APPROVED CONDITIONAL By Kellie Jones at 10:30 am, Jan 04, 2016

Additional sample along the bottom arm is required. This can be field sampling.
 OCD would like to be present during construction of the trench and observe the washing process.

Devon Energy Production Co LP

Checkers 24 Federal #005

Delineation Report and Work Plan

Unit Letter M, Section 24, T22S, R32E Lea County, New Mexico

30-025-33702

November 20, 2015 December 30, 2015-(Revised)

Prepared for:

Devon Energy Production Co., LP PO Box 250 Artesia, New Mexico 88211

By:

Safety & Environmental Solutions, Inc. 703 East Clinton Street Hobbs, New Mexico 88240 (575) 397-0510

TABLE OF CONTENTS

I.	COMPANY CONTACTS	1
II.	BACKGROUND	1
III.	SURFACE AND GROUND WATER	1
IV.	CHARACTERIZATION	1
V.	WORK PERFORMED	2
VI.	ACTION PLAN	2
VII.	FIGURES & APPENDICES	3
F	igure 1 – Vicinity Map	5
F	igure 2 – Site Plan	6
A	sppendix A – C-141	9
A	ppendix B – Groundwater	11
A	ppendix C – Photo Documentation	12
A	ppendix D – Analytical Data	123

I. Company Contacts

Representative	Company	Telephone	E-mail
Brett Fulks	Devon Energy Prod.	575-748-1844	Brett.Fulks@dvn.com
Bob Allen	SESI	575-397-0510	ballen@sesi-nm.com

II. Background

Safety and Environmental Solutions, Inc., hereinafter referred to as (SESI) was engaged by Devon Energy to perform an initial site assessment and delineation of the site. The Checkers 24 Federal #005 is situated in Lea County, Section 24, Township 22S, and Range 32E.

According to the C-141, a leak resulted from a blown gauge on the wellhead (Appendix A). The operator contacted a vacuum truck to recover a significant amount of fluid minimizing run off and surface impact to pasture area. The tubing was closed on the wellhead and the SI unit. The gauge was replaced with a new one and the unit placed back in operation. The initial site assessment by SESI personnel revealed that the area of impact measured approximately 4,922.03 sq. ft.

III. Surface and Ground Water

There is no record of groundwater in the immediate vicinity of the site location. Further research of the New Mexico Office of the State Engineer website reveals records for Lea County, Section 24, Township 22S, and Range 32E which indicate the average depth to groundwater for the area to be 256' bgs. (Appendix B).

IV. Characterization

The target cleanup levels are determined using the *Guidelines for Remediation of Leaks, Spills and Releases* published by the NMOCD (August 13, 1993). Based on the ranking criteria presented below, the applicable Recommended Remediation Action Levels (RRAL) are 10 parts per million (ppm) Benzene, 50 ppm combined benzene, toluene, ethyl benzene, and total xylenes (BTEX), and 5,000 ppm Total Petroleum Hydrocarbons (TPH). Characterization of vertical extent of chloride concentration to a level of 250 mg/kg (PPM) is also required.

Depth to Ground Water:							
(Vertical distance from contaminants to	Less than 50 feet	20 points					
seasonal high water elevation of	50 feet to 99 feet	10 points					
groundwater)	>100 feet	0 points	Х				
Wellhead Protection Area:							
(Less than 200 feet from a private domestic	Yes	20 points					
water source; or less than 1000 feet from all	No	0 points	Х				
other water sources)							
Distance to Surface Water:							
(Horizontal distance to perennial lakes,	Less than 200 feet	20 points					
ponds, rivers, streams, creeks, irrigation	200 feet to 1000 feet	10 points					
canals and ditches) >1000 feet 0 points X							
RANKING SCORE (TOTAL POINTS)			0				

V. Work Performed

On October 26, 2015, SESI was onsite to photograph, assess and map the spill area.

On October 29, 2015 SESI personnel visited the site to conduct a vertical and horizontal delineation of the impacted area. It was determined that four (4) sample point positions would be sufficient given the dynamics and outlay of the area. The Bore holes were advanced to depths of 2' bgs., to 3' bgs., respectively. Representative soil samples were properly packaged, preserved and transported to Cardinal Laboratories, Hobbs New Mexico and analyzed for Chloride (CI⁻) (Method SM 4500CI-B). The results of the analysis are presented in the table below (Appendix D):

Sample Date	Chloride (mg/kg)	Total BTEX	GRO C6- C10	DRO >C10-
Depth				020
AH-1	6400			
Surface				
AH-1 1'	1090			
AH-1 2'	96	<0.300	<10.0	42.0
AH-2	1600			
Surface				
AH-2 1'	1360			
AH-2 2'	1810			
AH-2	80	<0.300	<10.0	14.5
2.5'				
AH-3	6130			
Surface				
AH-3 1'	704			
AH-3 2'	16.0	< 0.300	<10.0	<10.0
AH-4 1'	11300			
AH-4 2'	80.0	< 0.300	<10.0	<10.0

VI. Action Plan

Due to the results listed above and the dynamics of this site; the following action plan is proposed:

VI. Action Plan

Based on the above confirmation of the soil analyses, SESI is proposing the following Course of action:

- 1. A treatment trench will be installed near the spill area, the size of which will hold the volume of the contaminated soil from the spill area. The material removed from the treatment trench will be stockpiled.
- 2. The treatment trench will be lined with a 20 mil liner and a drainage system installed in the bottom of the trench above the liner. The bottom of the test trench will be sloped to insure proper drainage at the bottom of the trench (Figure 2). The drainage system will be connected to piping to allow pumping of the leachate from the treatment trench.
- 3. The leachate will be pumped into a sump place adjacent to the treatment trench. The leachate will be monitored for electrical conductivity (EC) and transferred to frac tanks for recycling.
- 4. Upon completion of trench preparation the impacted areas would be excavated. The impacted soils would then be thoroughly blended with Sphagnum Peat Moss. The blended mixture of contaminated soils will be placed in the treatment trench in layers of 18" to 24". Rx soil amendment combined with water will be applied to each lift and allowed to leach through the lifts.
- 5. The drainage of water from the soil treatment will filter down to the drainage system. The leachate will be retained for recycling. Once target levels for the treated soil have been achieved with confirmed laboratory and/or field analysis the treatment trench will be closed.
- 6. The clean soils stockpiled from the treatment trench will be used to backfill the excavated spill area.
- 7. Upon confirmed closure of the treatment trench, the entire area will be seeded with the appropriate seed mixture.
- 8. SESI will file the appropriate closure documentation with all regulatory agencies.

1. *Excavation* - RXSoil will direct and supervise the excavation of the entire Effected Area (EA). The poly liner will ensure that no collateral contamination happens during the process. The slope of the excavation area will be 1%-2% grade throughout the project to maximize the removal of contaminant, as illustrated in Figure One:

2. *Poly-Liner* - Once the poly liner is firmly in place, the drain infrastructure will be placed on top of the liner and run down-slope to a manifold. The drains will be covered with a sock to avoid silting in and the blockage of drainage. All drains and manifolds are engineered with dual linings to ensure structural support as well as maximum flow.

Figure Two

3. *Drainage* - The drainage infrastructure will be attached to a sump area, which includes a submersible pump that activates upon a mercury switch and a redundant backup float system. The sump discharges directly into a series of frac tanks. The discharged leachate will be transferred to third party companies. This will ensure that the used water will be recycled to a secondary industrial purpose.

4. Blending and Bulking – Blending and bulking is a critical stage in the restoration of the soil to its pre-vegetative state. Canadian sphagnum peat moss or a local organic matter will be used to create a healthy profile and generate a prolific microbial environment. The amount of organic matter used is directly related to the Electrical Conductivity (EC) level. For this example, we will use 5 tons per acre. Adding organic matter (e.g.; peat moss) facilitates percolation and adds a proppant to the soil, substantially increasing the rate at which the soil is remediated

5. Replacement & Remediation – Once the soil has been completely blended with the organic matter, it is placed on top of the drain infrastructure in layers (usually 18"-24" lifts). The chemical RXSal is applied between the lifts until saturation is achieved. It takes approximately 30 minutes for the chemical exchange and displacement process to occur. At that point, another layer will be placed and the process repeated. The sodium and chloride contaminant will be collected into frac tanks for secondary recyclable usage.

Note: The piping, sump and frac tank are located adjacent to the trench above ground

- 6. *Monitoring and Testing* Once the entire area has been remediated, RXSoil will engage a third party testing agent to conduct comprehensive tests to confirm remediation and compliance with all state and federal guidelines.
- 7. Closure Documentation will be submitted to all parties of concern upon reaching target concentrations and completion of the site according to guidelines.

VII. Figures & Appendices

Figure 1 – Vicinity Map Figure 2 – Site Plan Appendix A – C-141 Appendix B – Groundwater Appendix C – Photo Documentation Appendix D - Analytical

Figure 1 Vicinity Map

Continue straight Turn right

Turn left

ampbell Rd Continue straight to stay on Campbell Rd Continue at a continue straight to stay on Campbell Rd

Figure 2 Site Plan Devon Checkers 24 Fed 05 Bore Hole 2

Bore Hole 3

Well 5 Bore Hole 4 as Well 1

1996

Spill Area = 4,922.03 sq.

Bore Hole 1

Googleearth

Imagery Date: 2/13/2014 32°22'19.07" N 103°38'07.90" W elev 3760 ft eye alt 3965 ft 🔘

Step #2.B Excavate contaminated soil and put into **Remediation trench**

Clean soil pile

Step #3 Jse clean soil to fill contaminated site

Appendix A C-141

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Release Notification and Corrective Action

	OPERATOR	Initial Report	Final Report
Name of Company Devon Energy Production Company	Contact Randy Gladden; Prod	uction Foreman	
Address 6488 Seven Rivers Hwy Artesia, NM 88210	Telephone No. 575-513-9463		
Facility Name Checkers 24 Federal 5	Facility Type Oil Well		

Surface Owner recerat	ce Owner Federal
-----------------------	------------------

Mineral Owner Federal

API No 30-025-33702

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
М	24	22S	32E	660	South	330	West	Lea

Latitude: 32.371731 Longitude: -103.635369

NATURE OF RELEASE

Type of Release Oil & produced water release	Volume of Release 7.5BBL oil & Volume Recovered 2 BBLS oil				
	7.5BBL produced water				
Source of Release	Date and Hour of Occurrence	Date and Hour of Discovery			
Gauge on tubing line at the wellhead	October 23, 2015 4:00 PM	October 23, 2015 4:00 PM			
Was Immediate Notice Given?	If YES, To Whom?				
🛛 Yes 🗌 No 🔲 Not Required	BLM: Jim Amos				
	OCD: Kellie Jones				
By Whom?	Date and Hour				
BLM: Assistant Production Foreman Rebecca Jamison	BLM: October 24, 2015 7:00 PM				
OCD: EHS Professional Brett Fulks	OCD: November 18, 2015 4:00 PM				
Was a Watercourse Reached?	If YES, Volume Impacting the Wa	atercourse			
🗌 Yes 🖾 No	N/A				
If a Watercourse was Impacted Describe Fully *					

If a watercourse was impacted, Describe Fully.

N/A **Describe Cause of Problem and Remedial Action Taken.***

The top of the gauge on the tubing line at the well head blew out resulting in a release. Upon discovery the tubing was closed and the well was shut in immediately to prevent further release. The gauge has been replaced.

Describe Area Affected and Cleanup Action Taken.*

15 BBLS of oil and produced water mix; approximately 7.5 BBLS oil & 7.5 BBLS produced water was released from the gauge on the tubing line at the wellhead. 4,922.03 sq. ft. was affected. The spill originated at the wellhead and flowed in a northeasterly direction off the pad and into the pasture in two separate streams. Approximately 2 BBLS of oil were recovered via vacuum truck. Environmental Agency has been contacted for remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Signature: Sandy Farley	OIL CONSERVATION DIVISION				
Printed Name: Sandra Farley	Approved by Environmental Special	ist:			
Title: Field Admin Support	Approval Date:	Expiration D	Date:		
E-mail Address: sandy.farley@dvn.com	Conditions of Approval:		Attached		
Date: 11/19/2015 Phone: 575.746.5587					

* Attach Additional Sheets If Necessary

Appendix B Groundwater

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)	(quar (quar	ters a ters a	ire :	1=N\ smal	N 2=N lest to	IE 3=SW largest)	4=SE) (NAD8	3 UTM in meters)		(In feet)
POD Number	POD Sub- Code basin C	ountv	Q Q 64 16	Q	Sec	Tws	Rna	x	Y	Depth Well	Depth Water	Water Column
<u>C 02096</u>		ED	2	3	14	22S	32E	627204	3584464* 🌍	435	360	75
<u>C 02821</u>	С	LE	22	3	14	22S	32E	627303	3584563* 🌍	540	340	200
<u>C 02939</u>	С	LE	33	1	19	22S	32E	620234	3583042* 🌍	280		
C 03717 POD1	С	LE	4 4	1	09	22S	32E	624094	3586365 😜	115	70	45
									Average Depth to	Water:	256 f	eet
									Minimum	Depth:	70 fe	eet
									Maximum	Depth:	360 f	eet
Record Count: 4												

PLSS Search:

Township: 22S Range: 32E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Appendix C Photo Documentation

Devon Energy Checkers 24 Federal #005 API 30-025-33702

Leak source

View from west to leak source

Spill exiting pad to pasture (west)

Source of leak

West of location pasture impact

Pasture Impact

Appendix D Analytical

November 05, 2015

Bob Allen

Safety & Environmental Solutions

703 East Clinton

Hobbs, NM 88240

RE: CHECKERS 24 FED #5

Enclosed are the results of analyses for samples received by the laboratory on 10/30/15 8:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-13-5. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Safety & Environmental Solutions Bob Allen 703 East Clinton Hobbs NM, 88240 Fax To: (575) 393-4388

Received:	10/30/2015	Sampling Date:	10/29/2015
Reported:	11/05/2015	Sampling Type:	Soil
Project Name:	CHECKERS 24 FED #5	Sampling Condition:	Cool & Intact
Project Number:	DEV-15-004	Sample Received By:	Jodi Henson
Project Location:	EDDY COUNTY, NM		

Sample ID: AH-1 SURFACE (H502847-01)

Chloride, SM4500CI-B	mg/	kg	Analyzed	l By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6400	16.0	11/03/2015	ND	416	104	400	3.92	

Sample ID: AH-1 1' (H502847-02)

Chloride, SM4500Cl-B mg/kg		Analyzed By: AP							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1090	16.0	11/03/2015	ND	416	104	400	3.92	

Sample ID: AH-1 2' (H502847-03)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2015	ND	2.06	103	2.00	1.01	
Toluene*	<0.050	0.050	11/05/2015	ND	2.29	115	2.00	1.45	
Ethylbenzene*	<0.050	0.050	11/05/2015	ND	2.11	105	2.00	2.28	
Total Xylenes*	<0.150	0.150	11/05/2015	ND	6.71	112	6.00	2.34	
Total BTEX	<0.300	0.300	11/05/2015	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	6 73.6-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	11/03/2015	ND	416	104	400	3.92	
ТРН 8015М	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Safety & Environmental Solutions Bob Allen 703 East Clinton Hobbs NM, 88240 Fax To: (575) 393-4388

Received:	10/30/2015	Sampling Date:	10/29/2015
Reported:	11/05/2015	Sampling Type:	Soil
Project Name:	CHECKERS 24 FED #5	Sampling Condition:	Cool & Intact
Project Number:	DEV-15-004	Sample Received By:	Jodi Henson
Project Location:	EDDY COUNTY, NM		

Sample ID: AH-1 2' (H502847-03)

TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	11/03/2015	ND	203	101	200	4.48	
DRO >C10-C28	42.0	10.0	11/03/2015	ND	202	101	200	8.20	
Surrogate: 1-Chlorooctane	121 9	6 35-147							
Surrogate: 1-Chlorooctadecane	135 %	6 28-171							

Sample ID: AH-2 SURFACE (H502847-04)

Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1600	16.0	11/03/2015	ND	416	104	400	3.92	

Sample ID: AH-2 1' (H502847-05)

Chloride, SM4500Cl-B	mg/	kg	Analyzed	l By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1360	16.0	11/03/2015	ND	416	104	400	3.92	

Sample ID: AH-2 2' (H502847-06)

Chloride, SM4500Cl-B	mg/l	kg	Analyzed	By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1810	16.0	11/03/2015	ND	416	104	400	3.92	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Safety & Environmental Solutions Bob Allen 703 East Clinton Hobbs NM, 88240 Fax To: (575) 393-4388

Received:	10/30/2015	Sampling Date:	10/29/2015
Reported:	11/05/2015	Sampling Type:	Soil
Project Name:	CHECKERS 24 FED #5	Sampling Condition:	Cool & Intact
Project Number:	DEV-15-004	Sample Received By:	Jodi Henson
Project Location:	EDDY COUNTY, NM		

Sample ID: AH-2 2.5' (H502847-07)

BTEX 8021B	mg/l	g	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2015	ND	2.06	103	2.00	1.01	
Toluene*	<0.050	0.050	11/05/2015	ND	2.29	115	2.00	1.45	
Ethylbenzene*	<0.050	0.050	11/05/2015	ND	2.11	105	2.00	2.28	
Total Xylenes*	<0.150	0.150	11/05/2015	ND	6.71	112	6.00	2.34	
Total BTEX	<0.300	0.300	11/05/2015	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 %	5 73.6-140)						
Chloride, SM4500Cl-B	mg/l	cg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	11/03/2015	ND	416	104	400	3.92	
TPH 8015M	mg/l	g	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	11/03/2015	ND	203	101	200	4.48	
DRO >C10-C28	14.5	10.0	11/03/2015	ND	202	101	200	8.20	
Surrogate: 1-Chlorooctane	114 %	35-147							
Surrogate: 1-Chlorooctadecane	125 %	28-171							

Sample ID: AH-3 SURFACE (H502847-08)

Chloride, SM4500Cl-B	mg,	'kg	Analyzed	i By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6130	16.0	11/03/2015	ND	416	104	400	3.92	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Safety & Environmental Solutions Bob Allen 703 East Clinton Hobbs NM, 88240 Fax To: (575) 393-4388

Received:	10/30/2015	Sampling Date:	10/29/2015
Reported:	11/05/2015	Sampling Type:	Soil
Project Name:	CHECKERS 24 FED #5	Sampling Condition:	Cool & Intact
Project Number:	DEV-15-004	Sample Received By:	Jodi Henson
Project Location:	EDDY COUNTY, NM		

Sample ID: AH-3 1' (H502847-09)

Chloride, SM4500Cl-B	mg	/kg	Analyzed	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	704	16.0	11/03/2015	ND	416	104	400	3.92	

Sample ID: AH-3 2' (H502847-10)

BTEX 8021B	mg/	kg	Analyzed sq Limit Analyzed 50 11/05/2015 50 11/05/2015 50 11/05/2015 50 11/05/2015 00 11/05/2015 73.6-140	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2015	ND	2.06	103	2.00	1.01	
Toluene*	<0.050	0.050	11/05/2015	ND	2.29	115	2.00	1.45	
Ethylbenzene*	<0.050	0.050	11/05/2015	ND	2.11	105	2.00	2.28	
Total Xylenes*	<0.150	0.150	11/05/2015	ND	6.71	112	6.00	2.34	
Total BTEX	<0.300	0.300	11/05/2015	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	73.6-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	11/03/2015	ND	416	104	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	11/03/2015	ND	203	101	200	4.48	
DRO >C10-C28	<10.0	10.0	11/03/2015	ND	202	101	200	8.20	
Surrogate: 1-Chlorooctane	111 %	6 35-147	,						

Cardinal Laboratories

Surrogate: 1-Chlorooctadecane

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

125 %

28-171

Celey D. Keene, Lab Director/Quality Manager

Safety & Environmental Solutions Bob Allen 703 East Clinton Hobbs NM, 88240 Fax To: (575) 393-4388

Received:	10/30/2015	Sampling Date:	10/29/2015
Reported:	11/05/2015	Sampling Type:	Soil
Project Name:	CHECKERS 24 FED #5	Sampling Condition:	Cool & Intact
Project Number:	DEV-15-004	Sample Received By:	Jodi Henson
Project Location:	EDDY COUNTY, NM		

Sample ID: AH-4 1' (H502847-11)

Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	11300	16.0	11/03/2015	ND	416	104	400	3.92	

Sample ID: AH-4 2' (H502847-12)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/05/2015	ND	2.06	103	2.00	1.01	
Toluene*	<0.050	0.050	11/05/2015	ND	2.29	115	2.00	1.45	
Ethylbenzene*	<0.050	0.050	11/05/2015	ND	2.11	105	2.00	2.28	
Total Xylenes*	<0.150	0.150	11/05/2015	ND	6.71	112	6.00	2.34	
Total BTEX	<0.300	0.300	11/05/2015	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	73.6-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	11/03/2015	ND	416	104	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	11/03/2015	ND	203	101	200	4.48	
DRO >C10-C28	<10.0	10.0	11/03/2015	ND	202	101	200	8.20	

Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

110 %

121 %

35-147

28-171

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

- ND
 Analyte NOT DETECTED at or above the reporting limit

 RPD
 Relative Percent Difference
- ** Samples not received at proper temperature of 6°C or below.
- *** Insufficient time to reach temperature.
- Chloride by SM4500Cl-B does not require samples be received at or below 6°C Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

† Cardinal cannot accept verbal changes. Please fax writte	Delivered By: (Circle One) Temp. Sampler - UPS - Bus - Other: 3.6 2	Time:	Relinquished By:	Sampler Relinquished: Date of Repeiver	analyses. All claims including filose for regissione and any one want assure as the second or	PIEASE HOTE- Ibbillio und Duinininei Cultingi's for the suit and the same time which the side of the side of the	7月1225年 61	6 AH- 2 2AT GI	5 MH-2 (27 G1)	4 Att-2 Surface 6 1	1 4 1 41	1 MA-1 1 Jon 2 1	All C. Jan C. I	(G)RA (G)RA (G)RA (G)RA		R.(C)C	DMP.	FOR Leig USE ONLY	Sampler Name:	Project Location: GR. Court	Project Name: CHECKBES 2470 S	Project # Dev -15-004 Project Owner: Devo	Phone #: 575-397-0510 Fax #: 575-393-43	City: Hohhs State; NM Zip: 88	Address: 703 East Clinton	Project Manager: Bob Allen	Company Name: Safety & Environmental Solution	(505) 393-2326 Fax (505) 393-2476	101 East Marland, Hobbs, NM 88240	ARDINAL LAROPATORIES	A PROVINCE
en changes to 575-393-476.	Sample Condition CHECKED BY: Cool Intact Yes Yes D. No No		H JUNAW REMARKS: 1 18 1	d By: A Pióne Result: D Yes D I	undess made in writing and received by Cardinal within 30 doys after competition of the applicable n, business informptions, toss of use, of loss of profiles incurried by citerint. Its subsidiarities, sis of whether such claims is based upon nano of the above stated reasons or otherwise.	Attractions of the state of the finded in the sequence of the definition of the	X X 1 1210 XXX	X USO X	X	X X III AS	7 (+0) X X X		X Was was	GROUL SILUD OIL SILUD ACID/ICE//CC	GE R: BAS COO R: R:	E: L		MATRIX PRESERVI SAMPLING	Fax #:	Phone #:	State: Zip:	City:	388 Address:	240 Atin:	Company: Same	PO.#	Ins, Inc.				CHAIN-DE-CUSTO
			40 [Huuirax #:	Vo Add Phone #:	30 days pastidue at the role of 24% per annum from the choiral date of hvoir and all costs of collections, holuding altomey's fees.	Tenns and Conderses's referent any to describe an all accounts more then																					ANALYSIS REQUEST	Page C of	12		NV AND ANALVER REOTERT

Page 8 of 9

To the variance would be the control of the control	ARDINAL LABORATORIES	101 East Mariano, Hobbs, NM 88240 1505) 393-2326 Fax (505) 393-2476	npany Name: Safety & Environmental Solutions. Inc. BILLITO ANALYSIS REQUEST	ect Manager: Bob Allen	ress: 703 East Clinton Gompany: Same	:: Hobbs State: NM Zip: 88240 Attn:	one #: 575-397-0510 Fax #: 575-393-4388 Address:	ject #New - (S-ocst Project Owner: Devor City:	JICT NAME: CHARLINGS X4 760 S State: Zip:	ject Location: Com Courts Phone #:	Fax #:			AB OR (C) CAB OR (C) DINTAINER: DUNDWATES DUNDWATES DUNDWATES TEWATES DISASE: //COOL HER : //COOL HER : //COOL		S at 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 AAZ 22 SL R R (6/24 1330 XXX	1 Att-4 Att- CI V X Colleg 1415 X	12 0444 2A G 1 K K K K K K K K K K K K K K K K K K		E HOTE: Libsigity und Deimiguei. Caudinal's libitity end beining sichuiter sichuiter entres for einig stahle friskelik wehter besed in einig state in the bernited in the annound failed by the deimit sichuiter einig state in the derese and e completion of the apparent in the site of 265 per environ from the completion of the apparent in the site of 265 per environ from the completion of the apparent is and conditions; including indicate at the site of 265 per environ from the completion of the apparent is and conditions; including environment of the site of the sit	as or susgessen: anding out of or rulated to the performance of retrictes betworkey: Cardinal, regardless of vhether such claim is based upon my of the above stated reasons sources of a Ves D No Add'l Phone #: Conferr Reliniquished: Pione Resource: Divide By: Pione Resource: Divide By: Pione Resource: Divide Res	Time:	impler - HPS - Rus - Other impler - HPS - Rus - Other imple - HPS - R	
--	----------------------	--	---	------------------------	--------------------------------------	-------------------------------------	--	--	---	------------------------------------	--------	--	--	--	--	--	---------------------------------	-----------------------------------	--	--	--	--	-------	--	--

Page 9 of 9