REMEDIATION PROPOSAL

NORTH MONUMENT GRAYBURG SAN ANDRES UNIT #603 (NMGSAU #603) NMOCD 1RP# 1019 EPI REF: 240014

UL-C (NE¹/₄ of the NW¹/₄) of Section 20 T19S R37E ~2 Miles North-Northwest of Monument Lea County, New Mexico Latitude: N 32° 39' 04.30" Longitude: W 103° 16' 33.43"

FEBRUARY 2006

PREPARED BY:

ENVIRONMENTAL PLUS, INC. 2100 AVENUE O EUNICE, NEW MEXICO 88231

Distribution List

Apache Corporation – North Monument Grayburg San Andres Unit #603

NMOCD 1RP# 1019; EPI Ref: 240014

Contact Information	larry.johnson@state.nm.us	david.woolf@apachecorp.com	guinn.burks@apachecorp.com	mike.warren@apachecorp.com	505-397-2045 (Home) 505-369-7108 (Mobile)	jstegemoller@envplus.net
Mailing Address	1625 French Drive Hobbs, NM 88240	2000 Post Oak Blvd. Suite 100 Houston, TX 7056	P.O. Box 848 Wink, TX 89789	17 Hess Lane Monument, NM 88262	Box 55 Monument, NM 88256	P.O. Box 1558 Eunice, NM 88231
	NMOCD - Hobbs, NM	Apache Corporation – Houston, TX	Apache Corporation – Wink, TX	Apache Corporation – Monument, NM	-	Environmental Plus, Inc.
Title	Environmental Engineer	Environmental Manager	EH&S Technician- South/Central Permian	Senior Production Foreman	Landowner	
Name	Larry Johnson	David Woolf	Guinn Burks	Mike Warren	Jimmie T. Cooper	File

North Monument Grayburg San Andres Unit #603 240014

~

STANDARD OF CARE

Delineation Proposal North Monument Grayburg San Andres Unit #603 NMOCD 1RP # 1019 (EPI Ref. #240014)

The information provided in this report was collected consistent with the New Mexico Oil Conservation Division (NMOCD) *Guidelines for Remediation of Leaks, Spills and Releases* (August 13, 1993), the NMOCD *Unlined Surface Impoundment Closure Guidelines* (February, 1993) and Environmental Plus, Inc. (EPI) *Standard Operating Procedures and Quality Assurance/Quality Control Plan.* The conclusions are based on field observations and laboratory analytical reports as presented in the report. Recommendations follow NMOCD guidance and represent the professional opinions of EPI staff. These opinions were derived using currently accepted geologic, hydrogeologic and engineering practices at this time and location. The report was prepared or reviewed by a certified or registered professional with a background in engineering, environmental and/or natural sciences.

This report was prepared by:

semil Jason Stegemoller

Environmental Scientist

<u>7.6 8, 2007</u> Date

This report was reviewed by:

David Duncan Civil Engineer

-08-07

Table of Contents

1.0	Project Synopsis	.iv
2.0	Site and Release Information	.1
3.0	NMOCD Site Ranking	.2
4.0	Excavation Soil Information	.3
5.0	Sampling Information	.4
6.0	Analytical Results	.5
7.0	Discussion	.6
8.0	Conclusion and Recommendations	.7

FIGURES

Figure 1: Area Map Figure 2: Site Location Map Figure 3: Site Map Figure 4: Sample Location Map Figure 5: Soil Boring Location Map

TABLES

Table 1: Well Data Table 2: Summary of Excavation Soil Sample Analytical Results Table 3: Summary of Soil Boring Analytical Results

APPENDICES

Appendix I: Laboratory Analytical Reports and Chain-of-Custody Forms Appendix II: Project Photographs Appendix III: Soil Boring Logs Appendix IV: Informational Copy of Initial NMOCD C-141 Form

1.0 **PROJECT SYNOPSIS**

Site Specific:

- Company Name: Apache Corporation
- *Facility Name*: North Monument Grayburg San Andres Unit #603
- Project Reference: NMOCD 1RP # 1019; EPI # 240014
- Company Contacts: Mike Warren
- Site Location: WGS84 N32° 39' 04.30"; W103° 16' 33.43"
- Legal Description: Unit Letter-C, (NE¹/₄ of the NW¹/₄), Section 20, T19S, R37E
- General Description: Approximately 2-miles north-northwest of Monument, New Mexico
- *Elevation:* 3,680-ft amsl
- Land Ownership: Jimmie T. Cooper
- EPI Personnel: Project Consultant Jason Stegemoller

Release Specific:

- **Product Released:** Injection Water
- Volume Released: 85 barrels
 Volume Recovered: 60 barrels
- Time of Occurrence: July 16, 2006 a.m. Time of Discovery: July 16, 2006 @ 08:45 hrs
- Release Source: Plug blew out on injection line
- Initial Surface Area Affected: ~ 42,770 square feet

Remediation Specific:

- Final Vertical extent of contamination: unknown
- **Depth to Ground Water:** Approximately 50-ft bgs (based on an average depth of wells nearest the release site)
- Water wells within 1,000-ft: None
- Private domestic water sources within 200-ft: None
- Surface water bodies within 1,000-ft: None at the point of release; however an ephemeral pond resides approximately 75-feet south of the southernmost point of the flowpath.
- NMOCD Site Ranking Index: 20 points
- ♦ Remedial goals for Soil: TPH 100 mg/Kg; BTEX 50 mg/Kg; Benzene 10 mg/Kg; Chloride and sulfate residuals may not be capable of impacting groundwater above NMWQCC groundwater standards of 250 mg/L and 600 mg/L, respectively.
- RCRA Waste Classification: Exempt
- *Remediation Option Selected:* Not applicable
- Disposal Facility: Not applicable
- Volume disposed: Not applicable
- Project Completion Date: Ongoing

2.0 SITE AND RELEASE INFORMATION

- 2.1 Describe the land use and pertinent geographic features within 1,000 feet of the site. Land surrounding the area is rangeland in native grasses utilized for livestock grazing along with oilfield operations.
- 2.2 Identify and describe the source or suspected source(s) of the release. Plug on injection line blew out.
- 2.3 What is the volume of the release? (if known): <u>approximately 85</u> barrels of <u>injection</u> water
- 2.4 What is the volume recovered? (if any): approximately 60 barrels
- 2.5 When did the release occur? (if known): July 16, 2006

2.6 Geological Description

The United States Geological Survey (USGS) Ground-Water Report 6, "Geology and Ground-water Conditions in Southern Lea County, New Mexico," A. Nicholson and A. Clebsch, 1961, describes the near surface geology of southern Lea County as "an intergrade of the Quaternary Alluvium (QA) sediments, i.e., fine to medium sand, with the mostly eroded Cenozoic Ogallala (CO) formation. Typically, the QA and CO formations in the area are capped by a thick interbed of caliche and generally overlain by sandy soil."

The release site is located in the Laguna Valley physiographic subdivision, described by Nicholson & Clebsch as an area that "is a vast sand dune area, stable or semi-stable over most of the area, but which drifts locally. The surface is very irregular and has no drainage features except at the edges of several playas."

2.7 Ecological Description

The area is typical of the Upper Chihuahuan Desert Biome consisting primarily of sandy soil covered with short semi-arid grasses, interspersed with Honey Mesquite and forbs. Mammals represented include Orrd's and Merriam's Kangaroo Rats, Deer Mouse, White Throated Wood Rat, Cottontail Rabbit, Black Tailed Jackrabbit, Mule Deer, Bobcat, Red Fox and Coyote. Reptiles, amphibians and birds are numerous and typical of the area. A survey of Listed, Threatened or Endangered species was not conducted.

2.8 Area Groundwater

The unconfined groundwater aquifer at this site is projected to be ~ 50 feet (ft) bgs based on water depth data obtained from the New Mexico State Engineers Office and the United States Geological Survey data base (reference *Table 2*).

2.9 Area Water Wells

There are no wells within a 1,000-foot radius of the site. (reference *Table 1* and *Figure 2*).

2.10 Area Surface Water Features

There are no surface water features within a 1,000-foot radius of the point of release (reference *Figure 2*). However, an ephemeral pond resides approximately 75-feet south of the southernmost portion of the flowpath.

1

3.0 <u>NMOCD SITE RANKING</u>

Contaminant delineation and remedial work done at this site indicate chemical parameters of the soil and physical parameters of the groundwater were characterized consistent with the characterization and remediation/abatement goals and objectives set forth in the following New Mexico Oil Conservation Division (NMOCD) publications:

- Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993)
- Unlined Surface Impoundment Closure Guidelines (February, 1993)
- Pit and Below-Grade Tank Guidelines (November, 2004)

Acceptable thresholds for contaminants/constituents of concern (CoC) were determined based on the NMOCD Ranking Criteria as follows:

- Depth to Groundwater (i.e., distance from the lower most acceptable concentration to ground-water);
- Wellhead Protection Area (i.e., distance from fresh water supply wells);
- Distance to Surface Water Body (i.e., horizontal distance to all down gradient surface water bodies).

Based on the proximity of the site to protectable area water wells, surface water bodies, and depth to groundwater from the lower most contamination, the NMOCD ranking score for the site is twenty points with the soil remedial goals highlighted in the Site Ranking table presented below:

1. GROUN	IDWATER	2. WELLHEAD	PROTECTION AREA	3. D	ISTANCE TO SURFACE WATER	
Depth to GW <50	feet: 20 points	If <1.000° from wat	ter source, or <200 from	<200 h	orizontal feet: 20 points	
Depth to GW 50 to 10 points	o 99 feet:	private domestic v	water source: 20 points	200-1,0	000 horizontal feet: 10 points	
Depth to GW >100	0 feet: 0 points	If >1,000' from wat private domestic v	ter source, or >200` from water source: <i>0 points</i>	>1,000	horizontal feet: <i>0 points</i>	
Site Rank (1+2+3)	= 20 + 0 + 0 = 2	0 points				
	Total Site	Ranking Score and	Acceptable Remedial Goa	l Concer	ntrations	
Parameter	20 0	or >	10		0	
Benzene ¹	10 p	opm	10 ppm		10 ppm	
BTEX ¹	50 p	pm	50 ppm		50 ppm	
ТРН	100	ppm	1,000 ppm		5,000 ppm	

¹ A field soil vapor headspace measurement of 100 ppm can be substituted in lieu of laboratory analyses for benzene and BTEX.

4.0 EXCAVATED SOIL INFORMATION

4.1 Was soil excavated for off-site treatment or disposal? 🛛 🖾 Yes 🗌 No

Date excavated: July 25 through August 3, 2006

Total volume removed: Approximately 1,344-cubic yards

- 4.2 Indicated soil treatment type:
- Disposal
 Land Treatement
 Composting/Biopiling
 Other ()

Name and location of treatment/disposal facility: Sundance Services, Eunice, New Mexico

5.0 SAMPLING INFORMATION

5.1 Briefly describe the field screening methods used to distinguish contaminated from uncontaminated soil.

Organic Vapor Concentrations – A portion of each soil sample was placed in a polyethylene bag and allowed sufficient time and temperature for organic vapors to volatilize. The detector portion of a Photoionization Detector equipped with a 10.6 electron volt lamp was placed in the bag to analyze organic vapor concentration.

Chloride Concentrations – A La Motte Chloride Test Kit was utilized for field chloride concentration analyses.

5.2 Briefly describe the soil analytical sampling and handling procedures used.

Soil samples collected from the excavation were collected utilizing hand and/or mechanical excavation equipment to gather the sample from at least 6-inches below/within the surface of the excavation. Prior to the collection of each sample, the sampling instrument was decontaminated with an Alconox solution.

Upon collection of each sample, a portion was immediately placed in a laboratory provided container, labeled and set on ice for transport to an independent laboratory for quantification of total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and total xylenes (BTEX), chloride and sulfate concentrations.

5.3 Discuss sample locations and provide rationale for their locations.

Soil samples were collected on July 25, 26 and 31 and August 1 and 2, 2006 from 26 locations within the excavation area utilizing a backhoe. Soil samples were collected at a depth of 1-ft bgs. Soil sample locations were chosen to provide the best representative example of soil within the excavation floor and sidewalls (reference *Figure 4*).

Soil samples were collected on November 29, 2006 from a series of four (4) soil borings (i.e., SB-1, SB-2, SB-3 and SB-4). Soil borings were advanced within the excavation floor, the pooling area west of the Lanexco pad and the center of the ephemeral pond area (reference *Figure 5*). Soil boring placement was chosen to allow collection of soil samples to delineate vertical extents of impacted soil.

4

6.0 ANALYTICAL RESULTS

6.1 Describe the vertical and horizontal extent and magnitude of soil contamination.

Laboratory analyses of the excavation soil samples indicated BTEX constituent concentrations were non-detectable (ND) at or above laboratory analytical method detection limits (MDL). TPH was reported as ND at or above laboratory analytical MDL, with the exception of the collected from BH-21 (6"). Analytical results of BH-21 (6") indicated TPH concentrations were 71 mg/Kg, below the NMOCD remedial threshold of 100 mg/Kg. Reported chloride concentrations ranged from 126 to 2,110 mg/Kg. Sulfate concentrations ranged from 17.6 to 2,380 mg/Kg (reference *Table 1* and *Figure 4*).

Laboratory analyses of soil samples collected during soil boring advancement indicated TPH and BTEX constituent concentrations were ND at or above laboratory MDL. Chloride concentrations were below the 250 mg/Kg remedial goal in all sampling intervals, with the exception of sample SB-1 (5') (i.e., 464 mg/Kg). Sulfate concentrations ranged from ND to 148 mg/Kg, below the 600 mg/Kg remedial goal.

6.2 Is surface soil contamination present at the site (i.e., soil in the uppermost two feet that is visibly stained, contaminated at greater than 10 ppm (PID) or hydrocarbon saturated)?

🗌 yes 🛛 🖾 no

If yes, attach a site map identifying extent(s) of surface soil contamination.

Visibly stained soil was excavated and transported to Sundance Services for disposal.

7.0 <u>DISCUSSION</u>

7.1 Discuss the risks associated with the remaining soil contamination:

Laboratory analytical results indicated TPH and BTEX constituent concentrations were below NMOCD remedial thresholds. Chloride residuals exist below the current excavation floor. Based on depth to groundwater (approximately 50- ft bgs), chloride residuals remaining in the soil may be capable of impacting groundwater above NMWQCC groundwater standards.

- 7.2 Discuss the risks associated with the impacted groundwater: Chloride residuals remaining in the soil may be capable of impacting local groundwater above the NMWQCC groundwater standard of 250 mg/L.
- 7.3 Discuss other concerns not mentioned above: NA

8.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

8.1 Recommendation for the site:

Site Closure

Additional Groundwater Monitoring Corrective Action

8.2 Base the recommendation above on <u>Guidelines for Remediation of Leaks, Spills and</u> <u>Releases (August 13, 1993)</u>. Describe below how you applied the policy to support your recommendation. If closure is recommended, please summarize significant site investigative events and describe how site specific risk issues have been adequately addressed or minimized to acceptable low risk levels.

Approximately 1,344 cubic yards of impacted soil were removed from an excavation area of approximately 42,770 square feet to a depth of 1-ft bgs in the pasture area and 6-inches bgs on the caliche well pad and road. Excavated soil was transported to Sundance Services for disposal.

Laboratory analytical results of soil samples collected by EPI personnel from the excavation floor indicate TPH and BTEX constituent concentrations were below each analytes' respective NMOCD remedial threshold. Chloride concentrations at 1-ft bgs were in excess of the remediation goal of 250 mg/Kg in 21 of 26 sample locations . Reported sulfate concentrations were below the 600 mg/Kg remedial goal in all sample locations, except sample BH-25 (6'') (i.e., 2,300 mg/Kg).

Laboratory analyses of soil samples collected from soil boring SB-1 indicated chloride concentrations were in excess of chloride remedial goals to approximately 5-feet bgs. TPH, BTEX constituent, chloride and sulfate concentrations were below each analytes' respective remedial threshold or goal in all other soil boring soil samples.

Laboratory analyses of soil samples collected from soil boring SB-4 (i.e., ephemeral pond area) indicated TPH and BTEX constituent concentrations were ND at or above laboratory MDL. Chloride concentrations ranged from ND to 32 mg/Kg, below the 250 mg/Kg remedial goal. Sulfate concentrations ranged from ND to 134 mg/Kg, below the 600 mg/Kg remedial goal. Based on laboratory analyses the ephemeral pond area was not impacted from the injection water release (reference *Figure 5* and *Table 3*).

8.3 If additional groundwater monitoring is recommended, indicate the proposed monitoring schedule and frequency. Conduct quarterly monitoring until the NMOCD responds to this report. NA

8.4 If corrective action is recommended, provide a conceptual approach.

Based on laboratory analyses of soil samples collected from the excavation floor and during soil boring advancement, chloride impacted soil is limited to within 5-feet bgs in the initial release area. Laboratory analyses of soil samples collected from the excavation floor and soil borings indicate TPH and BTEX constituents were below each analytes' respective NMOCD remedial threshold.

Environmental Plus, Inc., on behalf of Apache Corporation, recommends the following remedial action:

1) Excavate impacted soil in the area of SB-1 (i.e., pooling area west of Lanexco pad) to approximately 5-feet bgs.

7

- 2) Excavate the remainder of the release area to a depth of approximately 2.5-feet bgs. Final excavation depth will be dictated by field analysis of chloride concentration.
- 3) Upon satisfactory field analyses indicating permissible chloride concentrations, collect soil samples and submit for laboratory analyses.
- 4) Transport excavated, impacted soil to Sundance Services, Inc. for disposal.
- 5) Upon receipt of laboratory analyses indicating remedial threshold/goals have been achieved, backfill the excavation with clean soil.
- 6) Seed area with blend approved by the landowner.

FIGURES

APPENDICES

v

<u>Well Data</u>

Apache Corporation - North Monument Grayburg San Andres Unit #603 (Ref. # 240014)

lumber	Diversion ^A	Owner	Use	Twsp	Rng	Sec q q q	Latitude	Longitude	Date Measured	Surface Elevation ^B	Depth to Water
										8	(ft bgs)
APPRO	ę	0 & W DRLG. CO.	PRO	19S	37E	6 4 3	N32° 39' 10.30"	W103° 15' 21.56"	12-Feb-53	3,638	20
	ę	CARPER DRILLING CO.	PRO	19S	37E	6 24	N32° 39' 36.37"	W103° 15' 6.16"	24-Apr-56	3,668	45
	я	MAKIN DRILLING COMPANY	PRO	19S	37E	6 44	N32° 39' 10.26"	W103° 15' 6.14"	18-Jun-56	3,641	42
(E)	0	GULF OIL CORPORATION	PRO	19S	37E	7 423	N32° 39' 23.47"	W103° 16' 7.86"	12-Apr-72	3,678	65
	0	MONUMENT WATER USERS	DOM	19S	37E	8 111	N32° 39' 50.42"	W103° 17' 55.35"	12-Sep-47	3,717	35
EXPL	0	INC. SNYDER RANCHES	EXP	19S	37E	8 111	N32° 39' 50.42"	W103° 17' 55.35"	13-Jul-92	3,717	70
	ю	MCVAY AND STAFFORD DRILLING CO	PRO	19S	37E	11 6	N32° 38' 58.03"	W103° 17' 55.36"	23-Oct-59	3,704	52
-	3	INC. SNYDER RANCHES	STK	19S	37E	9 422	N32° 38' 31.48"	W103° 17' 9.65"	10-Jul-92	3,678	40
	3	LA MANCE DRILLING COMPANY	PRO	19S	37E	21 323	N32° 38' 31.20"	W103° 15' 37.02"	14-Sep-54	3,642	40
~	ĸ	R.H. HUSTON	PRO	19S	37E	21 42	N32° 38' 31.15"	W103° 15' 6.17"	01-Apr-59	3,619	22
j T	0	GULF OIL CORPORATION	PRO	19S	37E	21 124	N32° 38' 57.29"	W103° 15' 37.00"	15-Feb-64	3,639	30
3	3	LEROY LOTT	DOM	19S	37E	21 232	N32° 38' 44.21"	W103° 15' 21.58"	16-Apr-83	3,632	47
S	3	W. S. ISRAEL	DOM	19S	37E [21343	N32° 38' 18.16"	W103° 15' 37.03"	19-Mar-92	3,637	30
	n	TERRY ISRAEL	DOM	19S	37E	21 343	N32° 38' 18.16"	W103° 15' 37.03"	29-Oct-92	3,637	30
				19S	37E	16 233			08-Mar-91	3,648	26.94
				19S	37E	17 134			27-Feb-96	3,706	62.54
				19S	37E	17 431			24-Apr-91	3,670	36.96
				19S	37E	18 331			18-Mar-54	3,701	51.93
				19S	37E	18 111			22-Feb-91	3,716	63.87
				19S	37E	19321			21-Feb-91	3,670	58.43
				19S	37E	19 113			06-Mar-96	3,702	57.31
				19S	37E	20 2 3 1			19-Apr-68	3,662	47.85
				19S	37E	21 132			29-Feb-96	3,640	24.13
0				19S	37E [21 4 3 1			09-Jan-86	3,614	16.19
7				19S	37E	30 1 1 1			11-Feb-66	3,654	26.88

Well Data

Apache Corporation - North Monument Grayburg San Andres Unit #603 (Ref. # 240014)

Depth to Water	(ft bgs)		114		20	31 III	23.50		34.55 35.05 13.03
Surface L Elevation ^B			212315095	253995 11.2596 11.3596	1005 E	1000 (S. 11)	8598. -		
Date Measured		Downers and				SSEADN DOL	SUGARA SU		Contraction 10 and 10 a
Longitude		And a second second			105-17-17-26	1028-01241-0201 8-022-0244-0201	51,123,231,47 364,46,447,353,014		
Latitude		W WARD AND W		rest of the second s Second second s	APPENDENCE N	NUMERAL STATES	1919 1919 1919 1919 1919 1919 1919 191		
Sec q q q								an a	29 444 9-444 89 333
Rng					ance All P				
Twsp								1975) 31.95	States States
Use			1	1973) 1973 1974	NOX NOX				
Owner		ASHM DRI BEINGI OGM PANA		OBTER TANK OF A TANK AND A TANK A TANK AND A TANK AND A T TANK AND A TANK AND A T	EXX. 10. SMEHE . 178	articophile A. W. C. Strand M. C. Strand			
Diversion ^A		100 S 200							
Well Number		L DZSPAN WWW		LOUEDEN STUD LEVOEDEN STUD Deutschaften	1. 03954	Langer Canada		USIGSIED I I I I I I I I I I I I I I I I I I	USGS #14 USGS #15 USGS #16

^A = In acre feet per annum
 ^B = Elevation interpolated from USGS topographical map based on referenced location.
 PRO = Prospecting or development of natural resource
 DOM = Domestic

 $EXP \approx Exploration$ STK= Livestock watering quarters are 1=NW, 2=NE, 3=SW, 4=SE; quarters are biggest to smallest Shaded areas indicate wells not shown on Figure 2

Summary of Excavation Soil Sample Laboratory Analytical Results

Apache Corporation - North Monument Grayburg San Andres Unit #603 (Ref. #240014)

Chloride Sulfate (mg/Kg) (mg/Kg)	126 43.0	605 111	428 63.6		540 151	540 151 511 98.5	540 151 511 98.5 436 117	540 151 511 98.5 436 117 283 49.3	540 151 511 98.5 511 98.5 436 117 283 49.3 949 131	540 151 511 98.5 436 117 436 117 283 49.3 283 49.3 949 131 1.320 172	540 151 511 98.5 436 117 436 117 283 49.3 949 131 1.320 172 976 134	540 151 511 98.5 436 117 436 117 283 49.3 949 131 1.320 172 976 134 2.110 281	540 151 511 98.5 511 98.5 436 117 436 117 283 49.3 949 131 1.320 172 976 134 2.110 281 1.000 74.5	540 151 511 98.5 511 98.5 436 117 436 117 283 49.3 949 131 949 131 976 134 976 134 2.110 281 1.000 74.5 1.500 178
Total TPH (mg/Kg)	<10.0	<10.0	<10.0		<10.0	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0 12.7 <10.0	<10.0 <10.0 12.712.7<10.0	<10.0 <10.0 <12.7 <12.7 <10.0 <10.0	<10.0 <10.0 <12.7 <12.7 <10.0 <10.0 <10.0	<10.0 <10.0 <12.7 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <12.7 <12.7 <10.0 <10.0 <10.0 <10.0 <10.0	<pre><10.0</pre>
Carbon C28- C35 Range (mg/Kg)	<10.0	<10.0	<10.0		<10.0	<10.0 <10.0 <10.0	<10.0 <10.0 8.53 ^B	<10.0 <10.0 8.53 ^B	<10.0 <10.0 8.53 ^B 8.53 ^B <10.0	 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 	 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 	 <10.0 <10.0 <10.0 8.53 ^B 8.53 ^B <10.0 <10.0 <10.0 <10.0 	 <10.0 <10.0 <10.0 8.53 ^B 8.53 ^B <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 	 <10.0 <10.0 <10.0 8.53 ^B 8.53 ^B <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0
Carbon C12- C28 Range (mg/Kg)	<10.0	<10.0	7.91 ^B		<10.0	<10.0 <10.0	<10.0 <10.0 12.7	<10.0 <10.0 12.7 <10.0	<10.0 <10.0 12.7 <10.0 <12.7 <12.8	<10.0 <10.0 <12.7 <10.0 <10.0 <10.0	<10.0 <10.0 12.7 <10.0 <145 ^B <10.0 <10.0	<10.0 <10.0 12.7 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 12.7 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	 <10.0 <10.0 <10.0 12.7 <12.7 <12.7 <12.7 <12.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0
Carbon C6- C12 Range (mg/Kg)	<10.0	<10.0	<10.0		<10.0	<10.0	<10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre>	<pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre>	<pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre> <pre><10.0</pre>	<pre><10.0</pre>	 <10.0
Total BTEX (mg/Kg)	<0.125	<0.125	<0.125	<0.125		<0.125	<0.125 <0.125	<0.125 <0.125 <0.125	<0.125 <0.125 <0.125 <0.125 <0.125	 <0.125 <0.125 <0.125 <0.125 <0.125 	 <0.125 <0.125 <0.125 <0.125 <0.125 <0.125 	 <0.125 <0.125 <0.125 <0.125 <0.125 <0.125 <0.125 	 <0.125 <0.125 <0.125 <0.125 <0.125 <0.125 <0.125 <0.125 	 <0.125
Total Xylenes (mg/Kg)	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05 <0.05	<0.05<0.05<0.05	 <0.05 <0.05 <0.05 <0.05 	 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 	 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 	 <0.05 	 <0.05 	 <0.05
Ethylbenzene (mg/Kg)	<0.0250	<0.0250	<0.0250	<0.0250		<0.0250	<0.0250 <0.0250	<0.0250 <0.0250 <0.0250	 <0.0250 <0.0250 <0.0250 <0.0250 	 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 	 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 	 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 	 <0.0250 	 <0.0250
Toluene (mg/Kg)	<0.0250	<0.0250	<0.0250	<0.0250		<0.0250	<0.0250 <0.0250 <0.0250	<0.0250 <0.0250 <0.0250	<0.0250 <0.0250 <0.0250 <0.0250	 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 	 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 	 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 	 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 	 <0.0250
Benzene (mg/Kg)	<0.0250	<0.0250	<0.0250	<0.0250		<0.0250	<0.0250 <0.0250	<0.0250 <0.0250 <0.0250	 <0.0250 <0.0250 <0.0250 <0.0250 	 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 	 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 	 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 	 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 	 <0.0250
Sample Date	26-Jul-06	26-Jul-06	26-Jul-06	25-Jul-06		25-Jul-06	25-Jul-06 25-Jul-06	25-Jul-06 25-Jul-06 25-Jul-06	25-Jul-06 25-Jul-06 25-Jul-06 26-Jul-06	25-Jul-06 25-Jul-06 25-Jul-06 26-Jul-06 26-Jul-06	25-Jul-06 25-Jul-06 25-Jul-06 26-Jul-06 26-Jul-06 26-Jul-06	25-Jul-06 25-Jul-06 25-Jul-06 26-Jul-06 26-Jul-06 26-Jul-06 31-Jul-06	25-Jul-06 25-Jul-06 25-Jul-06 26-Jul-06 26-Jul-06 26-Jul-06 31-Jul-06 31-Jul-06	25-Jul-06 25-Jul-06 25-Jul-06 26-Jul-06 26-Jul-06 31-Jul-06 31-Jul-06 31-Jul-06
Status	In Situ	In Situ	In Situ	In Situ		In Situ	In Situ In Situ	In Situ In Situ In Situ	In Situ In Situ In Situ In Situ	In Situ In Situ In Situ In Situ In Situ	In Situ In Situ In Situ In Situ In Situ In Situ	In Situ In Situ In Situ In Situ In Situ In Situ In Situ	In Situ In Situ In Situ In Situ In Situ In Situ In Situ	In Situ In Situ In Situ In Situ In Situ In Situ In Situ In Situ
Field Chloride Analysis	240	096	520	900		560	560 560	560 560 500	560 560 500 1,200	560 560 500 1,200 1,760	560 560 500 1,200 1,760 800	560 560 500 1,200 1,760 800 2,000	560 560 500 1,200 1,760 800 2,000 960	560 560 500 1,200 1,760 800 800 2,000 2,000 960
PID analysis	8.9	12.4	0.0	18.8		18.9	18.9	18.9 4.0 18.9	18.9 4.0 18.9 0.0	18.9 4.0 18.9 0.0 0.0	18.9 4.0 18.9 0.0 0.0 8.3	18.9 4.0 18.9 0.0 8.3 8.3 4.3	18.9 4.0 18.9 0.0 0.0 8.3 4.3 4.1	18.9 4.0 18.9 18.9 0.0 0.0 8.3 8.3 4.1 4.3 4.3 4.3 4.3 4.3 4.3 4.1 4.3
Depth (feet)	1	-		-		1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 0.5 0.5	1 1 1 1 1 1 1 0.5 0.5 0.5
Sample I.D.	BH-1 (1')	BH-2 (1')	BH-3 (1')	BH-4 (1')		BH-5 (1')	BH-5 (1') BH-6 (1')	BH-5 (1') BH-6 (1') BH-7 (1')	BH-5 (1') BH-6 (1') BH-7 (1') BH-8 (1')	BH-5 (1') BH-6 (1') BH-7 (1') BH-8 (1') BH-9 (1')	BH-5 (1') BH-6 (1') BH-7 (1') BH-8 (1') BH-9 (1') BH-10 (1')	BH-5 (1') BH-6 (1') BH-7 (1') BH-8 (1') BH-9 (1') BH-10 (1') BH-11 (6")	BH-5 (1') BH-6 (1') BH-7 (1') BH-8 (1') BH-9 (1') BH-10 (1') BH-11 (6") BH-12 (6")	BH-5 (1') BH-6 (1') BH-7 (1') BH-8 (1') BH-9 (1') BH-10 (1') BH-11 (6") BH-12 (6") BH-13 (6")

Summary of Excavation Soil Sample Laboratory Analytical Results

Apache Corporation - North Monument Grayburg San Andres Unit #603 (Ref. #240014)

.D. Dept	h PID) analysis	Field Chloride Analysis	Soil Status	Sample Date	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Total Xylenes (mg/Kg)	Total BTEX (mg/Kg)	Carbon C6- C12 Range (mg/Kg)	Carbon C12- C28 Range (mg/Kg)	Carbon C28- C35 Range (mg/Kg)	Total TPH (mg/Kg)	Chloride (mg/Kg)	Sulfate (mg/Kg)
0.5	11.1	2,000	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	2,510	146
0.5	0.0	400	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	226	84.6
0.5	0.0	1,600	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1.720	290
0.5	0.0	1,200	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1,240	176
0.5	0.0	1,360	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1.550	253
) 0.5	0.0	160	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	7.20	21.8
) 0.5	0.0	1,280	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	13.4	57.8	<10.0	71.2	920	168
0.5	0.0	1,280	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	976	121
) 0.5	0.0	120	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	6.09	17.6
) 0.5	18.3	1,440	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	0.0361	0.0361	<10.0	<10.0	<10.0	<10.0	705	65.3
0.5	19.5	1,040	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1.250	2.380
0.5	0.0	320	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	136	151
NMO	CD Rem	edial Thre	splods		10				50				100	250 ^A	600 ^A

Bulded values are in excess of NMOCD Remediation Thresholds

-- =Not Analyzed

^AChloride and Sulfate residuals may not be capable of impacting local groundwater above the NMWQCC standards of 250 mg/L and 650 mg/L respectively. ^B = Estimated value, analyte detected below reporting limit.

-40

~9 ca

-4

~4 *

....

• - 9

.

*

4

Summary of Soil Boring Analytical Results

Apache Corporation - North Monument Grayburg San Andres Unit #603 (Ref. #240014)

e00 ^A	250 ^A	100			50				10		holds	edial Thres	CD Rem	OMN	
134	32	<10.0	<10.0	<10.0	<0.030	<0.015	<0.005	<0.005	<0.005	29-Nov-06	In Situ	160	1	10	SB-4 (10')
104	<16	<10.0	<10.0	<10.0	<0.030	<0.015	<0.005	<0.005	<0.005	29-Nov-06	In Situ	160	1	5	SB-4 (5')
$\overline{\nabla}$	<16	<10.0	<10.0	<10.0	<0.030	<0.015	<0.005	<0.005	<0.005	30-Nov-06	In Situ	160	1	1	SB-4 (1')
158	96	<10.0	<10.0	<10.0	<0.030	<0.015	<0.005	<0.005	<0.005	29-Nov-06	In Situ	160	1	10	SB-3 (10')
245	176	<10.0	<10.0	<10.0	<0.030	<0.015	<0.005	<0.005	<0.005	29-Nov-06	In Situ	240		2	SB-3 (5')
198	80	<10.0	<10.0	<10.0	<0.030	<0.015	<0.005	<0.005	<0.005	29-Nov-06	In Situ	160	1	10	SB-2 (10')
269	144	<10.0	<10.0	<10.0	<0.030	<0.015	<0.005	<0.005	<0.005	29-Nov-06	In Situ	240	-	5	SB-2 (5')
40.2	80	<10.0	<10.0	<10.0	<0.030	<0.015	<0.005	<0.005	<0.005	29-Nov-06	In Situ	160	ł	15	SB-1 (15')
45	144	<10.0	<10.0	<10.0	<0.030	<0.015	<0.005	<0.005	<0.005	29-Nov-06	In Situ	240	1	10	SB-1 (10')
148	464	<10.0	<10.0	<10.0	<0.030	<0.015	<0.005	<0.005	<0.005	29-Nov-06	In Situ	480	:	5	SB-1 (5')
Sulfate (mg/Kg)	Chloride (mg/Kg)	Total TPH (mg/Kg)	TPH (as diesel) (mg/Kg)	TPH (as gasoline) (mg/Kg)	Total BTEX (mg/Kg)	Total Xylenes (mg/Kg)	Ethylbenzene (mg/Kg)	Toluene (mg/Kg)	Benzene (mg/Kg)	Sample Date	Soil Status	Field Chloride Analysis	PID analysis	Depth (feet)	Sample I.D.

Bolded values are in excess of NMOCD Remediation Thresholds

-- = Not Analyzed ^AChloride and Sulfate residuals may not be capable of impacting local groundwater above the NMWQCC standards of 250 mg/L and 650 mg/L respectively.

APPENDIX I

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORM

Analytical Report

Prepared for:

Jason Stegemoller Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Location: UL-C, Sect. 20, T 19 S, R 37 E

Lab Order Number: 6G28008

Report Date: 08/03/06

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-1 1'	6G28008-01	Soil	2006-07-26 10:15	2006-07-28 10:50
BH-2 1'	6G28008-02	Soil	2006-07-26 10:35	2006-07-28 10:50
BH-3 1'	6G28008-03	Soil	2006-07-26 10:45	2006-07-28 10:50
BH-4 1'	6G28008-04	Soil	2006-07-25 10:20	2006-07-28 10:50
BH-5 1'	6G28008-05	Soil	2006-07-25 10:40	2006-07-28 10:50
BH-6 1'	6G28008-06	Soil	2006-07-25 13:30	2006-07-28 10:50
BH-7 l'	6G28008-07	Soil	2006-07-25 13:45	2006-07-28 10:50
BH-8 1'	6G28008-08	Soil	2006-07-26 13:15	2006-07-28 10:50
BH-9 1'	6G28008-09	Soil	2006-07-26 13:30	2006-07-28 10:50
BH-10 1'	6G28008-10	Soil	2006-07-26 13:45	2006-07-28 10:50

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-1 1' (6G28008-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250	"	**	11	u	п	п	
Ethylbenzene	ND	0.0250	"	"	11	ч	u.	**	
Xylene (p/m)	ND	0.0250	"	**	н	u.	н	"	
Xylene (o)	ND	0.0250	n	"		0	11	"	
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		88.5 %	80-1	20	n	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"		"	н	п	11	
Carbon Ranges C28-C35	ND	10.0	"	"	"	н	"	51	
Total Hydrocarbons	ND	10.0	"	**	"	"	••	п	
Surrogate: 1-Chlorooctane		113 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		111 %	70-1	30	"	"	"	"	
BH-2 1' (6G28008-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250	"	н	н	u	11	n	
Ethylbenzene	ND	0.0250	u			u	н	n	
Xylene (p/m)	ND	0.0250	н			u		н	
Xylene (o)	ND	0.0250	н	н	Ħ	u		11	
Surrogate: a,a,a-Trifluorotoluene		100 %	80-1	20	"	"	"	п	
Surrogate: 4-Bromofluorobenzene		83.2 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**		"	"		н	
Carbon Ranges C28-C35	ND	10.0	н	"	"	"	н	"	
Total Hydrocarbons	ND	10.0	н	"	"	"	н	н	
Surrogate: 1-Chlorooctane		114 %	70-1	30	"	"	"		
Surrogate: 1-Chlorooctadecane		111 %	70-1	30	"	"	"	"	
BH-3 1' (6G28008-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250	н	u	н	11	"	**	
Ethylbenzene	ND	0.0250	н	u	"	ч	"	**	
Xylene (p/m)	ND	0.0250	"	п		"	n	*1	
Xylene (o)	ND	0.0250			u			"	
Suirrogate: a,a,a-Trifluorotoluene		91.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.8 %	80-1	20	"	"	n	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety,

with written approval of Environmental Lab of Texas.

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-3 1' (6G28008-03) Soil	····		·	· · · · · · · · · · · · · · · · · · ·					
Carbon Ranges C12-C28	J [7.91]	10.0	mg/kg dry		EG62817	07/28/06	07/30/06	EPA 8015M	j
Carbon Ranges C28-C35	ND	10.0	н	"	"	н		**	
Total Hydrocarbons	ND	10.0	и		"	u	"	н	
Surrogate: 1-Chlorooctane		117 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	"	"	"	"	
BH-4 1' (6G28008-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250	"		"	"	н	11	
Ethylbenzene	ND	0.0250	11	"	ч	"	*	11	
Xylene (p/m)	ND	0.0250		и		и	"		
Xylene (o)	ND	0.0250	U U	н	н	п	и	11	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	11	"	"	
Carbon Ranges C28-C35	ND	10.0	"	н	н	н	"	н	
Total Hydrocarbons	ND	10.0	"		"	"	н	н	
Surrogate: 1-Chlorooctane		116 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		113 %	70-1	30	"	n	"	"	
BH-5 1' (6G28008-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250		"	u	м	11	"	
Ethylbenzene	ND	0.0250			u.	п	"	"	
Xylene (p/m)	ND	0.0250	м		"	п	"	"	
Xylene (o)	ND	0.0250	"		"	n	и	"	
Surrogate: a,a,a-Trifluorotoluene		88.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.0 %	80-1	20	"	"	"	"	

Environmental Lab of Texas

Carbon Ranges C6-C12

Carbon Ranges C12-C28

Carbon Ranges C28-C35

Surrogate: 1-Chlorooctane

Surrogate: 1-Chlorooctadecane

Total Hydrocarbons

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

EG62817

,1

,1

н

'n

,,

1

70-130

70-130

07/28/06

••

.,

"

"

.,

EPA 8015M

.,

...

...

"

,,

07/30/06

...

11

....

..

,,

10.0 mg/kg dry

10.0

10.0

10.0

116 %

113%

ND

ND

ND

ND

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller Fax: 505-394-2601

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-6 1' (6G28008-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B	
Toluene	ND	0.0250	н	п	н	"	п	н	
Ethylbenzene	ND	0.0250	u	п	"	"	n	11	
Xylene (p/m)	ND	0.0250	n	п	"	"	"		
Xylene (0)	ND	0.0250	*	п	"	"	"	11	
Surrogate: a,a,a-Trifluorotoluene		83.2 %	80-1	20	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		82.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	12.7	10.0	"	u	"	11	u	12	
Carbon Ranges C28-C35	J [8.53]	10.0	"	u		u	"	n	J
Total Hydrocarbons	12.7	10.0	"	u	"	n		n	
Surrogate: 1-Chlorooctane		118 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	"	"	"	"	
BH-7 1' (6G28008-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B	
Toluene	ND	0.0250	н		"	н	н	"	
Ethylbenzene	ND	0.0250	n	н	н	н	н	"	
Xylene (p/m)	ND	0.0250	11	"		н	н	"	
Xylene (o)	ND	0.0250	"	11	u	н	н	"	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.5 %	80-1	20	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	н	u	н	11	
Carbon Ranges C28-C35	ND	10.0	"		"	U.	ii	"	
Total Hydrocarbons	ND	10.0	"		"	n	11	"	
Surrogate: 1-Chlorooctane		118 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	"	"	п	n	
BH-8 1' (6G28008-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B	
Toluene	ND	0.0250	"	u	"	**	n	н	
Ethylbenzene	ND	0.0250		11	н	"	"	н	
Xylene (p/m)	ND	0.0250	н	"			"	"	
Xylene (o)	ND	0.0250	н	н	"	н	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.0 %	80-1.	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.0 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples

received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated
P.O. Box 1558
Eunice NM, 88231

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-8 1' (6G28008-08) Soil									
Carbon Ranges C12-C28	J [4.45]	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	J
Carbon Ranges C28-C35	J [1.98]	10.0	11	18	и	"	"		J
Total Hydrocarbons	ND	10.0	н	и	н				
Surrogate: 1-Chlorooctane		116 %	70-1	30	"	"	"	<i>n</i>	
Surrogate: 1-Chlorooctadecane		114 %	70-1	30	"	"	"	"	

BH-9 1' (6G28008-09) Soil

Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B
Toluene	ND	0.0250	н	"	ч	н	11	н
Ethylbenzene	ND	0.0250	*	и		"	"	
Xylene (p/m)	ND	0.0250	"	и	••	11	11	11
Xylene (o)	ND	0.0250	"	"	п		"	"
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80-120		"	"	"	"
Surrogate: 4-Bromofluorobenzene		85.5 %	80-120		"	"	"	"
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M
Carbon Ranges C12-C28	ND	10.0	н		н	16	"	
Carbon Ranges C28-C35	ND	10.0	**	н	"	н	н	0
Total Hydrocarbons	ND	10.0	"	ч	"	н	"	и
Surrogate: 1-Chlorooctane		113 %	70-130		"	"	n	"
Surrogate: 1-Chlorooctadecane		110 %	70-130		"	"	"	"

BH-10 1' (6G28008-10) Soil

_								
Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B
Toluene	ND	0.0250	11	0		"	"	
Ethylbenzene	ND	0.0250	н	**	н	н	"	"
Xylene (p/m)	ND	0.0250	"	"		"	п	n
Xylene (o)	ND	0.0250	"	н	"	"	"	п
Surrogate: a,a,a-Trifluorotoluene		90.0 %	80-120)	"	"	"	"
Surrogate: 4-Bromofluorobenzene		81.8 %	80-120)	"	"	"	"
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M
Carbon Ranges C12-C28	ND	10.0	11	ч	н	"	"	η
Carbon Ranges C28-C35	ND	10.0	11	"	u	н	"	11
Total Hydrocarbons	ND	10.0	н	**	н		**	ц
Surrogate: 1-Chlorooctane		117 %	70-130)	"	"	"	"
Surrogate: 1-Chlorooctadecane		114 %	70-130)	"	"	"	"

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Pacult	Reporting	Unite	DD	Det 1	Dura i	A		
DH 1 11 ((C)20000 01) 0-3	Acsun		01113	Dilution	Batch	Prepared	Analyzed	Method	Notes
DR-1 1 (0G28008-01) S0II									
Chloride	126	5.00	mg/kg	10	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	11.0	0.1	%	1	EG63118	u	07/31/06	% calculation	
Sulfate	43.0	5.00	mg/kg	10	EG63104	"	07/31/06	EPA 300.0	
BH-2 1' (6G28008-02) Soil									
Chloride	605	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	11.5	0.1	%	1	EG63118	и	07/31/06	% calculation	
Sulfate	111	10.0	mg/kg	20	EG63104	н	07/31/06	EPA 300.0	
BH-3 1' (6G28008-03) Soil									
Chloride	428	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	3.1	0.1	%	1	EG63118	"	07/31/06	% calculation	
Sulfate	63.6	10.0	mg/kg	20	EG63104	п	07/31/06	EPA 300.0	
BH-4 1' (6G28008-04) Soil									
Chloride	540	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	14.6	0.1	%	1	EG63118	н	07/31/06	% calculation	
Sulfate	151	10.0	mg/kg	20	EG63104		07/31/06	EPA 300.0	
BH-5 1' (6G28008-05) Soil									
Chloride	511	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	16.1	0.1	%	1	EG63118	и	07/31/06	% calculation	
Sulfate	98.5	10.0	mg/kg	20	EG63104	н	07/31/06	EPA 300.0	
BH-6 1' (6G28008-06) Soil									
Chloride	436	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	12.0	0.1	%	1	EG63118	IT	07/31/06	% calculation	
Sulfate	117	10.0	mg/kg	20	EG63104	"	07/31/06	EPA 300.0	
BH-7 1' (6G28008-07) Soil									
Chloride	283	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	8.7	0.1	%	1	EG63118	"	07/31/06	% calculation	
Sulfate	49.3	10.0	mg/kg	20	EG63104	"	07/31/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-8 1' (6G28008-08) Soil	······								
Chloride	949	20.0	mg/kg	40	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	5.5	0.1	%	1	EG63118	"	07/31/06	% calculation	
Sulfate	131	20.0	mg/kg	40	EG63104	н	07/31/06	EPA 300.0	
BH-9 1' (6G28008-09) Soil									
Chloride	1320	25.0	mg/kg	50	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	6.8	0.1	%	I	EG63118	*1	07/31/06	% calculation	
Sulfate	172	25.0	mg/kg	50	EG63104	11	07/31/06	EPA 300.0	
BH-10 1' (6G28008-10) Soil									
Chloride	976	20.0	mg/kg	40	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	11.2	0.1	%	1	EG63118	"	07/31/06	% calculation	
Sulfate	134	20.0	mg/kg	40	EG63104	"	07/31/06	EPA 300.0	

Environmental Lab of Texas

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EG62817 - Solvent Extraction (GC)

Blank (EG62817-BLK1)				Prepared: 0	7/28/06	Analyzed: 0	7/30/06	
Carbon Ranges C6-C12	ND	10.0	mg/kg wet					
Carbon Ranges C12-C28	ND	10.0						
Carbon Ranges C28-C35	ND	10.0	"					
Total Hydrocarbons	ND	10.0	"					
Surrogate: 1-Chlorooctane	64.7		mg/kg	50.0		129	70-130	
Surrogate: 1-Chlorooctadecane	64.1		"	50.0		128	70-130	
LCS (EG62817-BS1)				Prepared: 0	7/28/06	Analyzed: 0	7/30/06	
Carbon Ranges C6-C12	574	10.0	mg/kg wet	500		115	75-125	
Carbon Ranges C12-C28	417	10.0	"	500		83.4	75-125	
Carbon Ranges C28-C35	ND	10.0	**	0.00			75-125	
Total Hydrocarbons	991	10.0	11	1000		99.1	75-125	
Surrogate: 1-Chlorooctane	62.8		mg/kg	50.0		126	70-130	
Surrogate: 1-Chlorooctadecane	63.4		"	50.0		127	70-130	
Calibration Check (EG62817-CCV1)				Prepared: 0	7/28/06	Analyzed: 0	7/31/06	
Carbon Ranges C6-C12	298		mg/kg	250		119	80-120	
Carbon Ranges C12-C28	228			250		91.2	80-120	
Total Hydrocarbons	526		"	500		105	80-120	
Surrogate: 1-Chlorooctane	83.3		"	100		83.3	70-130	 ····
Surrogate: 1-Chlorooctadecane	80.8		"	100		80.8	70-130	
Matrix Spike (EG62817-MS1)	Sourc	e: 6G28008	8-02	Prepared: 0	7/28/06	Analyzed: 0'	7/31/06	
Carbon Ranges C6-C12	663	10.0	mg/kg dry	565	ND	117	75-125	
Carbon Ranges C12-C28	501	10.0	"	565	ND	88.7	75-125	
Carbon Ranges C28-C35	ND	10.0	н	0.00	ND		75-125	
Total Hydrocarbons	1160	10.0		1130	ND	103	75-125	
Surrogate: 1-Chlorooctane	62.2		mg/kg	50.0		124	70-130	
Surrogate: I-Chlorooctadecane	63.3		"	50.0		127	70-130	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.
Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EG62817 - Solvent Extraction (GC)

Matrix Spike Dup (EG62817-MSD1)	Sourc	e: 6G28008	3-02	Prepared: 0	07/28/06 A	nalyzed: 0				
Carbon Ranges C6-C12	654	10.0	mg/kg dry	565	ND	116	75-125	1.37	20	
Carbon Ranges C12-C28	474	10.0	"	565	ND	83.9	75-125	5.54	20	
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125		20	
Total Hydrocarbons	1130	10.0	"	1130	ND	100	75-125	2.62	20	
Surrogate: 1-Chlorooctane	61.6		mg/kg	50.0		123	70-130			
Surrogate: 1-Chlorooctadecane	64 9		"	50.0		130	70-130			

Batch EG63119 - EPA 5030C (GC)

Blank (EG63119-BLK1)				Prepared & Anal	lyzed: 07/31/06		
Benzene	ND	0.0250	mg/kg wet				
Toluene	ND	0.0250	"				
Ethylbenzene	ND	0.0250	11				
Xylene (p/m)	ND	0.0250	Υ				
Xylene (o)	ND	0.0250	"				
Surrogate: a,a,a-Trifluorotoluene	37.5		ug/kg	40.0	93.8	80-120	
Surrogate: 4-Bromofluorobenzene	33.3		"	40.0	83.2	80-120	
LCS (EG63119-BS1)				Prepared & Anal	lyzed: 07/31/06		
Benzene	1.27	0.0250	mg/kg wet	1.25	102	80-120	
Toluene	1.26	0.0250		1.25	101	80-120	
Ethylbenzene	1.23	0.0250	R	1.25	98.4	80-120	
Xylene (p/m)	2.74	0.0250	"	2.50	110	80-120	
Xylene (o)	1.37	0.0250	"	1.25	110	80-120	
Surrogate: a,a,a-Trifluorotoluene	39.5		ug/kg	40.0	98.8	80-120	 in in in in
Surrogate: 4-Bromofluorobenzene	38.1		"	40.0	95.2	80-120	

Environmental Lab of Texas

Organics by GC - Quality Control

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EG63119 - EPA 5030C (GC)

Calibration Check (EG63119-CCV1)				Prepared: 0	7/31/06 A	nalyzed: 0	8/01/06
Benzene	51.5		ug/kg	50.0		103	80-120
Toluene	49.9		н	50.0		99.8	80-120
Ethylbenzene	51.7		н	50.0		103	80-120
Xylene (p/m)	103		11	100		103	80-120
Xylene (o)	50.8		н	50.0		102	80-120
Surrogate: a,a,a-Trifluorotoluene	35.7		"	40.0		89.2	80-120
Surrogate: 4-Bromofluorobenzene	33.7		"	40.0		84.2	80-120
Matrix Spike (EG63119-MS1)	Sour	ce: 6G28008	3-01	Prepared: 0	7/31/06 A	nalyzed: 0	8/01/06
Benzene	1.51	0.0250	mg/kg dry	1.40	ND	108	80-120
Toluene	1.52	0.0250	"	1.40	ND	109	80-120
Ethylbenzene	1.47	0.0250	"	1.40	ND	105	80-120
Xylene (p/m)	3.25	0.0250	н	2.81	ND	116	80-120
Xylene (0)	1.58	0.0250	"	1.40	ND	113	80-120
Surrogate: a,a,a-Trifluorotoluene	38.5		ug/kg	40.0		96.2	80-120
Surrogate: 4-Bromofluorobenzene	40.9		"	40.0		102	80-120

Matrix Spike Dup (EG63119-MSD1)	Sour	ce: 6G28008	8-01	Prepared: 0	7/31/06 A	nalyzed: 0	8/01/06			
Benzene	1.43	0.0250	mg/kg dry	1.40	ND	102	80-120	5.71	20	
Toluene	1.41	0.0250	п	1.40	ND	101	80-120	7.62	20	
Ethylbenzene	1.35	0.0250	п	1.40	ND	96.4	80-120	8.54	20	
Xylene (p/m)	3.00	0.0250	"	2.81	ND	107	80-120	8.07	20	
Xylene (o)	1.49	0.0250	"	1.40	ND	106	80-120	6.39	20	
Surrogate: a,a,a-Trifluorotoluene	40.4		ug/kg	40.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	39.2		п	40.0		98.0	80-120			

Batch EH60114 - EPA 5030C (GC)

Blank (EH60114-BLK1)				Prepared: 08/01	/06 Analyzed: 08	/02/06	
Benzene	ND	0.0250	mg/kg wet				
Toluene	ND	0.0250					
Ethylbenzene	ND	0.0250	"				
Xylene (p/m)	ND	0.0250					
Xylene (o)	ND	0.0250	u.				
Surrogate: a,a,a-Trifluorotoluene	35.5	*******	ug/kg	40.0	88.8	80-120	
Surrogate: 4-Bromofluorobenzene	33.2		"	40.0	83.0	80-120	

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Decult	Reporting	Unite	Spike	Source	%PEC	%REC	רוקק	RPD	Notas
			Units		Result	/0KLC				110105
Batch EH60114 - EPA 5030C (GC)										
LCS (EH60114-BS1)				Prepared: (08/01/06 A	nalyzed: 08	/02/06			
Benzene	1.20	0.0250	mg/kg wet	1.25		96.0	80-120			
Toluene	1.27	0.0250		1.25		102	80-120			
Ethylbenzene	1.13	0.0250	"	1.25		90.4	80-120			
Xylene (p/m)	2.68	0.0250	"	2.50		107	80-120			
Xylene (0)	1.33	0.0250	ц	1.25		106	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.7		ug/kg	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	38.8		"	40.0		97.0	80-120			
Calibration Check (EH60114-CCV1)				Prepared: 0	08/01/06 A1	alyzed: 08	/02/06			
Benzene	53.8		ug/kg	50.0	······································	108	80-120			
Toluene	54.3		н	50.0		109	80-120			
Ethylbenzene	51.0			50.0		102	80-120			
Xylene (p/m)	110		"	100		110	80-120			
Xylene (0)	54.8		11	50.0		110	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.1		"	40.0		92.8	80-120			
Surrogate: 4-Bromofluorobenzene	33.0		"	40.0		82.5	80-120			
Matrix Spike (EH60114-MS1)	Sour	ce: 6G28010)-01	Prepared: 0)8/01/06 A1	nalyzed: 08	/02/06			
Benzene	1.43	0.0250	mg/kg dry	1.39	ND	103	80-120			
Toluene	1.44	0.0250		1.39	ND	104	80-120			
Ethylbenzene	1.37	0.0250	n.	1.39	ND	98.6	80-120			
Xylene (p/m)	3.09	0.0250	"	2.78	ND	111	80-120			
Xylene (0)	1.51	0.0250		1.39	ND	109	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.9		ug/kg	40.0		97.2	80-120			
Surrogate: 4-Bromofluorobenzene	36.9		"	40.0		92.2	80-120			
Matrix Spike Dup (EH60114-MSD1)	Sour	ce: 6G28010	-01	Prepared: 0	08/01/06 Ai	nalyzed: 08	/02/06			
Benzene	1.30	0.0250	mg/kg dry	1.39	ND	93.5	80-120	9.67	20	
Toluene	1.37	0.0250		1.39	ND	98.6	80-120	5.33	20	
Ethylbenzene	1.29	0.0250		1.39	ND	92.8	80-120	6.06	20	
Xylene (p/m)	2.88	0.0250	"	2.78	ND	104	80-120	6.51	20	
Xylene (o)	1.42	0.0250	"	1.39	ND	102	80-120	6.64	20	
Surrogate: a,a,a-Trifluorotoluene	32.7		ug/kg	40.0		81.8	80-120			
Surrogate: 4-Bromofluorobenzene	37.0		n	40.0		92.5	80-120			

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source	2	%REC		RPD	
Analyte	Result	Limit	Units	Level	Resul	N %REC	Limits	RPD	Limit	Notes
Batch EG63104 - General Preparation (VetChem)									
Blank (EG63104-BLK1)				Prepared: (07/28/06	Analyzed: 0	7/31/06			
Chloride	ND	0.500	mg/kg							
Sulfate	ND	0.500								
LCS (EG63104-BS1)				Prepared: (07/28/06	Analyzed: 0	7/31/06			
Sulfate	10.4	0.500	mg/kg	10.0		104	80-120			
Chloride	9.56	0.500	"	10.0		95.6	80~120			
Calibration Check (EG63104-CCV1)				Prepared: (07/28/06	Analyzed: 07	7/31/06			
Sulfate	10.1		mg/L	10.0		101	80-120			
Chloride	10.1			10.0		101	80-120			
Duplicate (EG63104-DUP1)	Sou	rce: 6G21001	-01	Prepared: (07/28/06	Analyzed: 07	7/31/06			
Sulfate	560	5.00	mg/kg		523			6.83	20	
Chloride	344	5.00	"		320			7.23	20	
Duplicate (EG63104-DUP2)	Sou	rce: 6G28008	-09	Prepared: (07/28/06	Analyzed: 07	7/31/06			
Sulfate	177	25.0	mg/kg	· *	172			2.87	20	
Chloride	1350	25.0	"		1320			2.25	20	
Matrix Spike (EG63104-MS1)	Sou	rce: 6G21001	-01	Prepared: (07/28/06	Analyzed: 0'	7/31/06			
Chloride	452	5.00	mg/kg	100	320	132	80-120			S-07
Sulfate	625	5.00	11	100	523	102	75-125			
Matrix Spike (EG63104-MS2)	Sou	rce: 6G28008	-09	Prepared: 0	7/28/06	Analyzed: 07	7/31/06			
Sulfate	669	25.0	mg/kg	500	172	99.4	75-125			
Chloride	1890	25.0	ш	500	1320	114	80-120			

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Desertion		Caller.	C		N/DEC			
Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch EG63118 - General Preparation (Prep)										
Blank (EG63118-BLK1)				Prepared: 0	07/28/06 A	nalyzed: 07	/31/06			
% Moisture	ND	0.1	%	•		· ·				
Duplicate (EG63118-DUP1)	Sou	rce: 6G21001-0	01	Prepared: 0	07/28/06 A	nalyzed: 07	/31/06			
% Solids	90.8		%		91.9			1.20	20	
Duplicate (EG63118-DUP2)	Sou	rce: 6G28008-0	03	Prepared: 0	07/28/06 A	nalyzed: 07	/31/06			
% Solids	97.4		%		96.9			0.515	20	
Duplicate (EG63118-DUP3)	Sou	ce: 6G28013-0	01	Prepared: 0	7/28/06 A	nalyzed: 07	/31/06			
% Solids	93.9		%		93.5			0.427	20	

Environmental Lab of Texas

Notes and Definitions

- S-07 Recovery outside Laboratory historical or method prescribed limits.
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Jut

Date:

8/3/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

Delivered by:	Sampler Relinquished		žQ~	404	e e	4 2	44	E E	10	+ O	LAB I.D.		EPI Sampler Na	Project Referen	Location	Facility Name	Client Company	EPI Phone#/Fax	City, State, Zip	Mailing Address	EPI Project Man	Company Name	2100 Avenue 0, (505) 394-3481	Environ
	Wardon Time)BH-9 (1')	BH-8 (1')	7 BH-7 (1')	BH-6 (1')	BH-5 (1')	BH-4 (1')	8H-3 (1)	BH-2 (1')	BH-1 (1')	SAMPLE I.D.		me Jacob Melanc	ce 240014	UL-C, Sec 20,	N. Mon. Grayt	Apache Corpor	# 505-394-3481	Eunice New N	P.O. BOX 155	ager Jason Stegen	Environmenta	Eunice, NM 88231 FAX: (505) 394-2601	nental Plus, I
Sample Cool & Intact Res No	130 Advent By	G 1	G 1	G 1	G 1	ଜ 1	G 1	1011	G 1	G 1	(G)RAB OR (C)OMF # CONTAINERS	>. T	on		T19S, R37E	urg SA 603	ation	/ 505-394-2601	lexico 88231	ŵ	oller	l Plus, Inc.	Р.О. Вох	C
Checked B	(ab staff)										WASTEWATER SOIL CRUDE OIL SLUDGE	MATRIX											1558, Eunice, Ni	
W L	E-mail resu NOTES:	××	×	×	X	×	×	x X			OTHER: ACID/BASE ICE/COOL OTHER	PHESERV.	Eunice, NM 8	P.O. Box 18	Attn: lain Olr	ita Ta		پر س	5			Bill To	W 88231	9 9 9 1
- Caller	Its to: jstegemolle くつ	26-Jul-06 13:	26-Jul-06 13:	25-Jul-06 13:	25-Jul-06 13:	25-Jul-06 10:	25-Jul-06 10:	26-Jul-06 10:	26-Jul-06 10:	26-Jul-06 10:	DATE	SAMPLING	8231	558	less									
	rræenvplus.net 462 glæg		15 X X X	45 X X X	30 X X X	40 X X X	20 X X X	45 X X X	35 X X X	15 X X X	m BTEX 8021B TPH 8015M CHLORIDES (CJ)											A A		0
	12	< ×	X	X		×	×	X	X	X	SULFATES (SO4 ⁻) pH TCLP OTHER >>>											VALYSIS REO	1 ot 7 ±	hain of Cus
-	******										PAH	alan minana di sebut Manani anggi sebut Manana di sebut Manana di sebut										UEST		stody Form

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

ent:	EPI
ite/ Time-	7/28/06 10:50
b ID # :	691,8006
tials:	ck

Sample Receipt Checklist

			Client	Initials
Temperature of container/ cooler?	Yes	No	2.5 °C	
Shipping container in good condition?	res	No		
Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
1 Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
5 Chain of Custody present?	Yes	No		
3 Sample instructions complete of Chain of Custody?	Yes	No		
7 Chain of Custody signed when relinquished/ received?	Ves	No		
3 Chain of Custody agrees with sample label(s)?	(es	No	ID written on Cont./ Lid	
3 Container label(s) legible and intact?	Xes	No	Not Applicable	
10 Sample matrix/ properties agree with Chain of Custody?	Tes	No		
11 Containers supplied by ELOT?	res	No	n y ferin en de antinista de la la la la la la la la constante de la constante de la constante de la constante A	
12 Samples in proper container/ bottle?	Yes	No	See Below	
13 Samples properly preserved?	Xes	No	See Below	
14 Sample bottles intact?	Yes	No		
15 Preservations documented on Chain of Custody?	Yes	No		
16 Containers documented on Chain of Custody?	Fes	No		
17 Sufficient sample amount for indicated test(s)?	Ves	No	See Below	
18 All samples received within sufficient hold time?	Yes	No	See Below	
19 VOC samples have zero headspace?	des	No	Not Applicable	

Variance Documentation

Contact:		Contacted by:	Date/ Time:	
tegarding:				
Corrective Action Taker):			
				······
Sheck all that Apply:		See attached e-mail/ fax Client understands and would like to proceed Cooling process had begun shortly after samp	with analysis ling event	

Analytical Report

Prepared for:

Jason Stegemoller Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Location: UL-C, Sec. 20, T19S, R37E

Lab Order Number: 6H02007

Report Date: 08/08/06

Environmental Plus, Incorporated	Project:	Apache/ N. Mon. Grayburg SA 603	Fax: 505-394-2601
P.O. Box 1558	Project Number:	240014	
Eunice NM, 88231	Project Manager:	Jason Stegemoller	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-15 6"	6H02007-01	Soil	2006-08-01 08:55	2006-08-02 11:15
BH-16 6"	6H02007-02	Soil	2006-08-01 10:10	2006-08-02 11:15
BH-17 6"	6H02007-03	Soil	2006-08-01 11:25	2006-08-02 11:15
BH-18 6"	6H02007-04	Soil	2006-08-01 13:10	2006-08-02 11:15
BH-19 6"	6H02007-05	Soil	2006-08-01 14:25	2006-08-02 11:15
BH-20 6"	6H02007-06	Soil	2006-08-01 15:25	2006-08-02 11:15

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-15 6" (6H02007-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
Toluene	ND	0.0250	п	u		"	"	"	
Ethylbenzene	ND	0.0250	H.	"	"	n	"	**	
Xylene (p/m)	ND	0.0250	11	н	11	"		11	
Xylene (o)	ND	0.0250	п		u .	"	11	н	
Surrogate: a,a,a-Trifluorotoluene		96.5 %	80-1	'20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0		•		n	н	н	
Carbon Ranges C28-C35	ND	10.0	"	**	"	"	н	"	
Total Hydrocarbons	ND	10.0	"	ii	n	••	"	13	
Surrogate: 1-Chlorooctane		96.0 %	70-1	'30	"	"		"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	"	n	"	"	
BH-16 6'' (6H02007-02) Soil									
					·······				

Benzene	ND	0.0250	mg/kg dry	25	EH60702	S8/04/06	08/06/06	EPA 8021B	
Toluene	ND	0.0250	"		н		"	"	
Ethylbenzene	ND	0.0250	"	"	"	11	н	11	
Xylene (p/m)	ND	0.0250	"		"	11	"	11	
Xylene (o)	ND	0.0250			н	11	и	II.	
Surrogate: a,a,a-Trifluorotoluene		97.5 %	80-120	1	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.5 %	80-120	•	n	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	и	"	н	п	"	
Carbon Ranges C28-C35	ND	10.0	"	н	"	u	н	u	
Total Hydrocarbons	ND	10.0	н	н	п	**	"	**	
Surrogate: 1-Chlorooctane		96.4 %	70-130	•	"	"	"	"	
Surrogate: 1-Chlorooctadecane		113 %	70-130		"	"	п	"	

BH-17 6" (6H02007-03) Soil

Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
Toluene	ND	0.0250	"		11	"	11	"	
Ethylbenzene	ND	0.0250	н		н		11	n	
Xylene (p/m)	ND	0.0250	"	и	н		н	"	
Xylene (o)	ND	0.0250		н	ч	"	ŧr	"	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	80-120		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.5 %	80-120		"	п	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety.

with written approval of Environmental Lab of Texas.

J

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-17 6'' (6H02007-03) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	н	11	11	н	п	"	
Total Hydrocarbons	ND	10.0	"		11	"	"	"	
Surrogate: 1-Chlorooctane		93.8 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		112 %	70-1	30	"	"	n	"	
BH-18 6" (6H02007-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
Toluene	ND	0.0250	"	11	"	"	11	"	
Ethylbenzene	ND	0.0250	"		"	н	ч	"	
Xylene (p/m)	ND	0.0250	н	**	и	*	"	11	
Xylene (o)	ND	0.0250		"	п	"	"	н	
Surrogate: a,a,a-Trifluorotoluene		92.8 %	80-1.	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.2 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0		**	н	п	11	**	
Carbon Ranges C28-C35	ND	10.0	**	"	н	"	11	"	
Total Hydrocarbons	ND	10.0	"	**	n	"	łr	11	
Surrogate: 1-Chlorooctane		93.4 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		112 %	70-1.	30	"	11	"	n	
BH-19 6" (6H02007-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
Toluene	ND	0.0250	"	**	н	"	n	**	
Ethylbenzene	ND	0.0250		**	н	"	"		
Xylene (p/m)	ND	0.0250	11		"	"	п	н	
Xylene (o)	ND	0.0250		"	"	11		"	
Surrogate: a,a,a-Trifluorotoluene		90.5 %	80-1.	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.8 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	"	"	"	**	"	
Carbon Ranges C28-C35	ND	10.0	н	"	и	11	н	н	
Total Hydrocarbons	ND	10.0		**	н	н			
Surrogate: 1-Chlorooctane		96.2 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		113 %	70-1.	30	"	"	"	"	

Environmental Lab of Texas

•

- 19

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-20 6" (6H02007-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/07/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	"	"	"	
Ethylbenzene	ND	0.0250	**	"	"		ш	11	
Xylene (p/m)	ND	0.0250	*	"	н	"	u	н	
Xylene (o)	ND	0.0250	"	н		11	"	"	
Surrogate: a,a,a-Trifluorotoluene		98.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0		н	н	"	п	н	
Carbon Ranges C28-C35	ND	10.0	"	**	**	"	"	"	
Total Hydrocarbons	ND	10.0		"		"	"	"	
Surrogate: 1-Chlorooctane		104 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		123 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting	Units	Dilution	Ratch	Proparad	Analyzad	Method	Notor
BH-15 6" (6H02007-01) Soil					Daith		Anaryzeu	Meniou	
Chloride	2510	50.0	mg/kg	100	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	13.6	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	146	50.0	mg/kg	100	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-16 6" (6H02007-02) Soil									
Chloride	226	10.0	mg/kg	20	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	10.6	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	84.6	10.0	mg/kg	20	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-17 6" (6H02007-03) Soil									
Chloride	1720	50.0	mg/kg	100	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	11.8	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	290	50.0	mg/kg	100	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-18 6'' (6H02007-04) Soil									
Chloride	1240	25.0	mg/kg	50	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	8.3	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	176	25.0	mg/kg	50	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-19 6'' (6H02007-05) Soil									
Chloride	1550	25.0	mg/kg	50	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	9.0	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	253	25.0	mg/kg	50	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-20 6'' (6H02007-06) Soil									_
Chloride	7.20	5.00	mg/kg	10	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	4.6	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	21.8	5.00	mg/kg	10	EH60307	08/02/06	08/04/06	EPA 300.0	

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60209 - EPA 5030C (GC)									<u></u>	
Blank (EH60209-BLK1)				Prepared &	2 Analyzed	: 08/02/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0								
Carbon Ranges C28-C35	ND	10.0	н							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	64.0		mg/kg	50.0		128	70-130			
Surrogate: 1-Chlorooctadecane	61.1		"	50.0		122	70-130			
LCS (EH60209-BS1)				Prepared &	Analyzed:	: 08/02/06				
Carbon Ranges C6-C12	441	10.0	mg/kg wet	500	-	88.2	75-125		· · — — — ·	
Carbon Ranges C12-C28	451	10.0	н	500		90.2	75-125			
Carbon Ranges C28-C35	ND	10.0		0.00			75-125			
Total Hydrocarbons	892	10.0	"	1000		89.2	75-125			
Surrogate: 1-Chlorooctane	49.0		mg/kg	50.0	-	98.0	70-130			
Surrogate: 1-Chlorooctadecane	37.1		"	50.0		74.2	70-130			
Calibration Check (EH60209-CCV1)				Prepared: (08/02/06 A	.nalyzed: 08	3/03/06			
Carbon Ranges C6-C12	210		mg/kg	250		84.0	80-120			
Carbon Ranges C12-C28	271			250		108	80-120			
Total Hydrocarbons	481			500		96.2	80-120			
Surrogate: 1-Chlorooctane	87.7		,	100		87.7	70-130			· · ·
Surrogate: 1-Chlorooctadecane	75.9		"	100		75.9	70-130			
Matrix Spike (EH60209-MS1)	Sou	rce: 6H0200	5-01	Prepared &	2 Analyzed	: 08/02/06				
Carbon Ranges C6-C12	466	10.0	mg/kg dry	520	ND	89.6	75-125			
Carbon Ranges C12-C28	479	10.0	п	520	ND	92.1	75-125			
Carbon Ranges C28-C35	ND	10.0		0.00	ND		75-125			
Total Hydrocarbons	945	10.0	*	1040	ND	90.9	75-125			
Surrogate: 1-Chlorooctane	49.7		mg/kg	50.0		99. <i>4</i>	70-130			
Surragate: I-Chlorooctadecane	28 2		"	50.0		76.6	70 130			

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RbD	RPD Limit	Notes
Batch FH60200 - FPA 5030C (CC)			ema							

Matrix Spike Dup (EH60209-MSD1)	Source	Source: 6H02005-01				08/02/06				
Carbon Ranges C6-C12	470	10.0	mg/kg dry	520	ND	90.4	75-125	0.855	20	
Carbon Ranges C12-C28	484	10.0	н.	520	ND	93.1	75-125	1.04	20	
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125		20	
Total Hydrocarbons	954	10.0	"	1040	ND	91.7	75-125	0.948	20	
Surrogate: 1-Chlorooctane	50.5		mg/kg	50.0	-	101	70-130			
Surrogate: 1-Chlorooctadecane	37.2		"	50.0		74.4	70-130			

Batch EH60702 - EPA 5030C (GC)

Blank (EH60702-BLK1)				Prepared: 08/04/06	Analyzed: 08	/06/06		
Benzene	ND	0.0250	mg/kg wet					
Toluene	ND	0.0250	"					
Ethylbenzene	ND	0.0250	"					
Xylene (p/m)	ND	0.0250	"					
Xylene (0)	ND	0.0250	"					
Surrogate: a,a,a-Trifluorotoluene	37.0		ug/kg	40.0	92.5	80-120	· · · · · · · · · · · · · · · · · · ·	
Surrogate: 4-Bromofluorobenzene	33.9		"	40.0	84.8	80-120		
LCS (EH60702-BS1)				Prepared: 08/04/06	Analyzed: 08	/06/06		
Benzene	1.19	0.0250	mg/kg wet	1.25	95.2	80-120		
Toluene	1.21	0.0250		1.25	96.8	80-120		
Ethylbenzene	1.08	0.0250	"	1.25	86.4	80-120		
Xylene (p/m)	2.66	0.0250		2.50	106	80-120		
Xylene (0)	1.31	0.0250	11	1.25	105	80-120		
Surrogate: a,a,a-Trifluorotoluene	39.7		ug/kg	40.0	99.2	80-120	· · ·	
Surrogate: 4-Bromofluorobenzene	40.7		"	40.0	102	80-120		

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60702 - EPA 5030C (GC)										
Calibration Check (EH60702-CCV1)				Prepared: ()8/04/06 A1	nalyzed: 08	/07/06			
Benzene	50.4		ug/kg	50.0		101	80-120			
Toluene	49.1		н	50.0		98.2	80-120			
Ethylbenzene	49.4		н	50.0		98.8	80-120			
Xylene (p/m)	99.8		н	100		99.8	80-120			
Xylene (0)	48.8		н	50.0		97.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.3		"	40.0		93.2	80-120			
Surrogate: 4-Bromofluorobenzene	34.2		"	40.0		85.5	80-120			
Matrix Spike (EH60702-MS1)	Sour	rce: 6H04011	1 -01	Prepared: ()8/04/06 A1	1alyzed: 08	/07/06			
Benzene	1.27	0.0250	mg/kg dry	1.36	ND	93.4	80-120			
Toluene	1.27	0.0250	н	1.36	ND	93.4	80-120			
Ethylbenzene	1.23	0.0250		1.36	ND	90.4	80-120			
Xylene (p/m)	2.67	0.0250	н	2.72	ND	98.2	80-120			
Xylene (0)	1.36	0.0250	"	1.36	ND	100	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.8		ug/kg	40.0		82.0	80-120			
Surrogate: 4-Bromofluorobenzene	35.8		"	40.0		89.5	80-120			
Matrix Spike Dup (EH60702-MSD1)	Sour	·ce: 6H04011	l -01	Prepared: ()8/04/06 Ar	alyzed: 08	/07/06			
Benzene	1.24	0.0250	mg/kg dry	1.36	ND	91.2	80-120	2.38	20	
Toluene	1.24	0.0250	н	1.36	ND	91.2	80-120	2.38	20	
Ethylbenzene	1.20	0.0250	*	1.36	ND	88.2	80-120	2.46	20	
Xylene (p/m)	2.62	0.0250		2.72	ND	96.3	80-120	1.95	20	
Xylene (o)	1.31	0.0250	*	1.36	ND	96.3	80-120	3.77	20	
Surrogate: a,a,a-Trifluorotoluene	33.1	· ·	ug/kg	40.0		82.8	80-120			
Surrogate: 4-Bromofluorobenzene	35.5		,,	40.0		88.8	80-120			

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60302 - General Preparation (Prep)										
Blank (EH60302-BLK1)				Prepared: (08/02/06 A	nalyzed: 08	3/03/06			
% Solids	100		%							
Duplicate (EH60302-DUP1)	Sou	rce: 6H02001	-01	Prepared: (08/02/06 A	nalyzed: 08	3/03/06			
% Solids	99.5		%		99.4		hare .	0.101	20	
Batch EH60307 - Water Extraction		<u> </u>								
Blank (EH60307-BLK1)				Prepared: (08/02/06 A	nalyzed: 08	3/04/06			
Sulfate	ND	0.500	mg/kg							
Chloride	ND	0.500	н							
LCS (EH60307-BS1)				Prepared: ()8/02/06 A	nalyzed: 08	3/04/06			
Chloride	8.90	0.500	mg/kg	10.0		89.0	80-120			
Sulfate	9.47	0.500	11	10.0		94.7	80-120			
Calibration Check (EH60307-CCV1)				Prepared: (08/02/06 A	nalyzed: 08	3/04/06			
Chloride	10.1		mg/L	10.0		101	80-120			
Sulfate	9.57		"	10.0		95.7	80-120			
Duplicate (EH60307-DUP1)	Sou	rce: 6H01008-	-03	Prepared: (08/02/06 A	nalyzed: 08	3/04/06			
Sulfate	327	10.0	mg/kg		325			0.613	20	
Chloride	7.30	10.0	"		9.22			23.2	20	S-08, J
Duplicate (EH60307-DUP2)	Sou	rce: 6H01009-	-06	Prepared: (08/02/06 A	nalyzed: 08	3/04/06			
Sulfate	30.1	5.00	mg/kg		30.1			0.00	20	
Chloride	13.3	5.00	н		13.3			0.00	20	

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60307 - Water Extraction	_									
Matrix Spike (EH60307-MS1)	Sourc	e: 6H01008-	•03	Prepared: (08/02/06	Analyzed: 08	3/04/06			
Chloride	221	10.0	mg/kg	200	9.22	106	80-120			
Sulfate	539	10.0	**	200	325	107	80-120			
Matrix Spike (EH60307-MS2)	Sourc	e: 6H01009-	•06	Prepared: (08/02/06	Analyzed: 08	3/04/06			
Chloride	109	5.00	mg/kg	100	13.3	95.7	80-120			
Sulfate	120	5.00	"	100	30.1	89.9	80-120			

Environmental Lab of Texas

Notes and Definitions

S-08 Value outside Laboratory historical or method prescribed QC limits.

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Junes 8/8/2006 Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Chain of Custody Form 1 of 1	ANALYSIS REQUEST										(C		<pre><</pre>	на катех 8021 кете к	8:55 X X X X	10:10 X X X X X	11:25 X X X X	13:10 X X X X	14:25 X X X X X	15:25 X X X X X					moller@envplus.net		ijer seel 30
_	Bill To							: lain Olness). Box 1558	ce, NM 88231	SERV. SAMPLI			доорар Аднос Адно Адно Адно Адно Адно Адно Адно Адно	X 01-Aug-06	X 01-Aug-06	X 01-Aug-06	X 01-Aug-06	X 01-Aug-06	X 01-Aug-06					-mail results to: jstege OTES:	toz glasa	w label s
<i>i</i> 88231				l	111			Attn:	P.O	Eunio	PRES		=		Ê	Ê									μž		
e, MA														STAES.	┢			_		_		-				1	sked By
unic											RIX			IO BOUR	Γ	Π										0	Ele Ele
а, Ш						-					МАТ				-	+	F		1	+							3
155													Rati	WATEW										_		de / 2	
3a X					5							8	HAN	I GNUORD											.∺ B	By: (Nact Nact
0, E	0			231	-260		8	17E					SHE	# CONTAIN	E	-	1	-	1	-					eived	beived	ol & Ini
D,	s, In			88	-394		SA 6	, ВЗ				dW	0(0) F	10 BAR(D)	1 ^G	G	ອ	9	5	9	_				<u>H</u>	Å.	- S
al Plus, Inc. NM 88231 55) 394-2601	Environmental Plu	Jason Stegemoller	P.O. BOX 1558	Eunice New Mexico	505-394-3481 / 505-	Apache Corporation	N. Mon. Grayburg :	UL-C, Sec 20, T19S	240014	George Blackburn			SAMPLELD		((()					Date	Date, 2. C.	Samp
ment: Eunice, 1 FAX: (50		lager			#				ce	me					(BH-15 (6"	2 BH-16 (6"	3 BH-17(6")	BH-18 (6"	BH-19 (6"	BH-20 (8"	-	1				N N	216
Environ) 2100 Avenue O, (505) 394-3481	Company Name	EPI Project Man	Mailing Address	City, State, Zip	EPI Phone#/Fax	Client Company	Facility Name	Location	Project Referen	EPI Sampler Na			LARID	poor of Han		-61/	¢2	- 24 -	40	-00		3	5	1(Sampler Relinquished:	Relinquished by:	Delivered by:

-4

ж

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

ent:	EPI
ite/ Time:	R/2/06 11:15
b 1D # :	6fl02007
tials:	CK

Sample Receipt Checklist

				Clie	ent Initial
	Temperature of container/ cooler?	Yes	No	2,0 °C	
!	Shipping container in good condition?	K@3	No		
}	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present,	
Ŧ	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
5	Chain of Custody present?	Yos	No		
3	Sample instructions complete of Chain of Custody?	Yes	No		
7	Chain of Custody signed when relinquished/ received?	des	No		
3	Chain of Custody agrees with sample label(s)?	Xes	No	ID written on Cont./ Lid	
3	Container label(s) legible and intact?	(Xes)	No	Not Applicable	
10	Sample matrix/ properties agree with Chain of Custody?	Xes	No		
11	Containers supplied by ELOT?	Xes	No		
12	Samples in proper container/ bottle?	Xes	No	See Below	
13	Samples properly preserved?	Yes	No	See Below	
14	Sample bottles intact?	Xes	No		
15	Preservations documented on Chain of Custody?	Yes	No		
16	Containers documented on Chain of Custody?	Xes	No		
-17	Sufficient sample amount for indicated test(s)?	Xes	No	See Below	
:18	All samples received within sufficient hold time?	Yes	No	See Below	
19	VOC samples have zero headspace?	(Yes)	No	Not Applicable	

Variance Documentation

Contact:		Contacted by:	Date/ Time:	
Regarding:		·		
Corrective Action Taker	1;			
	• -			
Check all that Apply:		See attached e-mail/ fax Client understands and would like to proceed with a	nalysis	

Cooling process had begun shortly after sampling event

Analytical Report

Prepared for:

Jason Stegemoller Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Location: EUL-C, Sec. 20, T19S, R37E

Lab Order Number: 6H08004

Report Date: 08/10/06

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-21 6"	6H08004-01	Soil	08/02/06 08:15	08-08-2006 10:40
BH-22 6"	6H08004-02	Soil	08/02/06 09:50	08-08-2006 10:40
BH-23 6"	6H08004-03	Soil	08/02/06 12:00	08-08-2006 10:40
BH-24 6"	6H08004-04	Soil	08/02/06 13:30	08-08-2006 10:40
BH-25 6"	6H08004-05	Soil	08/02/06 14:35	08-08-2006 10:40
BH-26 6"	6H08004-06	Soil	08/02/06 15:06	08-08-2006 10:40

ſ

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-21 6" (6H08004-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/09/06	EPA 8021B	
Toluene	ND	0.0250		н	ч	н	"	11	
Ethylbenzene	ND	0.0250	"	"	11	п	и	"	
Xylene (p/m)	ND	0.0250		"	**	*1	"	"	
Xylene (o)	ND	0.0250	n	u	"	"	**	н	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	80	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.5 %	80-1	120	"	"	"	"	
Carbon Ranges C6-C12	13.4	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	57.8	10.0	н	"	"	"	п	"	
Carbon Ranges C28-C35	ND	10.0	"	11	"	"	"	"	
Total Hydrocarbons	71.2	10.0	"	н	н	**	u.	*1	
Surrogate: 1-Chlorooctane		125 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		121 %	70-1	130	"	"	"	"	
BH-22 6" (6H08004-02) Soil			_						
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/09/06	EPA 8021B	
Toluene	ND	0.0250	"	"		н	н	"	
Ethylbenzene	ND	0.0250	u	"	**	11	н	"	
Xylene (p/m)	ND	0.0250	"	п	"		"	"	
Xylene (o)	ND	0.0250		"	"	"	ч	н	
Surrogate: a,a,a-Trifluorotoluene		89.8 %	80-1	120		"	"	· · · · · · · · · · · · · · · · · · ·	
Surrogate: 4-Bromofluorobenzene		84.2 %	80-1	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	I	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0			**			"	
Carbon Ranges C28-C35	ND	10.0	н	и	"	н	н	"	
Total Hydrocarbons	ND	10.0	"	"	"	**	"	u	
Surrogate: 1-Chlorooctane		120 %	70-1	130	"		"	"	
Surrogate: 1-Chlorooctadecane		117 %	70-1	130	"	"	"	"	
BH-23 6" (6H08004-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/09/06	EPA 8021B	
Toluene	ND	0.0250	"	н	*	"		"	
Ethylbenzene	ND	0.0250	**	"	"	11		н	
Xylene (p/m)	ND	0.0250	н		"		"	"	
Xylene (o)	ND	0.0250	"	11	н		"	и	
Surrogate: a,a,a-Trifluorotoluene		97.0 %	80-1	20	"	"			
Surrogate: 4-Bromofluorobenzene		91.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Environmental Lab of Texas			The re:	sults in this r	eport apply to	the samples a	nalvzed in accora	lance with the san	aples

received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 11

Г

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-23 6" (6H08004-03) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	"	н	н			
Total Hydrocarbons	ND	10.0	н	"		"	"	"	
Surrogate: 1-Chlorooctane		130 %	70-13	10	"	"	"	"	
Surrogate: 1-Chlorooctadecane		121 %	70-13	10	"	"	"	"	
BH-24 6'' (6H08004-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/08/06	EPA 8021B	
Toluene	ND	0.0250	"	*	н	"	н	н	
Ethylbenzene	ND	0.0250	11	*1		"	н	"	
Xylene (p/m)	0.0361	0.0250	н	"		"	"	"	
Xylene (o)	ND	0.0250	"	**	н	н	"	"	
Surrogate: a,a,a-Trifluorotoluene	5	98.8 %	80-12	20	"	n		n	
Surrogate: 4-Bromofluorobenzene		87.5 %	80-12	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**		п	"	н	11	
Carbon Ranges C28-C35	ND	10.0	"	и	"	"	u	и	
Total Hydrocarbons	ND	10.0	"	н		"	"	"	
Surrogate: 1-Chlorooctane		129 %	70-13	0	"	n	"	"	
Surrogate: 1-Chlorooctadecane		117 %	70-13	10	"	"	"	"	
BH-25 6" (6H08004-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/08/06	EPA 8021B	
Toluene	ND	0.0250	"	"	н		n	"	
Ethylbenzene	ND	0.0250	11	н	11	"	н	"	
Xylene (p/m)	ND	0.0250	н	"		"	"	"	
Xylene (o)	ND	0.0250	**	•	"	"	n	н	
Surrogate: a,a,a-Trifluorotoluene		85.0 %	80-12	20	,,	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.5 %	80-12	!0	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	н	n	н	
Carbon Ranges C28-C35	ND	10.0	**	"	u	"	n	"	
Total Hydrocarbons	ND	10.0	"	"		"	"	"	
Surrogate: 1-Chlorooctane		125 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		117 %	70-13	0	"	п	"	"	

Environmental Lab of Texas

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-26 6" (6H08004-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/08/06	EPA 8021B	
Toluene	ND	0.0250	11	"		u.		11	
Ethylbenzene	ND	0.0250	н	"	"	"		11	
Xylene (p/m)	ND	0.0250	н	п	"	н	н	11	
Xylene (o)	ND	0.0250	"	u	н	"	"	н	
Surrogate: a,a,a-Trifluorotoluene		101 %	80-1	'20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.0 %	80-1	'20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	D.	11	u	н	"	
Carbon Ranges C28-C35	ND	10.0	"		н	"		"	
Total Hydrocarbons	ND	10.0	"	11		"	"	11	
Surrogate: 1-Chlorooctane		121 %	70-1	'30	"	"		"	
Surrogate: 1-Chlorooctadecane		113 %	70-1	'30	"	"	n	"	

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-21 6" (6H08004-01) Soil									
Chloride	920	25.0	mg/kg	50	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	14.4	0.1	%	I	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	168	25.0	mg/kg	50	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-22 6" (6H08004-02) Soil									
Chloride	976	25.0	mg/kg	50	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	12.0	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	121	25.0	mg/kg	50	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-23 6" (6H08004-03) Soil									
Chloride	6.09	5.00	mg/kg	10	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	10.9	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	17.6	5.00	mg/kg	10	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-24 6'' (6H08004-04) Soil									
Chloride	705	20.0	mg/kg	40	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	10.1	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	65.3	20.0	mg/kg	40	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-25 6'' (6H08004-05) Soil									
Chloride	1250	50.0	mg/kg	100	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	10.2	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	2380	50.0	mg/kg	100	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-26 6'' (6H08004-06) Soil									
Chloride	136	10.0	mg/kg	20	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	12.8	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	151	10.0	mg/kg	20	EH60812	08/08/06	08/08/06	EPA 300.0	

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60808 - EPA 5030C (GC)		- <u></u> -								
Blank (EH60808-BLK1)				Prepared 8	k Analyzed	: 08/08/06				
Carbon Ranges C6-C12	ND	. 10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	58.0		mg/kg	50.0		116	70-130		* *	
Surrogate: 1-Chlorooctadecane	55.6		"	50.0		111	70-130			
LCS (EH60808-BS1)				Prepared 8	ι Analyzed	: 08/08/06				
Carbon Ranges C6-C12	483	10.0	mg/kg wet	500		96.6	75-125			
Carbon Ranges C12-C28	426	10.0	"	500		85.2	75-125			
Carbon Ranges C28-C35	ND	10.0	н	0.00			75-125			
Total Hydrocarbons	909	10.0	"	1000		90.9	75-125			
Surrogate: 1-Chlorooctane	63.2		mg/kg	50.0		126	70-130			
Surrogate: 1-Chlorooctadecane	56.3		"	50.0		113	70-130			
Calibration Check (EH60808-CCV1)				Prepared 8	Analyzed	: 08/08/06				
Carbon Ranges C6-C12	215		mg/kg	250		86.0	80-120			
Carbon Ranges C12-C28	224		"	250		89.6	80-120			
Total Hydrocarbons	439		11	500		87.8	80-120			
Surrogate: 1-Chlorooctane	64.1		"	50.0		128	70-130			
Surrogate: 1-Chlorooctadecane	62.2		"	50.0		124	70-130			
Matrix Spike (EH60808-MS1)	Sou	rce: 6H08003	3-02	Prepared &	Analyzed	: 08/08/06				
Carbon Ranges C6-C12	597	10.0	mg/kg dry	561	ND	106	75-125			
Carbon Ranges C12-C28	520	10.0	"	561	ND	92.7	75-125			
Carbon Ranges C28-C35	ND	10.0	11	0.00	ND		75-125			
Total Hydrocarbons	1120	10.0	18	1120	ND	100	75-125			
Surrogate: 1-Chlorooctane	64.9		mg/kg	50.0		130	70-130		· · · · · · · · · · · · · · · · · · ·	
Surrogate: 1-Chlorooctadecane	63.8		"	50.0		128	70-130			

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60808 - EPA 5030C (GC)										
Matrix Spike Dup (EH60808-MSD1)	Sou	rce: 6H08003	3-02	Prepared &	k Analyzed	: 08/08/06				
Carbon Ranges C6-C12	585	10.0	mg/kg dry	561	ND	104	75-125	2.03	20	
Carbon Ranges C12-C28	498	10.0	11	561	ND	88.8	75-125	4.32	20	
Carbon Ranges C28-C35	ND	10.0	н	0.00	ND		75-125		20	
Total Hydrocarbons	1080	10.0	"	1120	ND	96.4	75-125	3.64	20	
Surrogate: 1-Chlorooctane	64.1	-	mg/kg	50.0		128	70-130			
Surrogate: 1-Chlorooctadecane	63.3		"	50.0		127	70-130			
Batch EH60809 - EPA 5030C (GC)										
Blank (EH60809-BLK1)				Prepared &	k Analyzed	: 08/08/06				
Benzcne	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	11							
Xylene (p/m)	ND	0.0250	н							
Xylene (0)	ND	0.0250	**							
Surrogate: a,a,a-Trifluorotoluene	37.0		ug/kg	40.0		92.5	80-120			
Surrogate: 4-Bromofluorobenzene	33.5		"	40.0		83.8	80-120			
LCS (EH60809-BS1)				Prepared 8	k Analyzed:	: 08/08/06				
Benzene	1.24	0.0250	mg/kg wet	1.25		99.2	80-120			
Toluene	1.27	0.0250	11	1.25		102	80-120			

Benzene	1.24	0.0250	mg/kg wet	1.25	99.2	80-120
Toluene	1.27	0.0250	n	1.25	102	80-120
Ethylbenzene	1.12	0.0250	н	1.25	89.6	80-120
Xylene (p/m)	2.78	0.0250	**	2.50	111	80-120
Xylene (0)	1.39	0.0250	н	1.25	111	80-120
Surrogate: a,a,a-Trifluorotoluene	34.8	· · -·	ug/kg	40.0	87.0	80-120
Surrogate: 4-Bromofluorobenzene	36.8		"	40.0	92.0	80-120

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60809 - EPA 5030C (GC)										
Calibration Check (EH60809-CCV1)				Prepared &	- & Analyzed	: 08/08/06	-			
Benzene	49.2		ug/kg	50.0		98.4	80-120			
Toluene	48.6		11	50.0		97.2	80-120			
Ethylbenzene	48.4		11	50.0		96.8	80-120			
Xylene (p/m)	101		н	100		101	80-120			
Xylene (o)	50.0		"	50.0		100	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.8		"	40.0		82.0	80-120	· · ·	~	
Surrogate: 4-Bromofluorobenzene	32.1		"	40.0		80.2	80-120			
Matrix Spike (EH60809-MS1)	Sou	rce: 6H07012	2-01	Prepared &	& Analyzed	: 08/08/06				
Benzene	1.38	0.0250	mg/kg dry	1.38	ND	100	80-120			
Toluene	1.42	0.0250	**	1.38	ND	103	80-120			
Ethylbenzene	1.40	0.0250	**	1.38	ND	101	80-120			
Xylene (p/m)	3.09	0.0250	н	2.76	ND	112	80-120			
Xylene (0)	1.50	0.0250	"	1.38	ND	109	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.4		ug/kg	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	39.6		"	40.0		99.0	80-120			
Matrix Spike Dup (EH60809-MSD1)	Sou	rce: 6H07012	2-01	Prepared &	& Analyzed	: 08/08/06				
Benzene	1.37	0.0250	mg/kg dry	1.38	ND	99.3	80-120	0.702	20	
Toluene	1.41	0.0250	"	1.38	ND	102	80-120	0.976	20	
Ethylbenzene	1.39	0.0250	"	1.38	ND	101	80-120	0.00	20	
Xylene (p/m)	3.10	0.0250	н	2.76	ND	112	80-120	0.00	20	
Xylene (0)	1.54	0.0250	п	1.38	ND	112	80-120	2.71	20	
Surrogate: a,a,a-Trifluorotoluene	41.8		ug/kg	40.0		104	80-120			· ······
Surrogate: 4-Bromofluorobenzene	40.1		"	40,0		100	80-120			

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60812 - Water Extraction										
Blank (EH60812-BLK1)				Prepared &	k Analyzed:	08/08/06				
Chloride	ND	0.500	mg/kg							
Sulfate	ND	0.500	"							
LCS (EH60812-BS1)				Prepared &	k Analyzed:	08/08/06				
Sulfate	8.06	0.500	mg/kg	10.0		80.6	80-120			
Chloride	9.00	0.500	и	10.0		90.0	80-120			
Calibration Check (EH60812-CCV1)				Prepared &	k Analyzed:	08/08/06				
Chloride	10.1		mg/L	10.0		101	80-120			
Sulfate	10.9		n	10.0		109	80-120			
Duplicate (EH60812-DUP1)	Sour	ce: 6H07014	-04	Prepared &	k Analyzed:	08/08/06				
Chloride	4.20	5.00	mg/kg		3.93			6.64	20	
Duplicate (EH60812-DUP2)	Sour	ce: 6H08004	-05	Prepared &	k Analyzed:	08/08/06				
Sulfate	2200	50.0	mg/kg		2380			7.86	20	
Chloride	1150	50.0	н		1250			8.33	20	
Matrix Spike (EH60812-MS1)	Sour	ce: 6H07014	-04	Prepared 8	k Analyzed:	08/08/06				
Chloride	100	5.00	mg/kg	100	3.93	96.1	80-120			
Matrix Spike (EH60812-MS2)	Sour	ce: 6H08004	-05	Prepared &	k Analyzed:	08/08/06				
Chloride	2200	50.0	mg/kg	1000	1250	95.0	80-120			
Sulfate	3190	50.0	*1	1000	2380	81.0	80-120			
Batch EH60006 - Conoral Propagation (Pro	(n)									

Batch EH60906 - General Preparation (Prep)

Prepared: 08/08/06 Analyzed: 08/09/06 Blank (EH60906-BLK1) % Solids 100 %

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60906 - General Preparatio	n (Prep)									
Duplicate (EH60906-DUP1)	Sou	rce: 6H08003-	-01	Prepared: 0)8/08/06 A	nalyzed: 08	/09/06			
% Solids	83.3		%		82.9			0.481	20	

Environmental Lab of Texas

Notes and Definitions

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Raland K Just

8/10/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

Report Approved By:

Environ	mental Plus, I	nc.															5	nain	of	Cn	<u>sto</u>	S	For	E
2100 Avenue O,	Eunice, NM 88231		D, d	В В	X 1	558,	ĒUI	nice	NN.	1,88	231								μ	of 1				
1040-460 (cnc)	FAX: (303) 334-2001				ľ	ł																		ſ
Company Name	Environment	al Plus,	lnc			10111						BII	To				MN	ALY	SIS	REC	NE	ST		
EPI Project Man	ager Jason Steger	noller															-	_						
Mailing Address	P.O. BOX 155	8										406												
City, State, Zip	Eunice New I	Mexico 8	382	٣								Ęű							•					
EP! Phone#/Fax	# 505-394-3481	/ 505-39	4	60		[M		<u>للر</u>											
Client Company	Apache Corpo	ration		ļ		[F	· •											
Facility Name	N. Mon. Gray	burg SA	8	6		Γ											-							
Location	UL-C, Sec 20	, T19S, F	33	ш							ttn:	စို	ly Miller			<u></u>								
Project Referen	ce 240014									_	0. O	ല്	x 1558	-						<u></u>				
EPI Sampler Nai	ne Jacob Melan	con								ш	inic	e, Z	M 88231						· ··.					
			Ŀ			2	IATR	×			RESI	ERV.	SAMPLI	NG										
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		dMO	Ş	ਸਤ	1											<u>(</u>)	(_*(****
LAB I.D.	SAMPLE LD.		(O) F	яна	TAN	нати				Ξ	~~	· · · · ·			В) s	os) s						
H OKOCA			IO BAS	ПАТИС		/MBT8			IEB:	ISA8\0	1000	RER			1208 X	NS108	овіре	23144	a					
.			ຟ(ອ))) #	วชอ	SAW		<u>1115</u> กษา		ACII	ICE/	нто	DATE	TIME	эта	HdT	тно		LCI bu	HTO	н∀а			
-01	BH-21 (6")		ნ	۳-							X		02-Aug-06	8:15	Х	X	×	×						
-02 2	BH-22 (6")		G	ł			1			_	×		02-Aug-06	9:50	Х	×	×		\vdash					
-68 3	BH-23 (6")		G	-		_	1				×		02-Aug-06	12:00	×	Х	×	X						
-04 4	BH-24 (6")		G				1				×		02-Aug-06	1:30	Х	×	×	X						
- 05	BH-25 (6")		G	-			_				×		02-Aug-06	2:35	Х	×	×	×						
, 010 - 010	BH-26 (6")		G	-			-				×		02-Aug-06	3:06	X	×	×	×	_					
2								_											Н					
8							—	_	-		_			-			_							
6																								
10																		_						
Sampler Relinquished:	Date		Recei	ved B							ц	nail	results to: jstege	moller@e	nvpir	s.ne								
		-			,	5					2		467 9	850										
Helinquished by:	Time	8100 8140		8 J	Ë }	e statt)	J	র্			``	ъ С												
Delivered by	27	Sample (& Intac	t		-	Cheer					احراما البل											
	C. Sec. 1	>				-					_		N VVVV											٦

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	
Date/ Time:	8/8/de 10:40
.ab ID # :	6408064
nitials:	

Sample Receipt Checklist

				CI	ient Initials
7 1	Temperature of container/ cooler?	Yes	No	3.0 °C	
7 2	Shipping container in good condition?	Xes	No		
¥3	Custody Seals intact on shipping container/ cooler?	Yés	No	Not Present	
4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
7 5	Chain of Custody present?	Yes	No		
4 6	Sample instructions complete of Chain of Custody?	1 Jes	No		
¥7	Chain of Custody signed when relinquished/ received?	Yes	No		
7 8	Chain of Custody agrees with sample label(s)?	Xes	No	ID written on Cont./ Lid	
7 9	Container label(s) legible and intact?	Yes,	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No		
#11	Containers supplied by ELOT?	Yes	No		
#12	Samples in proper container/ bottle?	Tos	No	See Below	
#13	Samples properly preserved?	123	No	See Below	
#14	Sample bottles intact?	Xès	No		
#15	Preservations documented on Chain of Custody?	Yes	No		
#16	Containers documented on Chain of Custody?	Xes	No		
#17	Sufficient sample amount for indicated test(s)?	(top	No	See Below	
#18	All samples received within sufficient hold time?	Yes)	No	See Below	
#19	VOC samples have zero headspace?	XES	No	Not Applicable	

Variance Documentation

Contact:	 Contacted by:	 Date/ Time:	
Regarding:		 	
Corrective Action Taken	 	 	
Check all that Apply:	See attached e-mail/ fax		

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event
Chain of Custody Form	1 of 1	ANAI YSIS REQUEST										MPLING	()	>>> EE2 (20) DE2 (C) D51B	Н	-06 9:15 X X X X 1	-06 10:20 X X X X 1	-06 11:23 X X X X	-06 13:05 X X X X	-06 13:35 X X X X	-06 14:13 X X X X	-06 14:50 X X X X X	-06 15:15 X X X X	-06 15:45 X X X X	-06 16:40 X X X X		stegemoller@envplus.net			
	_				≡ (•	」 一一 一				Box 1558	e, NM 88231	ERV. SAI			DATE DATE	-VoV-29-NoV-	-VoV-02	-vov-62	29-Nov	29-Nov	29-Nov	29-Nov-	30-Nov-	29-Nov	29-Nov-		mail results to: j	1 ES.		
	231					Щ			- - -	C	nic	RESI	<u> </u>	 SCODGE OTHER: ACID/BASE 				×	\mathbf{X}	×	×	Ľ	×	×	×		Ш	2		
	188		1							ς -	ជ											_								
	NN												┣										_			< .;		2	Hand I	
	ice,											×	┣	SLUDGE SUIL SLUDE OIL SLUDGE														ž-	statt)	
	Eun											ATR	┝──							_	_		_	_				$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$		
	58,	-		T	Т	Т	Т	Т	1	T	T	Σ	\vdash				_		-		\neg		-	-	-			調		
	(15																	-						_	_	•••		S and S		
	Boy					15						\vdash				_	_	-	_		\pm					Ĩ	Intact			
	0	<u>ان</u>			323	1-26		803	37E			H		# CONTAINERS		· (5) (5)	(5)	(5	(5	1	(5	(5	(5	, (5		Sceive	sceive	iceived	
s, Inc.	s, Inc. P		tegemoller	X 1558	Vew Mexico 8	3481 / 505-394	Corporation	Gravburg SA	sc 20. T19S. R		Blackburn			<u></u>		5			~			_					Date Z - / · V R	Daily, . 1 M. Re	12	Sample Co Ves
ntal Plus	ce, NM 88231 (505) 394-260	Environ	Jason Si	P.O. BO.	Eunice h	505-394-	Apache C	N. Mon.	NL-C, Se	240014	George			SAMPLE I.		(5')	(10')	(15')	(5')	(10')	(5')	(10')	(1')	(5')	(10')		17. 		rown	
Imel	O, Euni. FAX:	Je	anager	SS		1X#	2			nce	ame					1 SB-1	2 SB-1	3 SB-1	4 SB-2	5 SB-2	6 SB-3	7 SB-3	8 SB-4	9 SB-4	10 SB-4			t to	1tres	
Enviror	2100 Avenue ((505) 394-3481	Company Nan	EPI Project Ma	Mailing Addre	City, State, Zig	EPI Phone#/Fé	Client Compai	Facility Name	Location	Project Refere	EPI Sampler N			LABI.D.		H11661 -	1	Į	Į)	1			3)		Sampler Relinquished:	Bettinguished by:	flerar	Delivered by:

.

PHONE (325) 673-7001 · 2111 BEECHWOOD · ABILENE, TX 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR ENVIRONMENTAL PLUS, INC. ATTN: JASON STEGEMOLLER P.O. BOX 1558 EUNICE, NM 88231 FAX TO: (505) 394-2601

Receiving Date: 12/01/06 Reporting Date: 12/05/06 Project Owner: APACHE CORPORATION (240014) Project Name: N. MON. GRAYBURG SA 603 Project Location: UL-C, SEC 20, T19S, R37E Sampling Date: 11/29/06 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: NF Analyzed By: BC

		GRO	DRO			ETHYL	TOTAL
LAB NO.	SAMPLE ID	(C ₆ -C ₁₀)	(>C ₁₀ -C ₂₈)	BENZENE	TOLUENE	BENZENE	XYLENES
		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
ANALYSIS	DATE:	12/04/06	12/04/06	12/04/06	12/04/06	12/04/06	12/04/06
H11861-1	SB-1 (5')	<10.0	<10.0	<0.005	< 0.005	<0.005	<0.015
H11861-2	SB-1 (10')	<10.0	<10.0	< 0.005	<0.005	<0.005	< 0.015
H11861-3	SB-1 (15')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-4	SB-2 (5')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-5	SB-2 (10')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-6	SB-3 (5')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-7	SB-3 (10')	<10.0	<10.0	<0.005	<0.005	< 0.005	<0.015
H11861-8	SB-4 (1')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-9	SB-4 (5')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-10	SB-4 (10')	<10.0	<10.0	<0.005	<0.005	.<0.005	<0.015
Quality Con	trol	777	778	0.101	0.101	0.102	0.294
True Value	QC	800	800	0.100	0.100	0.100	0.300
% Recovery	/	97.1	97.2	101	101	102	97.9
Relative Per	rcent Difference	1.9	1.3	2.7	0.7	1.2	0.9

METHODS: TPH GRO & DRO - EPA SW-846 8015 M; BTEX - SW-846 8260.

H11861A

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim ansing, whether based in contract or tort, shall be limited to the amount paid by client for analyses All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incloantal or consequential damages, including, without limitation, business interruptions. loss of use, or loss of profits incurred by client, its subsidiaries affiliates or successors arising out of or related to the parformance of services increander by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

PHONE (505) 393-2326 + 101 E. MARLAND + HOBBS, NM 88240

ANALYTICAL RESULTS FOR ENVIRONMENTAL PLUS, INC. ATTN: JASON STEGEMOLLER P.O. BOX 1558 EUNICE, NM 88231 FAX TO: (505) 394-2601

SO.

Receiving Date: 12/01/06 Reporting Date: 12/05/06 Project Owner: APACHE CORPORATION (240014) Project Name: N. MON. GRAYBURG SA 603 Project Location: UL-C, SEC 20, T19S, R37E Sampling Date: 11/29/06 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: NF Analyzed By: HM/NF

CI

LAB NUMBER SAMPLE ID	(mg/Kg)	(mg/Kg)
ANALYSIS DATE:	12/05/06	12/05/06
H11861-1 SB-1 (5')	148 ′	464

H11861-1	SB-1 (5')	148	464
H11861-2	SB-1 (10')	45.2	144
H11861-3	SB-1 (15')	40.2	80
H11861-4	SB-2 (5')	269	144
H11861-5	SB-2 (10')	198	80
H11861-6	SB-3 (5')	245	176
H11861-7	SB-3 (10')	158	96
H11861-8	SB-4 (1')	< 1	< 16
H11861-9	SB-4 (5')	104	< 16
H11861-10	SB-4 (10')	134	32
Quality Contro)	26.2	470
True Value Q(<u> </u>	25.0	500
% Recovery		105	94
Relative Perce	ent Difference	7.2	8.2

METHODS: EPA 600/4-79-020375.4SM 4500 Cl BNOTE: Analyses performed on 1:4 w:v aqueous extracts.

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyse. All our spiculating those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In holevent shall be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client. Its subsidiaries affiliates or successors ansing out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

PHONE (325) 673-7001 · 2111 BEECHWOOD · ABILENE, TX 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

~~

ANALYTICAL RESULTS FOR EDDIE SEAY CONSULTING ATTN: EDDIE SEAY 601 W. ILLINOIS HOBBS, NM 88242 FAX TO: (505) 392-6949 Receiving Date: 03/07/07 Reporting Date: 03/07/07 Project Owner: J. COOPER Project Name: APACHE SAU #603 / #1019 Project Location: MONUMENT, NM

Analysis Date: 03/07/07 Sampling Date: 03/07/07 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: HM Analyzed By: HM

LAB NO.	SAMPLE ID	(ma/Ka)
H12307-1	603-1	< 16
	1. 1	
Quality Con		500
True Value		500
% Recovery	1	100
Relative Pe	rcent Difference	1.0

METHOD: Standard Methods 4500-CI⁻B NOTE: Analysis performed on a 1:4 w:v aqueous extract.

Mixeno

<u>03-07-07</u> Date SAMPLE FREM LOWER AREA SUD OF LEAK DEEP dill NEXT TO READ - 1' BELOW SWEFACE

H12307

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by **Cardinal** within thirty (30) days after completion of the applicable service. In no event shall **Cardinal** be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, service. In the event shall carumat be hable for incluential or consequential damages, including, whiled initiation, dusiness interruptions, loss or use, or loss or profile incluted by dietric, is subside affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

STODY AND ANALYSIS REQUEST	ANALYSIS REQUEST		Terms and Conditions: Interest will be charged on all accounts more than 30 days past due at the rate of 24% per annum from the original date of involce, and all costs of collections, including attorney's fees.	s 🗆 No Add'l Phone #: s 🗇 No Add'l Fax #:
and, Hobbs, NM 88240 5 Fax (505) 393-2476	8/14-110	P.O.#: Company: Company: Company: Attn: Attn: Attn: Attn: Company: Company: State: State: State: State: City: Company: Company: Attn: Attn: Attn: Attn: Company: Com	tract or tort, shall be imfeed to the amount paid by the dient for the and received by Cardinal within 30 days after completion of the applicable is, loss of use, or loss of profits incurred by clear, its subsidiaries,	Staff) Staff) Staff) Control CHECKED BY: Condition CHECKED BY: Cact (Initials) CHECKED BY: CHECKED BY:
ARDINAL LABORATORIES, INC. 2111 Beechwood, Abilene, TX 79603 101 East Maria (915) 673-7001 Fax (915) 673-7020 (505) 393-2326	Company Name: Edd. (2) Som Construction	Project Manager: E. L. State: NM Zip: 272/2 Address: J. J. L. State: NM Zip: 272/2 City: H.d. State: NM Zip: 272/2 Project Name: A. L. G. M. Zip: 272/2 Project Name: A. L. G. M. L. S. Project Owner: S. Contrainers Project Name: A. L. S. Project Commer: S. Contrainers Project Name: A. Contrainers Pr	LEASE NOTE: Liability and Damages. Cardinal's lability and client's exclusive remedy for any claim ariang whether based in control nobyes. All claims including more for negloperce and any other cause whateover sing to be deemed where unders made in writing a ervice. In one event, and control to the performance of services however, including including matters interprior filtialise or successions arising out of or federal to the performance of services however, how though including	Sampler Relinquished: Date: $3/7$ Received By: Time: $1:3O$ Received By: $2i/0.7/0.7$ Received By: $1ime: 1:3O$ Received By: $1ime: 2i/0.7/0.7$ Received By: $2i/0.7/0.7$

f Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476.

APPENDIX II

PROJECT PHOTOGRAPHS

Photo #1: Well location sign.

Photo #2: Lanexco well location sign.

Photo #3: Looking westerly at point of release. Dark stained soil indicates contamination.

Photo #4: Looking westerly from point of release at Lanexco well pad. Dark stained soil indicates contamination.

Photo #5: Looking northerly at excavation of the south flowpath area.

Photo #7: Looking west-northwesterly at excavation of Lanexco caliche well pad.

Photo #8: Looking northeasterly across ephemeral pond to excavation.

Photo #9: Looking northeasterly at pooling area west of Lanexco caliche well pad (i.e., location of soil boring SB-1).

Photo #10: Looking west-southwesterly at southern-most berm (i.e., location of soil boring SB-4), ephemeral pond area is in background.

Photo #11: Looking southerly across release area at center berm in southern portion of excavation.

APPENDIX III

-

SOIL BORING LOGS

					L	_og	Of Test	; Borings (NDTE - Page 1 of 1)						
							Projec	t Number: NMOCD 1RP# 1019; EPI Ref. #240014						
	ENVIRONMENTAL PLUS, INC.				LUS, IN	VC.	Projec	Project Name: Apache Corporation - NMGSAU #603						
₹,'		CONSULTING AND REMEDIAL CONSTRUCTION					Location	UL-C, Section 20, Township 19 South, Range 37 East						
•1	• EUNICE, NEW MEXICU 505-394-3481						Boring N	umber: SB-1 Surface Elevation: 3,680-feet amsl						
<u> </u>	u.	No.	e L	so	a si G		50	Start Date: 11-29-06 Time: 08:00						
Time	ampl		İstu	PID	ilari alys 19/K	V mbo	lept fee	Completion Date: <u>11-29-06</u> Time: <u>12:00</u>						
	<u>ь</u>	85	υ	Re	ς Ας	∽		Description						
							\vdash	1' Topsoil - Sandy Loam						
	ļ		ļ											
		 					5	4' Fractured Limestone						
0915	52	5	Dry_		480			5' Caliche, White to Tan, Hard to Firm						
							+							
							E							
	<u> </u>													
1020	22	5	Dry		240			_						
							-	_						
							+	-						
	L.													
1123	22	4	Dry		160		13	Sandstone, Hard to Firm						
							–	End of Soil Boring at 16' bgs						
							+	—						
								_						
			-				2U							
							\vdash	_						
							-							
							25							
		ļ	l					_						
							–	_						
							-30	—						
Date	Wate	er Leve	n Meas	urement Casing	s (feet Cave-li	;) n W	ater Dr	illing Method: HSA 3.5" ID						
		De	epth -	Depth -	Depth		evel Bo	ckfill Method: Bentonite						
-			-	-	-		- Fie	eld Representative: GB						
			I-				I							

					L	٥g	Of Test	t Borings (NOTE - Page 1 of 1)
				·····			Projec	t Number: NMOCD 1RP# 1019; EPI Ref. #240014
	ENVIRONMENTAL PLUS, INC.						Projec	t Name: Apache Corporation - NMGSAU #603
ן בי י		REM	CONSUL EDIAL	_TING AN CONSTRU		ł	Location	nu UL-C, Section 20, Township 19 South, Range 37 East
	[·	Εl	505-3	NEW ME) 94-3481	KICU	ŀ	Boring N	lumber: SB-2 Surface Elevation: 3,680-feet amsl
	a.	20	a	s.	9 S C	ل چن		Stort Date: 11-29-06 Time: 12:30
Time	ype		stu	PID ppm)	loric alys g/K(S,C,S	ep ti	Completion Date: <u>11-29-06</u> Time: <u>13:30</u>
	йг	aŭ,	Ψ	Re	4 A H H H H H	, ⊐∿		Description
							-	_
							-	—
			<u> </u>				5	4' Fractured Limestone
1305	22	5	Dry		240		+	5' Callche, White to Tan, Hard to Firm
							<u> </u>	_
							\vdash	_
							10	
1325	22	4	Dry		160			Sandstone, Hard to Firm
							<u> </u>	End of Soil Boring at 11' bgs
1							-	_
							F	_
	4						+15 L	
								_
						1		_
			-				-	_
							20	
							Ľ	
		1					–	
							25	
							F	-
							Ļ	_
			ļ			:		
							-	
Dete	Wate	er Leve	l Meas	urement	s (feet	;) 		ulling Method: HSA 3.5° ID
Πατε		ie So	epth	Depth	Depth		evel Br	ackfill Methodi Bentonite
-			-	_	-		- Fr	eld Representative: GR
<u> </u>]					

Envirgenetizing Envirgenetizing Project Number: INDED IRP# 109; EPI Ref. #240014 Project Number: Apache Corporation - NMGSAU #603 Referenciation: Distribution: Surface Elevation: 3,680-feet and Referenciation: Surface Elevation: 1435 SS Dry 240 SS S Dry 1433 SS S Dry 1433 SS 4 Dry 160 Substance Substance Substance 1433 SS 4 Dry 160 Substance Substance 1450 <t< th=""><th></th><th></th><th></th><th></th><th></th><th>L</th><th>.og</th><th>Of Tes</th><th>t Borings (NOTE - Page 1 of 1)</th></t<>						L	.og	Of Tes	t Borings (NOTE - Page 1 of 1)
ENVIRONMENTAL PLUS, INC DESULTING AND RENEDIAL CONSTRUCTION SUMCE VEXTOR SUMCE VEX		- <u> </u>						Projec	t Number: NMOCD 1RP# 1019; EPI Ref. #240014
Return Links Links and Time Exhibits of the With Exhibits 305-394-3481 Location UL-C, Section 20, Township 19 South, Range 37 Eas Boring Number Image: Start		ENVIRONMENTAL PLUS, INC.			IC.	Projec	ct Name: Apache Corporation - NMGSAU #603		
Image: Second system Second system Second system Second system Second system Image: Second system Image: Second system Image: Second system Second system Second system Image: Second system Image: Second system Image: Second system Second system Second system Image: Second system Image: Second system Image: Second system Second system Second system Image: Second system Image: Second system Image: Second system Image: Second system Second system Image: Second system Image: Second system Image: Second system Image: Second system Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Sec			REM					Locatio	on: UL-C, Section 20, Township 19 South, Range 37 East
B B	11	P	EL	505-39	94-3481			Boring	Number: SB-3 Surface Elevation: 3,680-feet amsl
Product Product <t< td=""><td></td><td>۵.</td><td>ery 5)</td><td>a L</td><td>gs</td><td>e Sis O</td><td>60</td><td>تعا</td><td>Start Date: 11-29-06</td></t<>		۵.	ery 5)	a L	gs	e Sis O	60	تعا	Start Date: 11-29-06
V V V V V Description 1413 SS 5 Dry 240 <	Time	Type	2 U L N N	listu	PID adin (ppm	iolc 2/2 2/5	U.S.C.)ept	Completion Date: <u>11-29-06</u> Time: <u>15:00</u>
1413 SS 5 Dry 240 1450 SS 4 Dry 160 150		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	&⇒	Σ	Re Re	₽ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			Description
1413 SS 5 Dry 240 1450 SS 4 Dry 160 150 150 150 150 150		! 							_
1413 SS 5 Dry 240 1413 SS 5 Dry 240 1450 SS 4 Dry 160 15 15 20 21 220 </td <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>E</td> <td></td>		1						E	
1413 SS 5 Dry 240 1413 SS 5 Dry 240 1450 SS 4 Dry 160 15 15 20 21 220 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1413 SS 5 Dry 240 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm End of Soll Boring at 11' bgs 15 20 20 21 220 220 </td <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>0.10</td> <td></td> <td>5</td> <td>5 4' Fractured Limestone</td>			<u> </u>			0.10		5	5 4' Fractured Limestone
1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm End of Soil Boring at 11' bgs	1413	SS	5	Dry		240			_
1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 1450 SS 4 Dry 160 1450 SS 4 Dry 160 15 20 20 21 220 225									5' Caliche, White to Jan. Hand to Firm
1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 1450 SS 4 Dry 160									
1450 SS 4 Dry 160 Sanastone, Hard to Firm Image: Signal and Signal			<u> </u>					10	
End of Soil Boring at 11' bgs	1450	22	4	Dry		160		<u> </u>	Sandstone, Hard to Firm
Vater Level Measurements (feet) Date Time Sample Casing Cave-in Vater Date Time Sample Casing Cave-in Vater									End of Soil Boring at 11' bgs
Vater Level Measurements (feet) Date Time Sample Casing Cave-In Vater Date Time Sample Casing Cave-In Vater									_
Vater Level Measurements (feet) Date Time Sample Casing Cave-in Water								15	
Vater Level Measurements (feet) Date Time Sample Casing Cave-in Water Date Time Sample Casing Cave-in Water									_
Vater Level Measurements (feet) Date Time Sample Casing Cave-in Water Drilling Method: HSA 3.5' ID									_
Vater Level Measurements (feet) Date Time Sample Casing Cave-in Water Drilling Method: HSA 3.5' ID								-	—
Vater Level Measurements (feet) Date Time Sample Casing Cave-in Water Drilling Method: HSA 3.5' ID									
Vater Level Measurements (feet) Date Time Sample Casing Cave-in Water Drilling Methodi HSA 3.5' ID									
Water Level Measurements (feet) Date Drilling Method: HSA 3.5' ID								\vdash	_
Water Level Measurements (feet) Date Drilling Method: HSA 3.5' ID								\vdash	_
Water Level Measurements (feet) Date Drilling Method: HSA 3.5' ID									_
Water Level Measurements (feet) Date Drilling Method: HSA 3.5' ID									
Water Level Measurements (feet) Date Time Sample Casing Cave-in Water Drilling Method: HSA 3.5' ID								-	_
Water Level Measurements (feet) Date Drilling Method: HSA 3.5' ID								-	
Water Level Measurements (feet)								<u>├</u>	_
Water Level Measurements (feet) Drilling Method: HSA 3.5' ID Date Time Sample Casing Cave-in Water Drilling Method: HSA 3.5' ID								<u> </u>	
Date Time Sample Casing Cave-in Water Drilling Method: HSA 3.5' ID		\/a+-		Maa-		- (fait	<u></u>		
	Date	Tim	ne Sa	mple	Casing	Cave-li	., 1 V	ater D	Drilling Method: HSA 3.5' ID
Backfill Method: Bentonite				- -	-	рерти –		- E	Backfill Method: Bentonite
Field Representative: GB	-	_	·	-		-			leld Representative: GB

Image: Second state of the second s)							
Envirenmental Consulting Remetiate Envirences, Nev MEXICO SUB-394-3481 Project Name: Apache Corporation - NMGSAU #603 Broing Number: SB-4 Surface Elevation: 3,680-fee Surface Elevation: 3,680-fee Start Date: 11-29-06 Broing Number: SB-4 Surface Elevation: 3,680-fee Surface Elevation: 3,680-fee Start Date: 11-29-06 Broing Number: SB-4 Surface Elevation: 3,680-fee Surface El								
REMEDIAL CUNTRUCTION EUNICE, NEV MEXICO SUS-394-3481 $uccation:UL-C, Section 20, Township 19 South, Range 37Boring Number:uccation:UL-C, Section 20, Township 19 South, Range 37Boring Number:uccation:Uccation:UL-C, Section 20, Township 19 South, Range 37Boring Number:uccation:uccation:Uccation:UL-C, Section 20, Township 19 South, Range 37Boring Number:uccation:uccation:Uccation:UL-C, Section 20, Township 19 South, Range 37Boring Number:uccation:uccation:Uccation:Uccation:uccation:uccation:Uccation:Sufficient 36Southuccation:uccation:uccation:Uccation:uccation:uccation:uccation:uccation:uccation$	Project Name: Apache Corporation - NMGSAU #603							
Boring Number: SB-4 Surface Elevation: 3,680-fee $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	'East							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t amsl							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5							
1515 SS 5 Dry 160 1' Topsoil-Sandy Loam 1545 SS 5 Dry 160 1545 SS 5 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160								
1545 SS 5 Dry 160 1545 SS 5 Dry 160 1640 SS 3 Dry 160								
1545 SS 5 Dry 160 1640 SS 3 Dry 160	_							
1545 SS 5 Dry 160 1640 SS 3 Dry 160 15 - - - - 20 - - - -								
1640 SS 3 Dry 160 10 Sandstone, Tan, Hard to Firm 1640 SS 3 Dry 160 10 End of Soll Boring at 11' bgs 11 11 11 11 11 11' bgs 11 11 11 11' bgs 11' bgs 11 11 11' bgs 11' bgs 11' bgs	/							
1640 SS 3 Dry 160 1640 SS 3 Dry 10 1640 SS 3 Dry 10 1640 SS 3 Dry 10 1640 SS 160 10 Sandstone, Tan, Hard to Firm 1640 1 1 1 10 1640 1 1 15 15 1640 1 1 1 15 17 1 1 1 17 1 1 1 18 1 1 1 19 1 1 1 19 1 1 1	_							
Indext red Indext red Indext red Indext red 1640 SS 3 Dry 10 1640 SS 3 Dry 10 Indext red Indext red Indext red Indext red Indext red Ind	_							
1640 SS 3 Dry 160 10 Sandstone, Tan, Hard to Firm Image: Image of the state of the s								
End of Soll Boring at 11' bgs								
	_							
	—							
	—							
	_							
	_							
	_							
Water Level Measurements (feet) Date Time Sample Casing Cave-in Water Drilling Methodi HSA 3.5' ID								
Depth Depth Depth Level Backfill Method: Bentonite								
Field Representative GB								

APPENDIX IV

INFORMATIONAL COPY OF INITIAL NMOCD C-141 FORM

.

· · · · · · · ·

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

.....

Santa I	re, NM 87505								
Kelease Notification and Corrective Action									
Name of Company Apacha (12(1)	Contact Drug Merthaus								
Address 17 Hess bane	Telephone No. $505 - 441 - 21248$								
Facility Name NMGSAU # 603	Facility Type Injection well								
Surface Owner State of NM Mineral Owner	State of NM Lease No. 3-1651-9								
LOCATIO	DN OF RELEASE								
Unit Letter Section Township Range Feet from the Nort	h/South Line Feet from the East/West Line County								
C 20 195 37E 660 N	orth 1980 West Lea								
Latitude <u>N32°39,07</u>	24 ¹ Longitude <u>10103° 16,560</u> 1								
NATURE OF RELEASE									
Type of Release Injection lenk	Volume of Release 85 bb/5 Volume Recovered (0) bb/5								
Source of Release Mug blew cut	Date and Hour of Occurrence Date and Hour of Discovery ///6/06 9/45/40/								
X Yes □ No □ Not Required	1 Corray Wink								
By Whom? Daug Mathews	Date and Hour 17/14/06 12/00 PM								
Was a Watercourse Reached?	If YES, Volume Impacting the Watercourse.								
f a Watercourse was Impacted, Describe Fully.*									
Describe Cause of Problem and Remedial Action Taken.*									
Plug blew out of invection line	Trucks were called and all								
fluid was picked up.									
Describe Area Affected and Cleanup Action Taken.*	and down hill to the usest, 1.0								
Injection water ran off locali	of 1								
Vacuum trucks picked up all	fluid,								
hereby certify that the information given above is true and complete to	the best of my knowledge and understand that pursuant to NMOCD rules and where								
egulations all operators are required to report and/or file certain release ublic health or the environment. The acceptance of a C-141 report by t	notifications and perform corrective actions for releases which may endanged the NMOCD marked as "Final Report" does not relieve the operator of liability								
hould their operations have failed to adequately investigate and remedia	ate contamination that pose a threat to ground water, surface water, human health								
r the environment. In addition, NMOCD acceptance of a C-141 report	dees not relieve the operator of responsibility for compliance with any other								
coeral, state, or local laws and/or regulations.	OIL CONSERVATION DIVISION								
in Run Martaus									
ignature: NUM SCOMMA	INVIE ENER								
rinted Name: Doug Mathews	Approved by District Supervision								
ine: Pumper II	Approval Date: 5:15:07 Expiration Date: 7:15.07								
mail Address: doing, methews ousa, avachecorpu	Conditions of Approval:								
M/16/010 1441-21/18									
ttach Additional Sheets If Necessary									