains Marketing, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002

Prepared By:
Basin Environmental Service Technologies, LLC
P. O. Box 301
Lovington, New Mexico 88260

25 April 2006

Ken Duttor

Basin Environmental Service Technologies, LLC

incident - n PAC 0605428056 application - pPA CO405428301

TABLE OF CONTENTS

Introduction		1
Summary of Fiel	ld Activities	1
New Mexico Oil Soil Classificatio	Conservation Division (NMOCD)	3
Distribution of H	ydrocarbons in the Unsaturated Zone	3
Distribution of H	ydrocarbons in the Saturated Zone	5
Recommendatio	ons for Remediation/Closure	5
Decontan		6 6 7 7
Limitations		7
Distribution		8
	Tables	
Table 1: Table 2:	Soil Chemistry Table (Soil Borings & Exc Groundwater Chemistry Table	avation Results)
	Figures	
Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6:	Site Location Map Excavation Site Map Excavation Site Map – Final Soil Samplir Excavation Site Map – Soil Boring & Mor Installation Diagram of 40-mil Poly Liner Digital Photos	
	Appendices	
Re	~ ~	

INTRODUCTION

Basin Environmental Service Technologies, LLC (Basin), responded to a pipeline release for Plains Marketing, L.P. (Plains), located on the North Hobbs 8-Inch Pipeline on 10 February 2006. Plains operations personnel contained and clamped the North Hobbs 8-Inch Pipeline on 09 February 2006 and the impacted soil was excavated and stockpiled on a 6-ml poly-liner adjacent to the excavation. The North Hobbs 8-Inch Pipeline right-of-way is located on land owned by R, M and S Enterprises.

This site is located in Unit M (SW/SW), Section 29, Township 18 South, Range 38 East, in Lea County, New Mexico (topographic Site Location Map is attached as Figure 1). The site latitude is 32°, 42′, 40.2″ North and the site longitude is 103°, 10′, 41.7″ West. The site is characterized by a right-of-way for the pipeline in a pasture adjacent to commercial businesses to the east and oil production facilities to the north and west. The initial visible surface stained area includes the release point covering an area approximately 20 feet long by 20 feet wide. An estimated 10 barrels of crude oil were released from the North Hobbs 8-Inch Pipeline and 0 barrels were recovered.

An emergency one-call was initiated 09 February 2006 and all responding companies either cleared or marked their respective lines. Subsequent renewals of the one-call have been accomplished as required.

Ms Pat Caperton, New Mexico Oil Conservation Division (NMOCD), Hobbs, New Mexico District I was verbally notified of the release on 09 February 2006. A NMOCD C-141 was prepared and delivered to Ms Pat Caperton on 14 February 2006 (see Appendix D, NMOCD C-141).

SUMMARY OF FIELD ACTIVITIES

Basin mobilized to the pipeline release site to initiate soil remediation activities on 10 February 2006, located on the North Hobbs 8-Inch Pipeline after Plains operations personnel clamped and secured the pipeline release on 09 February 2006. After the crude oil release had been contained utilizing a pipeline repair clamp, excavation of the impacted soil was accomplished (see Figure 2, Excavation Site Map). The North Hobbs 8-Inch Pipeline was de-oiled and removed from the excavated area under the direction of Plains operations personnel following the crude oil release. The release point and visually stained area was excavated to approximately 110 feet long by 75 feet wide and 18 feet below ground surface (bgs). An estimated 3500 cubic yards of excavated soils were placed on a 6-ml poly liner adjacent to the excavation for future remedial action. Approximately 2500 cubic yards of segregated clean overburden have been excavated and stockpiled on-site.

On 28 February 2006, soil samples were collected from the walls and delineation trench on the floor of the excavation. The four (4) soil samples were analyzed for

total petroleum hydrocarbons – gasoline range organics/diesel range organics (TPH-GRO/DRO). Laboratory results of the soil samples collected indicated that TPH-GRO/DRO constituent concentrations exceeded NMOCD regulatory standards for three (3) soil samples and were not detected above laboratory method detection limits for the remaining soil sample. Based on the laboratory results, excavation of the crude oil release site continued.

On 08 March 2006, a soil boring was installed at the release point on the excavation floor (18 feet bgs) to a depth of 58 feet bgs to evaluate the vertical impact of the crude oil release. Soil samples were collected at 5 feet intervals, field screened with a Photoionization Detector (PID) and the selected soils samples were analyzed for constituent concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) and TPH-GRO/DRO. Laboratory results indicated that the eight (8) soil samples were below NMOCD regulatory standards for concentrations of BTEX and exceeded NMOCD regulatory standards for TPH-GRO/DRO on seven (7) of the eight (8) soil samples. Groundwater was encountered at approximately 56 feet bgs and a groundwater sample was collected and analyzed for BTEX. Laboratory results indicated the groundwater sample was below NMOCD regulatory standards for constituent concentrations of BTEX.

On 13 and 14 March 2006, at the request of Hobbs NMOCD District 1, three (3) groundwater monitor wells were installed, one (1) up gradient and two (2) down gradient of the release point to evaluate the groundwater (see Figure 4, Excavation Site Map – Soil Boring & Monitoring Well Locations). Soil samples were collected at 5 feet intervals; field screened with a PID and selected soils samples were analyzed for constituent concentrations of BTEX and TPH-GRO/DRO. Six (6) soil samples were selected for analysis from each of the three (3) groundwater monitoring well installations ranging in depth from 5 to 55 feet bgs, resulting in a total of eighteen (18) soil samples. Laboratory results of the eighteen (18) soil samples indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits.

On 16 and 17 March 2006, the three (3) groundwater monitoring wells were developed, purged and sampled. Additionally, the TFH domestic water well adjacent to the release site was sampled. The groundwater samples were analyzed for constituent concentrations of BTEX and Chlorides. Laboratory results of the three (3) groundwater monitoring wells and TFH domestic well groundwater samples indicated constituent concentrations of BTEX were not detected above laboratory method detection limits and below NMOCD regulatory standards for Chlorides.

On 27 March 2006, confirmation soil samples were collected from the floor and walls of the excavated area (see Figure 3, Excavation Site Map- Soil Sampling Locations). The soil samples were field screened with a PID and analyzed for BTEX and TPH-GRO/DRO. Laboratory results of the eight (8) soil samples collected from the floor and walls of the excavation indicated that TPH-GRO/DRO and BTEX constituent

concentrations were either below NMOCD regulatory standards or were not detected above laboratory method detection limits.

NEW MEXICO OIL CONSERVATION DIVISION (NMOCD) SOIL CLASSIFICATION

A search of the New Mexico State Engineers database revealed the average depth to groundwater to be 59 feet bgs for that section, township and range. Based on the installation of the soil boring and three (3) groundwater monitoring wells, the depth to groundwater (59 feet bgs) is accurate. There are no surface water bodies within 1000 feet, however; there is a domestic water well (TFH commercial business) within 1000 feet of the release site. Based on this data, the site has an NMOCD Ranking Score of >19, which sets the remediation levels at:

Benzene: 10 ppm

BTEX: 50 ppm

TPH: 100 ppm

DISTRIBUTION OF HYDROCARBONS IN THE UNSATURATED ZONE

The original release point and visually stained area was excavated to approximately 110 feet long by 75 feet wide and to a depth of approximately 18 feet bgs. Evidence of crude oil impact still existed on the excavation floor beneath the release point area. Photoionization Detector (PID) readings and laboratory results indicated elevated concentrations of Volatile Organic Compounds (VOC) remain. Approximately 3500 cubic yards of impacted soil was excavated and stockpiled adjacent to the excavation on a 6-ml poly-liner and approximately 2500 cubic yards of segregated clean overburden was excavated and stockpiled on-site.

On 28 February 2006, delineation soil samples were collected from the walls and delineation trench on the floor of the excavation. The four (4) soil samples were field screened with a PID and analyzed for constituent concentrations of TPH-GRO/DRO. The four (4) soil samples were collected at depths ranging from 13 to 30 feet bgs. Laboratory results of the soil samples collected indicated that TPH-GRO/DRO constituent concentrations exceeded NMOCD regulatory standards on the floor delineation trench at 30 feet bgs, south wall and west wall soil samples at 970 mg/kg, 909 mg/kg and 1530 mg/kg, respectively. The east wall soil sample was not detected above laboratory method detection limits for constituent concentrations of TPH-GRO/DRO.

Soil Boring 1, as depicted on the Excavation Site Map - Soil Boring & Monitoring Well Locations (Figure 4), was installed on the floor of the excavation at approximately 18 feet bgs at the release point utilizing an air rotary drill rig operated by Straub Corporation, Stanton, Texas. Soil samples collected at 5, 10, 15, 20, 25, 30, 35 and 40 feet bgs subsurface sample depths were submitted for analysis. Soil boring logs

are included in Appendix C. No visual observations of free phase hydrocarbons were encountered during the installation of the soil boring. Laboratory data sheets and chain-of-custody forms are attached in Appendix B. Laboratory results indicated that the 5, 10, 15, 20, 25 30 and 35 feet bgs soil samples were below NMOCD regulatory standards for constituent concentrations of BTEX and were not detected above laboratory method detection limits for the 40 feet bgs soil sample. Laboratory results indicated that the 5, 10, 15, 20, 25, 30 and 35 feet bgs soils samples exceeded NMOCD regulatory standards for constituent concentrations of TPH-GRO/DRO at 4210 mg/kg, 5220 mg/kg, 1820 mg/kg, 258 mg/kg, 465 mg/kg, 218 mg/kg and 144 mg/kg, respectively. The 40 feet subsurface soil sample was not detected above laboratory method detection limits for constituent concentrations of TPH-GRO/DRO.

Groundwater Monitoring Well 1 (MW-1) was installed at an up gradient position to the release point. Subsurface soil samples were collected at 5, 15, 25, 35, 45 and 55 feet bgs sample depths and field screened with a PID and submitted for analysis. Laboratory results of the six (6) selected soil samples indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits.

Groundwater Monitoring Well 2 (MW-2) was installed at a down gradient position to the release point. Subsurface soil samples were collected at 5, 15, 25, 35, 45 and 55 feet bgs sample depths and field screened with a PID and submitted for analysis. Laboratory results of the six (6) selected soil samples indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits.

Groundwater Monitoring Well 3 (MW-3) was installed at a down gradient position to the release point. Subsurface soil samples were collected at 5, 15, 25, 35, 45 and 55 feet bgs sample depths and field screened with a PID and submitted for analysis. Laboratory results of the six (6) selected soil samples indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits

On 27 March 2006, eight (8) confirmation soil samples were collected from the walls and floor of the excavation following additional excavation at depths ranging from 12 to 18 feet, respectively, and submitted for analysis. Soil sample locations are included in Figure 3. Analytical results of the eight (8) confirmation soil samples indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits, with the exception of the south wall soil sample, which indicated detectable TPH-GRO/DRO concentrations, but were below NMOCD regulatory standards.

DISTRIBUTION OF HYDROCARBONS IN THE SATURATED ZONE

Groundwater was encountered at depths varying from 55 to 56 feet bgs in the soil boring and groundwater monitoring wells during drilling activities. No evidence of phase-separated hydrocarbons (PSH) was detected during drilling or groundwater sampling activities. Top-of-casing elevations for the on-site groundwater monitoring wells were not available at the time of this preliminary report; therefore, site-specific groundwater gradient information is not included.

On 16 and 17 March 2006, the three (3) groundwater monitoring wells were developed, purged and sampled. Additionally, the TFH domestic water well adjacent to the release site was sampled. The groundwater samples were analyzed for constituent concentrations of BTEX and Chlorides. Laboratory results of the three (3) groundwater monitoring wells and TFH domestic well groundwater samples indicated constituent concentrations of BTEX were not detected above laboratory method detection limits and below NMOCD regulatory standards for Chlorides (see Groundwater Chemistry, Table 2).

RECOMMENDATIONS FOR REMEDIATION/CLOSURE

Approximately 3500 cubic yards of impacted soil and caliche rock and approximately 2500 cubic yards of segregated clean overburden and caliche rock have been excavated and stockpiled on-site resulting from the emergency response and excavation of the release point and flow path. Approximately 75% of the excavated material consists of caliche rock. Due to the extremely high content of caliche rock and limited vertical subsurface crude oil impact, Plains proposes to mechanically screen the impacted stockpile to separate the caliche rock and soil. Upon completion of the screening activities, the caliche rock will be utilized as partial backfill in accordance with standard NMOCD approved practices. The impacted mechanically screened soil will be transported to the Plains Lea Station Landfill for remediation.

Due to the limited vertical crude oil impact derived from analytical results commensurate with excavation and drilling activities, Plains recommends that an impermeable barrier consisting of a 40-mil poly liner be permanently installed at the base of the excavation to inhibit vertical migration of contaminants in soil left in place below the cap (see Figure 5, Installation Diagram of 40-mil Poly Liner). The barrier will extend to a minimum of three (3) feet beyond the edges of soil impacted above NMOCD remedial thresholds. A 6-inch layer of fine sand will be installed beneath and above the 40-mil poly liner to prevent degrading the integrity of the poly liner. Installation of the 40-mil poly liner at a depth of 18 feet bgs will protect the barrier from erosion and human intrusion for a term sufficient to allow natural biodegrading of contaminates in the soil.

Once the installation of the 40-mil poly liner is completed, backfilling of the excavation will be initiated with the segregated clean overburden and mechanically screened caliche rock. Soil samples will be collected from the overburden materials at a rate of

one sample per 500 cubic yards to verify constituent concentrations of BTEX and TPH-GRO/DRO are below NMOCD regulatory standards of 100 mg/kg. If necessary, Plains will purchase clean backfill to complete the excavation. The backfilled excavation will be contoured to the original grade surrounding the site and reseeded with approved grass seed.

A request for closure will be submitted to the Hobbs District I office, upon completion of backfilling activities. Based on the results of the remediation activities conducted, Plains requests approval from NMOCD to implement these proposed final remediation and site closure activities.

Based on the results of the groundwater sampling event, Plains request permission from the NMOCD to plug and abandon the three (3) groundwater monitoring wells located at the site. The wells will be plugged in accordance with NMOCD prescribed procedures of cutting the casing off below ground surface level and filling the casing annulus from bottom to top with a cement grout containing 3-5% bentonite.

QA/QC PROCEDURES

Soil Sampling

Soil samples were delivered to Environmental Lab of Texas, Inc. in Odessa, Texas for BTEX, TPH analyses using the methods described below. Soil samples were analyzed for BTEX, TPH-GRO/DRO within fourteen days following the collection date.

The soil samples were analyzed as follows:

- BTEX concentrations in accordance with EPA Method 8021B, 5030
- TPH concentrations in accordance with modified EPA Method 8015M GRO/DRO

Groundwater Sampling

The groundwater monitoring wells were developed utilizing the Environmental Protection Agency (EPA) protocol of approximately nine well volumes of groundwater or until the monitoring wells are dry using an electrical Grundfos Pump. Within forty-eight hours of development, the monitoring wells were measured and purged of approximately three well volumes utilizing an electrical Grundfos Pump. Groundwater samples were collected using a disposable Teflon sampler and the groundwater samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purged water was collected in a polystyrene tank and disposed of at a licensed New Mexico disposal facility. Groundwater samples were delivered to Environmental Lab of Texas, Odessa, Texas for analysis of BTEX and Chloride concentrations using the methods described below. All samples were analyzed within approved holding times following the collection date.

- BTEX concentrations in accordance with EPA Method 8821B/5030
- Chloride concentrations in accordance with EPA Method 300.0

Decontamination Of Equipment

Cleaning of the sampling equipment will be the responsibility of the environmental technician. Prior to use, and between each sample, the sampling equipment will be cleaned with Liqui-Nox® detergent and rinsed with distilled water.

Laboratory Protocol

The laboratory will be responsible for proper QA/QC procedures after signing the chain-of-custody form. These procedures will be either transmitted with the laboratory reports or are on file at the laboratory.

LIMITATIONS

Basin Environmental Service Technologies, LLC, has prepared this Preliminary Investigation Report and Work Plan to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin Environmental Service Technologies, LLC, has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin Environmental Service Technologies, LLC, has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin Environmental Service Technologies, LLC, has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin Environmental Service Technologies, LLC, also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains Marketing, L.P. The information contained in this report including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and Plains Marketing, L.P.

DISTRIBUTION

Сору _____

Copy 1:	Jeff Dann Plains All American 333 Clay Street Suite 1600 Houston, Texas 77002 jpdann@paalp.com
Copy 2:	Camille Reynolds Plains All American 3112 West Highway 82 Lovington, New Mexico 88260 cjreynolds@paalp.com
Copy 3:	Mr. Larry Johnson New Mexico Oil Conservation Division 1625 N. French Dr. Hobbs, New Mexico 88240 Larry.Johnson@state.nm.us
Copy 4:	R, M & S Enterprises Hobbs, New Mexico 88240
Copy 5:	Basin Environmental Service Technologies LLC P. O. Box 301 Lovington, New Mexico 88260 kdutton@basinenv.com

TABLE 1 SOIL CHEMISTRY PLAINS MARKETING L.P. NORTH HOBBS 8-INCH LEA COUNTY, NEW MEXICO PLAINS SRS: 2006-059

SAMPLE	SAMPLE	SAMPLE SAMPLE		METHOD: E	METHOD: EPA SW 846-8021B, 5030	8021B, 5030		METHOD: 8015M): 8015M	TOTAL	METHOD
LOCATION	DEPTH	DATE	BENZENE	TOLUENE	ETHYL-	M,P-	O-XYLENE	GRO	DRO	TPH.	300
	(Below				BENZENE XYLENES	XYLENES					CHLORIDES
	Normal										
	Surface Grade)										
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Floor @ 30'	30, pas	02/28/06						96.5	873	920	
East Wall	13' bgs	02/28/06						<10	<10	<10	
South Wall	16' bgs	02/28/06						22	887	606	
West Wall	16' bgs	02/28/06						107	1425	1530	
			,		,	٠					
SB-1 5'	23' bgs	90/80/60	0.061	0.832	1.79	60.5	0.327	815	3398	4210	
SB-1 10'	28' bgs	90/80/60	0.045	909.0	1.03	2.07	0.684	921	4302	5220	
SB-1 15'	33, pds	90/80/60	0.033	0.178	0.342	0.611	0.144	199	1622	1820	
SB-1 20	38, pds	90/80/60	<0.025	<0.025	0.081	0.149	<0.025	11.8	246.3	258	
SB-1 25'	43' bgs	90/80/60	<0.025	<0.025	0.083	0.152	<0.025	22.6	442	465	
SB-1 30'	48' bgs	90/80/60	<0.025	0.056	0.081	0.150	<0.025	16.6	201	218	
SB-1 35'	53, pds	90/80/60	<0.025	0.058	0.082	0.151	<0.025	<10.0	144	144	
SB-1 40'	28, pds	90/80/60	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
	t			6. 1.		San				1. 12 (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	A STATE OF THE STA
MW-1 5'	sbq .g	03/13/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-1 15'	15' bgs	03/13/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	10.9
MW-1 25'	25' bgs	03/13/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-1 35'	35, pds	03/13/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-1 45'	45' bgs	03/13/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-1 55'	25, pds	03/13/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 5'	5' bgs	03/13/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	

TABLE 1 (cont) SOIL CHEMISTRY PLAINS MARKETING L.P.
NORTH HOBBS 8-INCH
LEA COUNTY, NEW MEXICO
SRS: 2006-059

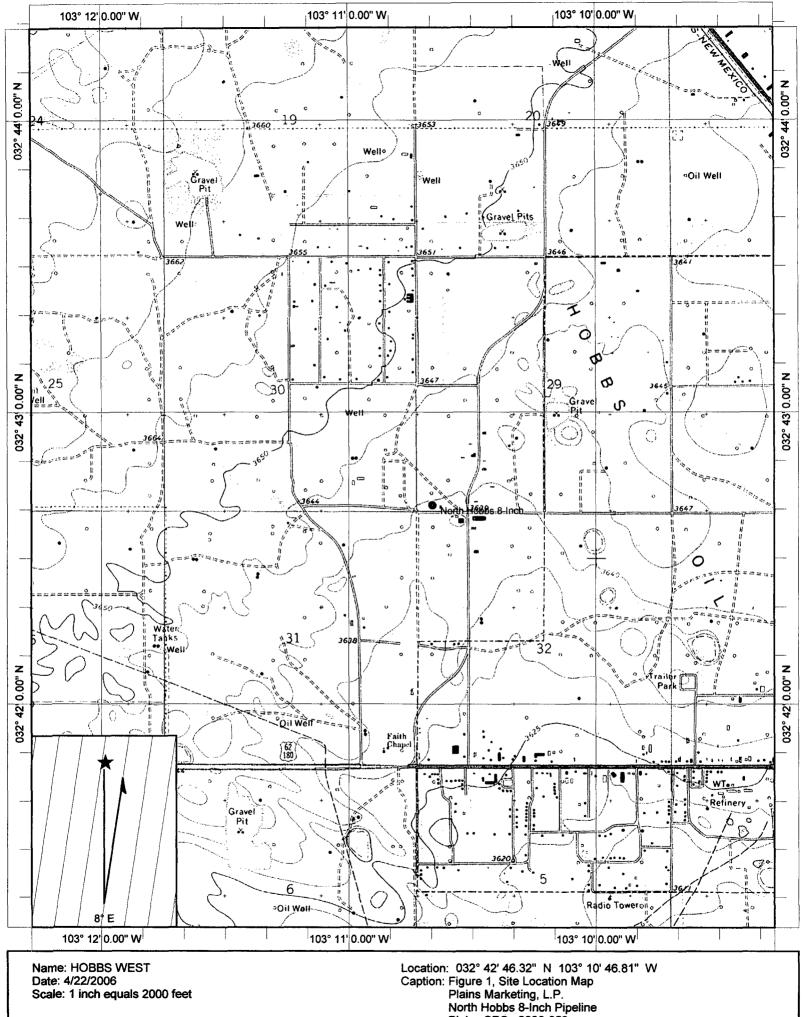
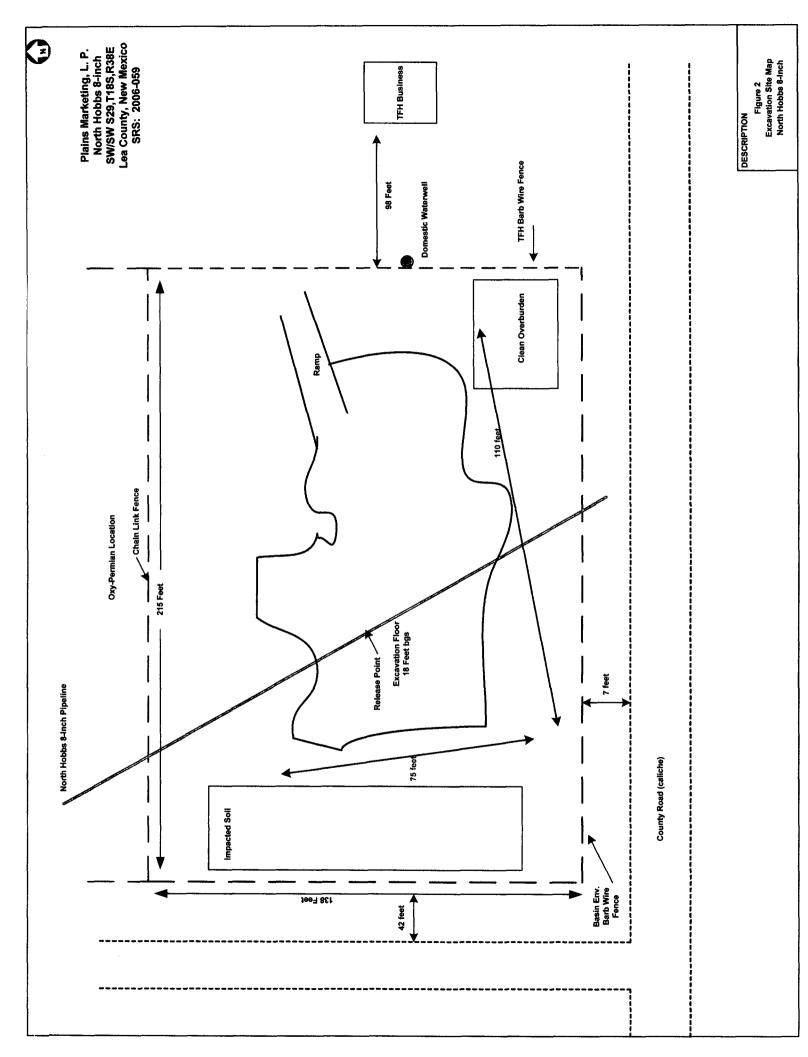
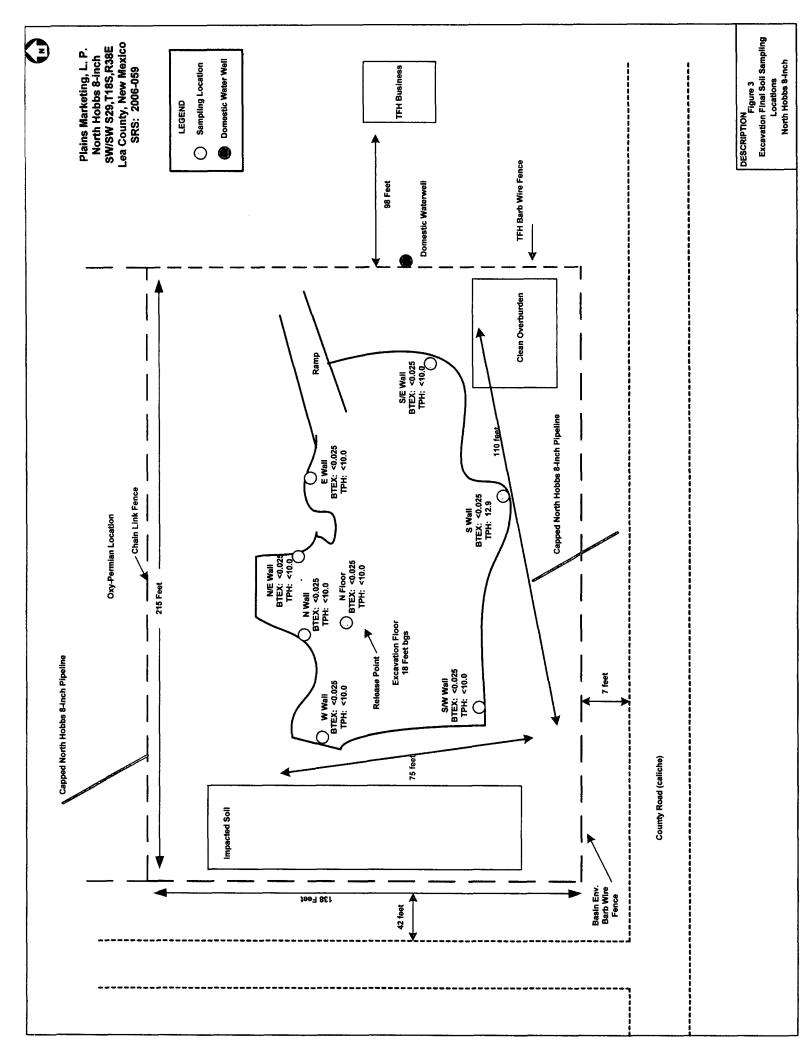
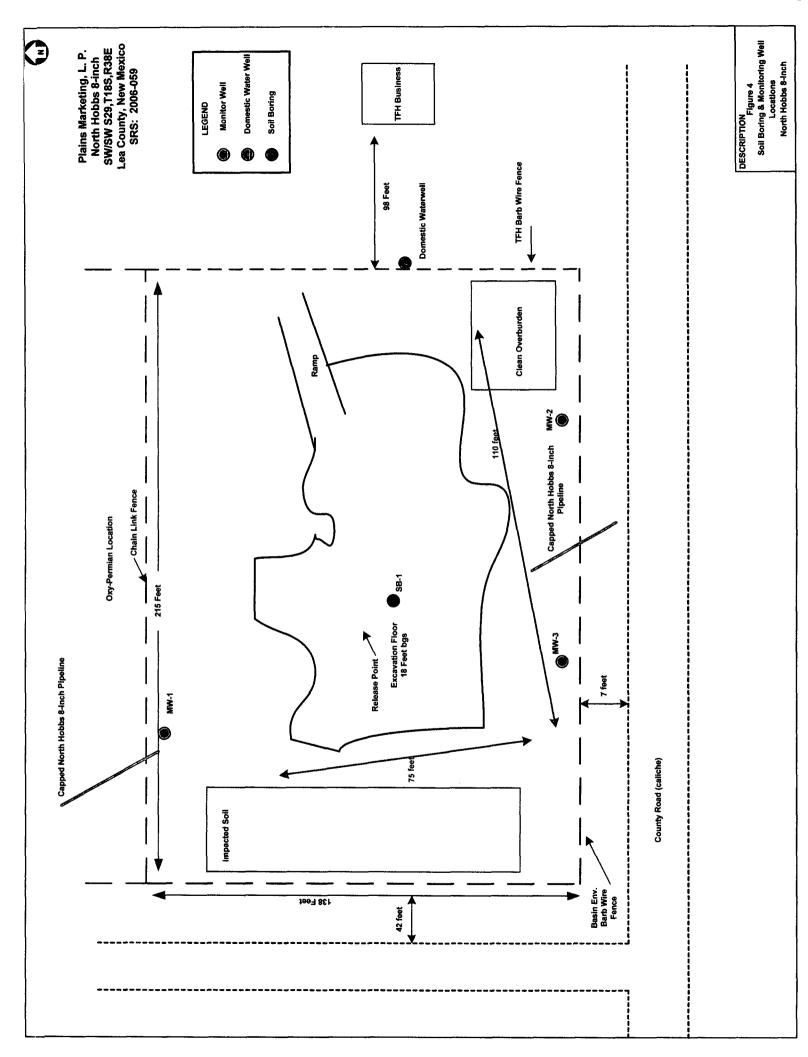

SAMPLE	SAMPLE	SAMPLE SAMPLE		METHOD: E	METHOD: EPA SW 846-8021B, 5030	8021B, 5030		METHOD: 8015M	1: 8015M	TOTAL	METHOD
LOCATION	DEPTH	DATE	BENZENE	ZENE TOLUENE	ETHYL-	M,P-	O-XYLENE	GRO	DRO	TPH	300
	(Below Normal Surface				BENZENE	BENZENE XYLENES					CHLORIDES
	Grade)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MW-2 15'	15' bgs	03/13/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 25'	25' bgs	03/13/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 35'	35' bgs	03/13/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 45'	45' bgs	03/13/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 55'	25' bgs	03/13/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
The state of the s			1000 M 1000 M			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		was a second
MW-3 5'	Spd 'S	03/14/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-3 15'	15' bgs	03/14/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-3 25'	25' bgs	03/14/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-3 35'	35' bgs	03/14/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-3 45'	45' bgs	03/14/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-3 55'	55' bgs	03/14/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
S/E Wall	12' bgs	03/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
S. Wall	13' bgs	03/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	12.9	12.9	
S/W Wall	13' bgs	03/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
W. Wall	15' bgs	03/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
N. Wall	13' bgs	03/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
N/E Wall	14' bgs	03/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
E. Wall	12' bgs	03/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
N. Exc. Fir	18' bgs	03/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
NMOCD CRITERIA	IA		10		TOTAL	BTEX 50				100	

TABLE 2

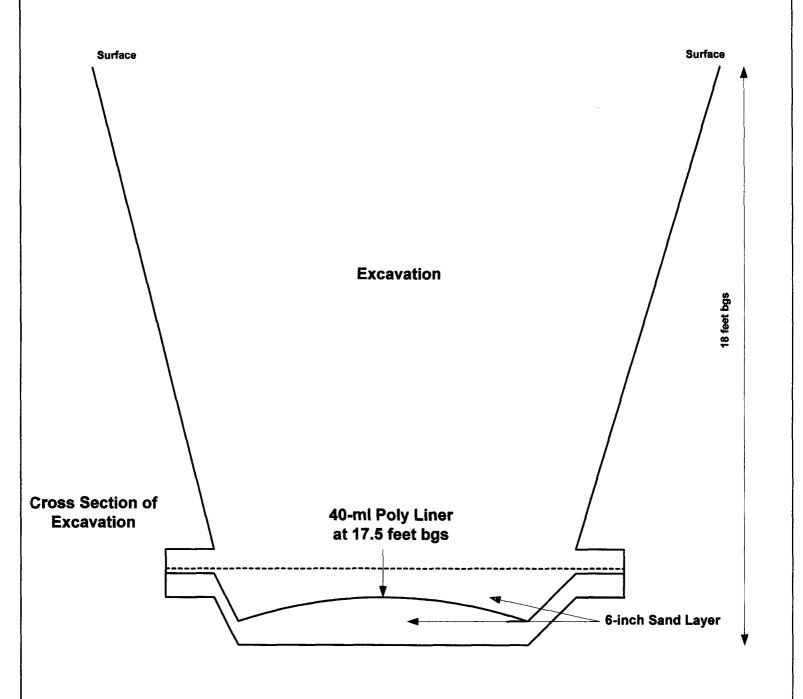
GROUND WATER CHEMISTRY


PLAINS MARKETING, L.P.
NORTH HOBBS 8-INCH
LEA COUNTY, NEW MEXICO
PLAINS SRS: 2006-059


SAMPLE LOCATION	SAMPLE		METHODS	EPA SW 8	METHODS: EPA SW 846-8021B, 5030	30	Method:	Method:
	DATE	BENZENE	TOLUENE	ETHYL-	M,P-	O-XYLENES	160.1	300.0
			·	BENZENE	XYLENES		TDS	CHLORIDES
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
SB-1	90/80/20	<0.001	<0.001	0.003	9000	<0.001		
								a ,
MW-1	03/17/06	<0.001	<0.001	<0.001	<0.001	<0.001		45.7
MW-2	03/17/06	<0.001	<0.001	<0.001	<0.001	<0.001		64.0
MW-3	03/17/06	<0.001	<0.001	<0.001	<0.001	<0.001		0.69
		A				, and		
TFH W/W	03/17/06	<0.001	<0.001	<0.001	<0.001	<0.001		86.0



Scale: 1 inch equals 2000 feet


Copyright (C) 1999, Maptech, Inc.

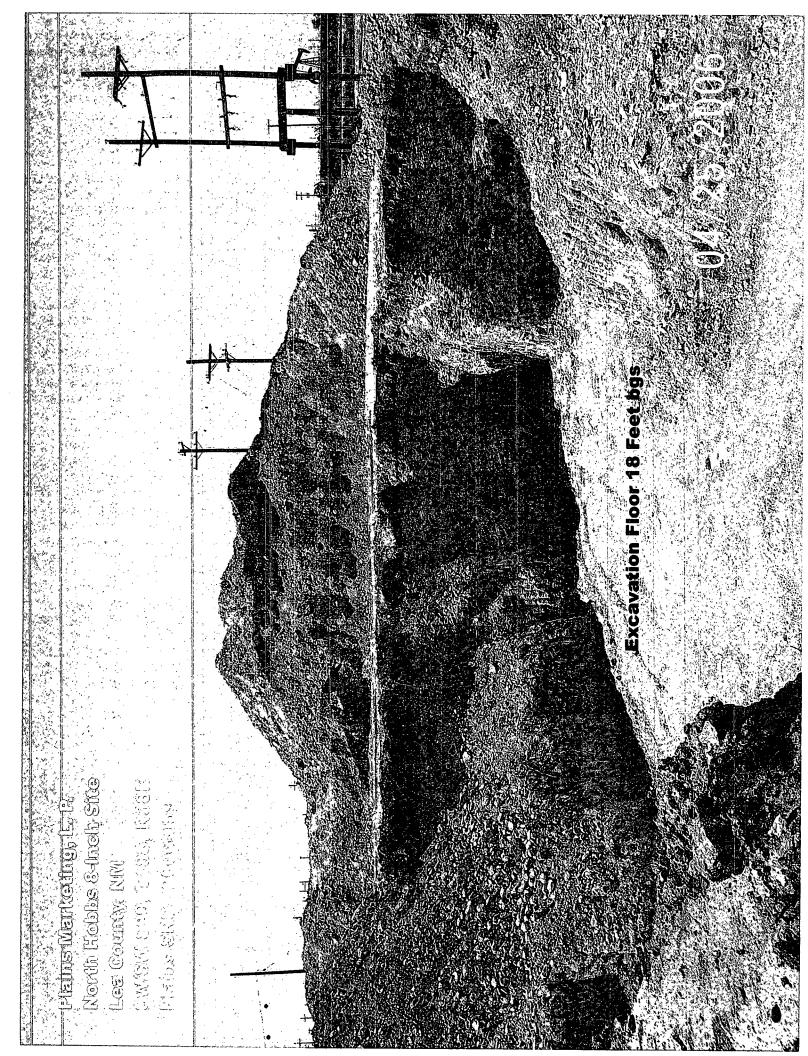
North Hobbs 8-Inch Site
Plains Marketing, L. P.
Lea County, New Mexico
SRS: 2006-059
40-ml Poly-Liner Installation Schematic

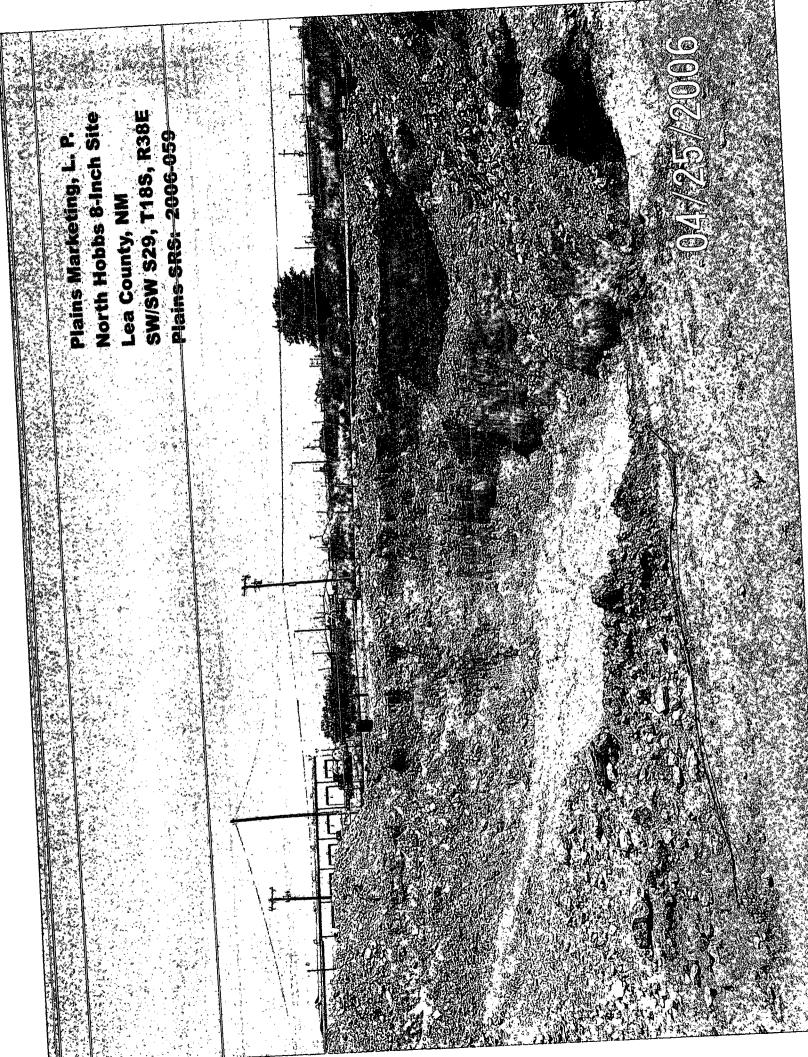
TITLE

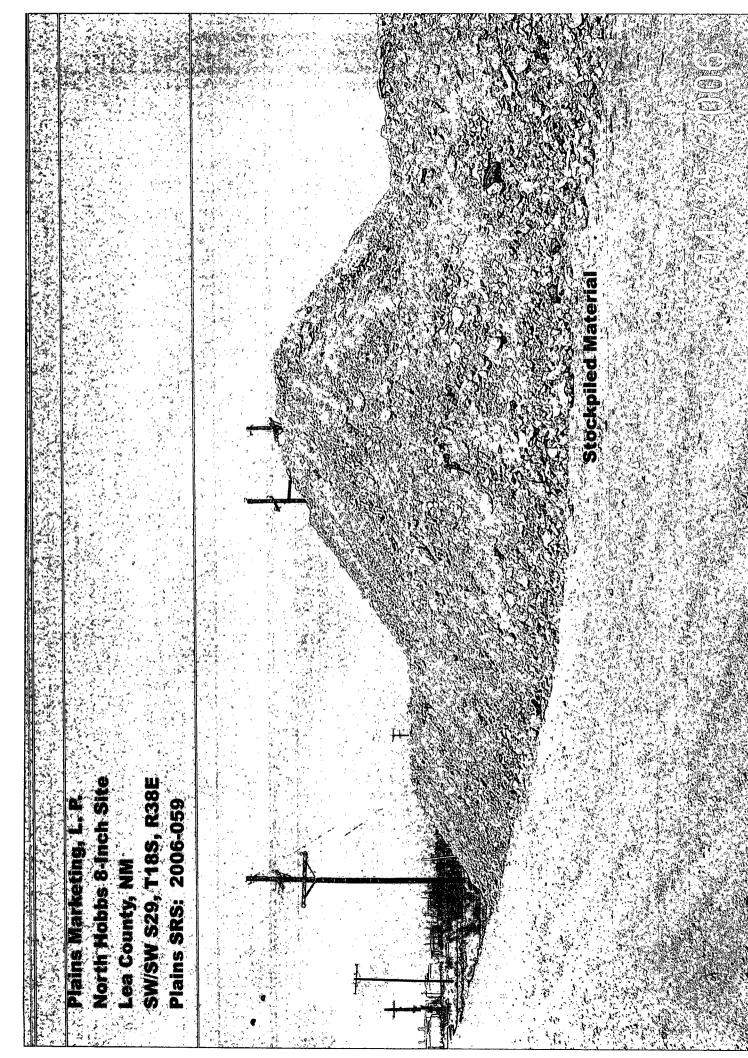
DRAWN BY

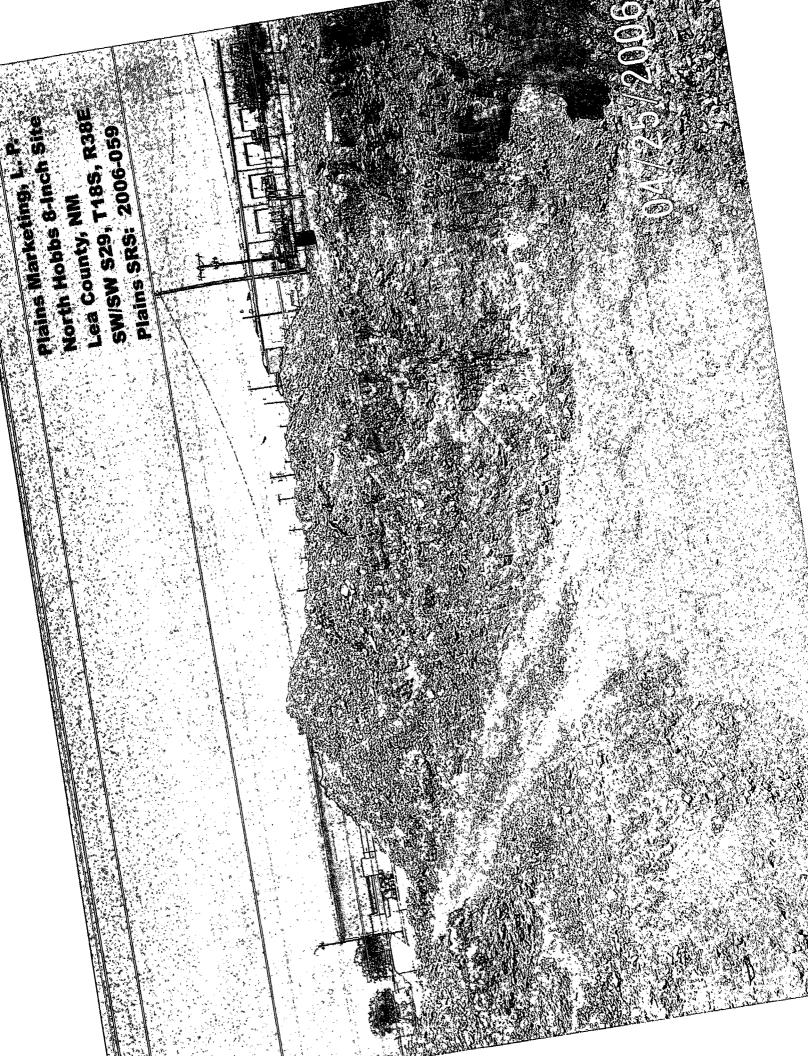
Figure 5
North Hobbs 8-Inch Site

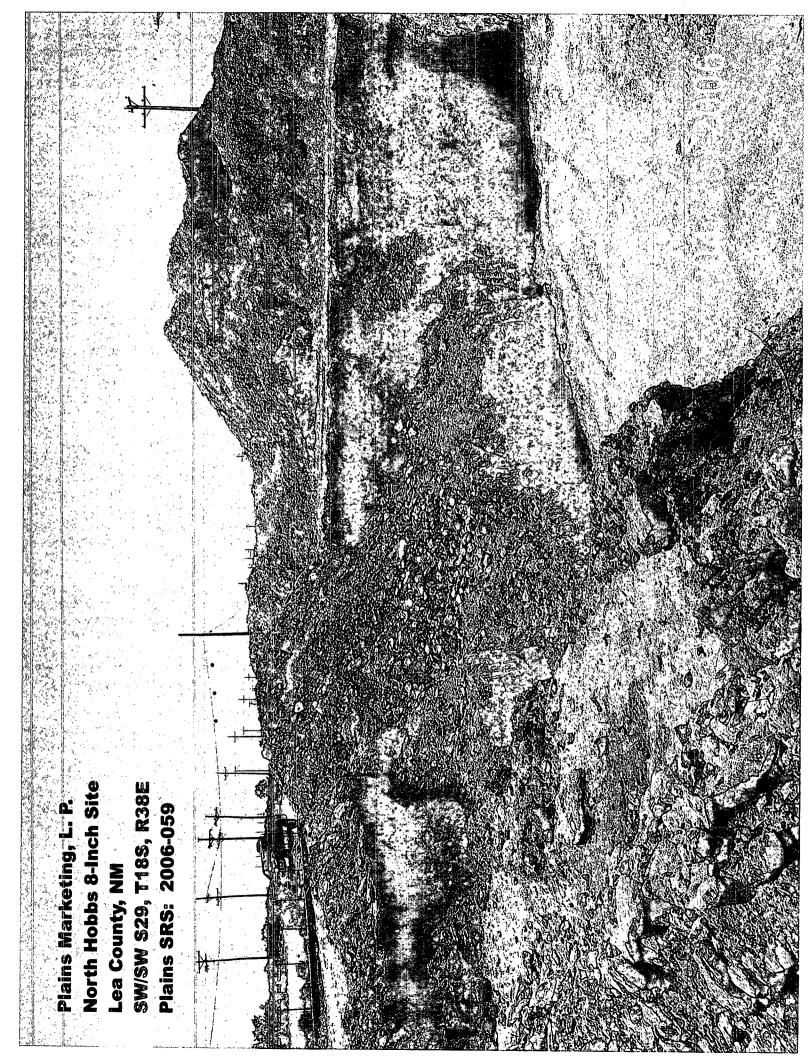
Basin Environmental Services KAD


DATE

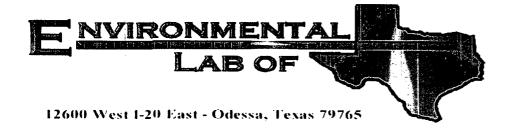

LABEL


21 April 2006


Installation of 40-ml Poly


Liner

New Mexico Office of the State Engineer POD Reports and Downloads


			- F			
	Township: 18S	Range: 38E	Sections: 29			
	NAD27 X:	Y :	Zone:	Search	Radius:	
County:	1	Basin:	š -	Number:	Suffix:	•
Owner Na	nme: (First)	(Last))	○ Non-D	omestic ODomestic	@ All
	POD / Sur		ter Column Rep			
	l	Clear Form	IWATERS	Menu Help	J	

AVERAGE DEPTH OF WATER REPORT 04/21/2006

 Bsn
 Tws
 Rng
 Sec
 Zone
 X
 Y
 Wells
 Min
 Max
 Avg

 L
 18S
 38E
 29
 34
 38
 120
 59

Record Count: 34

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Location: Lea Co., NM

Lab Order Number: 6C28009

Report Date: 04/03/06

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/03/06 14:16

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
S/E Wall	6C28009-01	Soil	03/27/06 11:40	03/28/06 11:45
S. Wall	6C28009-02	Soil	03/27/06 11:44	03/28/06 11:45
S/W Wall	6C28009-03	Soil	03/27/06 11:52	03/28/06 11:45
W. Wall	6C28009-04	Soil	03/27/06 11:56	03/28/06 11:45
N. Wali	6C28009-05	Soil	03/27/06 12:01	03/28/06 11:45
N/E Wall	6C28009-06	Soil	03/27/06 12:05	03/28/06 11:45
E. Wall	6C28009-07	Soil	03/27/06 12:09	03/28/06 11:45
N. Exc. Fir.	6C28009-08	Soil	03/27/06 12:15	03/28/06 11:45

Project: North Hobbs 8"
Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/03/06 14:16

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilinatio	David.	D=== 4	A 3	N. Gardin - A	\$.f
S/E Wall (6C28009-01) Soil	Result	Liilk	Omts	Dilution	Batch	Prepared	Analyzed	Method	Notes
	1	0.0050			20000	0.5.10.6	A 1 (0.0 to 4	TD4 0001D	
Benzene	ND	0.0250	mg/kg dry	25	EC63115	03/31/06	04/03/06	EPA 8021B	
Toluene	ND	0.0250	"	,,		"	" "		
Ethylbenzene	ND	0.0250				"	,,	,,	
Xylene (p/m)	ND	0.0250	"		"	"	"	"	
Xylene (o)	ND	0.0250							
Surrogate: a,a,a-Trifluorotoluene		109 %	80-1		**	"	"	n	
Surrogate: 4-Bromofluorobenzene		95.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC62819	03/28/06	03/29/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	Ħ	Ħ	"	"	4	
Carbon Ranges C28-C35	ND	10.0	"	17	Ħ	II	"	**	
Total Hydrocarbon C6-C35	ND	10.0	n · · · · · · · · · · · · · · · · · ·	11	11	"	н	u	
Surrogate: 1-Chlorooctane		112 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		116 %	70-1	30	#	"	71	*	
S. Wall (6C28009-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC63115	03/31/06	04/02/06	EPA 8021B	
Toluene	ND	0.0250	n	**	u u	"		H	
Ethylbenzene	ND	0.0250	II	**	"	"	n	н	
Xylene (p/m)	ND	0.0250	h	**	11	n	n	n	
Xylene (o)	ND	0.0250	н	11	n	**	п	•	
Surrogate: a,a,a-Trifluorotoluene		107 %	80-1	20	"	,,	,,	•	
Surrogate: 4-Bromofluorobenzene		82.2 %	80-1	20	"	,,	"	,,	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC62819	03/28/06	03/29/06	EPA 8015M	
Carbon Ranges C12-C28	12.9	10.0	**	п	11	#	**	n	
Carbon Ranges C28-C35	ND	10.0	"	**	н	11	**	11	
Total Hydrocarbon C6-C35	12.9	10.0	**	"	ŧŧ	ч	17	п	
Surrogate: 1-Chlorooctane		103 %	70-1	30	,,	,,	,,	"	
Surrogate: 1-Chlorooctadecane		108 %	70-1		"	"	"	"	
S/W Wall (6C28009-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC63115	03/31/06	04/02/06	EPA 8021B	
Toluene	ND	0.0250	"	и	**	н	H	șt.	
Ethylbenzene	ND	0.0250	n	"	"	ıı	"	**	
Xylene (p/m)	ND	0.0250	н	**	n	n	н	#	
Xylene (o)	ND	0.0250	11	"	n	*	"	**	
Surrogate: a,a,a-Trifluorotoluene		107 %	80-1	20	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		80.8 %	80-1		,,	<i>n</i>	"	,	
Carbon Ranges C6-C12	ND		mg/kg dry	1	EC62819	03/28/06	03/29/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: North Hobbs 8"
Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/03/06 14:16

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dibution	D-4-b	D	A 1 1	M-4- 4	M ·
	Result	Entit	Omis	Dilution	Batch	Prepared	Analyzed	Method	Note
S/W Wall (6C28009-03) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EC62819	03/28/06	03/29/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	#	"	"	u	"	
Total Hydrocarbon C6-C35	ND	10.0						ıı .	
Surrogate: 1-Chlorooctane		103 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		105 %	70-1	130	n	n	n	"	
W. Wall (6C28009-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC63115	03/31/06	04/03/06	EPA 8021B	
Toluene	ND	0.0250	**	tı	n		•	**	
Ethylbenzene	ND	0.0250	"	н	*	n	"	"	
Xylene (p/m)	ND	0.0250	**	11	**	lt.	"	н	
Xylene (o)	ND	0.0250	11	**	**	u	n	н	
Surrogate: a,a,a-Trifluorotoluene		99.5 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.2 %	80-	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC62819	03/28/06	03/29/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	"	н	н	11	n	
Carbon Ranges C28-C35	ND	10.0	u	*	**	н	**	"	
Total Hydrocarbon C6-C35	ND	10.0	*1	n	#	#	11	**	
Surrogate: 1-Chlorooctane		103 %	70-	130	n	"	"	"	
Surrogate: 1-Chlorooctadecane		106 %	70-	130	"	"	"	"	
N. Wali (6C28009-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC63115	03/31/06	04/02/06	EPA 8021B	
Toluene	ND	0.0250	n	u	n	n	**	"	
Ethylbenzene	ND	0.0250	n	Ħ	11	H	**	11	
Xylene (p/m)	ND	0.0250	**	"	**	н	**	"	
Xylene (o)	ND	0.0250	Ħ	"	**	"	н	n	
Surrogate: a,a,a-Trifluorotoluene		107 %	80-	120	n	"	"	"	, , , , , , , , , , , , , , , , , , ,
Surrogate: 4-Bromofluorobenzene		83.8 %	80-	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC62819	03/28/06	03/29/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	11	n	•	n	*	
Carbon Ranges C28-C35	ND	10.0	11	**	17	nt .	11	"	
Total Hydrocarbon C6-C35	ND	10.0	**	**	"	п	u		
Surrogate: 1-Chlorooctane		97.4 %	70-1	130	n	#	#	н	
Surrogate: 1-Chlorooctadecane		99.4 %	70-1	130	"	"	"	"	

Project: North Hobbs 8"
Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/03/06 14:16

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	**	. .				
		Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
N/E Wall (6C28009-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC63115	03/31/06	04/02/06	EPA 8021B	
Toluene	ND	0.0250	n	**	"	"	u	**	
Ethylbenzene	ND	0.0250	n	"	41	*	**	**	
Xylene (p/m)	ND	0.0250	n	u	11	"	**	**	
Xylene (o)	ND	0.0250	"	n	"			п	
Surrogate: a,a,a-Trifluorotoluene		109 %	80-1	20	n	"	ø	"	
Surrogate: 4-Bromofluorobenzene		88.2 %	80-1	20	"	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC62819	03/28/06	03/29/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	**	**	**	
Carbon Ranges C28-C35	ND	10.0	*	11	н	u u	**	"	
Total Hydrocarbon C6-C35	ND	10.0	**	n	11	"	n	n	
Surrogate: 1-Chlorooctane		106 %	70-1	30	"	n	"	"	
Surrogate: 1-Chlorooctadecane		108 %	70-1	30	#	#	"	#	
E. Wall (6C28009-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC63115	03/31/06	04/02/06	EPA 8021B	
Toluene	ND	0.0250	n	Ħ	"	*	"	**	
Ethylbenzene	ND	0.0250	n	**	**	n .		и	
Xylene (p/m)	ND	0.0250	"	"	u	"	n	10	
Xylene (o)	ND	0.0250	"	н	n	"	**	**	
Surrogate: a,a,a-Trifluorotoluene		108 %	80-1	20	"	"	#	"	
Surrogate: 4-Bromofluorobenzene		83.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC62819	03/28/06	03/29/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	,	"	п	н	n	n	
Carbon Ranges C28-C35	ND	10.0	"	**	п	ıı.	#	*	
Total Hydrocarbon C6-C35	ND	10.0	11	11	**	**	n n	u	
Surrogate: 1-Chlorooctane		107 %	70-1	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		109 %	70-1	30	"	"	"	"	
N. Exc. Flr. (6C28009-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC63115	03/31/06	04/02/06	EPA 8021B	
Toluene	ND	0.0250	II	"	н	n	n	п	
Ethylbenzene	ND	0.0250	"	**	m	n	н	n	
Xylene (p/m)	ND	0.0250	"	"	n	n	**	**	
Xylene (o)	ND	0.0250	"	"	**	•	u	tr.	
Surrogate: a,a,a-Trifluorotoluene		111 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		89.2 %	80-1		"	"	"	"	
Carbon Ranges C6-C12	ND		mg/kg dry	1	EC62819	03/28/06	03/29/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

p.

Project: North Hobbs 8"
Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/03/06 14:16

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
N. Exc. Flr. (6C28009-08) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EC62819	03/28/06	03/29/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	11	**	ш	*	"	n	
Total Hydrocarbon C6-C35	ND	10.0	11	**	**	**	Ħ	н	
Surrogate: 1-Chlorooctane		104 %	70-1	30	"	п	"	"	
Surrogate: 1-Chlorooctadecane		107 %	70-1	30	"	n	"	н	

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/03/06 14:16

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S/E Wall (6C28009-01) Soil				Dilution	Datcii	riepareu	Allalyzed	iviethod	Notes
% Moisture	2.7	0.1	%	1	EC62905	03/28/06	03/29/06	% calculation	
S. Wall (6C28009-02) Soil									
% Moisture	1.8	0.1	%	1	EC62905	03/28/06	03/29/06	% calculation	
S/W Wall (6C28009-03) Soil									
% Moisture	10.1	0.1	%	1	EC62905	03/28/06	03/29/06	% calculation	
W. Wall (6C28009-04) Soil									
% Moisture	3.8	0.1	%	1	EC62905	03/28/06	03/29/06	% calculation	
N. Wali (6C28009-05) Soil									
% Moisture	6.4	0.1	%	1	EC62905	03/28/06	03/29/06	% calculation	
N/E Wall (6C28009-06) Soil									
% Moisture	9.7	0.1	%	1	EC62905	03/28/06	03/29/06	% calculation	
E. Wall (6C28009-07) Soil									
% Moisture	5.5	0.1	%	1	EC62905	03/28/06	03/29/06	% calculation	
N. Exc. Fir. (6C28009-08) Soil									
% Moisture	9.4	0.1	%	1	EC62905	03/28/06	03/29/06	% calculation	

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/03/06 14:16

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC62819 - Solvent Extraction (GC)										
Blank (EC62819-BLK1)				Prepared &	Analyzed:	: 03/28/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet		·					
Carbon Ranges C12-C28	ND	10.0	H							
Carbon Ranges C28-C35	ND	10.0	n							
Total Hydrocarbon C6-C35	ND	10.0	**							
Surrogate: 1-Chlorooctane	45.1		mg/kg	50.0		90.2	70-130			
Surrogate: I-Chlorooctadecane	46.7		"	50.0		93.4	70-130			
LCS (EC62819-BS1)				Prepared &	k Analyzed	: 03/28/06				
Carbon Ranges C6-C12	594	10.0	mg/kg wet	500		119	75-125			
Carbon Ranges C12-C28	596	10.0	"	500		119	75-125			
Total Hydrocarbon C6-C35	1190	10.0	"	1000		119	75-125			
Surrogate: 1-Chlorooctane	64.6		mg/kg	50.0		129	70-130			
Surrogate: 1-Chlorooctadecane	64.5		"	50.0		129	70-130			
Calibration Check (EC62819-CCV1)				Prepared: (03/28/06 A	nalyzed: 03	/29/06			
Carbon Ranges C6-C12	216		mg/kg	250		86.4	80-120			
Carbon Ranges C12-C28	282		u	250		113	80-120			
Total Hydrocarbon C6-C35	498		"	500		99.6	80-120			
Surrogate: 1-Chlorooctane	50.0		,,	50.0		100	70-130			
Surrogate: 1-Chlorooctadecane	49.2		"	50.0		98.4	70-130			
Matrix Spike (EC62819-MS1)	Sou	rce: 6C27008	3-03	Prepared &	k Analyzed	: 03/28/06				
Carbon Ranges C6-C12	526	10.0	mg/kg dry	526	ND	100	75-125			
Carbon Ranges C12-C28	521	10.0	"	526	20.1	95.2	75-125			
Total Hydrocarbon C6-C35	1050	10.0	17	1050	20.1	98.1	75-125			
Surrogate: 1-Chlorooctane	57.6		mg/kg	50.0		115	70-130			
Surrogate: 1-Chlorooctadecane	52.9		"	50.0		106	70-130			

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/03/06 14:16

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC62819 - Solvent Extraction (GC)				·····-, - ··· _{- //}		·			···	
Matrix Spike Dup (EC62819-MSD1)	Sou	rce: 6C27008	1-03	Prenared &	Analyzed:	03/28/06	***			
Carbon Ranges C6-C12	541	10.0	mg/kg dry	526	ND	103	75-125	2.81	20	
Carbon Ranges C12-C28	538	10.0	"	526	20.1	98.5	75-125	3.21	20	
Total Hydrocarbon C6-C35	1080	10.0	**	1050	20.1	101	75-125	2.82	20	
Surrogate: 1-Chlorooctane	58.9		mg/kg	50.0		118	70-130			
Surrogate: 1-Chlorooctadecane	54.3		"	50.0		109	70-130			
Batch EC63115 - EPA 5030C (GC)										
Blank (EC63115-BLK1)				Prepared &	k Analyzed:	03/31/06				
Benzene	ND	0.0250	mg/kg wet							
Coluene	ND	0.0250	17							
Ethylbenzene	ND	0.0250	#							
Kylene (p/m)	ND	0.0250	ii							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	39.6		ug/kg	40.0		99.0	80-120			
Surrogate: 4-Bromofluorobenzene	36.6		"	40.0		91.5	80-120			
LCS (EC63115-BS1)				Prepared &	k Analyzed:	03/31/06				
Benzene	1.15	0.0250	mg/kg wet	1.25		92.0	80-120			
Toluene	1.07	0.0250	н	1.25		85.6	80-120			
Ethylbenzene	1.20	0.0250	u	1.25		96.0	80-120			
Xylene (p/m)	2.44	0.0250	н	2.50		97.6	80-120			
Xylene (0)	1.17	0.0250	11	1.25		93.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.5		ug/kg	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	35.7		"	40.0		89.2	80-120			
Calibration Check (EC63115-CCV1)				Prepared: (03/31/06 A	nalyzed: 04	/03/06			
Benzene	45.7		ug/kg	50.0		91.4	80-120			
Toluene	43.5		"	50.0		87.0	80-120			
Ethylbenzene	47.8		**	50.0		95.6	80-120			
Xylene (p/m)	98.1		**	100		98.1	80-120			
Xylene (o)	47.6		a	50.0		95.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.4		"	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	37.1		"	40.0		92.8	80-120			

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/03/06 14:16

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC63115 - EPA 5030C (GC)										
Matrix Spike (EC63115-MS1)	Sour	rce: 6C 28 009	-02	Prepared: (03/31/06 A	nalyzed: 04	/02/06			
Benzene	1.10	0.0250	mg/kg dry	1.27	ND	86.6	80-120			
Toluene	1.05	0.0250	**	1.27	ND	82.7	80-120			
Ethylbenzene	1.14	0.0250	Ħ	1.27	ND	89.8	80-120			
Xylene (p/m)	2.35	0.0250	**	2.55	ND	92.2	80-120			
Xylene (o)	1.13	0.0250	**	1.27	ND	89.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	44.3		ug/kg	40.0		111	80-120			
Surrogate: 4-Bromofluorobenzene	33.7		"	40.0		84.2	80-120			
Matrix Spike Dup (EC63115-MSD1)	Sour	rce: 6C 28 009	9-02	Prepared: (03/31/06 A	nalyzed: 04	/02/06			
Benzene	1.15	0.0250	mg/kg dry	1.27	ND	90.6	80-120	4.51	20	
Toluene	1.07	0.0250	**	1.27	ND	84.3	80-120	1.92	20	
Ethylbenzene	1.19	0.0250	11	1.27	ND	93.7	80-120	4.25	20	
Xylene (p/m)	2.38	0.0250	11	2.55	ND	93.3	80-120	1.19	20	
Xylene (o)	1.17	0.0250	**	1.27	ND	92.1	80-120	3.42	20	
Surrogate: a,a,a-Trifluorotoluene	45.4		ug/kg	40.0		114	80-120		~	
Surrogate: 4-Bromofluorobenzene	<i>37.8</i>		"	40.0		94.5	80-120			

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/03/06 14:16

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC62905 - General Preparation (Prep)								·· , · <u>-</u> : .	-
Blank (EC62905-BLK1)				Prepared: 0	3/28/06 A	nalyzed: 03	/29/06			
% Solids	100		%							
Duplicate (EC62905-DUP1)	Sou	rce: 6C27008-	01	Prepared: 0	3/28/06 A	nalyzed: 03	/29/06			
% Solids	93.2		%		93.4			0.214	20	
Duplicate (EC62905-DUP2)	Sou	rce: 6C28002-	03	Prepared: 0	3/28/06 A	nalyzed: 03	/29/06			
% Solids	97.5		%		97.5			0.00	20	
Duplicate (EC62905-DUP3)	Sou	rce: 6C28010-	03	Prepared: 0	3/28/06 A	nalyzed: 03	/29/06			
% Solids	88.3		%		88.2			0.113	20	

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: North Hobbs 8"

Fax: (432) 687-4914

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Reported: 04/03/06 14:16

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Panort Annroyad By	Raland	KJul
lanom Annrovad Hv.	, -	

Date:

4/3/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas I, Ltd.

12600 West L20 East Odessa, Texas 79763

Phone: 918-563-1800 Fax: 915-563-1713

Outton /sea Project Manager.

Project Name: North Hobbs 8-inch

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

5Ks# 2006-059

Project #:

Project Loc: Lea Co., NUM

Basin Environmenta P.O. BOX 301 Company Name

Company Address:

Lownaton, Wan Telephone No: 505 - 44/- 2124 CHy/State/Zip:

Fax No: 505-396-1429

Amancia cuz Gaol, Com

Sampler Signature:

r-Add 03-29-06 as per attack e-mail Standard 1747 Analyze For

C. Reynold

PO# 044

TAT brebnet8 RUBSH TAT (Pre-Schedule emmse isto M.A.O.I esteta: Ve Va Be Cd Cr Pb Hg Se TCLP: TOTAL: unions (CI, SO4, CO3, HCO3) 2001 43108 1.814 Hq 1008 Office (epecify): afipnis MICH Other (Specify) *09²H HOPN HCI FONH 90 No. of Containers 1215 P 621 DelqmeS smiT 1205 1201 3/27/06 3/27/06 322-66 3/27/06 3/13/66 347/06 Date Sampled FIELD CODE WE Wall N. Exc. FIR /BB/3 E. Wal E. Wall 1. Val. AB # (lab use only)

Saboratory Comments:

Femperature Upon Receipt: Sample Containers Intact?

2744066

aton

RESULTS.

Received by:

Eme Eme

Relinquished by:

Retinquished by:

M.

ELECTRONSE

Boocial Instructions: HOLD SOIL SAMPLES FOR POSSIBLE BIEK ANALYSISS

NOTIFIERTION WILL FOLLOW WHOW THE

三方

3/2/860

Received by ELOT

Q

Environmental Lab of Texas
Variance / Corrective Action Report — Sample Log-In

ien Pluns					
ate/Time 3/2/04 1	1745				
der#: 62,008	6028009				
tials.					
	Sample Receipt	: Checkli	st		
mperature of container/cooler?		Yes	No 1	Z10 C.	
apping container/cooler in good co	indition?	128	No	:	
stody Seals intact on shipping coi		Yes	No]	HOL present	
ustody Seals intact on sample bott	les?) Xess ∣	No	Mot present	
nain of custody present?		}	No		
ample Instructions complete on Ch	rain of Custody?	Pas	No		
nain of Custody signed when relini		E	No		
hain of custody agrees with sampl	e label(s)	大學	No		
ontainer lacels legible and intact?		∀ €>	No		
ample Matrix and properties same		1 200	No		
amples in procer container/bottle?		₹ 3 5	No	· .	
amples properly preserved?		E 5	No		
ample bottles intact?		1	1 No	1	
reservations documented on Chai	n of Custody?	Yes .	l No	t	
ontainers documented on Chain of	of Custody?		No	1	
ufficient sample amount for indica	ted test?	763	l No		
al samples received within sufficier			No		
OC samples have zero headspac	e?	1 1/23	No_	Not Applicable	
			-		
	Variance Docu	umentati	on:		
Contact Person: Regarding:	Date/Time:	·		_Contacted by:	-
Corrective Action Taken:			·		
		·			
					

Jeanne McMurrey

From:

"Ken Dutton" <kdutton@basinenv.com>

To: Cc: "Jeanne" <jeanne@elabtexas.com>

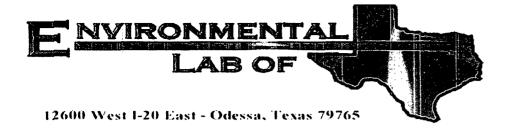
"Camille Reynolds" <cireynolds@paalp.com>

Sent: Subject:

Wednesday, March 29, 2006 9:02 AM North Hobbs 8-Inch COC (BTEX Analysis)

Jeanne,

Reference the COC for the nine (9) soil samples collected from the North Hobbs 8-Inch release site, which had instructions to "hold the nine (9) soils samples for possible BTEX analysis."


Please proceed and run the nine (9) soil samples for BTEX analysis, Standard TAT. utilizing EPA 8021/5030 protocol.

If you have questions, please contact me.

thxs

Ken (505) 441-2124

This message has been scanned for viruses and dangerous content by Basin Broadband, and is believed to be clean.

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Location: Lea County, NM

Lab Order Number: 6C20007

Report Date: 03/23/06

Project: North Hobbs 8"
Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/23/06 20:49

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TFH W/W	6C20007-01	Water	03/17/06 14:40	03/20/06 11:00

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 20:49

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TFH W/W (6C20007-01) Water									
Chloride	86.0	5.00	mg/L	10	EC62112	03/20/06	03/21/06	EPA 300.0	

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/23/06 20:49

Volatile Organic Compounds by EPA Method 8260B Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TFH W/W (6C20007-01) Water				Diation		Tropard	- Mary 200	- Industrial	
Benzene	ND	1.00	ug/l	1	EC62305	03/23/06	03/23/06	EPA 8260B	
Toluene	ND	1.00	"	**	"	ıı	n n	11	
Ethylbenzene	ND	1.00	н	**	n	11	It	"	
Xylene (p/m)	ND	1.00	II	**	**	u	It	u	
Xylene (o)	ND	1.00	n	"	n	n	н	n	
Surrogate: Dibromofluoromethane		117 %	68-1	29	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		99.6 %	72-1	32	"	n	•	n	
Surrogate: Toluene-d8		109 %	74-1	18	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		101 %	65-1	40	"	"	"	n	

Plains All American EH & S

Project: North Hobbs 8"

Fax: (432) 687-4914

1301 S. County Road 1150 Midland TX, 79706-4476 Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Reported: 03/23/06 20:49

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC62112 - General Preparation (WetChem)									
Blank (EC62112-BLK1)				Prepared: (3/20/06 A	nalyzed: 03	/21/06			
Chloride	ND	0.500	mg/L							
LCS (EC62112-BS1)				Prepared: (03/20/06 A	nalyzed: 03	/21/06			
Chloride	9.09		mg/L	10.0		90.9	80-120			
Calibration Check (EC62112-CCV1)				Prepared: (03/20/06 A	nalyzed: 03	/21/06			
Chloride	9.30		mg/L	10.0		93.0	80-120			
Duplicate (EC62112-DUP1)	Sou	rce: 6C20006-	01	Prepared: (03/20/06 A	nalyzed: 03	/21/06			
Chloride	46.9	5.00	mg/L		45.7			2.59	20	

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 20:49

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC62305 - EPA 5030C (GCMS)		<u> </u>								
Blank (EC62305-BLK1)				Prepared &	Analyzed:	03/23/06				
Benzene	ND	1.00	ug/l							
Toluene	ND	1.00	et .							
Ethylbenzene	ND	1.00	IF							
Xylene (p/m)	ND	1.00	"							
Xylene (o)	ND	1.00	"							
Surrogate: Dibromofluoromethane	44.1		"	50.0		88.2	68-129			
Surrogate: 1,2-Dichloroethane-d4	40.8		"	50.0		<i>81.6</i>	72-132			
Surrogate: Toluene-d8	51.6		"	50.0		103	74-118			
Surrogate: 4-Bromofluorobenzene	46.9		"	50.0		93.8	65-140			
LCS (EC62305-BS1)				Prepared &	Analyzed:	03/22/06				
Benzene	47.3	1.00	ug/l	50.0		94.6	70-130			
Toluene	57.6	1.00	"	50.0		115	70-130			
Ethylbenzene	46.7	1.00	"	50.0		93.4	70-130			
Xylene (p/m)	92.6	1.00	"	100		92.6	70-130			
Xylene (o)	47.0	1.00	u	50.0		94.0	70-130			
Surrogate: Dibromofluoromethane	50.4		"	50.0		101	68-129			.,
Surrogate: 1,2-Dichloroethane-d4	50.4		"	50.0		101	72-132			
Surrogate: Toluene-d8	52.2		"	50.0		104	74-118			
Surrogate: 4-Bromofluorobenzene	41.4		"	50.0		82.8	65-140			
Calibration Check (EC62305-CCV1)				Prepared &	Analyzed:	03/22/06				
Toluene	54.2		ug/l	50.0		108	70-130			
Ethylbenzene	43.3		"	50.0		86.6	70-130			
Surrogate: Dibromofluoromethane	53.4		"	50.0		107	68-129			_
Surrogate: 1,2-Dichloroethane-d4	46.9		"	50.0		93.8	72-132			
Surrogate: Toluene-d8	52.7		n	50.0		105	74-118			
Surrogate: 4-Bromofluorobenzene	46.4		n	50.0		92.8	65-140			

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 20:49

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC62305 - EPA 5030C (GCMS)		· · · · · · · · · · · · · · · · · · ·								
Matrix Spike (EC62305-MS1)	Source	e: 6C16022-	29	Prepared &	Analyzed:	03/23/06				
Benzene	43.2	1.00	ug/l	50.0	ND	86.4	70-130			
Toluene	52.2	1.00	•	50.0	ND	104	70-130			
Ethylbenzene	39.2	1.00	"	50.0	ND	78.4	70-130			
Xylene (p/m)	75.7	1.00		100	ND	75.7	70-130			
Xylene (o)	39.2	1.00	**	50.0	ND	78.4	70-130			
Surrogate: Dibromofluoromethane	50.2		"	50.0		100	68-129			
Surrogate: 1,2-Dichloroethane-d4	49.1		"	50.0		98.2	72-132			
Surrogate: Toluene-d8	52.8		"	50.0		106	74-118			
Surrogate: 4-Bromofluorobenzene	42.2		"	50.0		84.4	65-140			
Matrix Spike Dup (EC62305-MSD1)	Sourc	e: 6C16022-	29	Prepared &	Analyzed:	03/23/06				
Benzene	45.9	1.00	ug/l	50.0	ND	91.8	70-130	6.06	20	
Toluene	55.9	1.00	"	50.0	ND	112	70-130	6.85	20	
Ethylbenzene	45.7	1.00		50.0	ND	91.4	70-130	15.3	20	
Xylene (p/m)	89.2	1.00	11	100	ND	89.2	70-130	16.4	20	
Xylene (o)	45.1	1.00	Ħ	50.0	ND	90.2	70-130	14.0	20	
Surrogate: Dibromofluoromethane	48.9		"	50.0		97.8	68-129			
Surrogate: 1,2-Dichloroethane-d4	47.3		"	50.0		94.6	72-132			
Surrogate: Toluene-d8	50.1		"	50.0		100	74-118			
Surrogate: 4-Bromofluorobenzene	42.0		"	50.0		84.0	65-140			

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 20:49

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report	Approved	By:

Raland K Julis

Date:

3/23/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas I, Ltd.

12600 West F20 East Odessa, Texas 79763

Phone: 915-663-1800 Fax: 915-663-1713

Project Manager: KEN DUTTON

Project Name: NORTH #0885 8-INCH

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Project # 5/25' 2006-059

PO# PAH/ P. REYNOLDS

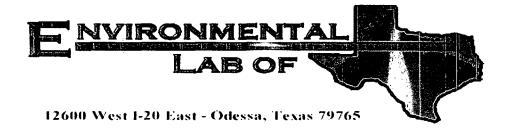
Project Loc. LEP COUNTY NH

Company Name BABIN ENV. SVCS Company Address: P. O. Box 3 & 1

CHYISTANZID: LOVINGTON NM 8826 &

Telephone No. (545) 441-2124

Sampler Signature:


FAX NO: (505)396-1429

ø'øø 9,0 Preservative

					ĩ		2	-	2000	5)		_	-	•	-	_	-	,			
				T	-		L		L	-	100	3)		S BA				~	<u> </u>		211	_
		2006			<u> </u>					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				10477		······································	·		3		peys	······································
₩		peld	peldi	ananis)	od-	J_Z		(/ JK)		:(A):	8019W		******	pn ee f		0609/			70.72			, V
3		me2 ste	ns2 em	noO to .c	°01	HO	eu 20°	har (Spac ster	a6pr	yet (sbec	1.814:)	ione (Ce, 8 ,(S) and	14831E	A sA :els: asibe	aevitalovin	81 S08 XE	.M.S.	atrimas) la	1071		TAT HE	T brabni
LAB # (lab use only)	FIELD CODE	a	π	-						90	iqï	-		-		ITB IDFI						210
H31 9-	TFH W/W	IPHAR	1440	3	<u>۲</u> ا	X		X								<u> </u>			X		-	~
					_					_												
										_		_		<u> </u>		_			_			
	AND			-			F			-		<u> </u>		-		-			-			
	Andrew Market Community of the Community			-				_		-		-		-		-			_			
										-				<u> </u>		-			-			
										-		-		<u> </u>								
を対象を				-																		
				-						-		<u> </u>		 		-			_			
				_						-				ļ					-			
Special Instructions:												8 0 0	mple (Sample Containers intact? Temperature Upon Receip I aboratory Commenta	pon F	Tage of the	ا پ	2 -	O	Z		
Relinquished by:	Date Time	Received by:	Con						Oate	-	Time)	1			
Res Author	17 MAR OL 1600	A	M				-	1	786	1	200											7 s.
Relinquished by:	Rock 1100	Received by ELO	で。 で	Q [']	\setminus			8	Se g	E. W.	S Trace		K	A S	O1	3	3					20 Tu (Tu)
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 / 1	2. A . A . A . A . A . A . A . A . A . A	1 To	1	١		1					4										٦

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

client. Pluns				
				,
Date/Time: 3/10/00 11:00	•			
Order #: 6020007				
Initials				
Sample Receipt	Checkli	s t		•
Temperature of container/cooler?	Yes	No I	-1,0 C	
Shipping container/cooler in good condition?	(es	No		:
Custody Seals intact on shipping container/cooler?	Yes	No	Not present	į
Custody Seals intact on sample bottles?	Yes	No	Not present	Ī
Chain of custody present?	YES !	No	**************************************	•
Sample Instructions complete on Chain of Custody?	(B)	Nai		-
Chain of Custody signed when relinquished and received?	YED	No		~-
Chain of custody agrees with sample label(s)	138	No		~
Container labels legible and intact?	Yes	No		7
Sample Matrix and properties same as on chain of custody?	¥€}8	No		
Samples in proper container/bottle?	Yes	No		_
Samples properly preserved?	Y38	No	***************************************	•
Sample bottles intact?	YES	No		<u> </u>
Preservations documented on Chain of Custody?	YES	No		1
Containers documented on Chain of Custody?	129	No	·	~ -
Sufficient sample amount for indicated test?	1 VES			
All samples received within sufficient hold time? VOC samples have zero headspace?	(SED)			-
VOC Samples have 25:0 (readospace).	(عود ا	l No	Not Applicable	
Other observations:				·
				
	•		,	
Variance Docu	mentati	on:		
Contact Person: Date/Time:	,		Contacted by:	
Regarding:			•	
	·			
O Askar Talana	***************************************			
Corrective Action Taken:	. ,			
		<u> </u>		

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Location: Lea County, NM

Lab Order Number: 6C20006

Report Date: 03/23/06

Project: North Hobbs 8"
Project Number: SRS: 2006-059

Fax: (432) 687-4914

Reported: 03/23/06 15:16

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	6C20006-01	Water	03/17/06 13:40	03/20/06 11:00
MW-2	6C20006-02	Water	03/17/06 12:06	03/20/06 11:00
MW-3	6C20006-03	Water	03/17/06 10:35	03/20/06 11:00

Project Manager: Camille Reynolds

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 15:16

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (6C20006-01) Water				····	······				
Chloride	45.7	5.00	mg/L	10	EC62112	03/20/06	03/21/06	EPA 300.0	
MW-2 (6C20006-02) Water									
Chloride	64.0	5.00	mg/L	10	EC62112	03/20/06	03/21/06	EPA 300.0	
MW-3 (6C20006-03) Water									
Chloride	69.0	5.00	mg/L	10	EC62112	03/20/06	03/21/06	EPA 300.0	

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 15:16

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC62112 - General Preparation (V	VetChem)		··							
Blank (EC62112-BLK1)				Prepared: (03/20/06 A	nalyzed: 03	/21/06			
Chloride	ND	0.500	mg/L							
LCS (EC62112-BS1)				Prepared: (03/20/06 A	nalyzed: 03	/21/06			
Chloride	9.09		mg/L	10.0		90.9	80-120			
Calibration Check (EC62112-CCV1)				Prepared: (3/20/06 A	nalyzed: 03	/21/06			
Chloride	9.30		mg/L	10.0		93.0	80-120			
Duplicate (EC62112-DUP1)	Sou	rce: 6C20006-	01	Prepared: (03/20/06 A	nalyzed: 03	/21/06			
Chloride	46.9	5.00	mg/L		45.7			2.59	20	

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: North Hobbs 8"
Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/23/06 15:16

Notes and Definitions

DET Ana

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

LCS

Laboratory Control Spike

MS

Matrix Spike

Dup

Duplicate

	Kaland K Julia		
Report Approved By:	720000112110	Date:	3/23/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas I, Ltd.

12600 West I-20 East Odessa, Texas 79763

Phone: 915-563-1800 Fax: 915-563-1713

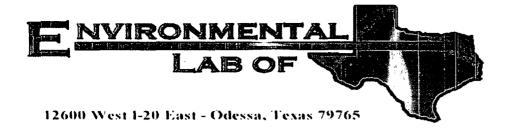
Project Manager: KEN DUTTON

Company Name BASIN ENV. SVCS Company Address: P. O. BOX 301 City/State/Zip: LOVZNGTON NA 8826 0

Telephone No: (505) 441-2124

Sampler Signature:

Fax No: (505) 396-1429


Project Name: NORTH HOBBS 8-INCH PO# PAH/C. REYNOLDS Project # 5RS' 2006-059 Project Loc: LEA COUNTY NM

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

			hedule	38-919) TAT TAT bu		×	×	X									:	·.		
																z ·	•	٠.		· · · · ·
_		_								<u> </u>	<u> </u>		L			<u> </u>				
(9	0 '	AG.	(36	ORIPES		X	۲	*	<u> </u>	<u> </u>				<u> </u>		y	•			
<u> </u>					Kotal Ga									Ш	Ш		•	:		To
					M.R.O.N	-				<u> </u>		-	<u> </u>			. 4	٠.	€	•	1
_	_	_			BCI	<u> </u>			 	<u> </u>	 	-		H		Sample Confainers Infact? Temperature Upon Receipt	笞	0"/-		((ab
Н	4			0503/8120	lovimes is Xate				<u> </u>	 -		┝	-			5 5 E	Laboratory Comments:	Ī	•	No.
Н					selüsloV fovímes	-		<u> </u>		├	-			\vdash		Upo	Ē	٠.	•	cals!
Н	4	80	י רט דום	As Ag Ba Cd C				_	<u> </u>	-		-	-	H	-	onte ure	Ē.			X
ä	1		911 40	SP / CEC					-	┢		-		_		ole C	rato	•		V 1
TC.P.	TOTAL:		(ennu	CCL, SCO4, CCC3,						-	┡				-	em de	a po			,
				(Ca, Mg, Na, K					-	-	 	-		\vdash		S -	┪			
		90			Ib HqT				-	-	 	-		-				E E	S.	Time /·Oc
ليا	٦		_, 200	sbeciţ\):						_	\vdash	_							10	F :
		×		-4-31	llos						-	 	-	\vdash	H		ŀ			
		Matrix			Studge	Н			 	-	-			$\vdash \vdash$	-			. `	<i>'</i> ⊘	of de
					Water	X	X	. ×	 		├─	 -	\vdash	H	-		Į	Safe Safe	Ŋ	2 Sat
		-		gbecqià)				<u> </u>	-	-	-			-	\vdash			•	1	- Par
	1				HONE	_				-			-	\vdash			ŀ		-	
		Š			'OS'H			-		-	 	-	\vdash	Н						
	1	BAL			HOBN			-	 	_	\vdash		-			ı	ſ			
		Preservative			HCI	-			-	 	┢─						-			
	ı	۵			^E ONH				-	-	-						1			ť
	1			Lost	1) 801	X	X	7	-		┢─			\vdash			-1			4
	1			Containers	IO ON	1	7	+									-			a
					,,,,,,	*1		-			<u> </u>	<u> </u>	Ш				1	Λ		(a
				bəlqms2	əmiT	1340	1206	. Ø35											V	13
			1880		; etsO	17HAR		17 APM T										Received by:	1	Received by ELOT
						\vdash					_			-			- 1			
																		E e	1680	Time
																	ľ			1
			1														1	en.	12MARG6	3%%
		ļ			FIELD CODE												1		18	18 13V
					ŏ				i						ı		- [X	1
					교												ſ		1	
		-			╙														Ì	
													i		1		- [
						7	~	MW-3							ĺ		ĺ			
						3	3	3					1				ł		\sim	Λ
						MW-1	Mw - 2	I											74	IN
					2	Ş										, 190	j		1	MI
				- }	Ö						,		:		.	pot	1	/	ジ	411/3
			* * *	0	다. 함	أبيا	\mathcal{L}_{j}	(2)					.			rt t	:	ed D	10	\$ /// B
			٠.	3	LAB # (lab, use only)	Q	Ø	9						}	'	Special Instructions:	ŀ	The state of the s	3	Relinquished by.
					多引	1	N	1) je	,		7	를 //
		ı	<u> </u>		إلنه	لنيب		لنـــــ				اا				47		<u></u>		<u>IZ V</u>

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client. Puns					
Date/Time: 3/2000 11:00					
Order #: 600000	•				
Initials:					
Sample Receipt C				-	
Temperature of container/cooler?	Yes	No	(2)	<u> </u>	
Shipping container/cooler in good condition?	1	No			
Custody Seals intact on shipping container/cooler? Custody Seals intact on sample bottles?	¥23,	No	Not presen		
Chain of custody present?	Yes	No No	Not preser	1	
Sample Instructions complete on Chain of Custody?	KES	No I		<u> </u>	
Chain of Custody signed when relinquished and received?	1	No			
Chain of custody agrees with sample label(s)	Yes	No			
Container lacels legible and intact?	Yes	No			
Sample Matrix and properties same as on chain of custody?	XEB	No	,	 ;	
Samples in proper container/bottle?	Yes	No			
Samples properly preserved?	1/5%	No			
Sample bottles intact?	1 1/55	No		 i	
Preservations documented on Chain of Custody?	1 (25)	No			
Containers documented on Chain of Custody?	Y PE	No			
Sufficient sample amount for indicated test?	YES	No			
All samples received within sufficient hold time?	(YES)	No	ĺ		
VOC samples have zero headspace?	Yes	Noc	Not Applica	ne	
Other observations:					WW
Variance Docum Centact Person: Date/Time; Regarding:			Contacted	bу:	
	· · · · · · · · · · · · · · · · · · ·				

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Location: Lea County, NM

Lab Order Number: 6C20005

Report Date: 03/23/06

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/23/06 20:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	6C20005-01	Water	03/17/06 13:40	03/20/06 11:00
MW-2	6C20005-02	Water	03/17/06 12:06	03/20/06 11:00
MW-3	6C20005-03	Water	03/17/06 10:35	03/20/06 11:00

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 20:45

Volatile Organic Compounds by EPA Method 8260B Environmental Lab of Texas

	7 0 - 10	Reporting	** *						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (6C20005-01) Water									
Benzene	ND	1.00	ug/l	1	EC62305	03/23/06	03/23/06	EPA 8260B	
Toluene	ND	1.00	**	"	n		n	•	
Ethylbenzene	ND	1.00	"	**	**	u		If .	
Xylene (p/m)	ND	1.00	"	"	Ħ	II	n	н	
Xylene (o)	ND	1.00	"	11	н	n	н	11	
Surrogate: Dibromofluoromethane		94.6 %	68-12	29	н	n	"	"	
Surrogate: 1,2-Dichloroethane-d4		76.6 %	72-13	32	"	"	"	n	
Surrogate: Toluene-d8		102 %	74-1	18	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.0 %	65-14	40	"	"	n	"	
MW-2 (6C20005-02) Water					_				
Benzene	ND	1.00	ug/l	1	EC62305	03/23/06	03/23/06	EPA 8260B	
Toluene	ND	1.00	**	n	u	"	*	я	
Ethylbenzene	ND	1.00	**	11	n	r		**	
Xylene (p/m)	ND	1.00	11	**	u u	н	11	u	
Xylene (o)	ND	1.00	"	**	ıı.	11	"	11	
Surrogate: Dibromofluoromethane		112 %	68-12	29	"	"	#	н	
Surrogate: 1,2-Dichloroethane-d4		94.8 %	72-1.	32	"	#	"	*	
Surrogate: Toluene-d8		108 %	74-1	18	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	65-14	40	"	n	ø	"	
MW-3 (6C20005-03) Water									_
Benzene	ND	1.00	ug/l	1	EC62305	03/23/06	03/23/06	EPA 8260B	
Toluene	ND	1.00	11	n	n	**	ш	n	
Ethylbenzene	ND	1.00	11	**	*	H	**	u	
Xylene (p/m)	ND	1.00	11	**	n	11	**	н	
Xylene (o)	ND	1.00		11	n	*	**	**	
Surrogate: Dibromofluoromethane		105 %	68-12	29	"	"	n	"	
Surrogate: 1,2-Dichloroethane-d4		90.2 %	72-1.	32	"	"	n	"	
Surrogate: Toluene-d8		98.8 %	74-1	18	"	"	#	"	
Surrogate: 4-Bromofluorobenzene		92.6 %	65-14	40	"	"	"	"	

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 20:45

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

	D 1	Reporting	** '.	Spike	Source	A/DEC	%REC	222	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC62305 - EPA 5030C (GCMS)										
Blank (EC62305-BLK1)				Prepared &	Analyzed:	03/23/06				
Benzene	ND	1.00	ug/l							
Toluene	ND	1.00	**							
Ethylbenzene	ND	1.00	11							
Xylene (p/m)	ND	1.00	11							
Xylene (0)	ND	1.00								
Surrogate: Dibromofluoromethane	44.1		"	50.0		88.2	68-129			
Surrogate: 1,2-Dichloroethane-d4	40.8		n	50.0		81.6	72-132			
Surrogate: Toluene-d8	51.6		n	50.0		103	74-118			
Surrogate: 4-Bromofluorobenzene	46.9		"	50.0		93.8	65-140			
LCS (EC62305-BS1)				Prepared &	Analyzed:	03/22/06				
Benzene	47.3	1.00	ug/l	50.0		94.6	70-130			
Toluene	57.6	1.00	**	50.0		115	70-130			
Ethylbenzene	46.7	1.00	**	50.0		93.4	70-130			
Xylene (p/m)	92.6	1.00	**	100		92.6	70-130			
Xylene (o)	47.0	1.00	**	50.0		94.0	70-130			
Surrogate: Dibromofluoromethane	50.4		"	50.0		101	68-129			
Surrogate: 1,2-Dichloroethane-d4	50.4		"	50.0		101	72-132			
Surrogate: Toluene-d8	52.2		"	50.0		104	74-118			
Surrogate: 4-Bromofluorobenzene	41.4		"	50.0		82.8	65-140			
Calibration Check (EC62305-CCV1)				Prepared &	Analyzed:	03/22/06				
Toluene	54.2	····	ug/l	50.0		108	70-130			
Ethylbenzene	43.3		"	50.0		86.6	70-130			
Surrogate: Dibromofluoromethane	53.4		"	50.0		107	68-129			
Surrogate: 1,2-Dichloroethane-d4	46.9		"	50.0		93.8	72-132			
Surrogate: Toluene-d8	52.7		n	50.0		105	74-118			
Surrogate: 4-Bromofluorobenzene	46.4		n	50.0		92.8	65-140			

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 20:45

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC62305 - EPA 5030C (GCMS)										
Matrix Spike (EC62305-MS1)	Source	ce: 6C16022-	29	Prepared &	k Analyzed:	03/23/06				
Benzene	43.2	1.00	ug/l	50.0	ND	86.4	70-130			
Toluene	52.2	1.00	"	50.0	ND	104	70-130			
Ethylbenzene	39.2	1.00	"	50.0	ND	78.4	70-130			
Xylene (p/m)	75.7	1.00	н	100	ND	75.7	70-130			
Xylene (o)	39.2	1.00	n	50.0	ND	78.4	70-130			
Surrogate: Dibromofluoromethane	50.2		"	50.0		100	68-129			
Surrogate: 1,2-Dichloroethane-d4	49.1		"	50.0		98.2	72-132			
Surrogate: Toluene-d8	52.8		"	50.0		106	74-118			
Surrogate: 4-Bromofluorobenzene	42.2		"	50.0		84.4	65-140			
Matrix Spike Dup (EC62305-MSD1)	Source	ce: 6C16022-	29	Prepared &	k Analyzed:	03/23/06				
Benzene	45.9	1.00	ug/l	50.0	ND	91.8	70-130	6.06	20	
Toluene	55.9	1.00	**	50.0	ND	112	70-130	6.85	20	
Ethylbenzene	45.7	1.00	Ħ	50.0	ND	91.4	70-130	15.3	20	
Xylene (p/m)	89.2	1.00	**	100	ND	89.2	70-130	16.4	20	
Xylene (o)	45.1	1.00	n	50.0	ND	90.2	70-130	14.0	20	
Surrogate: Dibromofluoromethane	48.9		"	50.0		97.8	68-129			·
Surrogate: 1,2-Dichloroethane-d4	47.3		"	50.0		94.6	72-132			
Surrogate: Toluene-d8	50.1		"	50.0		100	74-118			
Surrogate: 4-Bromofluorobenzene	42.0		**	50.0		84.0	65-140			

Project: North Hobbs 8"

Project Number: SRS: 2006-059 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 03/23/06 20:45

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
D	Destinate

	Kaland KJulia		
Report Approved By:	Karan C 110	Date:	3/23/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas I, Ltd.

12600 West F20 East Odessa, Texas 79763

Phone: 916-563-1800 Fax: 915-663-1713

Company Name BASIN ENV. SYES.

Project Manager: KEN DUTTON

Company Address: P. O. BOX 3&L

City/Buth/Zip: LOVINGTON NH 88260

Telephone No: (5 85) 441-2124

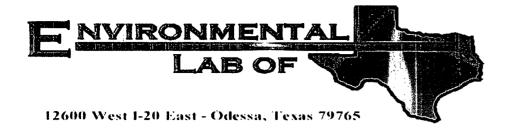
Sampler Signature:

Pax No: (5 05) 396-1429

PO# PAA/C. REYNOLDS Project Loc: LEA COUNTY NM

4

Project Name: NURTH HOBBS 8-INCH


Project#: 5/RS': 2006- 059

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

						-						-	7					1	7	_	_	_	_			
							F	Preservative	Ž.	-	Matrix	Ě	90	_	-	6		 								
LAB # (lat) use onty)	Ji∃i	FIELD CODE		7 beigmes else	beigmes emit	Mo. of Containers	PHOS SONH	HO*N 72-3- 1/2/ HO	H ₂ SO,	Other (Specify)	Shidge		Other (specify): 1005 1005 100	Cathona (Ca. Mg, Na. K)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg S	selfisioV	RLEX 805 (8)2030	138CI	мовм	Bowned (stot	······································		RUSH TAT (Pre-Schedule	TAT brabnate	
O	F-MH			17 MAR	4346	21	χ χ	X			X	\vdash						\vdash	×			_			X	
	₩2			17 MAR	12.66		x x	X			X				-				>4			_			×	
6	Hw-3			17 MAR	1635	2	x x	×		-	×							×							×	
							_	_		_					_			-				-				
							_					-	_		-			-	-			├	_			
		**************************************										1			-			-	├-			╫	_			
												-			-			-	 			-				
												-			_			-	_			-	_			
								L			F	-			-			-	 			\vdash	_			
												 -						-	_				_			
Special Instructions:														ω ⊢∴π	amp andr	to at to	Sample Confamens Infact? Temberature Upon Receipt Laboratory Comments:	n Re	G 5 3		D (Z			
Rejinativished by:		Date	Time	Received by:	1	_					\$ \	一、	Ę.									\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
Des Hull	200	29	1600		No.					3	13	7	12	2												
Relinquished by:			Time	Reconved by FLO $\mathcal{CL}_{\mathcal{L}}$	ic la	20	$\langle \mathbf{\lambda} \rangle$			Z.	Tabe TCC		CC		$ec{\phi}$	্ব	Ø	ا ر	4	7	C.					

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

ient 1 IMIO			•
etertime: 3/2000 11:00	. *		
rder#: 6020005			
itiats:			·
Sample Recei	nt Checkli	st	
imperature of container/cooler?	Yes	No I	-1,0 C
apping container/cooler in good condition?	(A)	No	
ustody Seals intact on shipping container/cooler?	VE3	No	Not present
ustody Seals intact on sample bottles?	(e3)	No	Not present
nain of custody present?	VE3	No	, rot present
ample instructions complete on Chain of Custody?	(a)	No	
hain of Custody signed when relinguished and received?	Yes I	No	
hain of custody agrees with sample label(s)	Yes	No	
ontainer lacels legible and intact?	Yes	No	
ample Matrix and properties same as on chain of custody?	\(\frac{1}{2}\)	No	
amples in proper container/bottle?	Yes	No	
amples properly preserved?	1988	No	:
ample bottles intact?	1 193	No	
reservations documented on Chain of Custody?	123	No	
ontainers documented on Chain of Custody?	753	No	
ufficient sample amount for indicated test?	Yes	No	
il samples received within sufficient hold time?	(PED)		
OC samples have zero headspace?	C(233	No	Not Applicable
Other observations:			
,	•		
Variance Doc Contact Person: Date/Time: Regarding:	cumentatio	on:	Contacted by:
Variance Doc Centact Person:	cumentation	on:	Contacted by:
Variance Doc Centact Person: Date/Time: Regarding: Corrective Action Taken:	cumentatio	on:	Contacted by:
Variance Doc Centact Person: Date/Time: Regarding: Corrective Action Taken:	cumentation	on:	Contacted by:
Variance Doc Centact Person: Date/Time: Regarding: Corrective Action Taken:	cumentation	on:	Contacted by:

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Location: Lea County, NM

Lab Order Number: 6C16004

Report Date: 03/23/06

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/23/06 16:49

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1 5'	6C16004-01	Soil	03/13/06 09:59	03/16/06 10:00
MW-1 15'	6C16004-02	Soil	03/13/06 10:06	03/16/06 10:00
MW-1 25'	6C16004-03	Soil	03/13/06 10:12	03/16/06 10:00
MW-1 35'	6C16004-04	Soil	03/13/06 10:17	03/16/06 10:00
MW-1 45'	6C16004-05	Soil	03/13/06 10:21	03/16/06 10:00
MW-1 55'	6C16004-06	Soil	03/13/06 10:39	03/16/06 10:00
MW-2 5'	6C16004-07	Soil	03/13/06 12:41	03/16/06 10:00
MW-2 15'	6C16004-08	Soil	03/13/06 12:45	03/16/06 10:00
MW-2 25'	6C16004-09	Soil	03/13/06 12:52	03/16/06 10:00
MW-2 35'	6C16004-10	Soil	03/13/06 12:59	03/16/06 10:00
MW-2 45'	6C16004-11	Soil	03/13/06 13:05	03/16/06 10:00
MW-2 55'	6C16004-12	Soil	03/13/06 13:10	03/16/06 10:00
MW-3 5'	6C16004-13	Soil	03/14/06 08:51	03/16/06 10:00
MW-3 15'	6C16004-14	Soil	03/14/06 09:00	03/16/06 10:00
MW-3 25'	6C16004-15	Soil	03/14/06 09:07	03/16/06 10:00
MW-3 35'	6C16004-16	Soil	03/14/06 09:12	03/16/06 10:00
MW-3 45'	6C16004-17	Soil	03/14/06 09:19	03/16/06 10:00
MW-3 55'	6C16004-18	Soil	03/14/06 09:26	03/16/06 10:00

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/23/06 16:49

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	D3.	D-: 1	D		M.4. 5	~~ :
	Resun	Lunt	Omis	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 5' (6C16004-01) Soil									
Benzene	ND	0.0250		25	EC62005	03/20/06	03/20/06	EPA 8021B	
Toluene	ND	0.0250	"	"	**	н	u	H	
Ethylbenzene	ND	0.0250	"	11	"	ıı	11	u	
Xylene (p/m)	ND	0.0250	n	"	**	n	"	"	
Xylene (o)	ND	0.0250	n	**	"	11	н	"	
Surrogate: a,a,a-Trifluorotoluene		85.5 %	80-1	20	и	"	"	ee	
Surrogate: 4-Bromofluorobenzene		99.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	u	"	"	II	n	н	
Carbon Ranges C28-C35	ND	10.0	'n	Ħ	п	II	н	n	
Total Hydrocarbon C6-C35	ND	10.0	**	u	n	11	11	19	
Surrogate: 1-Chlorooctane		92.8 %	70-1	30	"	"	n	"	
Surrogate: 1-Chlorooctadecane		93.8 %	70-1	30	n	"	#	"	
MW-1 15' (6C16004-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B	
Toluene	ND	0.0250	11	n	n	11	и	11	
Ethylbenzene	ND	0.0250	19	n	n	и	U	n	
Xylene (p/m)	ND	0.0250	**	n	II.	n	•	17	
Xylene (o)	ND	0.0250	"	n	11	n	tt.	re .	
Surrogate: a,a,a-Trifluorotoluene		87.0 %	80-1	20	,,	,,	"	n	
Surrogate: 4-Bromofluorobenzene		101 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	п	"	"	**	tt.	
Carbon Ranges C28-C35	ND	10.0	•	п	"	n	It	17	
Total Hydrocarbon C6-C35	ND	10.0	n	"	*	п	п	n	
Surrogate: 1-Chlorooctane		95.4 %	70-1	30	"	<i>"</i>	"	и	
Surrogate: 1-Chlorooctadecane		97.2 %	70-1		"	"	"	"	
MW-1 25' (6C16004-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B	
Toluene	ND	0.0250	п	**	•	*	"	u	
Ethylbenzene	ND	0.0250	h	"	"	n	"	п	
Xylene (p/m)	ND	0.0250	11	n	u	"	**	n	
Xylene (o)	ND	0.0250	•	u	,	n	**	н	
Surrogate: a,a,a-Trifluorotoluene		83.2 %	80-1	20	, ,	"	"	n.	
Surrogate: 4-Bromofluorobenzene		104 %	80-1		"	n	"	"	
Carbon Ranges C6-C12	ND	10.0		1	EC61616	03/16/06	03/17/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/23/06 16:49

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 25' (6C16004-03) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	**	"	IF.	*	**	н	
Total Hydrocarbon C6-C35	ND	10.0	n	н	*	"	"	н	
Surrogate: 1-Chlorooctane		113 %	70-1	30	"	n	"	"	
Surrogate: 1-Chlorooctadecane		108 %	70-1	30	"	n	**	"	
MW-1 35' (6C16004-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B	
Toluene	ND	0.0250	**	и	**	н	"	**	
Ethylbenzene	ND	0.0250	**	11	**	н	n	11	
Xylene (p/m)	ND	0.0250	"	n	**	н	r	11	
Xylene (o)	ND	0.0250	•	n	**	77	Ħ	**	
Surrogate: a,a,a-Trifluorotoluene		89.0 %	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		104 %	80-1	20	"	"	"	,,	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	11	n	Ħ	n	11	
Carbon Ranges C28-C35	ND	10.0	n	#	R	n .	п	W	
Total Hydrocarbon C6-C35	ND	10.0	**	n	н	11	н	"	
Surrogate: 1-Chlorooctane		94.2 %	70-1	130	"	"	"	n .	
Surrogate: 1-Chlorooctadecane		94.2 %	70-1	130	"	"	"	"	
MW-1 45' (6C16004-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B	•
Toluene	ND	0.0250	11	п	"	n	п	11	
Ethylbenzene '	ND	0.0250	II	n	n	m		"	
Xylene (p/m)	ND	0.0250	11	n	"	**	**	**	
Xylene (o)	ND	0.0250	н	*	n	**	**	*	
Surrogate: a,a,a-Trifluorotoluene		88.0 %	80-1	120	"	"	n	n	
Surrogate: 4-Bromofluorobenzene		104 %	80-1	120	"	"	n	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11		n	•	**	**	
Carbon Ranges C28-C35	ND	10.0	11	u	11	17	Ħ	n	
Total Hydrocarbon C6-C35	ND	10.0	11	"	п	**	"	n	
Surrogate: 1-Chlorooctane		106 %	70-1	130	"	"	"	н	
Surrogate: 1-Chlorooctadecane		106 %	70-1	130	"	"	"	"	

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/23/06 16:49

Organics by GC Environmental Lab of Texas

	<u>.</u> .	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 55' (6C16004-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B	
Toluene	ND	0.0250	и	**	"	**	и	п	
Ethylbenzene	ND	0.0250	**	**	"	"	H		
Xylene (p/m)	ND	0.0250	*	"	**	u	n	"	
Xylene (o)	ND	0.0250	"	H	*		u	11	
Surrogate: a,a,a-Trifluorotoluene		85.2 %	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		110 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	н	**	*	æ	**	
Carbon Ranges C28-C35	ND	10.0	"	п	11	**	**	11	
Total Hydrocarbon C6-C35	ND	10.0		11	n	"	"	11	
Surrogate: I-Chlorooctane		113 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		107 %	70-1	30	"	"	"	"	
MW-2 5' (6C16004-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B	
Toluene	ND	0.0250	17	**	н	и	п		
Ethylbenzene	ND	0.0250	**	11	*	H	u	"	
Xylene (p/m)	ND	0.0250	11	n	**	н	u	**	
Xylene (o)	ND	0.0250	"	11	**	н	и	11	
Surrogate: a,a,a-Trifluorotoluene		86.5 %	80-1	20	"	"	,,	n	
Surrogate: 4-Bromofluorobenzene		106 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	"	n	•	"	"	
Carbon Ranges C28-C35	ND	10.0		"	n	*	*	11	
Total Hydrocarbon C6-C35	ND	10.0	и	•	"	"		n	
Surrogate: 1-Chlorooctane		116%	70-1	30	"	"	#	"	
Surrogate: 1-Chlorooctadecane		110%	70-1	30	"	"	"	"	
MW-2 15' (6C16004-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B	
Toluene	ND	0.0250	ű	"	11	н	n	U	
Ethylbenzene	ND	0.0250	**	n	11	н	n	II	
Xylene (p/m)	ND	0.0250	H	"	tr	**	n	II	
Xylene (o)	ND	0.0250	"	H	**		n	1)	
Surrogate: a,a,a-Trifluorotoluene		90.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.8 %	80-1	20	n	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: North Hobbs 8"
Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/23/06 16:49

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-2 15' (6C16004-08) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	n	11	11	н	*	**	
Total Hydrocarbon C6-C35	ND	10.0	"	u	**	*	н	11	
Surrogate: 1-Chlorooctane		94.2 %	70-1	130	"	n	"	"	
Surrogate: 1-Chlorooctadecane		96.0 %	70-1	130	"	"	"	"	
MW-2 25' (6C16004-09) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B	
Toluene	ND	0.0250	11	n	"	n	n	*	
Ethylbenzene	ND	0.0250	n	"	**	n	n	11	
Xylene (p/m)	ND	0.0250	11	11	**	н	ч	"	
Xylene (o)	ND	0.0250	**	11	n	n	и	н	
Surrogate: a,a,a-Trifluorotoluene		96.0 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	n	n	**	*	**	
Carbon Ranges C28-C35	ND	10.0	"	н	H	u	**	*	
Total Hydrocarbon C6-C35	ND	10.0	n	п	*	#	"	*	
Surrogate: 1-Chlorooctane		96.2 %	70-	130	n	,,	"	n	
Surrogate: 1-Chlorooctadecane		97.6 %	70-	130	n	"	#	*	
MW-2 35' (6C16004-10) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B	
Toluene	ND	0.0250		"	"	**	**	n	
Ethylbenzene	ND	0.0250	11	п	**	**	n	"	
Xylene (p/m)	ND	0.0250	"	11	**	Ħ	n	u,	
Xylene (o)	ND	0.0250	11	н	Ħ	н	н	"	
Surrogate: a,a,a-Trifluorotoluene		92.8 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.8 %	80-	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	It	"	*	**	11	Ħ	
Carbon Ranges C28-C35	ND	10.0	"	н	*	n	u	п	
Total Hydrocarbon C6-C35	ND	10.0	ч	11	n	n	w	4	
Surrogate: 1-Chlorooctane		96.2 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		99.6 %	70-	130	"	"	"	n	

Project: North Hobbs 8"
Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/23/06 16:49

Organics by GC Environmental Lab of Texas

Environmental Lad of Texas										
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
MW-2 45' (6C16004-11) Soil										
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B		
Toluene	ND	0.0250	"	"	11	II	Ħ	н		
Ethylbenzene	ND	0.0250		**	II .	n	н	п		
Xylene (p/m)	ND	0.0250	"	"	"	n	u	H		
Xylene (o)	ND	0.0250	u u	"	*	u	"	u		
Surrogate: a,a,a-Trifluorotoluene		85.5 %	80-1	20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	"	"		
Surrogate: 4-Bromofluorobenzene		101 %	80-1	20	"	"	"	,,		
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M		
Carbon Ranges C12-C28	ND	10.0	**	"	**	#	41	Ħ		
Carbon Ranges C28-C35	ND	10.0	*	n	*	Ħ	11	"		
Total Hydrocarbon C6-C35	ND	10.0	n	H	**	**	n	"		
Surrogate: 1-Chlorooctane		99.6 %	70-1	30	"	"	n	n		
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	,,	"	"	"		
MW-2 55' (6C16004-12) Soil										
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B		
Toluene	ND	0.0250	**	"	**	u		п		
Ethylbenzene	ND	0.0250	11	11	**	**	н	и		
Xylene (p/m)	ND	0.0250	"	**	**	*	н	11		
Xylene (o)	ND	0.0250	"	п	**	"	11	**		
Surrogate: a,a,a-Trifluorotoluene		89.5 %	80-1	20	"	"	"	n		
Surrogate: 4-Bromofluorobenzene		97.0 %	80-1	20	"	"	"	n		
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M		
Carbon Ranges C12-C28	ND	10.0	n	n		"	**	11		
Carbon Ranges C28-C35	ND	10.0	n	**	u	н	n	n		
Total Hydrocarbon C6-C35	ND	10.0	"	n	н	H	n	11		
Surrogate: 1-Chlorooctane		95.0 %	70-1	30	"	"	"	n		
Surrogate: 1-Chlorooctadecane		96.8 %	70-1	30	"	"	"	n		
MW-3 5' (6C16004-13) Soil										
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B		
Toluene	ND	0.0250	n	n	н	n	H	н		
Ethylbenzene	ND	0.0250	n	•	"	n .	n	n		
Xylene (p/m)	ND	0.0250	11	**	u	и	п	n		
Xylene (o)	ND	0.0250	n	**	H	n	п	11		
Surrogate: a,a,a-Trifluorotoluene		85.2 %	80-1	20	"	"	<i>"</i>	"		
Surrogate: 4-Bromofluorobenzene		93.8 %	80-1	20	"	"	"	"		
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: North Hobbs 8"
Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/23/06 16:49

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	5 .9	.	.			
*	Result	LHIII	Onits	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-3 5' (6C16004-13) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	**	**	11	"	11	u	
Total Hydrocarbon C6-C35	ND	10.0		"		H	"	ut	
Surrogate: 1-Chlorooctane		96.8 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		100 %	70-1	130	n	"	n	"	
MW-3 15' (6C16004-14) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B	
Toluene	ND	0.0250	H	Ħ	"	17	"	11	
Ethylbenzene	ND	0.0250	**	n	**	tt	**	**	
Xylene (p/m)	ND	0.0250	"	n	**	Ħ	"	"	
Xylene (o)	ND	0.0250	11	"	"	**	"	n	
Surrogate: a,a,a-Trifluorotoluene		84.0 %	80-	120	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		100 %	80-	120	#	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	u	**	"	n		n	
Carbon Ranges C28-C35	ND	10.0	11	"	n	u	n n	и	
Total Hydrocarbon C6-C35	ND	10.0	u	**	ч	**	н	11	
Surrogate: 1-Chlorooctane		98.4 %	70-	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		98.4 %	70-	130	"	"	"	n	
MW-3 25' (6C16004-15) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/20/06	EPA 8021B	
Toluene	ND	0.0250	n	п	"	"	н	W	
Ethylbenzene	ND	0.0250	"	и	"	n	**	и	
Xylene (p/m)	ND	0.0250	**	п	n	"	н	19	
Xylene (o)	ND	0.0250	"	**	11	**	**	11	
Surrogate: a,a,a-Trifluorotoluene		87.8 %	80-	120	"	n	"	n	
Surrogate: 4-Bromofluorobenzene		93.2 %	80-	120	"	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	**	11	**	н	н	
Carbon Ranges C28-C35	ND	10.0	**	п	u	*	tt	**	
Total Hydrocarbon C6-C35	ND	10.0	**	ıı		"	tt	н	
Surrogate: 1-Chlorooctane		103 %	70-	130	п	"	"	"	
Surrogate: 1-Chlorooctadecane		104 %	70-	130	#	**	"	n	

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/23/06 16:49

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-3 35' (6C16004-16) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62005	03/20/06	03/21/06	EPA 8021B	
Toluene	ND	0.0250	11	"	"	"	u	п	
Ethylbenzene	ND	0.0250	u	•	4	Ħ	n	н	
Xylene (p/m)	ND	0.0250	n	"	"	**	*	11	
Xylene (o)	ND	0.0250	11	11	n	n	n	n	
Surrogate: a,a,a-Trifluorotoluene		89.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.5 %	80-1	20	,,	"	n	#	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	u	"	"	II .		и	
Carbon Ranges C28-C35	ND	10.0	**	11	и	n	n	n	
Total Hydrocarbon C6-C35	ND	10.0	•	11	11	n	Ħ	"	
Surrogate: 1-Chlorooctane		95.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		97.8 %	70-1	30	"	"	"	"	
MW-3 45' (6C16004-17) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62103	03/20/06	03/21/06	EPA 8021B	
Toluene	ND	0.0250	11	**	**	н	"	11	
Ethylbenzene	ND	0.0250	и	"	**	W	**	n	
Xylene (p/m)	ND	0.0250	tt	u	н	**	**	"	
Xylene (o)	ND	0.0250	"	ш	n	п	tf	**	
Surrogate: a,a,a-Trifluorotoluene		87.5 %	80-1	20	n	,,	n	n	
Surrogate: 4-Bromofluorobenzene		90.8 %	80-1	20	"	"	n	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	**	н	11	n	n	
Carbon Ranges C28-C35	ND	10.0	"	Ħ	Ħ	n	n	**	
Total Hydrocarbon C6-C35	ND	10.0	H	11	"	"	н	**	
Surrogate: 1-Chlorooctane		110 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		104 %	70-1	130	"	"	n	n	
MW-3 55' (6C16004-18) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC62103	03/20/06	03/21/06	EPA 8021B	
Toluene	ND	0.0250	**	н	н	#	n	11	
Ethylbenzene	ND	0.0250	"	н	n	**	п	11	
Xylene (p/m)	ND	0.0250	*	"	п	Ħ	н	н	
Xylene (o)	ND	0.0250	"	**	п	H	н	"	
Surrogate: a,a,a-Trifluorotoluene		97.2 %	80-1	120	"	"	r	"	
Surrogate: 4-Bromofluorobenzene		104 %	80-1	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

керогтеа: 03/23/06 16:49

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 55' (6C16004-18) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EC61616	03/16/06	03/17/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	II .	**	16	II .	*1	11	
Total Hydrocarbon C6-C35	ND	10.0	n	"	n	"	*	19	
Surrogate: 1-Chlorooctane		113 %	70-13	30	"	"	"	,,	
Surrogate: 1-Chlorooctadecane		105 %	70-13	30	*	"	n	,,	

Project: North Hobbs 8"
Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/23/06 16:49

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 5' (6C16004-01) Soil									
% Moisture	3.2	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-1 15' (6C16004-02) Soil									
Chloride	10.9	5.00	mg/kg	10	EC62001	03/20/06	03/20/06	EPA 300.0	
% Moisture	7.0	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-1 25' (6C16004-03) Soil									
% Moisture	5.5	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-1 35' (6C16004-04) Soil									
% Moisture	4.6	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-1 45' (6C16004-05) Soil									
% Moisture	5.1	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-1 55' (6C16004-06) Soil									
% Moisture	11.4	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-2 5' (6C16004-07) Soil									
% Moisture	6.0	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-2 15' (6C16004-08) Soil									
% Moisture	4.1	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-2 25' (6C16004-09) Soil									
% Moisture	4.1	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-2 35' (6C16004-10) Soil									
% Moisture	3.8	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	

Project: North Hobbs 8"
Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 16:49

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-2 45' (6C16004-11) Soil									
% Møisture	7.2	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-2 55' (6C16004-12) Soil									
% Moisture	6.9	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-3 5' (6C16004-13) Soil									
% Moisture	2.0	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-3 15' (6C16004-14) Soil									
% Moisture	8.4	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-3 25' (6C16004-15) Soil									
% Moisture	5.2	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-3 35' (6C16004-16) Soil									
% Moisture	4.4	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-3 45' (6C16004-17) Soil									
% Moisture	5.5	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	
MW-3 55' (6C16004-18) Soil									
% Moisture	10.4	0.1	%	1	EC61702	03/16/06	03/17/06	% calculation	

Midland TX, 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 16:49

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC61616 - Solvent Extraction (GC)										
Blank (EC61616-BLK1)				Prepared: (03/16/06 A	nalyzed: 03	/17/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	Ħ							
Carbon Ranges C28-C35	ND	10.0	11							
Total Hydrocarbon C6-C35	ND	10.0	ij							
Surrogate: 1-Chlorooctane	45.5		mg/kg	50.0		91.0	70-130			
Surrogate: 1-Chlorooctadecane	47.4		"	50.0		94.8	70-130			
LCS (EC61616-BS1)				Prepared &	k Analyzed:	03/16/06				
Carbon Ranges C6-C12	607	10.0	mg/kg wet	500		121	75-125			
Carbon Ranges C12-C28	555	10.0	11	500		111	75-125			
Total Hydrocarbon C6-C35	1160	10.0	11	1000		116	75-125			
Surrogate: 1-Chlorooctane	64.5		mg/kg	50.0		129	70-130			
Surrogate: 1-Chlorooctadecane	61.3		#	50.0		123	70-130			
Calibration Check (EC61616-CCV1)				Prepared: (03/16/06 A	nalyzed: 03	/17/06			
Carbon Ranges C6-C12	293		mg/kg	250		117	80-120			
Carbon Ranges C12-C28	297		"	250		119	80-120			
Total Hydrocarbon C6-C35	590		"	500		118	80-120			
Surrogate: 1-Chlorooctane	61.0		"	50.0		122	70-130			
Surrogate: 1-Chlorooctadecane	<i>52.5</i>		"	50.0		105	70-130			
Matrix Spike (EC61616-MS1)	Sou	rce: 6C16004	I-01	Prepared: (03/16/06 A	nalyzed: 03	/17/06			
Carbon Ranges C6-C12	581	10.0	mg/kg dry	517	ND	112	75-125	,,		
Carbon Ranges C12-C28	581	10.0	"	517	ND	112	75-125			
Total Hydrocarbon C6-C35	1160	10.0	**	1030	ND	113	75-125			
Surrogate: 1-Chlorooctane	54.5		mg/kg	50.0		109	70-130			
Surrogate: 1-Chlorooctadecane	49.0		"	50.0		98.0	70-130			

Plains All American EH & S

Project: North Hobbs 8"

Fax: (432) 687-4914

1301 S. County Road 1150 Midland TX, 79706-4476 Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Reported: 03/23/06 16:49

	 •	Reporting	** *.	Spike	Source	4/77-0	%REC	D.D.D.	RPD	37 .
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC61616 - Solvent Extraction (GC)				·····					
Matrix Spike Dup (EC61616-MSD1)	Sou	rce: 6C16004	-01	Prepared: (03/16/06 A	nalyzed: 03	/17/06			
Carbon Ranges C6-C12	501	10.0	mg/kg dry	517	ND	96.9	75-125	14.8	20	
Carbon Ranges C12-C28	519	10.0	"	517	ND	100	75-125	11.3	20	
Total Hydrocarbon C6-C35	1020	10.0	"	1030	ND	99.0	75-125	12.8	20	
Surrogate: 1-Chlorooctane	58.1		mg/kg	50.0		116	70-130			
Surrogate: 1-Chlorooctadecane	54.8		"	50.0		110	70-130			
Batch EC62005 - EPA 5030C (GC)										
Bjank (EC62005-BLK1)				Prepared &	k Analyzed:	03/20/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	Ħ							
Ethylbenzene	ND	0.0250	"							
Xylene (p/m)	ND	0.0250								
Xylene (o)	ND	0.0250	п							
Surrogate: a,a,a-Trifluorotoluene	36.6		ug/kg	40.0		91.5	80-120			
Surrogate: 4-Bromofluorobenzene	39.2		"	40.0		98.0	80-120			
LCS (EC62005-BS1)		_		Prepared &	k Analyzed:	03/20/06				
Benzene	1.00	0.0250	mg/kg wet	1.25		80.0	80-120			
Toluene	1.13	0.0250	"	1.25		90.4	80-120			
Ethylbenzene	1.29	0.0250		1.25		103	80-120			
Xylene (p/m)	2.66	0.0250	11	2.50		106	80-120			
Xylene (o)	1.30	0.0250	*	1.25		104	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.1		ug/kg	40.0		87.8	80-120			
Surrogate: 4-Bromofluorobenzene	42.6		"	40.0		106	80-120			
Calibration Check (EC62005-CCV1)				Prepared &	k Analyzed:	03/20/06				
Benzene	40.4		ug/kg	50.0		80.8	80-120			
Toluene	40.7		11	50.0		81.4	80-120			
Ethylbenzene	40.8		11	50.0		81.6	80-120			
Xylene (p/m)	82.5		11	100		82.5	80-120			
Xylene (o)	41.8		"	50.0		83.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.6		"	40.0		94.0	80-120			
Surrogate: 4-Bromofluorobenzene	34.8		"	40.0		87.0	80-120			

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 16:49

Amalista	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Mat
Analyte	Result	Limit	Units	Level	Kesuit	76REC	Limits	KPD	Limit	Notes
Batch EC62005 - EPA 5030C (GC)	···					w*				
Matrix Spike (EC62005-MS1)	Sour	ce: 6C16004	-13	Prepared &	Analyzed:	03/20/06				
Benzene	1.10	0.0250	mg/kg dry	1.28	ND	85.9	80-120			
Toluene	1.28	0.0250	u	1.28	ND	100	80-120			
Ethylbenzene	1.47	0.0250	n	1.28	ND	115	80-120			
Xylene (p/m)	2.98	0.0250	"	2.55	ND	117	80-120			
Xylene (o)	1.48	0.0250	·n	1.28	ND	116	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.2		ug/kg	40.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	44.2		"	40.0		110	80-120			
Matrix Spike Dup (EC62005-MSD1)	Sour	ce: 6C16004	-13	Prepared: ()3/20/06 A	nalyzed: 03	3/21/06			
Benzene	1.05	0.0250	mg/kg dry	1.28	ND	82.0	80-120	4.65	20	
Toluene	1.20	0.0250	"	1.28	ND	93.8	80-120	6.40	20	
Ethylbenzene	1.37	0.0250	"	1.28	ND	107	80-120	7.21	20	
Xylene (p/m)	2.80	0.0250	"	2.55	ND	110	80-120	6.17	20	
Xylene (o)	1.38	0.0250	n	1.28	ND	108	80-120	7.14	20	
Surrogate: a,a,a-Trifluorotoluene	35.5		ug/kg	40.0		88.8	80-120			
Surrogate: 4-Bromofluorobenzene	42.1		"	40.0		105	80-120			
Batch EC62103 - EPA 5030C (GC)										
Blank (EC62103-BLK1)				Prepared: (03/20/06 A	nalyzed: 03	3/21/06		,	
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	n							
Ethylbenzene	ND	0.0250	n							
Xylene (p/m)	ND	0.0250	**							
Xylene (o)	ND	0.0250	**							
Surrogate: a,a,a-Trifluorotoluene	37.5		ug/kg	40.0		93.8	80-120			
Surrogate: 4-Bromofluorobenzene	<i>34.5</i>		*	40.0		86.2	80-120			

Midland TX, 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 16:49

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC62103 - EPA 5030C (GC)										
.CS (EC62103-BS1)			***	Prepared: ()3/20/06 A	nalyzed: 03	/21/06			
Benzene	1.03	0.0250	mg/kg wet	1.25		82.4	80-120		*	
Toluene	1.17	0.0250	u	1.25		93.6	80-120			
Ethylbenzene	1.31	0.0250	u	1.25		105	80-120			
Xylene (p/m)	2.66	0.0250	n	2.50		106	80-120			
Xylene (o)	1.31	0.0250	**	1.25		105	80-120			
Surrogate: a,a,a-Trifluorotoluene	36.9		ug/kg	40.0		92.2	80-120			
Surrogate: 4-Bromofluorobenzene	35.6		"	40.0		89.0	80-120			
Calibration Check (EC62103-CCV1)				Prepared: ()3/20/06 A	nalyzed: 03	3/22/06			
Benzene	41.2	· · · · · · · · · · · · · · · · ·	ug/kg	50.0		82.4	80-120			
Toluene	44.3		*	50.0		88.6	80-120			
Ethylbenzene	48.6		n	50.0		97.2	80-120			
Xylene (p/m)	100		u	100		100	80-120			
Xylene (o)	50.4		н	50.0		101	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.2		"	40.0		88.0	80-120			
Surrogate: 4-Bromofluorobenzene	37.4		"	40.0		93.5	80-120			
Matrix Spike (EC62103-MS1)	Sou	rce: 6C16015	5-01	Prepared: (03/20/06 A	nalyzed: 03	3/21/06			
Benzene	1.18	0.0250	mg/kg dry	1.42	ND	83.1	80-120			
Toluene	1.34	0.0250	11	1.42	ND	94.4	80-120			
Ethylbenzene	1.53	0.0250	n	1.42	ND	108	80-120			
Xylene (p/m)	3.10	0.0250	U	2.84	ND	109	80-120			
Xylene (o)	1.54	0.0250	n	1.42	ND	108	80-120			
Surrogate: a,a,a-Trifluorotoluene	36.4		ug/kg	40.0		91.0	80-120			
Surrogate: 4-Bromofluorobenzene	41.5		"	40.0		104	80-120			
Matrix Spike Dup (EC62103-MSD1)	Sou	rce: 6C16015	5-01	Prepared: (03/20/06 A	nalyzed: 03	3/21/06			
Benzene	1.17	0.0250	mg/kg dry	1.42	ND	82.4	80-120	0.846	20	
Toluene	1.33	0.0250	11	1.42	ND	93.7	80-120	0.744	20	
Ethylbenzene	1.51	0.0250	H	1.42	ND	106	80-120	1.87	20	
Xylene (p/m)	3.07	0.0250	"	2.84	ND	108	80-120	0.922	20	
Xylene (o)	1.52	0.0250	**	1.42	ND	107	80-120	0.930	20	
Surrogate: a,a,a-Trifluorotoluene	37.0		ug/kg	40.0		92.5	80-120			
Surrogate: 4-Bromofluorobenzene	38.0		"	40.0		95.0	80-120			

Project: North Hobbs 8"

Fax: (432) 687-4914

Reported: 03/23/06 16:49

Midland TX, 79706-4476

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC61702 - General Preparation (Prep)										
Blank (EC61702-BLK1)				Prepared: 0	3/16/06	Analyzed: 03	3/17/06			
% Solids	99.9		%						, , , , , , , , , , , , , , , , , , , ,	
Duplicate (EC61702-DUP1)	Sou	rce: 6C15014-	01	Prepared: 0	3/16/06	Analyzed: 03	3/17/06			
% Solids	97.9		%		97.5			0.409	20	
Duplicate (EC61702-DUP2)	Sou	rce: 6C16004-	14	Prepared: 0	3/16/06	Analyzed: 03	3/17/06			
% Solids	91.7		%		91.6			0.109	20	
Duplicate (EC61702-DUP3)	Sou	rce: 6C16013-	02	Prepared: 0	3/16/06	Analyzed: 03	3/17/06			
% Solids	98.3		%		97.9			0.408	20	
Batch EC62001 - Water Extraction									_	
Blank (EC62001-BLK1)				Prepared: 0	3/17/06	Analyzed: 03	3/20/06			
Chloride	ND	0.500	mg/kg		*****					
LCS (EC62001-BS1)				Prepared: 0	3/17/06	Analyzed: 03	3/20/06			
Chloride	8.53		mg/L	10.0		85.3	80-120			
Calibration Check (EC62001-CCV1)				Prepared: 0	3/17/06	Analyzed: 03	3/20/06			
Chloride	8.81		mg/L	10.0		88.1	80-120			
Duplicate (EC62001-DUP1)	Sou	rce: 6C16019-	-06	Prepared: 0	3/17/06	Analyzed: 03	3/20/06			
Chloride	159	10.0	mg/kg		160			0.627	20	

Midland TX, 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/23/06 16:49

Notes and Definitions

DET Analy

Analyte DETECTED

ND .

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

LCS

Laboratory Control Spike

MS

Matrix Spike

Dup

Duplicate

	Raland Ktoub	
Report Approved By:	/Consum C 110	Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director

Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

3/23/2006

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Environmental Lab of Texas I, Ltd.

12600 West I-20 East Odesea, Texas 79763

Phone: 915-563-1800 Fax: 915-563-1713

Project Manager: KEN DUTTON

PO# PHH/C. REYNOLDS Project Name: NORTH HOBBS 8-JNCH Project # 5/85: 2006-059 Project Loc: LEH COUNTY NM Fax No: (505) 396-1429 CHYISTATED LOVINGTON, NM 88360 Company Name BASIN ENV. SVCS. Company Address: P. O. BOX 301 Telephone No: (5/65) 4444, 2124 Sampler Signature:

	TAT breaknat?	X					_				-				
	elubertaS-erre) TA7 HSU요														
												z			
												, <u>;</u> ,	••		
												0	O	٠٠ .	<u>7</u>
	Total Gamma									T	<u> </u>		べ		1
	N.O.R.M.	_		 			-		-		\vdash				9
	I) L	┝┈		 			├─	-	-	├	—	~ 4			
_		,	-		 		-	<u> </u>	 	-	H	Sample Containers Intact? Temperature Upon Receipt a horatory Comments:	į	(<u>&</u>)	-4
	BTEX 8021B/5030	X								_	-	Sample Containers Intac Temperature Upon Rece aboratory Comments	•	B.	7
_	Semivolatiles	<u> </u>	L		<u> </u>							5 0	į	bi	7 6
	Votatiles						L						i,	8	0
99	Metals: As Ag Ba Cd Cr Pb Hg	L.]]S = 3	ì	0	
	SAR / ESP / CEC											물물	i	٠, .:	
	Anions (Cl. 304, CO3, HCO3)		X									E 5 €		, ` ··	
	Cations (Ca, Mg, Na, K)				_			┢	-	\vdash		-	Т	<u> </u>	
80		X									_	\$0	Time	8	JO. (
	the state of the s	4			_	_						3 8	F	2009	F ici
إرا	Other (epecity):			 -	ļ	-	 		<u> </u>	 	<u> </u>	astech C-mail	-	_	<u>~</u>
Matrix	lios	X											1	0	1 3
Σ	Shudge	L	<u> </u>	<u> </u>				<u> </u>	L	<u> </u>		č	Date	12	
	V a ter				_		_					as per addicinal	Įō.	12	
	Other (Specify)											1	1	W	42
	Апом											03-11-ch			
<u>Ş</u>	' 0s²н						_		-		\Box	=			
Preservative	HOBIN		\vdash		 			لسا		Ι		W			
ese			 	\vdash	 	H	 		-		 	5	1		}
مّ	HOI		—	 	 	 -	<u> </u>	 		<u> </u>	_	اخ			\
	NO?	<u> </u>	<u></u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>		ō.			l ax
	90[X									8	PA	1		d
	No. of Containers	Ŧ		 	<u> </u>	<u> </u>				_	-	+ Add CI-	1	7	1 3
	bəlqme2 əmiT	6959	1006	1012	1017	1621	1039	1241	1245	1252	1259	1	,	10	77
	Date Sampled	13 MAR									•		Received by:	1	Received by ELOT:
		i											Time	1680	Time // // // // // // // // // // // // //
	FIELD CODE	'n	15'	35'	35,	45,	55'	5,	15,	35	35'		Date	ISMARBL	T / ldm
		HW- 1	MW- 1	HW- 1	1-MM	HW- 1	Hw - 1	MW- 2,	HW- 2	MW-2	M10-3			utter	N
	LAB# (RED use only)	~0\c	-05	-63	754	_05°) 0	-CM	/ 2/	-09	70	Special Instructions:	Relipedutished by:	X	Relinquished by:
-															

TAI breamard

87 0 PB

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Environmental Lab of Texas I, Ltd.

12600 West I-20 East Odessa, Texas 79763

Phone: 915-563-1800 Fax: 915-563-1713

Project Name: NORTH HOBBS 8-INCH PO# PAH/C. REYNOLDS Project #: 5RS: 2016-059 Project Loc: LEA COUNTY, NIT Fax No: (505)396-1429 CINSTANCION LOVINGTON NM 88260 BASIN ENV. SVCS KEN DUTTON Company Address: P. D. BOX SØ1 Telephore No: (585) 441-2124 Project Manager: Company Name Sampler Signature:

				TATE	Standard	X	-									Γ	: .		·. ·		٦
				eluberio2-en9) TA		_							H		-		• • • •	•			1
7											-		_			_			21. d]
-				······································		\vdash				-						z					
ļ	<u> </u>			· · · · · · · · · · · · · · · · · · ·					_		_		<u> </u>					<u>, </u>			1
	<u> </u>					_	-	-	_	ш			-	_	<u> </u>	├ .					
ı	<u> </u>			em	með letoT																1
	_	_			M.A.O.M				<u> </u>				<u> </u>				. بيد				1
5	_				RCI				_						<u> </u>	80	당 경 경	j			
0		X		1B\2030	G08 X3TB	X							-8			프	8 2		· .:		1
C 101376	Ц	Ш		səli	telovimes									L		Sample Containers Intact?	Temperature Upon Receipt Laboratory Comments:		٠, .		·[
ַ					estisioV							ليا				Fai	5 5				1
			95	Ag Ba Cd Cr Pb Hg	Metals: As										<u> </u>	ပ္ရွိ	ate d				-1
	TCLP:	¥		OEC CEC	RB3\AAS											출	5 S				
	F	2		(804, CO3, HCO3)	O) anoinA											Sar	<u> </u>				
				(8, Mg, Ma, K)	Oations (C														_	-0	
			90	01 8001 (M2108) 1.	.814 :H9T,	×									•			Time	1600	(C)	1
				eciţλ):	Other (sp														7	8	_
			ΙĶ		lio2	×						$\overline{}$	-		٠.	İ			<u>, v</u>	o.	٦
			Watrix		Studge							Γ.						وا	13	り。」	, }
					Water	Γ'		_										Date	10		1
				becity)	Other (S														M	3	¥
					эпоИ	\vdash									 			H		-333	1
			ive		†os²H		-						 	-	\vdash			1			
			rvat		HOBN					-	-				 						1
			Preservative		HCI	┝┈┤	\vdash		 	$\vdash \vdash$				H	 						
			đ.		FONH	\vdash			-					-				1			.
					ONH)	×						-		<u> </u>	 					لنهما	4
		Į	_						_		_				-					A	Ī
				enenistrio	No. of C	1							_ w						ſ	B	-
			ļ			2	70					_	_0						11	17	إد
				p.m.d	e errer	8	4	17	Ø Ø	d	13		2						N	13	١
				Bubjeq	2 amiT	305	1310	6951	8968	6969	6912	6769	Ø926]				111	$K \preceq$	ļ
			ļ			7	7	B	8	0	6	10	18	L	i				W.	#` J	I
			1	20		3	V	Q/											//		
				Ø	10 alexa	MAR	MAR	PAR								l		wed by:	V	E-0	ş١
				By belgme	2 ele()		3					 			1			18		Give -	1
				2000 belgine		13	13	Ŧ										Recei		Recei	
																		Ĺ	.,,-		1
																		ime i	B	Time 1	Ľ
													ļ					F	1686	F 2	۲
																		_			4
														'		ļ			S MARKEL	Date	્રુ
					뿔													計	£	E //	3
•					8	1	in			•	ì		in						Š		1
					FIELD CODE	15	7	, S	15'	35,	35'	,54	55'					\vdash	W		1
				ľ	Ĩ	45		- 4	3.4	, €		•			i			ĺ			
				,		2								!)
						1,1	4	3	3	3	W	~	W								
						3	1	1.3	5	1	2	ŀ								_	-
				3 1		MW-2	11W-2	1160-3	MW- 3	MW- 3	MW- 3	-014	Hw.						i 5		١
			į	1.75 4.55 4.5 70	ga Sirair	-	\rightarrow		-						<u> </u>	, ,			14		Ŋ
					<u> </u>	٠,		13								Special Instructions:		1	1	11/4	J
				9		1000	1	3	4	اک	-					rect		1	A	`االخ	ł
				0	LAB# (lab use only)	F	4	1	7	الا		5	1		'	超		Relinguished by		Relinquished by	
					<u>u</u>	,			1	1	1	\	,			重		isi,	10	麗 八	1
			1		் வ	l i		1		1 . 1						8		١Ĕ,	1.1	[章 //	1,
			- 1		ショ	-4		1	1	, 1	٠.	1		1		-		שעו		1929 \	; k
			İ	800	9 3		٠:			ن						8		æ		<u>æ</u>	<u>o</u>

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: Basin Env./Plains				
Date/Time: 3/16/06 10:00				
Order #: 6060				
Initials:	•			
Sample Receipt	Checkli	st		•
Temperature of container/cooler?	Yes	No	1,0 C i	
Shipping container/cooler in good condition?	(XES)	No		
Custody Seals intact on shipping container/cooler?	(Ze)	No	Not present	
Custody Seals intact on sample bottles?	λ €S	No	Not present i	
Chain of custody present?	Zes I	No		
Sample Instructions complete on Chain of Custody?	255	No		
Chain of Custody signed when relinquished and received?	\ <u>\(\text{\text{E}} \)</u>	No	,	
Chain of custody agrees with sample label(s)	195	No		
Container labels legible and intact?	<u> </u>	No	1 .	•
Sample Matrix and properties same as on chain of custody?	Yes	No I		
Samples in proper container/bottle?	Yes	No		
Samples properly preserved?	ES	No		
Sample bottles intact? Preservations documented on Chain of Custody?		No No		
Containers documented on Chain of Custody?		No	the back of the same of the sa	
Sufficient sample amount for indicated test?	Xes	No		
All samples received within sufficient hold time?	(Per	No		
VOC samples have zero headspace?	(PE)	No	Not Applicable	
Other observations:				
Variance Docu Contact Person: Date/Time: Regarding:				
Corrective Action Taken:				
		·		

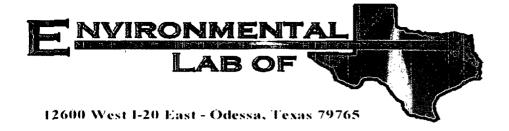
Jeanne McMurrey

From:

"Ken Dutton" <kdutton@basinenv.com>

To: Sent: "Jeanne" <jeanne@elabtexas.com>
Thursday, March 16, 2006 10:50 AM
COC, North Hobbs 8-Inch

Subject:


Jeanne,

Plz add a chloride analysis for the MW-1, 15 feet soil sample, EPA Method 300.1, for the North Hobbs 8-Inch site.

thxs

Ken

This message has been scanned for viruses and dangerous content by Basin Broadband, and is believed to be clean.

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Location: Lea. County, NM

Lab Order Number: 6C09010

Report Date: 03/14/06

Project: North Hobbs 8"
Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/14/06 09:49

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 5'	6C09010-01	Soil	03/08/06 12:45	03/09/06 11:40
SB-1 10'	6C09010-02	Soil	03/08/06 12:47	03/09/06 11:40
SB-1 15'	6C09010-03	Soil	03/08/06 12:50	03/09/06 11:40
SB-1 20'	6C09010-04	Soil	03/08/06 12:56	03/09/06 11:40
SB-1 25'	6C09010-05	Soil	03/08/06 13:20	03/09/06 11:40

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/14/06 09:49

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
SB-1 5' (6C09010-01) Soil		····			· · · · · · · · · · · · · · · · · · ·						
Benzene	0.0617	0.0250	mg/kg dry	25	EC61010	03/10/06	03/13/06	EPA 8021B			
Toluene	0.832	0.0250	n	"	п	tt.	n	n			
Ethylbenzene	1.79	0.0250	11	"	11	н	н	n			
Xylene (p/m)	5.09	0.0250	**	"	**	u u	tt.	**			
Xylene (o)	0.327	0.0250	n	"	11	п	н	n			
Surrogate: a,a,a-Trifluorotoluene		161 %	80-	120	"	"	"	п	S-0-		
Surrogate: 4-Bromofluorobenzene		196 %	80-	20	"	n	"	"	S-0-		
Carbon Ranges C6-C12	815	20.0	mg/kg dry	2	EC60920	03/09/06	03/11/06	EPA 8015M			
Carbon Ranges C12-C28	2720	20.0	"	•	**	"	ıı	п			
Carbon Ranges C28-C35	678	20.0	"	*	"	•	n	н			
Total Hydrocarbon C6-C35	4210	20.0	"	"	н	**	**	11			
Surrogate: 1-Chlorooctane		42.8 %	70-	130	"	"	и	,	S-0		
Surrogate: 1-Chlorooctadecane		40.4 %	70-	130	"	"	"	"	S-0		
SB-1 10' (6C09010-02) Soil											
Benzene	0.0457	0.0250	mg/kg dry	25	EC61010	03/10/06	03/13/06	EPA 8021B			
Toluene	0.606	0.0250	n	**	n	n	ıı .	Ħ			
Ethylbenzene	1.03	0.0250	**	**	**	n	п	н			
Xylene (p/m)	2.07	0.0250	"	n	,	11	u	и			
Xylene (o)	0.684	0.0250	n	**	*	11	n	ч			
Surrogate: a,a,a-Trifluorotoluene		137 %	80-	120	"	"	,,	"	S-0		
Surrogate: 4-Bromofluorobenzene		207 %	80-	120	n	"	"	"	S-0		
Carbon Ranges C6-C12	921	20.0	mg/kg dry	2	EC60920	03/09/06	03/11/06	EPA 8015M			
Carbon Ranges C12-C28	3460	20.0		ıı	u ·	**	**	и			
Carbon Ranges C28-C35	842	20.0	11	U		**	**	n			
Total Hydrocarbon C6-C35	5220	20.0	#		· ·		•	H			
Surrogate: 1-Chlorooctane		45.0 %	70-1	130	"	"	"	"	S-0		
Surrogate: 1-Chlorooctadecane		38.0 %	70-	30	"	"	"	n	S-0		
SB-1 15' (6C09010-03) Soil											
Benzene	0.0335	0.0250	mg/kg dry	25	EC61010	03/10/06	03/13/06	EPA 8021B			
Toluene	0.178	0.0250	Ħ	**	n		**	н			
Ethylbenzene	0.342	0.0250		н	"	*	**	н			
Xylene (p/m)	0.611	0.0250	#	**		•	N	11			
Xylene (o)	0.144	0.0250	Ħ	n	н	n	и	**			
Surrogate: a,a,a-Trifluorotoluene		103 %	80-	120	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		118 %	80-	120	"	"	"	"			
Carbon Ranges C6-C12	199	10.0	mg/kg dry	1	EC60920	03/09/06	03/11/06	EPA 8015M			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/14/06 09:49

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilasta	Dec-t	D	A mel 3	Mash - 1	N T
Analyte SB-1 15' (6C09010-03) Soil	resuit	Liniii	Omis	Dilution	Batch	Prepared	Analyzed	Method	Note
									
Carbon Ranges C12-C28	1270	10.0	mg/kg dry	1	EC60920	03/09/06	03/11/06	EPA 8015M	
Carbon Ranges C28-C35	352	10.0	"	"	11	**	**	19	
Total Hydrocarbon C6-C35	1820	10.0	н					11	
Surrogate: 1-Chlorooctane		71.4 %	70-	130	"	"	,,	#	
Surrogate: 1-Chlorooctadecane		77.2 %	70-1	130	"	"	H	H	
SB-1 20' (6C09010-04) Soil		_							
Benzene	ND	0.0250	mg/kg dry	25	EC61010	03/10/06	03/13/06	EPA 8021B	
Toluene	ND	0.0250	"	•	11	**	**	"	
Ethylbenzene	0.0818	0.0250	Ħ	"	**	#1	11	и	
Xylene (p/m)	0.149	0.0250	*			11	11	u	
Xylene (o)	ND	0.0250	n	n	п	n	п	ч	
Surrogate: a,a,a-Trifluorotoluene		91.5 %	80-	120	"	,,	"	"	
Surrogate: 4-Bromofluorobenzene		88.5 %	80-	120	"	"	"	n	
Carbon Ranges C6-C12	11.8	10.0	mg/kg dry	1	EC60920	03/09/06	03/11/06	EPA 8015M	
Carbon Ranges C12-C28	152	10.0	11	н	u	Ħ	**	п	
Carbon Ranges C28-C35	94.3	10.0	n	n	U	Ħ	11	н	
Total Hydrocarbon C6-C35	258	10.0	*	11	n	n	u	н	
Surrogate: 1-Chlorooctane		71.0 %	70-	130	"	n	"	н	
Surrogate: 1-Chlorooctadecane		72.0 %	70-	130	"	"	"	"	
SB-1 25' (6C09010-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC61010	03/10/06	03/13/06	EPA 8021B	
Toluene	ND	0.0250	**	"	*	II .	n	11	
Ethylbenzene	0.0830	0.0250	n	**	**	н	н	H	
Xylene (p/m)	0.152	0.0250	"	**		11	n	If .	
Xylene (o)	ND	0.0250	u	**	11	11	*	n	
Surrogate: a,a,a-Trifluorotoluene		93.0 %	80-	120	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		83.8 %	80-	120	"	"	"	n	
Carbon Ranges C6-C12	22.6	10.0	mg/kg dry	1	EC60920	03/09/06	03/11/06	EPA 8015M	
Carbon Ranges C12-C28	308	10.0	н	Ħ	,,	11	It	u-	
Carbon Ranges C28-C35	134	10.0	II	n	11	#	u	**	
Total Hydrocarbon C6-C35	465	10.0	"	11	It	*	**	"	
Surrogate: 1-Chlorooctane		70.4 %	70-	130	"	"	**	"	
Surrogate: 1-Chlorooctadecane		73.0 %			"	"	"	<i>n</i>	

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/14/06 09:49

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 5' (6C09010-01) Soil							у 		
% Moisture	3.3	0.1	%	1	EC61008	03/09/06	03/10/06	% calculation	
SB-1 10' (6C09010-02) Soil									
% Moisture	2.2	0.1	%	1	EC61008	03/09/06	03/10/06	% calculation	
SB-1 15' (6C09010-03) Soil									
% Moisture	1.0	0.1	%	1	EC61008	03/09/06	03/10/06	% calculation	
SB-1 20' (6C09010-04) Soil									
% Moisture	0.9	0.1	%	1	EC61008	03/09/06	03/10/06	% calculation	
SB-1 25' (6C09010-05) Soil									
% Moisture	0.6	0.1	%	1	EC61008	03/09/06	03/10/06	% calculation	

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/14/06 09:49

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC60920 - Solvent Extraction (GC)				·						
Blank (EC60920-BLK1)				Prepared: (03/09/06 A	nalyzed: 03	/10/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	**							
Carbon Ranges C28-C35	ND	10.0	**							
Total Hydrocarbon C6-C35	ND	10.0	"							
Surrogate: 1-Chlorooctane	62.3		mg/kg	50.0		125	70-130			
Surrogate: 1-Chlorooctadecane	63.8		"	50.0		128	70-130			
LCS (EC60920-BS1)				Prepared:	03/09/06 A	nalyzed: 03	/10/06			
Carbon Ranges C6-C12	524	10.0	mg/kg wet	500		105	75-125			
Carbon Ranges C12-C28	511	10.0	**	500		102	75-125			
Total Hydrocarbon C6-C35	1040	10.0	n	1000		104	75-125			
Surrogate: 1-Chlorooctane	52.4		mg/kg	50.0		105	70-130			
Surrogate: 1-Chlorooctadecane	51.1		n	50.0		102	70-130			
Calibration Check (EC60920-CCV1)				Prepared:	03/09/06 A	nalyzed: 03	/11/06			
Carbon Ranges C6-C12	256		mg/kg	250	-	102	80-120			
Carbon Ranges C12-C28	286		H	250		114	80-120			
Total Hydrocarbon C6-C35	542		n	500		108	80-120			
Surrogate: 1-Chlorooctane	56.6		"	50.0		113	70-130			
Surrogate: 1-Chlorooctadecane	58.7		"	50.0		117	70-130			
Matrix Spike (EC60920-MS1)	Sou	rce: 6C09007	7-01	Prepared:	03/09/06 A	nalyzed: 03	/10/06			
Carbon Ranges C6-C12	543	10.0	mg/kg dry	548	ND	99.1	75-125			
Carbon Ranges C12-C28	484	10.0	11	548	ND	88.3	75-125			
Total Hydrocarbon C6-C35	1030	10.0	n	1100	ND	93.6	75-125			
Surrogate: 1-Chlorooctane	38.2		mg/kg	50.0		76.4	70-130			
Surrogate: 1-Chlorooctadecane	36.1		"	50.0		72.2	70-130			

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/14/06 09:49

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC60920 - Solvent Extraction (GC)									
Matrix Spike Dup (EC60920-MSD1)	Sou	rce: 6C09007	7-01	Prepared: (03/09/06 A	nalyzed: 03	/10/06			
Carbon Ranges C6-C12	529	10.0	mg/kg dry	548	ND	96.5	75-125	2.61	20	
Carbon Ranges C12-C28	474	10.0	**	548	ND	86.5	75-125	2.09	20	
Total Hydrocarbon C6-C35	1000	10.0	"	1100	ND	90.9	75-125	2.96	20	
Surrogate: 1-Chlorooctane	37.4		mg/kg	50.0	* *	74.8	70-130			· · · · · · · · · · · · · · · · · · ·
Surrogate: 1-Chlorooctadecane	35.3		"	50.0		70.6	70-130			
Batch EC61010 - EPA 5030C (GC)										
Blank (EC61010-BLK1)				Prepared 8	Analyzed:	03/10/06				
Benzene	ND	0.0250	mg/kg wet			_				
Гoluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	**							
Xylene (p/m)	ND	0.0250	**							
Xylene (o)	ND	0.0250	11							
Surrogate: a,a,a-Trifluorotoluene	37.5		ug/kg	40.0		93.8	80-120		, , , , , , , , , , , , , , , , , , , ,	
Surrogate: 4-Bromofluorobenzene	33.4		n	40.0		83.5	80-120			
LCS (EC61010-BS1)				Prepared 8	Analyzed:	03/10/06				
Benzene	1.09	0.0250	mg/kg wet	1.25		87.2	80-120			
Toluene	1.22	0.0250	Ħ	1.25		97.6	80-120			
Ethylbenzene	1.35	0.0250	**	1.25		108	80-120			
Xylene (p/m)	2.82	0.0250	11	2.50		113	80-120			
Xylene (o)	1.37	0.0250	**	1.25		110	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.2		ug/kg	40.0		98.0	80-120	-		
Surrogate: 4-Bromofluorobenzene	33.6		n	40.0		84.0	80-120			
Calibration Check (EC61010-CCV1)				Prepared: (03/10/06 A	nalyzed: 03	/13/06			
Benzene	44.0		ug/kg	50.0		88.0	80-120			
Toluene	50.4		n	50.0		101	80-120			
Ethylbenzene	58.0		u	50.0		116	80-120			
Xylene (p/m)	120		ıı	100		120	80-120			
Xylene (o)	58.7		п	50.0		117	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.1		"	40.0		97.8	80-120			
Surrogate: 4-Bromofluorobenzene	41.7		"	40.0		104	80-120			

Project: North Hobbs 8"
Project Number: SRS: 2006-059

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/14/06 09:49

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC61010 - EPA 5030C (GC)		_								
Matrix Spike (EC61010-MS1)	Sour	ce: 6C06009	-09	Prepared: (03/10/06 A	nalyzed: 03	/13/06			
Benzene	1.12	0.0250	mg/kg dry	1.28	ND	87.5	80-120			
Toluene	1.26	0.0250	**	1.28	ND	98.4	80-120			
Ethylbenzene	1.41	0.0250	"	1.28	ND	110	80-120			
Xylene (p/m)	2.94	0.0250	**	2.56	ND	115	80-120			
Xylene (o)	1.44	0.0250	u	1.28	ND	112	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.7		ug/kg	40.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	36.0		"	40.0		90.0	80-120			
Matrix Spike Dup (EC61010-MSD1)	Sour	ce: 6C06009	-09	Prepared: (03/10/06 A	nalyzed: 03	/13/06			
Benzene	1.19	0.0250	mg/kg dry	1.28	ND	93.0	80-120	6.09	20	
Toluene	1.36	0.0250	н	1.28	ND	106	80-120	7.44	20	
Ethylhenzene	1.52	0.0250	"	1.28	ND	119	80-120	7.86	20	
Xylene (p/m)	3.07	0.0250	11	2.56	ND	120	80-120	4.26	20	
Xylene (o)	1.52	0.0250	Ħ	1.28	ND	119	80-120	6.06	20	
Surrogate: a,a,a-Trifluorotoluene	41.1		ug/kg	40.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	40.2		"	40.0		100	80-120			

Midland TX, 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/14/06 09:49

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC61008 - General Preparatio	n (Prep)					****				
Blank (EC61008-BLK1)				Prepared: (03/09/06 A	nalyzed: 03	/10/06			
% Solids	100		%							
Duplicate (EC61008-DUP1)	Sou	rce: 6C03014-	01	Prepared: (03/09/06 A	nalyzed: 03	/10/06			
% Solids	95.9		%		96.8			0.934	20	
Duplicate (EC61008-DUP2)	Sou	rce: 6C03014-	21	Prepared: (03/09/06 A	nalyzed: 03	/10/06			
% Solids	99.9		%		99.9			0.00	20	
Duplicate (EC61008-DUP3)	Sou	rce: 6C08019-	01	Prepared: (03/09/06 A	nalyzed: 03	/10/06			
% Solids	95.1		%		96.4			1.36	20	
Duplicate (EC61008-DUP4)	Sou	rce: 6C09016-	04	Prepared: (03/09/06 A	nalyzed: 03	/10/06			
% Solids	69.8		%	-	70.0			0.286	20	

 Plains All American EH & S
 Project:
 North Hobbs 8"
 Fax: (432) 687-4914

 1301 S. County Road 1150
 Project Number:
 SRS: 2006-059
 Reported:

 Midland TX, 79706-4476
 Project Manager:
 Camille Reynolds
 03/14/06 09:49

Notes and Definitions

S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's. The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. S-04 Analyte DETECTED DET Analyte NOT DETECTED at or above the reporting limit ND NR. Not Reported dry Sample results reported on a dry weight basis RPD Relative Percent Difference LCS Laboratory Control Spike Matrix Spike MS Duplicate Dup

	Kaland KJul		
Report Approved By:	Rocaric	Date:	3/14/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

 \cap

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas I, Ltd.

12800 West I-20 East Odessa, Texas 79763

Phone: 915-563-1800 Fax: 915-563-1713


CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Project Name: NORTH HOBBS 8-INCH alubarto&-erq) TAT HSU9 PO# PAH/C. RETNOLDS Project # 5/RS, 3646- 059 Project Loc: LEA (PORNIT NF ammaĐ lato M.R.O. State oncooled Temperature Upon Receipt: Wichels teals Sample Containers Infact? Laboratory Comments: Analyze Fo 97EX 80218/5030 Metals: As Ag Ba Cd Cr Pb Hg Se TOTAL: nions (CI, SO4, CO3, HCO3) Mg, Na, K) 8:50 no. 8001 2001 (METOS) 1.815 :H9" Other (specify): Martrix 03-69-06 egbuls Other (Specify) enoM H³8O⁴ HOWN нсі *ONH かっていい No. of Containers 22913 1320 4767 1256 1245 1250 Time Sampled NH 8826 G Received by ELO **BR MAR** 200C Received by: Date Sampled ENV S'YES' P. O. BOX 301 DuTTON Telephone No. (545) 441-2124 City/State/Zip: LOVINGTON DY MAKEL Date FIELD CODE BASIN 200 KEN بر بر 40 SB-1 58-1 \$8-1 SB-Company Address: Company Name Sampler Signature: Project Manager: 010000 £03 7 20 V) Special Instructions: 70

TAT brabnat2

Environmental Lab of Texas Variance / Corrective Action Report — Sample Log-In

Client: Plains 1/L				
Date/Time: 03-09-06 @1140		•		
Order #:	,			
Initials: JMM				
Sample Receipt	Checklis	s†		
Temperature of container/cooler?	(es)	No	2-0	CI
Shipping container/cooler in good condition?	(X86)	No		
Custody Seals intact on shipping container/cooler?	res	No	Not presen	it i
Custody Seals intact on sample bottles?	745	No	Not preser	
Chain of custody present?	265	No	1101 010301	``
Sample Instructions complete on Chain of Custody?	Zes i	No		
Chain of Custody signed when relinquished and received?	Tres i	No		 i
Chain of custody agrees with sample label(s)	Zes,	No		
Container labels legible and intact?	Tes)	No		
Sample Matrix and properties same as on chain of custody?	Xes	No		
Samples in proper container/bottle?		No	<u> </u>	
Samples properly preserved?	755	No		}
Sample bottles intact?	188	No	1	
Preservations documented on Chain of Custody?	(GS)	No		
Containers documented on Chain of Custody?	Yes		1	
Sufficient sample amount for indicated test?	Yes	No		
All samples received within sufficient hold time?	1		1	
VOC samples have zero headspace?	(/es/	No	Not Applica	inle)
Other observations:				
Variance Docus Contact Person: Date/Time: Regarding:			Contected	by:
Corrective Action Taken:		·		
				· · · · · · · · · · · · · · · · · · ·
				
	·			

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Location: Lea County, NM

Lab Order Number: 6C09009

Report Date: 03/10/06

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/10/06 11:12

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 30'	6C09009-01	Soil	03/08/06 13:30	03/09/06 11:40
SB-1 35'	6C09009-02	Soil	03/08/06 14:10	03/09/06 11:40
SB-1 40'	6C09009-03	Soil	03/08/06 14:30	03/09/06 11:40
SB-1 (W)	6C09009-04	Water	03/08/06 15:05	03/09/06 11:40

Project: North Hobbs 8"
Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/10/06 11:12

Organics by GC Environmental Lab of Texas

		Reporting		······································					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 30' (6C09009-01) Soil			·					··········	
Benzene	ND	0.0250	mg/kg dry	25	EC60917	03/09/06	03/09/06	EPA 8021B	
Toluene	0.0567	0.0250	H	"	#	Ħ	*	п	
Ethylbenzene	0.0818	0.0250	n	н	u	*	*		
Xylene (p/m)	0.150	0.0250	n		II	*	"		
Xylene (o)	ND	0.0250		"	n	"	"	н	
Surrogate: a,a,a-Trifluorotoluene		84.8 %	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		85.2 %	80-1	20	"	n	"	n	
Carbon Ranges C6-C12	16.6	10.0	mg/kg dry	1	EC60918	03/09/06	03/09/06	EPA 8015M	
Carbon Ranges C12-C28	201	10.0	"	**	*	"	· ·	n	
Carbon Ranges C28-C35	ND	10.0	n	и	n	**	*	н	
Total Hydrocarbon C6-C35	218	10.0	in .	н	"	•	"	**	
Surrogate: 1-Chlorooctane		98.8 %	70-1	30	"	"	"	"	<u> </u>
Surrogate: 1-Chlorooctadecane		107 %	70-1	30	n	"	"	#	
SB-1 35' (6C09009-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC60917	03/09/06	03/09/06	EPA 8021B	
Toluene	0.0585	0.0250	н	**	*	,,	**	н	
Ethylbenzene	0.0829	0.0250	"		н	11	"	**	
Xylene (p/m)	0.151	0.0250	**	н	и	u	**	**	
Xylene (o)	ND	0.0250	»	u	11	u	n .	**	
Surrogate: a,a,a-Trifluorotoluene		88.8 %	80-1	20	,,	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	80-1	20	"	"	"	#	
Carbon Ranges C6-C12	J [9.29]	10.0	mg/kg dry	1	EC60918	03/09/06	03/09/06	EPA 8015M	j
Carbon Ranges C12-C28	144	10.0	**	11	er er	n	tt	n	
Carbon Ranges C28-C35	ND	10.0	Ħ	п	"	tt	ıt	et .	
Total Hydrocarbon C6-C35	144	10.0	11	II.	n	II	·		
Surrogate: 1-Chlorooctane		101 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		106 %	70-1	30	"	"	"	"	
SB-1 40' (6C09009-03) Soil			-						
Benzene	ND	0.0250	mg/kg dry	25	EC60917	03/09/06	03/09/06	EPA 8021B	
Toluene	ND	0.0250	91	"	**	n	п	u	
Ethylbenzene	ND	0.0250	ıı	*	tt.	**	**	11	
Xylene (p/m)	ND	0.0250	"	*	11	Ħ	**	*	
Xylene (o)	ND	0.0250	H	"	"	**	**	н	
Surrogate: a,a,a-Trifluorotoluene		84.5 %	80-1	20	,,	"	n	"	
Surrogate: 4-Bromofluorobenzene		97.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EC60918	03/09/06	03/09/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

p.

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

03/10/06 11:12

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 40' (6C09009-03) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EC60918	03/09/06	03/09/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	Ħ	u	#	11	и	**	
Total Hydrocarbon C6-C35	ND	10.0	11	"	*	n	n	n .	
Surrogate: 1-Chlorooctane		95.4 %	70-13	30	"	"	"	"	
urrogate: 1-Chlorooctadecane		106 %	70-13	30	"	"	"	n	
SB-1 (W) (6C09009-04) Water									
Benzene	ND	0.00100	mg/L	1	EC60704	03/09/06	03/09/06	EPA 8021B	
Toluene	ND	0.00100	H	н	H	Ħ	**	11	
Ethylbenzene	0.00335	0.00100	"	**	"	n	n	**	
Xylene (p/m)	0.00636	0.00100	**	"	"	Ħ	11	rr ·	
Xylene (o)	ND	0.00100	"	н	n	**	ır	**	
Surrogate: a,a,a-Trifluorotoluene		80.5 %	80-12	20	"	"	"	"	A
Surrogate: 4-Bromofluorobenzene		98.8 %	80-12	20	"	"	"	"	

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Reported: 03/10/06 11:12

Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 30' (6C09009-01) Soil				-					
% Moisture	1.8	0.1	%	1	EC61008	03/09/06	03/10/06	% calculation	
SB-1 35' (6C09009-02) Soil									
% Moisture	3.6	0.1	%	1	EC61008	03/09/06	03/10/06	% calculation	
SB-1 40' (6C09009-03) Soil									
% Moisture	16.4	0.1	%	1	EC61008	03/09/06	03/10/06	% calculation	

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

03/10/06 11:12

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC60704 - EPA 5030C (GC)										
Blank (EC60704-BLK1)				Prepared: 0	3/07/06 A	nalyzed: 03	/08/06			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	**							
Ethylbenzene	ND	0.00100	10							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	11							
Surrogate: a,a,a-Trifluorotoluene	37.1		ug/l	40.0		92.8	80-120		***************************************	
Surrogate: 4-Bromofluorobenzene	39.5		n	40.0		98.8	80-120			
LCS (EC60704-BS1)				Prepared: 0	3/07/06 A	nalyzed: 03	/08/06			
Benzene	0.0440	0.00100	mg/L	0.0500		88.0	80-120			
Toluene	0.0489	0.00100	n	0.0500		97.8	80-120			
Ethylbenzene	0.0569	0.00100	"	0.0500		114	80-120			
Xylene (p/m)	0.117	0.00100	n	0.100		117	80-120			
Xylene (o)	0.0590	0.00100	**	0.0500		118	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.7		ug/l	40.0		96.8	80-120			
Surrogate: 4-Bromofluorobenzene	42.3		"	40.0		106	80-120			
Calibration Check (EC60704-CCV1)				Prepared: 0	3/07/06 A	nalyzed: 03	3/09/06			
Benzene	40.1		ug/I	50.0		80.2	80-120			
Toluene	40.8		n	50.0		81.6	80-120			
Ethylbenzene	42.9		H	50.0		85.8	80-120			
Xylene (p/m)	88.4		н	100		88.4	80-120			
Xylene (o)	44.3		11	50.0		88.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	34.1		'n	40.0		85.2	80-120			
Surrogate: 4-Bromofluorobenzene	32.7		"	40.0		81.8	80-120			
Matrix Spike (EC60704-MS1)	Sou	rce: 6C03007-	06	Prepared: 0	3/07/06 A	nalyzed: 03	/09/06			
Benzene	0.0403	0.00100	mg/L	0.0500	ND	80.6	80-120			
Toluene	0.0432	0.00100	**	0.0500	ND	86.4	80-120			
Ethylbenzene	0.0464	0.00100	**	0.0500	ND	92.8	80-120			
Xylene (p/m)	0.0971	0.00100	"	0.100	ND	97.1	80-120			
Xylene (o)	0.0476	0.00100	n	0.0500	ND	95.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	36.4		ug/l	40.0		91.0	80-120			
Surrogate: 4-Bromofluorobenzene	43.8		"	40.0		110	80-120			

Plains All American EH & S

Project: North Hobbs 8"

Fax: (432) 687-4914

1301 S. County Road 1150 Midland TX, 79706-4476 Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Reported: 03/10/06 11:12

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC60704 - EPA 5030C (GC)										·
Matrix Spike Dup (EC60704-MSD1)	Sou	rce: 6C03007	7-06	Prepared: ()3/07/06 Aı	nalyzed: 03	/09/06			
Benzene	0.0433	0.00100	mg/L	0.0500	ND	86.6	80-120	7.18	20	
Toluene	0.0472	0.00100	"	0.0500	ND	94.4	80-120	8.85	20	
Ethylbenzene	0.0539	0.00100	11	0.0500	ND	108	80-120	15.1	20	
Xylene (p/m)	0.112	0.00100	n	0.100	ND	112	80-120	14.3	20	
Xylene (o)	0.0541	0.00100	"	0.0500	ND	108	80-120	12.6	20	
Surrogate: a,a,a-Trifluorotoluene	36.5		ug/l	40.0		91.2	80-120			
Surrogate: 4-Bromofluorobenzene	38.0		"	40.0		95.0	80-120			
Batch EC60917 - EPA 5030C (GC) Blank (EC60917-BLK1)				Prepared &	Analyzed:	03/09/06				
Benzene	ND	0.0250	mg/kg wet	1 Topulou o		00/03/00				
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	н							
Xylene (p/m)	ND	0.0250	*							
Xylene (o)	ND	0.0250	N							
Surrogate: a,a,a-Trifluorotoluene	33.4		ug/kg	40.0		83.5	80-120			
Surrogate: 4-Bromofluorobenzene	33.9		"	40.0		84.8	80-120			
LCS (EC60917-BS1)				Prepared &	t Analyzed:	03/09/06				
Benzene	1.05	0.0250	mg/kg wet	1.25		84.0	80-120			
Toluene	1.16	0.0250	n	1.25		92.8	80-120			
Ethylbenzene	1.33	0.0250	**	1.25		106	80-120			
Kylene (p/m)	2.77	0.0250	u	2.50		111	80-120			
Xylene (o)	1.35	0.0250	"	1.25		108	80-120			
Surrogate: a,a,a-Trìfluorotoluene	33.0		ug/kg	40.0		82.5	80-120			
Surrogate: 4-Bromofluorobenzene	37.2		"	40.0		93.0	80-120			

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/10/06 11:12

	Dec 6	Reporting	17. 1	Spike	Source	A/DEG	%REC	DDD.	RPD	37
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC60917 - EPA 5030C (GC)								-, <u></u>		
Calibration Check (EC60917-CCV1)				Prepared: (03/09/06 Aı	nalyzed: 03	/10/06			
Benzene	43.5		ug/kg	50.0		87.0	80-120			
Toluene	49.6		n	50.0		99.2	80-120			
Ethylbenzene	56.6		"	50.0		113	80-120			
Xylene (p/m)	117		Ħ	100		117	80-120			
Xylene (o)	57.6		п	50.0		115	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.3		"	40.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	38.4		n	40.0		96.0	80-120			
Matrix Spike (EC60917-MS1)	Sou	rce: 6C06006	Prepared: (03/09/06 A	nalyzed: 03	/10/06				
Benzene	1.32	0.0250	mg/kg dry	1.46	ND	90.4	80-120			
Toluene	1.46	0.0250	"	1.46	ND	100	80-120			
Ethylbenzene	1.64	0.0250	"	1.46	ND	112	80-120			
Xylene (p/m)	3.40	0.0250	"	2.92	ND	116	80-120			
Xylene (o)	1.67	0.0250	n	1.46	ND	114	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.9		ug/kg	40.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	37.8		"	40.0		94.5	80-120			
Matrix Spike Dup (EC60917-MSD1)	Sou	rce: 6C06006	i-04	Prepared: (03/ 09/06 A i	nalyzed: 03	/10/06			
Benzene	1.32	0.0250	mg/kg dry	1.46	ND	90.4	80-120	0.00	20	
Toluene	1.48	0.0250	II	1.46	ND	101	80-120	0.995	20	
Ethylbenzene	1.67	0.0250	u	1.46	ND	114	80-120	1.77	20	
Xylene (p/m)	3.48	0.0250	u	2.92	ND	119	80-120	2.55	20	
Xylene (o)	1.71	0.0250	11	1.46	ND	117	80-120	2.60	20	
Surrogate: a,a,a-Trifluorotoluene	40.2		ug/kg	40.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	41.1		"	40.0		103	80-120			
Batch EC60918 - Solvent Extraction (GC)										
Blank (EC60918-BLK1)				Prepared &	k Analyzed:	03/09/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	н							
Total Hydrocarbon C6-C35	ND	10.0	n							
Surrogate: 1-Chlorooctane	44.2		mg/kg	50.0		88.4	70-130			
Surrogate: 1-Chlorooctadecane	48.1		"	50.0		96.2	70-130			

Project: North Hobbs 8"

Project Number: SRS: 2006-059 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 03/10/06 11:12

<u> </u>	5 1.	Reporting	** **	Spike	Source	N/DEC	%REC	200	RPD	27.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC60918 - Solvent Extraction (GC)										
LCS (EC60918-BS1)				Prepared &	Analyzed:	03/09/06				
Carbon Ranges C6-C12	478	10.0	mg/kg wet	500		95.6	75-125			
Carbon Ranges C12-C28	511	10.0	"	500		102	75-125			
Total Hydrocarbon C6-C35	989	10.0	н	1000		98.9	75-125			
Surrogate: 1-Chlorooctane	53.8		mg/kg	50.0		108	70-130			
Surrogate: 1-Chlorooctadecane	53.4		"	50.0		107	70-130			
Calibration Check (EC60918-CCV1)				Prepared: (03/09/06 As	nalyzed: 03	/10/06			
Carbon Ranges C6-C12	221		mg/kg	250		88.4	80-120			
Carbon Ranges C12-C28	270		н	250		108	80-120			
Total Hydrocarbon C6-C35	491		u	500		98.2	80-120			
Surrogate: 1-Chlorooctane	57.3		"	50.0		115	70-130			
Surrogate: 1-Chlorooctadecane	58.6		"	50.0		117	70-130			
Matrix Spike (EC60918-MS1)	Sou	rce: 6C06009	9-1 1	Prepared &	repared & Analyzed: 03/09/06					
Carbon Ranges C6-C12	580	10.0	mg/kg dry	504	ND	115	75-125			
Carbon Ranges C12-C28	592	10.0	"	504	ND	117	75-125			
Total Hydrocarbon C6-C35	1170	10.0	"	1010	ND	116	75-125			
Surrogate: 1-Chlorooctane	64.0		mg/kg	50.0		128	70-130			
Surrogate: 1-Chlorooctadecane	63.1		"	50.0		126	70-130			
Matrix Spike Dup (EC60918-MSD1)	Sou	rce: 6C06009	9-11	Prepared &	k Analyzed:	03/09/06				
Carbon Ranges C6-C12	588	10.0	mg/kg dry	504	ND	117	75-125	1.37	20	
Carbon Ranges C12-C28	524	10.0	u	504	ND	104	75-125	12.2	20	
Total Hydrocarbon C6-C35	1110	10.0	11	1010	ND	110	75-125	5.26	20	
Surrogate: 1-Chlorooctane	64.1		mg/kg	50.0		128	70-130			
Surrogate: 1-Chlorooctadecane	65.0		"	50.0		130	70-130			

Plains All American EH & S

1301 S. County Road 1150 Midland TX, 79706-4476 Project: North Hobbs 8"

Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/10/06 11:12

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte		Reporting		Spike Source %REC			%REC						
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes			
Batch EC61008 - General Preparati	on (Prep)	**********							· <u>-</u>				
Blank (EC61008-BLK1)						Prepared: 03/09/06 Analyzed: 03/10/06							
% Solids	100		%										
Duplicate (EC61008-DUP1)	Source: 6C03014-01			Prepared: 03/09/06 Analyzed: 03/10/06									
% Solids	95.9		%		96.8			0.934	20				
Duplicate (EC61008-DUP2)	Source	: 6C03014-	21	Prepared: (3/09/06 A	nalyzed: 03	/10/06						
% Solids	99.9		%		99.9			0.00	20				
Duplicate (EC61008-DUP3)	Source	: 6C08019-	01	Prepared: 03/09/06 Analyzed: 03/10/06			/10/06						
% Solids	95.1		%		96.4			1.36	20				
Duplicate (EC61008-DUP4)	Source	: 6C09016-	04	Prepared: (3/09/06 A	nalyzed: 03	/10/06						
% Solids	69.8		%		70.0			0.286	20				

 Plains All American EH & S
 Project:
 North Hobbs 8"
 Fax: (432) 687-4914

 1301 S. County Road 1150
 Project Number:
 SRS: 2006-059
 Reported:

 Midland TX, 79706-4476
 Project Manager:
 Camille Reynolds
 03/10/06 11:12

Notes and Definitions

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). Analyte DETECTED DET ND Analyte NOT DETECTED at or above the reporting limit NR dry Sample results reported on a dry weight basis RPD Relative Percent Difference LCS Laboratory Control Spike MS Matrix Spike Duplicate Dup

	Raland K July		
Report Approved By:	Radarichio	Date:	3/10/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

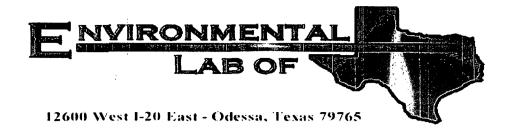
If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas I, Ltd.

12600 West !-20 East Odessa, Texas 79763

Phone: 915-563-1800 Fax: 915-563-1713

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST


HUTTON KEN

Project Name: NORTH HOBBS 8-INCH Project # SRS: 2006-059 Project Loc: LEA COUNTY, NM TOLP CITY/StateZIP: LOVINGTON, NH 8826 B BASIN ENV. SVES Company Address: P. O. BOX 301 Telephone No: (505) Project Manager: Company Name Sampler Signature:

	TAT brabnata					7									٠.	
	Bluberto& arq) TAT HSUR	×	×	×	×	\Box										1
						\vdash						z				
_						ļ	7					١.	Ü			
			ļ	<u> </u>		L_	Ц		_			8	ŏ			
	amms9 lsto1		<u> </u>			<u> </u>		_		L			N	9		
_	.м.о.я.м.	<u> </u>			<u> </u>	<u> </u>		1	L_		<u> </u>		٠.	8	•	
	IDB	L				<u> </u>		4	_		<u> </u>	ફું .	<u>전</u> 현 13	ر ا بر	: .	1
	BLEX 80518/2030	<u> ×</u>	×	×	×	_			杨			풀,	数章	8 .0		
	Semiyokiiles							7	Δ			<u> </u>		+ S		
	Volatiles				<u> </u>			<u> </u>	\Box	<u> </u>		E E	ဥပ	₹ W		l
01	Metala: As Ag Be Cd Cr Pb Hg 9			<u> </u>	<u> </u>			L	L	7	<u> </u>	Sample Containers Intact?	Temperature Upon Receipt: Laboratory Comments:	W/labers +sears Sear on coole		-
_	SAR / ESP / CEC					L_				7	ļ	Ě	9 8 8 8	\$		
_	Anions (Cl. SO4, CC3, HCC3)	L_	<u> </u>			L_		<u> </u>	_		L	Sa	<u> </u>	, > ,		1
	Cations (Ca, Mg, Na, K)				<u> </u>				ļ.,		Λ			<u>م</u> ا	. 0	1
3	001 a001 Mains 1.812 HeT	×	×	×							7			F (%)	Time //YO	
	Other (specify):					\sum								A-2		
7 2 2	इक्ष म् ०५ द्वादा	×	×	×										1,0	ري.	
Ž	egbulg						$\overline{\Delta}$							3/4/6	Date 03で9つに	
_	140 libr				×									10 ×	Q D	
	Other (Specify)							Z						<u> </u>	ं ठ	
	euoN								D							
2	ros²H							\prod	Z							
	HOEN								\Box					1		
9	HCI (1077 dkc25				×					1					· .	
_	^E ONH]				42
	eol	×	7	×	>						1					\$
	No. of Containers	₩	+4	₹	77	N.					,	1			5	3
			1	├─	Ļ	Н_	-	-	-	-					3	
		A	1416	1436	1565	1								WILL	58	1
	Time Sampled	1338	불	- M	50									/ LIN	,	
		🛶	-	~	-4		X	1	1	ļ				TV	.	1
		I					+		+-	 	-	1		الاً. ا	Received by ELOP	Ý
	2	MAR	3	12	MAR		$ \setminus $							<u> </u>	<u>\$</u>	Į.
	B betame2 etsCl	E	MAR	MAR	1]		1						Received by.	S S	+
	4	8	80	80	500			٨	1	1	ļ			, gg	[§ //	
		100		1 3	-8	\vdash	 	\top	1		\vdash	İ				1
			:]					1				Time OF30	18 × 3	
				1				لرا	_					1 10 N	Ē	
				Į]			(-	R	1				L	1	4
								`						Date 97.R.R. 66	20	
	HELD CODE	_	-	-		1					1			Date OA	Garage	1
	ļ g	18	35	12	1]		۱ ۱		ļ			12	W.	
		38	M	1 8	3					1	l			8		1
]						1]		
		7	4	77	~4					1	1					
		1	1		`.'			1		۱ ۱	1			1_		
		58-	SB-	SB-	SB-				1		Λ			1 16	۸	
		N	w	W	ี่ญี	1					1			M		1
	1888 1888 W.C				1	3		1	1		1	<u>ئۆ</u> [1 1/2	
	COOO COOO W (tab use only)	0	-0.2	-03	101))	333					Special Instructions:	f	1	IK(`	
	D 3	Į Ā		ΙĬ.	ĭ	- 2		13.0	'			άĶ	,	ê ~	<u> </u>	ľ
	ರ್_ ≘		'				.	! .			l	Ins		£ 1	<u>\$</u> ₩	↟
	, **		-									Scia		Relification by	Relinquished by	
	C O O O O O O O O O O O O O O O O O O O			اً الله				٤				8		8 \ 8	₹ ∨	

Environmental Lab of Texas Variance / Corrective Action Report - Sample Log-In

Client: Plains P/L					
Date/Time: 03-09-04 @ 1140					
Order#: 609009					
nitials:					
Sample Receipt	t Checklis	st			•
emperature of container/cooler?	(Yes)	No	2.0	C	
Shipping container/cooler in good condition?	Yes	No			
Custody Seals intact on shipping container/cooler?	(XES)	No	Not prese	ากา	
Custody Seals intact on sample bottles?	(Ves	No	Not prese		
Chain of custody present?	(Pes)	No			
Sample Instructions complete on Chain of Custody?	Yes	No			
Chain of Custody signed when relinquished and received?	(YES)	No		 !	
Chain of custody agrees with sample label(s)	(Yes)	No			
Container labels legible and intact?	Ares,	No			· ·
Sample Matrix and properties same as on chain of custody?	Pes	No			
Samples in proper container/bottle?	res	No	:		
Samples properly preserved?	1885	No			
Sample bottles intact?	(CES)	No			
Preservations documented on Chain of Custody?	Yes	No			
Containers documented on Chain of Custody?	(ZES)	No		'	
Sufficient sample amount for indicated test?	(VES)	No		 ;	
All samples received within sufficient hold time?	(ES)	No		·····	
VOC samples have zero headspace?	(Yes)	No	Not Applic	shle i	
Other observations:					
•	•				
Variance Docu					
Contact Person: Date/Time: Regarding:	 		Contacted	l by:	
	·····				· · · · · · · · · · · · · · · · · · ·
Corrective Action Taken:					
Collective Action Taxen.					
				· ····	
					
			-		
			·		

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Location: Lea County, NM

Lab Order Number: 6B28010

Report Date: 03/02/06

Project: North Hobbs 8"
Project Number: SRS: 2006-059

Reported: 03/02/06 14:53

Fax: (432) 687-4914

Project Manager: Camille Reynolds

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Floor@ 30'	6B28010-01	Soil	02/28/06 09:30	02/28/06 14:20
East Wall	6B28010-02	Soil	02/28/06 10:10	02/28/06 14:20
South Wall	6B28010-03	Soil	02/28/06 09:45	02/28/06 14:20
West Wall	6B28010-04	Soil	02/28/06 09:55	02/28/06 14:20

Project: North Hobbs 8"
Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

Reported: 03/02/06 14:53

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Floor@ 30' (6B28010-01) Soil									
Carbon Ranges C6-C12	96.5	10.0	mg/kg dry	1	EB62414	03/02/06	03/02/06	EPA 8015M	
Carbon Ranges C12-C28	703	10.0	"	**	Ħ	"	#	н	
Carbon Ranges C28-C35	170	10.0	11	*	**	**	"	n	
Total Hydrocarbon C6-C35	970	10.0	п	u	*1	"	11	п	
Surrogate: 1-Chlorooctane		107 %	70-	130	"	"	"	,,	
Surrogate: 1-Chlorooctadecane		113 %	70-	130	"	#	u	н	
East Wall (6B28010-02) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB62414	03/02/06	03/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	#	*	**	**	н	
Carbon Ranges C28-C35	ND	10.0	н	п	**	**	*	п	
Total Hydrocarbon C6-C35	ND	10.0	Ħ	11	*	Ħ	"	11	
Surrogate: 1-Chlorooctane		98.4 %	70-	130	77	n	n	"	
Surrogate: 1-Chlorooctadecane		102 %	70-	130	"	n	"	"	
South Wall (6B28010-03) Soil									
Carbon Ranges C6-C12	22.0	10.0	mg/kg dry	1	EB62414	03/02/06	03/02/06	EPA 8015M	
Carbon Ranges C12-C28	644	10.0	"	"	*	**	n	н	
Carbon Ranges C28-C35	243	10.0	n	"	**	**	•	n	
Total Hydrocarbon C6-C35	909	10.0	,,	н	"	u		n	
Surrogate: 1-Chlorooctane		101 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		109 %	70-	130	"	"	"	"	
West Wall (6B28010-04) Soil									
Carbon Ranges C6-C12	107	10.0	mg/kg dry	1	EB62414	03/02/06	03/02/06	EPA 8015M	
Carbon Ranges C12-C28	1150	10.0	u	H	11	m	н	н	
Carbon Ranges C28-C35	275	10.0	u	II	H	Ħ	*	n	
Total Hydrocarbon C6-C35	1530	10.0	"	n	n	u	11	,	
Surrogate: 1-Chlorooctane		97.4 %	70-	130	,	"	"	"	
Surrogate: 1-Chlorooctadecane		104 %	70-	130	n	"	"	"	

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/02/06 14:53

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Floor@ 30' (6B28010-01) Soil									
% Moisture	5.4	0.1	%	1	EC60101	02/28/06	03/01/06	% calculation	
East Wall (6B28010-02) Soil									
% Moisture	9.6	0.1	%	1	EC60101	02/28/06	03/01/06	% calculation	
South Wall (6B28010-03) Soil									
% Moisture	5.7	0.1	%	1	EC60101	02/28/06	03/01/06	% calculation	
West Wall (6B28010-04) Soil									
% Moisture	7.5	0.1	%	1	EC60101	02/28/06	03/01/06	% calculation	

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/02/06 14:53

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB62414 - Solvent Extraction (GC)										
Blank (EB62414-BLK1)				Prepared: ()2/24/06 A	nalyzed: 03	3/01/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10.0	"							
Surrogate: 1-Chlorooctane	47.6		mg/kg	50.0		95.2	70-130			
Surrogate: 1-Chlorooctadecane	45.9		"	50.0		91.8	70-130			
LCS (EB62414-BS1)				Prepared: ()2/24/06 A	nalyzed: 03	3/01/06			
Carbon Ranges C6-C12	514	10.0	mg/kg wet	500		103	75-125			
Carbon Ranges C12-C28	496	10.0	"	500		99.2	75-125			
Carbon Ranges C28-C35	ND	10.0	n	0.00			75-125			
Surrogate: 1-Chlorooctane	59.7		mg/kg	50.0		119	70-130			
Surrogate: 1-Chlorooctadecane	56.5		"	50.0		113	70-130			
Calibration Check (EB62414-CCV1)				Prepared: ()2/24/06 A	nalyzed: 03	3/02/06			
Carbon Ranges C6-C12	233		mg/kg	250		93.2	80-120			
Carbon Ranges C12-C28	265		"	250		106	80-120			
Total Hydrocarbon C6-C35	498		**	500		99.6	80-120			
Surrogate: 1-Chlorooctane	53.6		"	50.0		107	70-130			
Surrogate: 1-Chlorooctadecane	54.2		"	50.0		108	70-130			
Matrix Spike (EB62414-MS1)	Sou	rce: 6B23027	7-01	Prepared: ()2/24/06 A	nalyzed: 03	3/02/06			
Carbon Ranges C6-C12	594	10.0	mg/kg dry	530	ND	112	75-125			
Carbon Ranges C12-C28	636	10.0	"	530	102	101	75-125			
Carbon Ranges C28-C35	38.6	10.0	*	0.00	82.9		75-125			
Total Hydrocarbon C6-C35	1270	10.0	n	1060	185	102	75-125			
Surrogate: 1-Chlorooctane	60.7		mg/kg	50.0		121	70-130			
Surrogate: 1-Chlorooctadecane	59.0		"	50.0		118	70-130			

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/02/06 14:53

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB62414 - Solvent Extraction (GC)										
Matrix Spike Dup (EB62414-MSD1)	Sour	ce: 6B23027	-01	Prepared:	02/24/06 A	nalyzed: 03	/02/06			
Carbon Ranges C6-C12	591	10.0	mg/kg dry	530	ND	112	75-125	0.506	20	
Carbon Ranges C12-C28	628	10.0	**	530	102	99.2	75-125	1.27	20	
Carbon Ranges C28-C35	44.8	10.0	"	0.00	82.9		75-125	14.9	20	
Total Hydrocarbon C6-C35	1260	10.0	"	1060	185	101	75-125	0.791	20	
Surrogate: 1-Chlorooctane	60.6		mg/kg	50.0		121	70-130			
Surrogate: 1-Chlorooctadecane	58.0		"	50.0		116	70-130			

Plains All American EH & S

1301 S. County Road 1150

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Reported: 03/02/06 14:53

Fax: (432) 687-4914

Midland TX, 79706-4476

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC60101 - General Preparation (P	rep)									
Blank (EC60101-BLK1)				Prepared: ()2/28/06 A	nalyzed: 03	/01/06			
% Solids	100		%		•					
Duplicate (EC60101-DUP1)	Sou	rce: 6B28005-	01	Prepared: ()2/28/06 A	nalyzed: 03	/01/06			
% Solids	79.6		%		81.9			2.85	20	
Duplicate (EC60101-DUP2)	Sou	rce: 6 B28 014-	06	Prepared: ()2/28/06 A	nalyzed: 03	/01/06			
% Solids	86.5		%		86.0		_	0.580	20	

Duplicate

Dup

Project: North Hobbs 8"
Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/02/06 14:53

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Report Approved By:	Kaland KJul	Ī
		_

Date:

3/2/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas I, Ltd.

12600 West i-20 East Odessa, Texas 79763

Project Manager:

Phone: 915-563-1800 Fax: 915-563-1713

DUTTON

Company Name BASIN ENV SUGS

CINISTATE LOVINGTON NM 8826 Company Address: P.O. DOK 301

Telephone No: (505) 441-2124

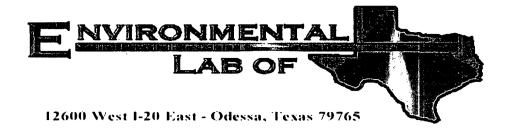
Sampler Signature: ALB_{\star}

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

HOBBS Project Name:

Project # 5/85° 2006-1059 Project Loc: LEH

PO# PAA


Personality Personality					ļ							į			TOTAL:	A-1-1			152						
1 1 1 1 1 1 1 1 1 1						O.	reserv	ative		L	Mat	<u>×</u> ,	90	-	H	96									
2. 28 9:30 1 X X X X X X X X X X X X X X X X X X	; i c.	ELD CODE		bəlqms2 əmiT	·	FONH	NeOH HCI	H ² 90'			Sludge						zeliteloV	anlite ovime?	97£X 6021£X3030	M.O.R.M.	ептиэЭ l <u>s</u> toT			SUBSH TAT (Pre-Schedule	TAT brebust2
2-28 10:10 2 X X X X X X X X X X X X X X X X X X	OOR @ 30		2.28	9:30	_							×	ĺΧ					1	_						
Date Time Received by: Second 45T WALL			10:10	7 X							×	X	_	-			<u>`</u>								
Date Time Received by: Date Time Date SUTH WALL		82-2	9:45	メア				-			×	Х						×							
Date Time Received by. 2.2802. (1.25	lest wall	,	82-2	9155	******							×	×		\vdash			广		2				×	
Time Received by:																		_		5					
Time Received by: : LS							<u> </u>		-						-			-	\vdash	ļ		-			
Time Received by. : LS					<u> </u>		-		<u> </u>	Ľ.		 			-	_		-	-	L.		-	_		
Time Received by: : LS							├		-				_	H	-	_		\vdash	-	<u> </u>			ļ		
Time Received by. : LS														 	_			 -	 			\vdash			
Time Received by: : LS					\vdash				-						\vdash				-					-	
Time Received by. : LS						1		1	-		1]	100 - 2	amp emp	e Co		ers in	fact?				2 8		
11:15 HAMAN YOUR DOON 2/2011 11:25		-	Received by.						\vdash	ď.	1	-		T			}		į		<u>Ş</u>	? 30	100 Comes	· ·	
Time Received by ELOT:		7	Linas	Mac	2	ğ	1		٥.	1/20	7	7	1.0	<i>x</i>	• :	١, ١	. *.		• •			!			
	·	Date Time	Received by ELC) E			!	1		<u>ٿ</u>	a .	-	Time	<u> </u>	•	 	ſ.	٠.		· `		. :			

2/28/06/14:20

beree

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

	-			
lient: Plains				
Pate/Time: 2/2×/06 14:20				
ate/Time: 2/28/010 14:20				
order #: 10,82-8010				
ide: #				
nitials:			,	
Sample Receipt				
emperature of container/cooler?	Yes	No	2,5	C I
hipping container/cooler in good condition?	(देड्ड)	No		
custody Seals intact on shipping container/cooler?	X45	No	Not prese	
ustody Seals intact on sample bottles?	<u> </u>	No	Not prese	ent !
Chain of custody present?	203	No		
Sample Instructions complete on Chain of Custody? Chain of Custody signed when relinquished and received?	259	No No		
Chain of Custody agrees with sample label(s)	(E)	No I		
Container labels legible and intact?	₩ <u>€</u> 3	No		
Sample Matrix and properties same as on chain of custody?	ges	No		
Samples in proper container/bottle?		No		
Samples properly preserved?	YES	No		
Sample bottles intact?	(953)	No		 ;
Preservations documented on Chain of Custody?	(DES	No		
Containers documented on Chain of Custody?	(25)	No		1
Sufficient sample amount for indicated test?	(PS)	No		1
All samples received within sufficient hold time?	Yes	No		
OC samples have zero headspace?	(9)	No	Not Applic	able
Contact Person: - Date/Time:	umentatio	วก:	Contacted	d by:
Regarding:			Oomacie	- Dy
Corrective Action Taken:				
			·	· · · · · · · · · · · · · · · · · · ·
				

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Location: Lea County, NM

Lab Order Number: 6B27013

Report Date: 03/06/06

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/06/06 11:35

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP 1	6B27013-01	Soil	02/24/06 10:00	02/24/06 17:30

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
03/06/06 11:35

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP 1 (6B27013-01) Soil									
Benzene	0.0494	0.0250	mg/kg dry	25	EC60202	03/02/06	03/02/06	EPA 8021B	
Toluene	0.954	0.0250	**	**	*	n	п	н	
Ethylbenzene	2.31	0.0250	"	Ħ	**	п	"	H	
Xylene (p/m)	5.19	0.0250	n		11	n	"	H	
Xylene (o)	1.12	0.0250	n	"	H	11	11	n	
Surrogate: a,a,a-Trifluorotoluene		102 %	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		126 %	80-1	20	"	"	"	"	S-04
Carbon Ranges C6-C12	217	10.0	mg/kg dry	1	EC60206	03/02/06	03/02/06	EPA 8015M	
Carbon Ranges C12-C28	790	10.0	11	**	**	н	II .	11	
Carbon Ranges C28-C35	107	10.0	n	п	**	77	n	н	
Total Hydrocarbon C6-C35	1110	10.0	11		п	u	17	n	
Surrogate: 1-Chlorooctane		122 %	70-1	30	"	"	n	n	
Surrogate: 1-Chlorooctadecane		123 %	70-1	30	"	"	"	"	

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/06/06 11:35

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP 1 (6B27013-01) Soil									
% Moisture	10.9	0.1	%	1	EB62809	02/27/06	02/28/06	% calculation	

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/06/06 11:35

A buto	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Lim	Omts	Level	Result	76REC	Limits	KFD	СШИ	Notes
Batch EC60202 - EPA 5030C (GC)	·									
Blank (EC60202-BLK1)				Prepared &	Analyzed:	03/02/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	11							
Ethylbenzene	ND	0.0250								
Xylene (p/m)	ND	0.0250	#							
Xylene (o)	ND	0.0250	**							
Surrogate: a,a,a-Trifluorotoluene	33.0		ug/kg	40.0		82.5	80-120			
Surrogate: 4-Bromofluorobenzene	34.8		n	40.0		87.0	80-120			
LCS (EC60202-BS1)				Prepared &	Analyzed:	03/02/06				
Benzene	1.04	0.0250	mg/kg wet	1.25	·	83.2	80-120			
Toluene	1.13	0.0250	n	1.25		90.4	80-120			
Ethylbenzene	1.29	0.0250	H	1.25		103	80-120			
Xylene (p/m)	2.73	0.0250	n	2.50		109	80-120			
Xylene (o)	1.35	0.0250	п	1.25		108	80-120			
Surrogate: a,a,a-Trifluorotoluene	34.8		ug/kg	40.0		87.0	80-120			
Surrogate: 4-Bromofluorobenzene	40.7		"	40.0		102	80-120			
Calibration Check (EC60202-CCV1)				Prepared &	Analyzed:	03/02/06				
Benzene	41.5		ug/kg	50.0		83.0	80-120			
Toluene	46.3			50.0		92.6	80-120			
Ethylbenzene	52.9		"	50.0		106	80-120			
Xylene (p/m)	111		**	100		111	80-120			
Xylene (o)	55.5		**	50.0		111	80-120			
Surrogate: a,a,a-Trifluorotoluene	33.1		"	40.0		82.8	80-120			
Surrogate: 4-Bromofluorobenzene	37.9		"	40.0		94.8	80-120			
Matrix Spike (EC60202-MS1)	Sou	rce: 6B27012	-01	Prepared &	: Analyzed:	03/02/06				
Benzene	1.04	0.0250	mg/kg dry	1.30	ND	80.0	80-120			
Toluene	1.15	0.0250	Ħ	1.30	ND	88.5	80-120			
Ethylbenzene	1.32	0.0250	Ħ	1.30	ND	102	80-120			
Xylene (p/m)	2.83	0.0250	n	2.60	ND	109	80-120			
Xylene (o)	1.37	0.0250	u	1.30	ND	105	80-120			
Surrogate: a,a,a-Trifluorotoluene	33.7		ug/kg	40.0		84.2	80-120			
Surrogate: 4-Bromofluorobenzene	36.2		"	40.0		90.5	80-120			

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/06/06 11:35

	D 1:	Reporting	¥ 7 ta	Spike	Source	A/DEC	%REC	nnn	RPD	N T- 4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC60202 - EPA 5030C (GC)										
Matrix Spike Dup (EC60202-MSD1)	Source	e: 6B27012	-01	Prepared: ()3/02/06 Aı	nalyzed: 03	/03/06			
Benzene	1.05	0.0250	mg/kg dry	1.30	ND	80.8	80-120	0.995	20	
Toluene	1.12	0.0250	n	1.30	ND	86.2	80-120	2.63	20	
Ethylbenzene	1.28	0.0250	**	1.30	ND	98.5	80-120	3.49	20	
Xylene (p/m)	2.72	0.0250	**	2.60	ND	105	80-120	3.74	20	
Xylene (o)	1.35	0.0250	u	1.30	ND	104	80-120	0.957	20	
Surrogate: a,a,a-Trifluorotoluene	33.7		ug/kg	40.0		84.2	80-120			
Surrogate: 4-Bromofluorobenzene	36.1		"	40.0		90.2	80-120			
Batch EC60206 - Solvent Extraction (GC)										
Blank (EC60206-BLK1)			-	Prepared &	k Analyzed:	03/02/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges Ci2-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10.0	n							
Surrogate: 1-Chlorooctane	48.4		mg/kg	50.0		96.8	70-130			
Surrogate: 1-Chlorooctadecane	46.3		"	50.0		92.6	70-130			
LCS (EC60206-BS1)				Prepared &	z Analyzed:	03/02/06				
Carbon Ranges C6-C12	538	10.0	mg/kg wet	500		108	75-125			
Carbon Ranges C12-C28	501	10.0	"	500		100	75-125			
Total Hydrocarbon C6-C35	1040	10.0	**	1000		104	75-125			
Surrogate: 1-Chlorooctane	58.6		mg/kg	50.0		117	70-130			
Surrogate: 1-Chlorooctadecane	58.3		"	50.0		117	70-130			
Calibration Check (EC60206-CCV1)				Prepared: ()3/02/06 Aı	nalyzed: 03	/03/06			
Carbon Ranges C6-C12	233		mg/kg	250		93.2	80-120			
Carbon Ranges C12-C28	270		H	250		108	80-120			
Total Hydrocarbon C6-C35	503		"	500		101	80-120			
Surrogate: 1-Chlorooctane	54.6		"	50.0	~*	109	70-130			
Surrogate: 1-Chlorooctadecane	54.4		"	50.0		109	70-130			

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: North Hobbs 8"

Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 03/06/06 11:35

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC60206 - Solvent Extraction (GC)	<u></u> =		· ·							
Matrix Spike (EC60206-MS1)	Sour	ce: 6B27012	-06	Prepared &	Analyzed	: 03/02/06				
Carbon Ranges C6-C12	571	10.0	mg/kg dry	527	ND	108	75-125			
Carbon Ranges C12-C28	507	10.0	u	527	ND	96.2	75-125			
Total Hydrocarbon C6-C35	1080	10.0	u	1050	ND	103	75-125			
Surrogate: 1-Chlorooctane	57.1		mg/kg	50.0		114	70-130			
Surrogate: 1-Chlorooctadecane	55.5		"	50.0		111	70-130			
Matrix Spike Dup (EC60206-MSD1)	Sour	ce: 6B27012	2-06	Prepared &	Analyzed:	: 03/02/06				
Carbon Ranges C6-C12	561	10.0	mg/kg dry	527	ND	106	75-125	1.77	20	
Carbon Ranges C12-C28	504	10.0	n	527	ND	95.6	75-125	0.593	20	
Total Hydrocarbon C6-C35	1070	10.0	*	1050	NĐ	102	75-125	0.930	20	
Surrogate: 1-Chlorooctane	59.2		mg/kg	50.0		118	70-130			
Surrogate: 1-Chlorooctadecane	54.1		n	50.0		108	70-130			

Plains All American EH & S

Project: North Hobbs 8"

Fax: (432) 687-4914

1301 S. County Road 1150 Midland TX, 79706-4476 Project Number: SRS: 2006-059
Project Manager: Camille Reynolds

Reported: 03/06/06 11:35

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Kesuit	Dillic	Cinto	Level	Result	70ICLC	Linns		Lann	140103
Batch EB62809 - General Preparation (Prep)										
Blank (EB62809-BLK1)				Prepared: 0	2/27/06 A	nalyzed: 02	/28/06			
% Solids	100		%							
Duplicate (EB62809-DUP1)	Sou	rce: 6B27001-	01	Prepared: 0	2/27/06 A	nalyzed: 02	/28/06			
% Solids	92.9		%		92.7			0.216	20	
Duplicate (EB62809-DUP2)	Sou	rce: 6B27012-	03	Prepared: 0	2/27/06 A	nalyzed: 02	/28/06			
% Solids	96.2		%		95.5			0.730	20	

Duplicate

Dup

Project: North Hobbs 8"

Project Number: SRS: 2006-059

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

Reported: 03/06/06 11:35

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. DET Analyte DETECTED Analyte NOT DETECTED at or above the reporting limit ND Not Reported NR Sample results reported on a dry weight basis dry Relative Percent Difference RPD LCS Laboratory Control Spike MS Matrix Spike

	Kaland K Julis			
Report Approved By:	Racanchio	Date:	3/6/2006	

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas I, Ltd.

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Project Name: NOPTH HOBBS 8-INCH Project #: 5/8: 2006- 059 PO# C. REYNOLDS/PAH Project Loc: LEA POWNTY NM Company Name BASIN FNV. SVCS. City/State/Zip: LOVINGTON NM BOX 381 Phone: 915-563-1800 Fax: 915-563-1713 Project Manager: KEM JUTTON Telephone No: (505)441-3424 Company Address: P. D. 12600 West I-20 East Odessa, Texas 79763

Analyze For

Sampler Signature:

TCLP. TOTAL

		TAT bisbrist	×	×			Π								
		olubario&-e1역) TAT H2U위													
						T							Z		
							$\overline{}$						ني ا		
				П			abla						3 Ai		2
_		Tobal Gamma		П			1						M		3
		.M.R.M.		T			\top	1							-3
		RCI		1	 	 		ス				-	≎ ಫ		1
٦		BTEX 80218/5030	7	J		<u> </u>	T	/-	1				at second	7	7
1		selitalovimeS		1	 	✝	t^{-}	<u> </u>	B				18 C 2	. એ -	9
	_	Votatilos		4	╁	 		H	<u> </u>	$\overline{}$, W
1	eş	Metals: As Ag Bg Cd Or Pb Hg S	_	X		<u> </u>	-	1	┢	$\uparrow \uparrow$	-		E 5 E	2	. 3
1	Г	SAR / ESP / CEC	┢	7	 	 	+	_	 		\vdash		Sample Containers Intact? Temperature Upon Receipt Laboratory Comments;	-	-3
1	-	Anions (CI, SO4, CO3, HCO3)	-	K	\vdash	╁	+	├	╁─	\vdash	\forall		a de de	• •	
ļ	-	Cations (Ca, Mg, Na, K)		Ā	 	╁	╫	├	-	-	-		<u>∞ - </u>	·	
	~	101 2001 Waros) 1.814 HOT	Z	-	-	╁─	-	\vdash		├─		+	ł	Time SS	g S
1	-	Other (specify):	-	╁┷	-		+-	╫	-	 -	H			E 23	= 300
	×			-	1-		1	Ł	 	-		_			<u> </u>
	Matrix	[[US	 ~	×	1	├	-		4	1				13	18
	جد	ļ-v	 	 	├-	├—	-	┰	[afte 74	\$ # T
İ	_	Water	-	 	L	_	-	<u> </u>	!	-		<u>></u>	ļ	1	1
		Other (Specify)	L-	 	1		 	 	-	<u> </u>			ļ	1.3	7
ı		enoli		L	`	_	Ļ	_	_	ļ					
Ì	Bitiv	H290,	_	_		$oldsymbol{\perp}$	_	<u> </u>	<u> </u>						
	Preservative	HORN				丄	Δ	 							
Ì	Pre	ЮН		<u> </u>	_	_		<u></u>					\		1
		LHOS											198		الملي
		(00)	×	×					26				M	8	17
•		No. of Containers	4	-				1		8			13-31	R	3
			 			-	┼	 	 	1			KY	27	
			200	×						`			16	3	
		Time Sampled	1986	1616		1							1/ 1/	Z	L
			100		1	[/	W.	. 1	7
	į		-				+-	-	 	\vdash	\vdash		30)	3 7
		a a	FEB	80	1		/						8	¥ . Z	Med by ELO
		Date Sampled	17	FE B					N/Z	b :			57.	yed by:	C2C
		8	25					'						Recei	Becomi
		``8	1,5	120	\	 	}-	-	-		\rightarrow	\rightarrow	IN		
			,		\									® 8	20
									[12	Time	J. 30
						\	1						52	46	6,
					ĺ		1						Special Instructions: HOLD FOR ANALYSIS	247EB & L 102 B	2
		m H					`						TA.	Darte (S)	g 33
		FIELD CODE					l	\backslash			. (41		00
		۵							D)						7
	i	百		ļ		l	1		7		- 1		Œ	18	
									[50		1
	ı		M	13	1		'								8
	ļ										V			\land	
	Ì		7	Q TS		l					1		0	7.8	D
			<u> </u>	S		L						7	I	B	ल्स
				3									:s-		Fr.
	ı	CONTRACTOR (VI)		1		}							cgo	(A	1. 1
				دے		;			.			٠	struc	φ \ \	\$ 13
		9	Ø	P		,							Ĭ.		毫 <i>外</i>
	į			1				4,					威	entinguished by	Reilfoulished by
		23										[Š.		
	•									ار					1
															//
		***													•

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

y ,				
ete/Time: 2/14/06 5:30				
der#: 6821013				
itials:				
Sample Receipt	Checkli	st		
emperature of container/cooler?	Yes	No	2.5	CI
niceing container/cooler in good condition?	CFES	No		1
ustody Seals intact on shipping container/cooler?	Yes	No	Mot present	
ustody Seals intact on sample bottles?	(F)	No	Not present	t I
hain of custody present?	Xes.	No		
ample Instructions complete on Chain of Custody?	≱ es	No		
hain of Custody signed when relinquished and received?	ZED	No		
hain of custody agrees with sample label(s)	Yes	No		
ontainer labels legible and intact?	20	No		1
ample Matrix and properties same as on chain of custody?	(CS)	No		1
amples in proper container/bottle?	_ '@	No		• 1
amples properly preserved?	EES	70		
ample bottles intact?	X ₆ 2	No		
Preservations documented on Chain of Custody?	ক্রেড	No		
Containers documented on Chain of Custody?	¥555	No		i
Sufficient sample amount for indicated test?	/es	No		
All samples received within sufficient hold time?	(E)	No		
/OC samples have zero headspace?	YES	No	Not Applicat	ole I
Variance Docu	mentatio	on:		
Contact Person: Date/Time:			Contacted	oy:
Regarding:				
Corrective Action Taken:				
Corrective Action Taken:				
Corrective Action Taken:				

Jeanne McMurrey

From:

"Ken Dutton" <kdutton@basinenv.com>

To:

"Jeanne" <jeanne@elabtexas.com>

Cc: Sent: "Camille Reynolds" <cireynolds@paalp.com>

Subject:

Monday, February 27, 2006 10:02 AM Hobbs North 8-Inch COC

Jeanne,

Reference the Hobbs North 8-Inch COC which had instructions to "hold for analytical instructions."

Please run the following analyticals on the soil sample:

SB1, TPH (8015M) & BTEX (8021B/5030)

SB2 is not needed, please discard.

Questions, let me know.

thxs

Ken

This message has been scanned for viruses and dangerous content by Basin Broadband, and is believed to be clean.

Plains Marketing, L. P. North Hobbs 8-Inch Site Lea County, New Mexico SW/SW S29, T18S, R38E SRS No. 2006-059	Soil Boring Completion Data TD: 45 Feet bgs	Installed 08 March 2006 Basin Environmental Service Technologies Samples selected for analysis	Groundwater Level Soil Boring Completion Data	9 bags of hydrated Bentonite Plug, Surface to 45' bgs, 1 bag Cement at Bottom					DESCRIPTION	Soil Boring 1	DATE 21 April 2006
Plains M North Ho Lea Coun SW/SW S SRS N			, Very Fine Dry					rown, Very Fine rted, Wet	TITLE	Appendix C North Hobbs 8-Inch	DRAWN BY
Soil Description	Caliche Layer, Dry	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry, Imbeeded w/caliche nodules	Dry Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry					Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Wet			
Petroleum Stain	Heavy	Неаvу	None	None	None	None	None	None			
Petroleum Odor	Heavy	Heavy	Moderate	None	Slight	Slight	Slight	None			
PID Reading	674 ppm	621 ppm	250 ppm	115 ppm	183 ppm	54.8 ppm	71.8 ppm	0.1 ppm			
Depth Soil Column Excvation Floor 18 feet bgs	co	10	15	20	25	30	35	}•4 •	45. 51.		
Depth Excvati											

Plains Marketing, L. P. North Hobbs 8-Inch Site Lea County, New Mexico SW/SW S29, T18S, R38E SRS No. 2006-059	Installed 13 March 2006	Basin Environmental Service Technologies	for analysis	Έ	Groundwater Depth	TD: 65 Feet bgs	25 Feet , 2" .010 PVC Screen	45 Feet, 2" PVC Riser	35 Feet, Depth to Sand Pack 35 Feet to Surface,	Hydrated Bentonite Seal	2 X 2 Feet Concrete Surface Pad installed w/4 X 60 inch metal locking square protector				DESCRIPTION	Appendix C North Hobbs 8-Inch	DRAWN BY DATE	
Soil Description	Caliche Layer to 19' bgs, Dry			Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry,	Imbedded w/caliche nodules	-	Sand Stone Layer (26' - 29' bgs) Dry		Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry				Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Moist		TITLE	Ž	DRAV	
Petroleum Stain	None	None	None	None		None	O.N.	2	None	None	None	None	None					
Petroleum Odor	None	None	None	None		None	ou N		None	None	None	None	None					
PID Reading	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm		0.1 ppm	0 1 ppm		0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm					
Soil Column																		
Depth	ιΩ	10	15				99	.	35	4	45	20	92	→ ⁸	A A	2 3 		

Plains Marketing, L. P. North Hobbs 8-Inch Site Lea County, New Mexico SW/SW S29, T18S, R38E SRS No. 2006-059	Installed 13 March 2006	Basin Environmental Service Technologies	for analysis	Monitoring Well Completion Data Groundwater Depth		25 Feet , 2" .010 PVC Screen 45 Feet, 2" PVC Riser	35 Feet, Depth to Sand Pack 35 Feet to Surface,	Hydrated Bentonite Seal 2 X 2 Feet Concrete Surface Pad	installed w/4 X 60 inch metal locking square protector				DESCRIPTION	Appendix C Monitoring Well 2 North Hobbs 8-Inch	V BY DATE KAD 21 April 2006
Soil Description	Caliche Layer to 19' bgs, Dry			Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry, Imbedded w/caliche nodules	Sand Stone Laver (27' - 20' has)	Dry	Sand (SP) Red-Brown, Very Fine Grained. Well Sorted. Dry				Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Moist		TITLE	Nort	DRAWN BY KA
Petroleum Stain	None	None	None	None	None	None	None	None	None	None	None				
Petroleum Odor	None	None	None	None	None	None	None	None	None	None	None				
PID Reading	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm				
Soil Column															
Depth	က	10	15		25	30	35	40	45	20	55	≯ ⁰⁹			

Depth	Soil Column	PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	Plains Marketing, L. P. North Hobbs 8-Inch Site Lea County, New Mexico SW/SW S29, T18S, R38E SRS No. 2006-059
2		0.1 ppm	None	None	Caliche Layer to 22' bgs, Dry	Installed 14 March 2006
10		0.1 ppm	None	None		Basin Environmental Service Technologies
15		0.1 ppm	None	None		for analysis
		0.1 ppm	None	None		=
		0.1 ppm	None	None	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry,	✔ Groundwater Depth TD: 65 Feet bgs
30		0.1 ppm	None	None		25 Feet , 2" .010 PVC Screen 45 Feet, 2" PVC Riser
35		0.1 ppm	None	None		35 Feet, Depth to Sand Pack
40		0.1 ppm	None	None		Hydrated Bentonite Seal 2 X 2 Feet Concrete Surface Pad
45		0.1 ppm	None	None		installed w/4 X 60 inch metal locking square protector
20		0.1 ppm	None	None		
- - - - - - -		0.1 ppm	None	None	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Moist	
. 8						
G5 TD						LE DESCRIPTION Appendix C Monitoring Well 3
					DRAN	DRAWN BY DATE 21 April 2006

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised October 10, 2003 Submit 2 Copies to appropriate District Office in accordance

with Rule 116 on back side of form

Release Notification and Corrective Action

											Final Report		
		ains Pipeline				Contact Camille Reynolds							
		Hwy 82, Lov		NM 88260		Telephone No. 505-441-0965							
Facility Nar	ne North I	Hobbs 8 Inch				Facility Typ	e 8"Steel Pipeli	ne					
Surface Ow	ner R.M a	nd S Enterpr	ises	Mineral O	wner	Lease No.							
<u> </u>				LOCA	TIO	V OF REI	FACE						
Unit Letter	Section	Township	Range	Feet from the		South Line	Feet from the	East/West Line	County		 -		
M	29	18S	38E	reet nom me	South Line	rect nom the	Daso West Line	Lea					
Latitude_32° 42' 40.2" Longitude_103° 10' 41.7"													
NATURE OF RELEASE													
Type of Rele							Release 10 barrel		ecovered 3				
Source of Re	lease 8" Ste	æl Pipeline				Date and Hour of Occurrence Date and Hour of Discovery 2-09-06 @ 9:00 2-09-06 @ 10:00							
Was Immedia	ate Notice (Given?			····	If YES, To		2-09-00 (4	g 10.00				
Was Immediate Notice Given? Yes													
									-				
Was a Watercourse Reached? ☐ Yes ☒ No ☐ If YES, Volume Impacting the Watercourse.													
If a Watercourse was Impacted, Describe Fully.*													
Describe Cause of Problem and Remedial Action Taken * Internal corrosion of a 8 inch steel nineline resulted in Chalesco of source and all Walness upon													
Describe Cause of Problem and Remedial Action Taken.* Internal corrosion of a 8 inch steel pipeline resulted in a release of sour crude oil, A clamp was installed on the line to mitigate the release. The line is a 8 inch steel gathering pipeline that produces approximately 200 barrels of crude oil per day. The pressure on the line is approximately 20 psi and the gravity of the sour crude oil is 37. The sour crude has an H ₂ S content of 710 ppm. The line was approximately 1.5 feet bgs at the release point.													
Describe Area Affected and Cleanup Action Taken.* The impacted soil was excavated and stockpiled on plastic. Aerial extent of surface impact was approximately 400 ft ² .													
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.													
Signature	am	llek	Sector Sector	rolds		OIL CONSERVATION DIVISION							
Printed Name	: Camille F	leynolds	1 0		/	Approved by	District Superviso	or:					
Title: Remedi	ation Coon	dinator		·	/	Approval Dat	:	Expiration I	Date:				
E-mail Addre	ss: cjreyno	ids@paalp.com	n		_ (Conditions of	Approval:		Attached				
Date: 2 14 06				DE	oce l				I		}		