

2057 Commerce Drive Midland, TX 79703

432.520.7720 PHONE 432.520.7701 FAX

www.trcsolutions.com

APPROVED

By Olivia Yu at 3:44 pm, Aug 11, 2017

July 27, 2017

Olivia Yu New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, District 1 1625 French Drive Hobbs, NM 88240 NMOCD approves of the delineation and remediation completed for 1RP-4635 due to release location and practicability. NMOCD also grants backfill approval.

Randall Pair
Carlsbad Field Office
United States Department of the Interior
Bureau of Land Management
620 E. Greene Street
Carlsbad, New Mexico 88220
rpair@blm.gov

Re: Remediation Summary and Permission to Backfill Request A-14 Compressor Station (Below Ground Sump) Release (1RP-4635) GPS: N 32.246183° W 103.402000° Unit Letter "I", Section 6, Township 24 South, Range 35 East, NMPM Lea County, New Mexico

Dear Ms. Yu and Mr. Pair,

TRC Environmental Corporation (TRC), on behalf of ETC Field Services, LLC (ETC) has prepared this Remediation Summary and Permission to Backfill Request (Request) for the A-14 Compressor Station (Below Ground Sump) Release Site (Release Site). The purpose of this Request is to provide documentation of remediation activities designed to advance the A-14 Compressor Station (Below Ground Sump) Release Site toward an NMOCD approved Site Closure Status. The legal description of the Release Site is Unit Letter "I", Section 6, Township 24 South, Range 35 East, NMPM, in Lea County, New Mexico. The GPS coordinates for the site are N 32.246183° W 103.402000°. The subject property is administered by the United States Bureau of Land Management (BLM). A Site Location Map, Site Details and Soil Sample Locations Maps, and Site Details and Confirmation Soil Sample Locations Map are provided as Figure 1, Figure 2, Figure 3, and Figure 4, respectively. Release Site photographs are attached to this Request.

A groundwater database maintained by The New Mexico Office of the State Engineer (NMOSE) did not identify any registered water wells in Section 6, Township 24 South, Range 35 East. A reference map utilized by the New Mexico Oil Conservation Division (NMOCD) Hobbs District Office indicates

groundwater should be encountered at approximately two hundred twenty-five (225) feet below ground surface (bgs). Based on the NMOCD site classification system, zero (0) points will be assigned to the subject area ranking as a result of this criterion.

No water wells were observed within one-thousand (1,000) feet of the Release Site. Based on the NMOCD site classification system, zero (0) points will be assigned to the subject area ranking as a result of this criterion.

No surface water was observed within one-thousand (1,000) feet of the release. Based on the NMOCD site classification system, zero (0) points will be assigned to the subject area ranking as a result of this criterion.

Based on the NMOCD Site Classification criteria, the Release Site soil remediation levels are 10 mg/Kg for benzene, 50 mg/Kg for benzene, toluene, ethylbenzene and xylenes (BTEX), and 5,000 mg/Kg for total petroleum hydrocarbons (TPH). Per NMOCD request, chloride remediation levels for the Release Site will be 600 mg/Kg.

On March 6, 2016, a representative of ETC submitted the "Proposed Delineation Workplan" for NMOCD and BLM consideration. The "Proposed Delineation Workplan" summarized the delineation activities strategy designed to progress the Release Site toward an NMOCD approved closure status. ETC received written (email) NMOCD and BLM approval to proceed with the activities outlined in the "Proposed Delineation Workplan".

On March 21 and 22, 2016, due to safety concerns and the potential of striking underground piping and equipment within the A-14 Compressor Station, ETC utilized a hydro-vac prior to conducting any field sampling activities to identify the location of underground pipelines and other associated subsurface equipment. Hydro-vac activities were conducted within and adjacent to the release area. Soil excavated during hydro-vac activities was placed on a plastic liner adjacent to the Release Site.

In addition, due to the high risk of striking underground piping and associated subsurface equipment, heavy excavation machinery cannot be utilized within the A-14 Compressor Station without special permission from ETC operation representatives. Due to this safety concern, delineation trenches in the vicinity of the impacted area was not advanced an additional ten (10) feet bgs.

On March 22 and March 23, 2017, TRC, on behalf of ETC, utilized a hand auger to collect eighteen (18) delineation soil samples (S-1 6" through S-7 6", S-1 1' through S-7 1', S-3 16", S-3 22", S-4 21", and S-4 2') from the surface soil stained area. The soil samples were submitted to Xenco Laboratories in Midland, Texas for determination of concentrations of BTEX using Method SW 846-8021B, Total Petroleum Hydrocarbons (TPH) using Method SW 846-8015M, and chloride using Method E-300.1. The analytical results indicated benzene and BTEX concentrations were less than the applicable laboratory Method Detection Limit (MDL), with the exception of soil sample S-3 22", which exhibited a BTEX concentration of 0.00322 mg/Kg which is below NMOCD regulatory guidelines. TPH concentrations ranged from less than the laboratory MDL for soil samples S-1 1', S-5 6", and S-7 1' to 17,531 mg/Kg for soil sample S-4 6". A review of laboratory analytical results indicated soil samples S-3 1' and S-4 6" exhibited TPH concentrations above NMOCD regulatory guidelines. Chloride concentrations ranged from less than the applicable laboratory MDL for soil samples S-2 6", S-2 1', S-5 6", S-5 1', S-6 6", S-6 1', S-7 6", S-7 6", and S-7 1' to 3,120 mg/Kg for soil sample S-4 6". A review of

laboratory analytical results indicated soil samples S-4 6" and S-4 1' exhibited chloride concentrations above NMOCD regulatory guidelines.

In addition to the soil samples described above, nine (9) soil samples (NS-1 1', SS-1 1', NS-2 1', SS-2 1', WS-3 1', ES-3 1', NS-4 1', SS-4 1', NS-5 1') were collected utilizing a hand auger approximately five (5) feet from the outer perimeter of the surface soil stained area and submitted for BTEX, TPH, and chloride analysis. The analytical results indicated benzene and BTEX concentrations were less than the applicable laboratory MDL and NMOCD regulatory guidelines. TPH concentrations were less than the applicable laboratory MDL for the submitted soil samples, with the exception of soil samples NS-1 1' (15 mg/Kg), NS-4 1' (303 mg/Kg), and N-5 1' (381 mg/Kg). TPH concentrations were below NMOCD regulatory guidelines for the submitted soil samples. Chloride concentrations ranged from less than the applicable laboratory MDL for soil sample ES-3 1' to 261 mg/Kg for soil sample SS-4 1'. A review of laboratory analytical results indicated chloride concentrations were below NMOCD guidelines for the submitted samples.

In addition, utilizing a hand auger, one background sample (BG-1 1') was collected approximately fifty (50) feet north of the A-14 Compressor Station and submitted to the laboratory for TPH, BTEX, and chloride analysis. A review of laboratory analytical results indicated TPH, benzene, BTEX, and chloride concentrations were less than laboratory applicable MDL.

On May 2, 2017, a representative of ETC submitted the "Soil Investigation Summary and Proposed Remediation Workplan" (Workplan) for NMOCD consideration. The Workplan summarized remedial activities to date and detailed a closure strategy designed to progress the Release Site toward an NMOCD approved closure status. ETC received written (email) NMOCD approval to proceed with the activities outlined in the Workplan.

On May 23, 2017, TRC commenced excavation activities utilizing a hydrovac in the vicinity of the A-14 Compressor Station below ground sump. One (1) soil sample (BH-1 @ 8") was collected from the floor of the excavated area. The soil sample was submitted to the laboratory and analyzed for concentrations of TPH using EPA Method SW 846-8015M and chloride using EPA Method E 300.0. A review of laboratory analytical results indicated benzene and BTEX concentrations were less than laboratory MDL and NMOCD regulatory guidelines. Laboratory analytical results indicated the TPH concentrations was 506 mg/Kg and below NMOCD regulatory guidelines. Laboratory analytical results indicated the chloride concentration for the submitted sample was 8.06 mg/Kg and below NMOCD regulatory guidelines.

In addition, one (1) composite soil sample (Hydrovac Solids) was collected from approximately twenty (20) cubic yards of hydro-excavated soil vacuumed from outside of the visibly impacted soil and submitted for BTEX, TPH, and chloride analysis. A review of the laboratory analytical results indicated benzene and BTEX concentrations were less than laboratory MDL and NMOCD regulatory guidelines. The TPH concentrations for the submitted soil sample was 452 mg/Kg and below NMOCD regulatory guidelines. The chloride concentration for the submitted soil sample was 52.5 mg/Kg and below NMOCD regulatory guidelines.

Based on the advancement of exploratory trenches utilizing a hydro-vac during delineation activities, it was determined the remainder of the impacted area could be excavated utilizing a backhoe to a maximum depth of approximately two (2) feet bgs.

On June 15, 2017, following additional excavation activities, three (3) soil samples (BH-6 6", BH-7 6", and BH-2 6") were collected from the floor of the excavated area and submitted to the laboratory for BTEX, TPH, and chloride analysis. A review of laboratory analytical results indicated benzene and BTEX concentrations for the submitted soil samples were less than laboratory MDL and NMOCD regulatory guidelines. TPH concentrations for the submitted soil samples ranged from less than the laboratory MDL for soil sample BH-2 6" to 231 mg/Kg for soil sample BH-7 6", which indicated the submitted soil samples were below NMOCD regulatory guidelines. A review of laboratory analytical results indicated chloride concentrations ranged from 5.85 mg/Kg for soil sample BH-7 6" to 32.4 mg/Kg for soil sample BH-2 6", which indicated chloride concentrations were below NMOCD regulatory guidelines.

On June 19 and 20, 2017, following additional excavation activities, ten (10) soil samples (BH-3 2', ESW-1 1', WSW-1 1', BH-5 6", BH-4 2', NSW-1 1', ESW-2 1', SSW-1 1', NSW-2 1', and WSW-2 1') were collected from the floor and side walls of the excavated area and submitted to the laboratory for BTEX, TPH, and chloride analysis. A review of laboratory analytical results indicated benzene and BTEX concentrations for the submitted soil samples were less than laboratory MDL and NMOCD regulatory guidelines. A review of laboratory analytical results indicated TPH concentrations were less than the applicable laboratory MDL for all submitted soil samples, with the exception of soil samples BH-3 2', ESW-1 1', and WSW-1 1', which exhibited TPH concentrations of 118 mg/Kg, 25.8 mg/Kg, and 321.2 mg/Kg, respectively, and remained below NMOCD regulatory guidelines. A review of laboratory analytical results indicate chloride concentrations for the submitted samples ranged from 9.95 mg/Kg for soil sample NSW-2 1' to 165 mg/Kg for soil sample WSW-1 1', which indicated TPH concentrations were below NMOCD regulatory guidelines. Table 1 summarizes the Concentrations of Benzene, BTEX, TPH, and Chlorides in Soil. Analytical reports are provided with this Request.

Pending NMOCD and BLM approval, ETC will transport the excavated soil under manifest to a NMOCD approved disposal facility and backfill the existing excavation with locally purchased non-impacted "like" soil and/or caliche. On completion of backfilling activities, the impacted area outside the A-14 Compressor Station will be contoured to fit the surrounding area and be reseeded with vegetation approved by the BLM.

Based on the analytical results of soil samples collected between May 23 through June 20, 2017, ETC proposes the following field activities designed to advance the A-14 Compressor Station (Below Ground Sump) Release towards NMOCD closure status:

- Pending NMOCD and BLM approval, ETC will transport the excavated soil under manifest to an NMOCD approved disposal facility.
- On completion of transport and disposal of the excavated soil, the excavated area will be backfilled with locally purchased non-impacted "like" soil. In addition, the backfilled area will be contoured to fit the surrounding area and be reseeded with vegetation approved by the BLM.
- Utilize the excavated soil represented by soil sample Hydrovac Solids as backfill material within the A-14 Compressor Station.
- Prepare and submit a "Remediation Summary and Site Closure Request" to the NMOCD and BLM.

ETC is prepared to begin the activities outlined in this Remediation Summary and Permission to Backfill Request on NMOCD and BLM approval.

If you have any questions, or if additional information is required, please feel free to call me at 432-520-7720 (office) or 432-664-6699 (cell).

Thank you,

Nikki Green Project Manager

TRC Environmental Corporation

Jeffrey Kindley, PG Senior Project Manager

TRC Environmental Corporation

Attachments:

Figure 1 - Site Location Map

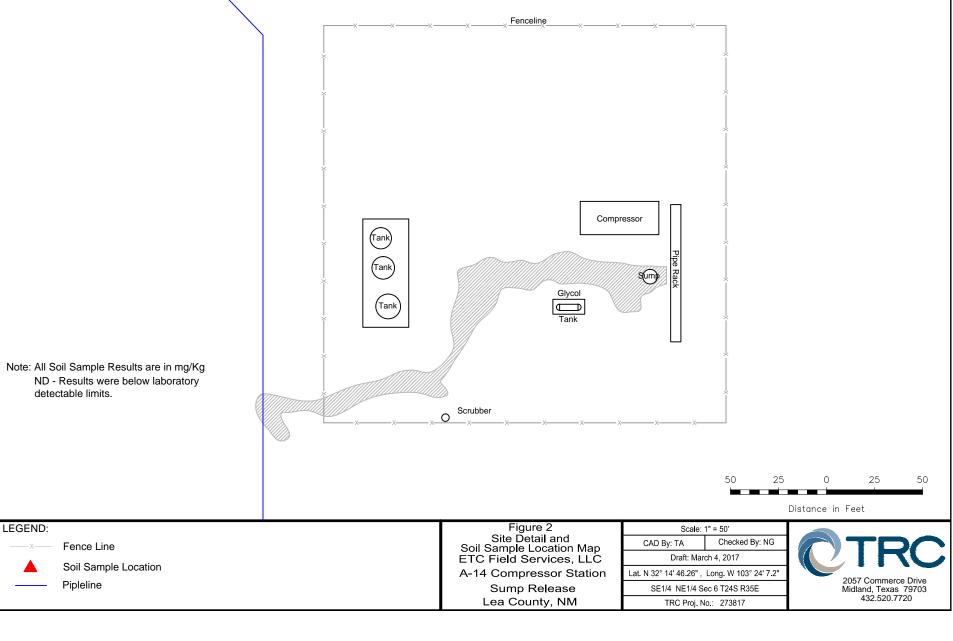
Figure 2 - Site Detail and Soil Sample Location Map

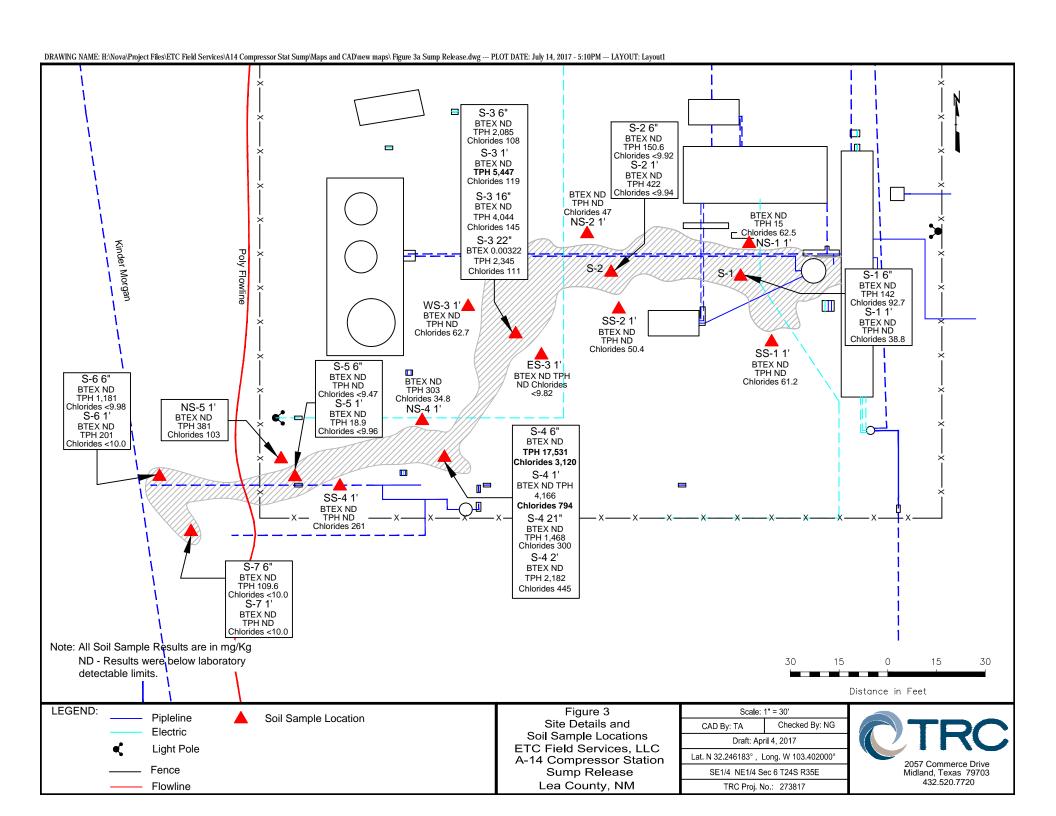
Figure 3 - Site Detail and Soil Sample Locations Map

Figure 4 – Site Details and Confirmation Soil Sample Locations Map

Table 1 - Concentrations of Benzene, BTEX, TPH and Chloride in Soil

Release Site Photographs


Laboratory Analytical Results


Release Notification and Corrective Action (Form C-141)

cc:

Rose Slade ETC Field Services, LLC 800 East Sonterra Suite 2 San Antonio, TX 78258

File

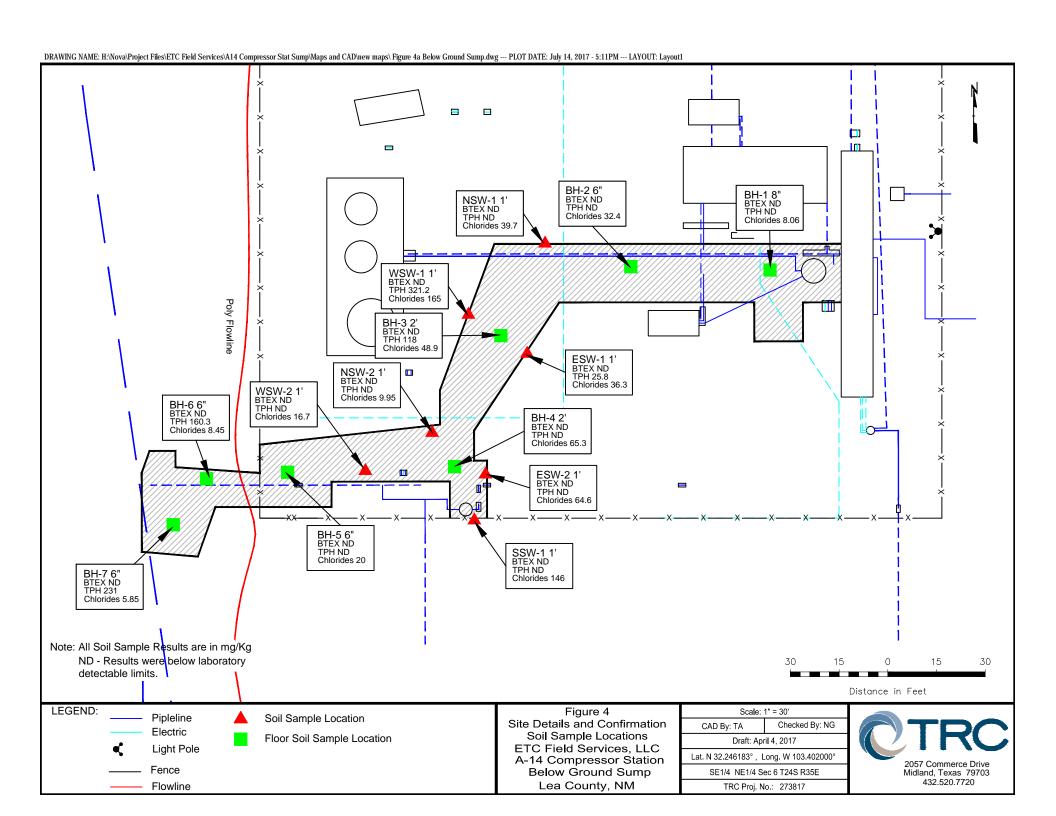


TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL

ETC FIELD SERVICES, LLC A14 COMPRESSOR STATION BELOW GROUND SUMP LEA COUNTY, NEW MEXICO

 $All\ concentrations\ are\ reported\ in\ mg/Kg$

					METHODS:	SW 846-8021b				METHOD:	SW 8015M		E 300.1
SAMPLE LOCATION	SAMPLE DATE	SOIL STATUS	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
NMOCD Site Classification Criteria			10					50				5,000	600
S-1 6"	03/22/17	Trench	< 0.00148	< 0.00198	< 0.00198	< 0.00198	< 0.00296	< 0.00296	<15.0	79.9	62.3	142.2	92.7
S-1 1'	03/22/17	Trench	< 0.00146	< 0.00194	< 0.00194	< 0.00194	< 0.00291	< 0.00291	<15.0	<15.0	<15.0	<15.0	38.8
S-2 6"	03/22/17	Trench	< 0.00146	< 0.00195	< 0.00195	< 0.00195	< 0.00292	< 0.00292	<15.0	80.5	70.1	150.6	<9.92
S-2 1'	03/22/17	Trench	< 0.00148	< 0.00197	< 0.00197	< 0.00197	< 0.00296	< 0.00296	<15.0	179	243	422	<9.94
S-3 6"	03/22/17	Trench	< 0.00147	< 0.00196	< 0.00196	< 0.00196	< 0.00294	< 0.00294	72.8	1,500	512	2,084.8	108
S-3 1'	03/22/17	Trench	< 0.00147	< 0.00196	< 0.00196	< 0.00196	< 0.00294	< 0.00294	445	4,030	972	5,447	119
S-3 16"	03/23/17	Trench	< 0.00148	< 0.00198	< 0.00198	< 0.00198	< 0.00296	< 0.00296	281	2,810	953	4,044	145
S-3 22"	03/23/17	Trench	< 0.00152	< 0.00202	< 0.00202	0.00322	< 0.00303	0.00322	296	1,820	229	2,345	111
S-4 6"	03/22/17	Trench	< 0.00146	< 0.00195	< 0.00195	< 0.00195	< 0.00293	< 0.00293	771	15,100	1,660	17,531	3,120
S-4 1'	03/22/17	Trench	< 0.00146	< 0.00195	< 0.00195	< 0.00195	< 0.00292	< 0.00292	84.2	3,630	452	4,166.2	794
S-4 21"	03/23/17	Trench	< 0.00149	< 0.00198	< 0.00198	< 0.00198	< 0.00298	< 0.00298	18.0	1,290	160	1,468.0	300
S-4 2'	03/23/17	Trench	< 0.00150	< 0.00200	< 0.00200	< 0.00200	< 0.00301	< 0.00301	25.4	1,930	227	2,182.4	445
S-5 6"	03/23/17	Trench	< 0.00149	< 0.00199	< 0.00199	< 0.00199	< 0.00298	< 0.00298	<15.0	<15.0	<15.0	<15.0	<9.47
S-5 1'	03/22/17	Trench	< 0.00147	< 0.00196	< 0.00196	< 0.00196	< 0.00295	< 0.00295	<15.0	18.9	<15.0	18.9	<9.96
S-6 6"	03/23/17	Trench	< 0.00146	< 0.00195	< 0.00195	< 0.00195	< 0.00292	< 0.00292	<14.9	889	292	1,181	<9.98
S-6 1'	03/23/17	Trench	< 0.00148	< 0.00198	< 0.00198	< 0.00198	< 0.00296	< 0.00296	<15.0	120	81.0	201.0	<10.0
S-7 6"	03/23/17	Trench	< 0.00149	< 0.00199	< 0.00199	< 0.00199	< 0.00298	< 0.00298	<15.0	59.0	50.6	109.6	<10.0
S-7 1'	03/23/17	Trench	< 0.00148	< 0.00197	< 0.00197	< 0.00197	< 0.00296	< 0.00296	<15.0	<15.0	<15.0	<15.0	<10.0
NS-1 1'	03/23/17	Trench	< 0.00147	< 0.00196	< 0.00196	< 0.00196	< 0.00295	< 0.00295	<15.0	<15.0	15.0	15.0	62.5
SS-1 1'	03/23/17	Trench	< 0.00147	< 0.00196	< 0.00196	< 0.00196	< 0.00294	< 0.00294	<15.0	<15.0	<15.0	<15.0	61.2
NS-2 1'	03/23/17	Trench	< 0.00149	< 0.00199	< 0.00199	< 0.00199	< 0.00298	< 0.00298	<15.0	<15.0	<15.0	<15.0	47.0
SS-2 1'	03/23/17	Trench	< 0.00151	< 0.00201	< 0.00201	< 0.00201	< 0.00301	< 0.00301	<15.0	<15.0	<15.0	<15.0	50.4

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL

ETC FIELD SERVICES, LLC A14 COMPRESSOR STATION BELOW GROUND SUMP LEA COUNTY, NEW MEXICO

All concentrations are reported in mg/Kg

					METHODS:	SW 846-8021b				METHOD:	SW 8015M		E 300.1
SAMPLE LOCATION	SAMPLE DATE	SOIL STATUS	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
NMOCD Site Classification Criteria			10					50				5,000	600
WS-3 1'	03/23/17	Trench	< 0.00150	< 0.00200	< 0.00200	< 0.00200	< 0.00301	< 0.00301	<15.0	<15.0	<15.0	<15.0	62.7
ES-3 1'	03/23/17	Trench	< 0.00148	< 0.00197	< 0.00197	< 0.00197	< 0.00296	< 0.00296	<15.0	<15.0	<15.0	<15.0	<9.82
NS-4 1'	03/23/17	Trench	< 0.00255	< 0.00340	< 0.00340	< 0.00340	< 0.00510	< 0.00510	<15.0	258	45.0	303.0	34.8
SS-4 1'	03/23/17	Trench	< 0.00148	< 0.00198	< 0.00198	< 0.00198	< 0.00296	< 0.00296	<15.0	<15.0	<15.0	<15.0	261
NS-5 1'	03/23/17	Trench	< 0.00150	<0.00200	<0.00200	<0.00200	<0.00301	< 0.00301	<15.0	351	29.5	380.5	103
BG-1 1'	03/23/17	Trench	<0.00151	<0.00201	<0.00201	<0.00301	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<9.96
BH-1 @ 8"	05/23/17	In-Situ	<0.00353	<0.00353	<0.00353	<0.00707	<0.00353	<0.00707	<15.0	203	303	506	8.06
BH-6 6"	06/15/17	In-Situ	< 0.00201	<0.00201	<0.00201	<0.00402	<0.00201	< 0.00402	<15.0	97.1	63.2	160.3	8.45
BH-7 6"	06/15/17	In-Situ	< 0.00200	< 0.00200	< 0.00200	< 0.00399	< 0.00200	< 0.00399	<15.0	109	122	231	5.85
BH-2 6"	06/15/17	In-Situ	<0.00198	<0.00198	<0.00198	<0.00397	<0.00198	< 0.00397	<15.0	<15.0	<15.0	<15.0	32.4
BH-3 2'	06/19/17	In-Situ	< 0.00201	<0.00201	<0.00201	<0.00402	< 0.00201	<0.00402	<15.0	53.3	64.7	118	48.9
ESW-1 1'	06/19/17	In-Situ	< 0.00200	< 0.00200	< 0.00200	< 0.00399	< 0.00200	< 0.00399	<15.0	25.8	<15.0	25.8	36.3
WSW-1 1'	06/19/17	In-Situ	< 0.00200	< 0.00200	< 0.00200	< 0.00400	< 0.00200	< 0.00400	<15.0	255	66.2	321.2	165.0
BH-5 6"	06/19/17	In-Situ	< 0.00201	< 0.00201	< 0.00201	< 0.00402	< 0.00201	< 0.00402	<14.9	<14.9	<14.9	<14.9	20.0
BH-4 2'	06/20/17	In-Situ	< 0.00199	< 0.00199	< 0.00199	< 0.00398	< 0.00199	< 0.00398	<15.0	<15.0	<15.0	<15.0	65.3
NSW-1 1'	06/20/17	In-Situ	< 0.00199	< 0.00199	< 0.00199	< 0.00398	< 0.00199	< 0.00398	<15.0	<15.0	<15.0	<15.0	39.7
ESW-2 1'	06/20/17	In-Situ	< 0.00199	< 0.00199	< 0.00199	< 0.00398	< 0.00199	< 0.00398	<15.0	<15.0	<15.0	<15.0	64.6
SSW-1 1'	06/20/17	In-Situ	< 0.00200	< 0.00200	< 0.00200	< 0.00399	< 0.00200	< 0.00399	<15.0	<15.0	<15.0	<15.0	146
NSW-2 1'	06/20/17	In-Situ	< 0.00202	< 0.00202	< 0.00202	< 0.00403	< 0.00202	< 0.00403	<15.0	<15.0	<15.0	<15.0	9.95

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL

ETC FIELD SERVICES, LLC A14 COMPRESSOR STATION BELOW GROUND SUMP LEA COUNTY, NEW MEXICO

 $All\ concentrations\ are\ reported\ in\ mg/Kg$

					METHODS:	SW 846-8021b				METHOD:	SW 8015M		E 300.1
SAMPLE LOCATION	SAMPLE DATE	SOIL STATUS	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
NMOCD Site Classification Criteria			10					50				5,000	600
WSW-2 1'	06/20/17	In-Situ	< 0.00201	< 0.00201	< 0.00201	< 0.00402	< 0.00201	< 0.00402	<15.0	<15.0	<15.0	<15.0	16.7
Hydrovac Solids	05/23/17	In-Situ	< 0.00201	< 0.00201	< 0.00201	< 0.00402	< 0.00201	< 0.00402	<15.0	187	265	452	52.5

Client: ETC Field Services, LLC Prepared by: TRC Environmental Corp.
Project Name: A-14 Compressor Station Below Ground Sump Location: Lea County, NM

Photograph No. 1

Date:

February 23, 2017

Direction: Northeast

Description: View of impacted area and below ground tank (sump) release point.

Photograph No. 2

Date:

February 23, 2017

Direction: Northeast

Description: View of impacted area. Sump is located toward the upper right of photo.

Client: ETC Field Services, LLC Prepared by: TRC Environmental Corp.
Project Name: A-14 Compressor Station Below Ground Sump Location: Lea County, NM

Photograph No. 3

Date:

March 23, 2017

Direction:

East

Description: View of hydro-vac trenches utilized to locate underground equipment.

Photograph No. 4

Date:

March 23, 2017

Direction: Southwest

Description: View of hydro-vac trenches utilized to locate underground equipment.

Client: ETC Field Services, LLC Prepared by: TRC Environmental Corp.
Project Name: A-14 Compressor Station Below Ground Sump Location: Lea County, NM

Photograph No. 5

Date:

March 23, 2017

Direction:

East

Description: View of hydro-vac trenches utilized to locate underground equipment.

Photograph No. 6

Date:

March 23, 2017

Direction: Southwest

Description: View of hydro-vac trenches utilized to locate underground equipment.

Client: ETC Field Services, LLC Prepared by: TRC Environmental Corp.
Project Name: A-14 Compressor Station Below Ground Sump Location: Lea County, NM

Photograph No. 7

Date:

June 20, 2017

Direction:

West

Description: View of excavated

area.

Photograph No. 8

Date:

June 20, 2017

Direction:

South

Description:

View of excavated

area.

Client: ETC Field Services, LLC Prepared by: TRC Environmental Corp.
Project Name: A-14 Compressor Station Below Ground Sump Location: Lea County, NM

Photograph No. 9

Date:

June 20, 2017

Direction: Southwest

Description: View of excavated area.

Photograph No. 10

Date:

June 20, 2017

Direction: South

Description: View of excavated area.

Analytical Report 549416

for TRC Solutions, Inc

Project Manager: Nikki Green
A14 Compressor Station Sump
TRC# 273818
05-APR-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)

Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

05-APR-17

Project Manager: Nikki Green

TRC Solutions, Inc 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 549416

A14 Compressor Station Sump Project Address: Lea County, NM

Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 549416. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 549416 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knus Hoah

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 549416

$TRC\ Solutions,\ Inc,\ Midland,\ TX$

A14 Compressor Station Sump

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
S-1 6"	S	03-22-17 13:00	- 6 In	549416-001
S-1 1'	S	03-22-17 13:05	- 1 ft	549416-002
S-2 6"	S	03-22-17 13:15	- 6 In	549416-003
S-2 1'	S	03-22-17 13:20	- 1 ft	549416-004
S-3 6"	S	03-22-17 13:35	- 6 In	549416-005
S-3 1'	S	03-22-17 13:40	- 1 ft	549416-006
S-4 6"	S	03-22-17 15:30	- 6 In	549416-007
S-4 1'	S	03-22-17 15:35	- 1 ft	549416-008
S-5 1'	S	03-22-17 15:55	- 1 ft	549416-009
S-6 6"	S	03-23-17 09:30	- 6 In	549416-010
S-6 1'	S	03-23-17 09:45	- 1 ft	549416-011
S-7 6"	S	03-23-17 09:50	- 6 In	549416-012
S-7 1'	S	03-23-17 10:05	- 1 ft	549416-013
NS-1 1'	S	03-23-17 10:10	- 1 ft	549416-014
SS-1 1'	S	03-23-17 10:20	- 1 ft	549416-015
NS-2 1'	S	03-23-17 11:00	- 1 ft	549416-016
SS-2 1'	S	03-23-17 11:15	- 1 ft	549416-017
S-3 16"	S	03-23-17 11:20	- 16 In	549416-018
S-3 22"	S	03-23-17 11:28	- 22 In	549416-019
WS-3 1'	S	03-23-17 11:39	- 1 ft	549416-020
ES-3 1'	S	03-23-17 11:42	- 1 ft	549416-021
S-4 21"	S	03-23-17 11:45	- 1 ft	549416-022
S-4 2'	S	03-23-17 11:50	- 2 ft	549416-023
NS-4 1'	S	03-23-17 13:00	- 1 ft	549416-024
SS-4 1'	S	03-23-17 13:10	- 1 ft	549416-025
NS-5 1'	S	03-23-17 13:20	- 1 ft	549416-026
S-5 6"	S	03-22-17 15:50	- 6 In	549416-027

CASE NARRATIVE

Client Name: TRC Solutions, Inc

Project Name: A14 Compressor Station Sump

 Project ID:
 TRC# 273818
 Report Date:
 05-APR-17

 Work Order Number(s):
 549416
 Date Received:
 03/24/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3013449 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3013451 BTEX by EPA 8021B

Lab Sample ID 549416-002 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). m_p-Xylenes recovered below QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 549416-002, -003, -004, -010.

The Laboratory Control Sample for m_p-Xylenes is within laboratory Control Limits, therefore the data was accepted.

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3013527 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3013589 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Lab Sample ID 549416-026 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). m_p-Xylenes recovered below QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 549416-025, -026, -027.

The Laboratory Control Sample for m_p-Xylenes is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3013602 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

TRC Solutions, Inc, Midland, TX

Project Name: A14 Compressor Station Sump

TNI

Project Id: TRC# 273818
Contact: Nikki Green
Project Location: Lea County, NM

Date Received in Lab: Fri Mar-24-17 02:55 pm

Report Date: 05-APR-17 **Project Manager:** Kelsey Brooks

	Lab Id:	549416-	001	549416-0	002	549416-0	003	549416-0	004	549416-	005	549416-	006
Analysis Dagwastad	Field Id:	S-1 6	"	S-1 1'		S-2 6'	,	S-2 1		S-3 6	.	S-3 1	•
Analysis Requested	Depth:	6 In		1 ft		6 In		1 ft		6 In		1 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	,	SOIL	_
	Sampled:	Mar-22-17	13:00	Mar-22-17	13:05	Mar-22-17	13:15	Mar-22-17	13:20	Mar-22-17	13:35	Mar-22-17	13:40
BTEX by EPA 8021B	Extracted:	Mar-27-17	08:00	Mar-27-17	16:40	Mar-27-17	16:40	Mar-27-17	16:40	Mar-28-17	08:00	Mar-28-17	08:00
	Analyzed:	Mar-27-17	08:55	Mar-27-17	21:58	Mar-27-17	22:14	Mar-28-17	01:13	Mar-28-17	09:29	Mar-28-17	09:46
	Units/RL:	mg/kg	RL										
Benzene		ND	0.00148	ND	0.00146	ND	0.00146	ND	0.00148	ND	0.00147	ND	0.00147
Toluene		ND	0.00198	ND	0.00194	ND	0.00195	ND	0.00197	ND	0.00196	ND	0.00196
Ethylbenzene		ND	0.00198	ND	0.00194	ND	0.00195	ND	0.00197	ND	0.00196	ND	0.00196
m_p-Xylenes		ND	0.00198	ND	0.00194	ND	0.00195	ND	0.00197	ND	0.00196	ND	0.00196
o-Xylene		ND	0.00296	ND	0.00291	ND	0.00292	ND	0.00296	ND	0.00294	ND	0.00294
Total Xylenes		ND	0.00198	ND	0.00194	ND	0.00195	ND	0.00197	ND	0.00196	ND	0.00196
Total BTEX		ND	0.00148	ND	0.00146	ND	0.00146	ND	0.00148	ND	0.00147	ND	0.00147
Chloride by EPA 300	Extracted:	Apr-01-17	12:04										
SUB: TX104704215	Analyzed:	Apr-01-17	22:01	Apr-01-17	22:10	Apr-01-17	22:38	Apr-01-17	22:47	Apr-01-17	23:15	Apr-01-17	23:25
	Units/RL:	mg/kg	RL										
Chloride		92.7	9.69	38.8	9.88	ND	9.92	ND	9.94	108	9.98	119	10.0
TPH By SW8015 Mod	Extracted:	Mar-24-17	16:00										
	Analyzed:	Mar-25-17	00:20	Mar-25-17	01:37	Mar-25-17	02:02	Mar-25-17	02:29	Mar-25-17	02:57	Mar-25-17	03:24
	Units/RL:	mg/kg	RL										
C6-C10 Gasoline Range Hydrocarbons		ND	15.0	ND	15.0	ND	15.0	ND	15.0	72.8	15.0	445	74.9
C10-C28 Diesel Range Organics		79.9	15.0	ND	15.0	80.5	15.0	179	15.0	1500	15.0	4030	74.9
C28-C35 Oil Range Hydrocarbons		62.3	15.0	ND	15.0	70.1	15.0	243	15.0	512	15.0	972	74.9
Total TPH		142	15.0	ND	15.0	151	15.0	422	15.0	2080	15.0	5450	74.9

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

TRC Solutions, Inc, Midland, TX

Project Name: A14 Compressor Station Sump

TNI

Project Id: TRC# 273818
Contact: Nikki Green

Project Location:

Lea County, NM

Date Received in Lab: Fri Mar-24-17 02:55 pm

Report Date: 05-APR-17 **Project Manager:** Kelsey Brooks

										ı			
	Lab Id:	549416-0	007	549416-0	008	549416-0	009	549416-0	010	549416-0	011	549416-	012
Analysis Requested	Field Id:	S-4 6'		S-4 1	'	S-5 1		S-6 6'	'	S-6 1	'	S-7 6	"
Analysis Requesieu	Depth:	6 In		1 ft		1 ft		6 In		1 ft		6 In	
	Matrix:	SOIL	,	SOIL	,	SOIL		SOIL	,	SOIL	,	SOIL	
	Sampled:	Mar-22-17	15:30	Mar-22-17	15:35	Mar-22-17	15:55	Mar-23-17	09:30	Mar-23-17	09:45	Mar-23-17	09:50
BTEX by EPA 8021B	Extracted:	Mar-28-17	08:00	Mar-28-17	08:00	Mar-28-17	08:00	Mar-27-17	16:40	Mar-28-17	08:00	Mar-28-17	08:00
	Analyzed:	Mar-28-17	10:02	Mar-28-17	10:19	Mar-28-17	10:35	Mar-28-17	06:14	Mar-28-17	10:51	Mar-28-17	11:08
	Units/RL:	mg/kg	RL										
Benzene	·	ND	0.00146	ND	0.00146	ND	0.00147	ND	0.00146	ND	0.00148	ND	0.00149
Toluene		ND	0.00195	ND	0.00195	ND	0.00196	ND	0.00195	ND	0.00198	ND	0.00199
Ethylbenzene		ND	0.00195	ND	0.00195	ND	0.00196	ND	0.00195	ND	0.00198	ND	0.00199
m_p-Xylenes		ND	0.00195	ND	0.00195	ND	0.00196	ND	0.00195	ND	0.00198	ND	0.00199
o-Xylene		ND	0.00293	ND	0.00292	ND	0.00295	ND	0.00292	ND	0.00296	ND	0.00298
Total Xylenes		ND	0.00195	ND	0.00195	ND	0.00196	ND	0.00195	ND	0.00198	ND	0.00199
Total BTEX		ND	0.00146	ND	0.00146	ND	0.00147	ND	0.00146	ND	0.00148	ND	0.00149
Chloride by EPA 300	Extracted:	Apr-01-17	12:04	Apr-03-17	18:00								
SUB: TX104704215	Analyzed:	Apr-01-17	23:34	Apr-01-17	23:44	Apr-01-17	23:53	Apr-02-17	00:02	Apr-02-17	00:12	Apr-03-17	23:24
	Units/RL:	mg/kg	RL										
Chloride		3120 D	98.8	794	9.82	ND	9.96	ND	9.98	ND	10.0	ND	10.0
TPH By SW8015 Mod	Extracted:	Mar-24-17	16:00										
	Analyzed:	Mar-25-17	03:50	Mar-26-17	06:11	Mar-25-17	04:43	Mar-26-17	06:31	Mar-25-17	12:48	Mar-25-17	13:10
	Units/RL:	mg/kg	RL										
C6-C10 Gasoline Range Hydrocarbons		771	74.9	84.2	14.9	ND	15.0	ND	14.9	ND	15.0	ND	15.0
C10-C28 Diesel Range Organics		15100	74.9	3630	14.9	18.9	15.0	889	14.9	120	15.0	59.0	15.0
C28-C35 Oil Range Hydrocarbons		1660	74.9	452	14.9	ND	15.0	292	14.9	81.0	15.0	50.6	15.0
Total TPH		17500	74.9	4170	14.9	18.9	15.0	1180	14.9	201	15.0	110	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

TRC Solutions, Inc, Midland, TX

Project Name: A14 Compressor Station Sump

TNI CHBORATOR

Project Id: TRC# 273818
Contact: Nikki Green

Project Location:

Lea County, NM

Date Received in Lab: Fri Mar-24-17 02:55 pm

Report Date: 05-APR-17 **Project Manager:** Kelsey Brooks

	Lab Id:	549416-0	013	549416-0	014	549416-0	015	549416-0	016	549416-0	017	549416-	018
Analysis Requested	Field Id:	S-7 1'	'	NS-1	ו'	SS-1 1		NS-2 1	. '	SS-2 1	וי	S-3 16	5"
Anatysis Requestea	Depth:	1 ft		1 ft		1 ft		1 ft		1 ft		16 In	l
	Matrix:	SOIL	,	SOIL	,	SOIL	,	SOIL		SOIL	,	SOIL	
	Sampled:	Mar-23-17	10:05	Mar-23-17	10:10	Mar-23-17	10:20	Mar-23-17	11:00	Mar-23-17	11:15	Mar-23-17	11:20
BTEX by EPA 8021B	Extracted:	Mar-28-17	08:00	Mar-28-17	08:00	Mar-28-17	08:00	Mar-28-17	08:00	Mar-28-17	08:00	Mar-28-17	08:00
	Analyzed:	Mar-28-17	09:14	Mar-28-17	11:23	Mar-28-17	11:40	Mar-28-17	13:35	Mar-28-17	13:52	Mar-28-17	14:08
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0.00148	ND	0.00147	ND	0.00147	ND	0.00149	ND	0.00151	ND	0.00148
Toluene		ND	0.00197	ND	0.00196	ND	0.00196	ND	0.00199	ND	0.00201	ND	0.00198
Ethylbenzene		ND	0.00197	ND	0.00196	ND	0.00196	ND	0.00199	ND	0.00201	ND	0.00198
m_p-Xylenes		ND	0.00197	ND	0.00196	ND	0.00196	ND	0.00199	ND	0.00201	ND	0.00198
o-Xylene		ND	0.00296	ND	0.00295	ND	0.00294	ND	0.00298	ND	0.00301	ND	0.00296
Total Xylenes		ND	0.00197	ND	0.00196	ND	0.00196	ND	0.00199	ND	0.00201	ND	0.00198
Total BTEX		ND	0.00148	ND	0.00147	ND	0.00147	ND	0.00149	ND	0.00151	ND	0.00148
Chloride by EPA 300	Extracted:	Apr-03-17	18:00	Apr-01-17	13:54	Apr-01-17	13:54	Apr-01-17	13:54	Apr-01-17	13:54	Apr-01-17	13:54
SUB: TX104704215	Analyzed:	Apr-03-17	23:33	Apr-02-17	02:13	Apr-02-17	02:41	Apr-02-17	02:51	Apr-02-17	03:00	Apr-02-17	03:09
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		ND	10.0	62.5	9.98	61.2	9.88	47.0	9.84	50.4	9.98	145	10.0
TPH By SW8015 Mod	Extracted:	Mar-24-17	16:00	Mar-24-17	16:00	Mar-24-17	16:00	Mar-24-17	16:00	Mar-24-17	16:00	Mar-24-17	16:00
	Analyzed:	Mar-26-17	06:50	Mar-25-17	13:52	Mar-25-17	14:13	Mar-25-17	14:33	Mar-25-17	14:54	Mar-25-17	15:14
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C10 Gasoline Range Hydrocarbons		ND	15.0	ND	15.0	ND	15.0	ND	15.0	ND	15.0	281	74.7
C10-C28 Diesel Range Organics		ND	15.0	ND	15.0	ND	15.0	ND	15.0	ND	15.0	2810	74.7
C28-C35 Oil Range Hydrocarbons		ND	15.0	15.0	15.0	ND	15.0	ND	15.0	ND	15.0	953	74.7
Total TPH		ND	15.0	15.0	15.0	ND	15.0	ND	15.0	ND	15.0	4040	74.7

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

TRC Solutions, Inc, Midland, TX

Project Name: A14 Compressor Station Sump

TNI

Project Id: TRC# 273818
Contact: Nikki Green
Project Location: Lea County, NM

Date Received in Lab: Fri Mar-24-17 02:55 pm

Report Date: 05-APR-17 **Project Manager:** Kelsey Brooks

	Lab Id:	549416-	019	549416-0)20	549416-0)21	549416-0)22	549416-0	023	549416-	024
A sa salancia. D a sua casta d	Field Id:	S-3 22	2"	WS-3	וי	ES-3 1		S-4 21		S-4 2	.	NS-4	1'
Analysis Requested	Depth:	22 Ir	ı	1 ft		1 ft		1 ft		2 ft		1 ft	
	Matrix:	SOII	_	SOIL		SOIL		SOIL		SOIL	,	SOIL	_
	Sampled:	Mar-23-17	11:28	Mar-23-17	11:39	Mar-23-17	11:42	Mar-23-17	11:45	Mar-23-17	11:50	Mar-23-17	13:00
BTEX by EPA 8021B	Extracted:	Mar-28-17	08:00	Mar-28-17	16:50								
	Analyzed:	Mar-28-17	14:25	Mar-28-17	14:41	Mar-28-17	14:57	Mar-28-17	15:21	Mar-28-17	15:37	Mar-29-17	07:08
	Units/RL:	mg/kg	RL										
Benzene	·	ND	0.00152	ND	0.00150	ND	0.00148	ND	0.00149	ND	0.00150	ND	0.00255
Toluene		ND	0.00202	ND	0.00200	ND	0.00197	ND	0.00198	ND	0.00200	ND	0.00340
Ethylbenzene		ND	0.00202	ND	0.00200	ND	0.00197	ND	0.00198	ND	0.00200	ND	0.00340
m_p-Xylenes		0.00322	0.00202	ND	0.00200	ND	0.00197	ND	0.00198	ND	0.00200	ND	0.00340
o-Xylene		ND	0.00303	ND	0.00301	ND	0.00296	ND	0.00298	ND	0.00301	ND	0.00510
Total Xylenes		0.00322	0.00202	ND	0.00200	ND	0.00197	ND	0.00198	ND	0.00200	ND	0.00340
Total BTEX		0.00322	0.00152	ND	0.00150	ND	0.00148	ND	0.00149	ND	0.00150	ND	0.00255
Chloride by EPA 300	Extracted:	Apr-01-17	13:54										
SUB: TX104704215	Analyzed:	Apr-02-17	03:37	Apr-02-17	03:47	Apr-02-17	03:56	Apr-02-17	04:05	Apr-02-17	04:15	Apr-02-17	04:24
	Units/RL:	mg/kg	RL										
Chloride		111	9.62	62.7	9.65	ND	9.82	300	9.73	445	9.98	34.8	9.88
TPH By SW8015 Mod	Extracted:	Mar-24-17	16:00	Mar-24-17	16:00	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17	17:00
	Analyzed:	Mar-25-17	15:35	Mar-25-17	15:57	Mar-26-17	03:23	Mar-26-17	03:43	Mar-27-17	06:44	Mar-26-17	04:27
	Units/RL:	mg/kg	RL										
C6-C10 Gasoline Range Hydrocarbons		296	74.7	ND	15.0	ND	15.0	18.0	15.0	25.4	15.0	ND	15.0
C10-C28 Diesel Range Organics		1820	74.7	ND	15.0	ND	15.0	1290	15.0	1930	15.0	258	15.0
C28-C35 Oil Range Hydrocarbons		229	74.7	ND	15.0	ND	15.0	160	15.0	227	15.0	45.0	15.0
Total TPH		2350	74.7	ND	15.0	ND	15.0	1470	15.0	2180	15.0	303	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

TRC Solutions, Inc, Midland, TX

Project Name: A14 Compressor Station Sump

TNI THE OPENING

Project Id: TRC# 273818
Contact: Nikki Green
Project Location: Lea County, NM

Date Received in Lab: Fri Mar-24-17 02:55 pm

Report Date: 05-APR-17 **Project Manager:** Kelsey Brooks

	Lab Id:	549416-0)25	549416-0)26	549416-0)27		
Analysis Requested	Field Id:	SS-4 1'	'	NS-5 1	.	S-5 6"			
Anaiysis Requesieu	Depth:	1 ft		1 ft		6 In			
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	Mar-23-17	13:10	Mar-23-17	13:20	Mar-22-17	15:50		
BTEX by EPA 8021B	Extracted:	Mar-28-17	15:30	Mar-28-17	15:30	Mar-28-17	15:30		
	Analyzed:	Mar-28-17	23:47	Mar-28-17	18:05	Mar-28-17	18:22		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		ND	0.00148	ND	0.00150	ND	0.00149		
Toluene		ND	0.00198	ND	0.00200	ND	0.00199		•
Ethylbenzene		ND	0.00198	ND	0.00200	ND	0.00199		
m_p-Xylenes		ND	0.00198	ND	0.00200	ND	0.00199		
o-Xylene		ND	0.00296	ND	0.00301	ND	0.00298		
Total Xylenes		ND	0.00198	ND	0.00200	ND	0.00199		
Total BTEX		ND	0.00148	ND	0.00150	ND	0.00149		
Chloride by EPA 300	Extracted:	Apr-01-17	13:54	Apr-01-17	13:54	Apr-01-17	13:54		
SUB: TX104704215	Analyzed:	Apr-02-17	04:52	Apr-02-17 (05:01	Apr-02-17	05:29		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		261	9.65	103	9.58	ND	9.47		
TPH By SW8015 Mod	Extracted:	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17	17:00		
	Analyzed:	Mar-26-17	04:47	Mar-26-17 (05:07	Mar-26-17	05:29		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
C6-C10 Gasoline Range Hydrocarbons		ND	15.0	ND	15.0	ND	15.0		
C10-C28 Diesel Range Organics		ND	15.0	351	15.0	ND	15.0		
C28-C35 Oil Range Hydrocarbons		ND	15.0	29.5	15.0	ND	15.0		
Total TPH		ND	15.0	381	15.0	ND	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

Hone Fax
(281) 240-4200 (281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335
1211 W Florida Ave, Midland, TX 79701 (432) 563-1800 (432) 563-1713
2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282 (602) 437-0330

Project Name: A14 Compressor Station Sump

Work Orders : 549416, **Project ID:** TRC# 273818

Lab Batch #: 3013499 **Sample:** 549416-001 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 03/25/17 00:20	SU	RROGATE RE	ECOVERY S	STUDY	
	ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooct	ane		93.2	99.9	93	70-135	
o-Terpheny	[48.0	50.0	96	70-135	

Units:	mg/kg	Date Analyzed: 03/25/17 01:37	SU	RROGATE RI	ECOVERY	STUDY	
	ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
		Analytes			נטן		
1-Chlorooc	etane		92.5	99.8	93	70-135	
o-Terpheny	yl		47.0	49.9	94	70-135	

Units: mg/kg Date Analyzed: 03/25/17 02:02 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	103	99.7	103	70-135	
o-Terphenyl	51.4	49.9	103	70-135	

Units:	mg/kg	Date Analyzed: 03/25/17 02:29	SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		100	100	100	70-135			
o-Terphenyl			50.6	50.0	101	70-135			

Units: mg/kg Date Analyzed: 03/25/17 02:57 SURROGATE RECOVERY STUDY							
	ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chloroocta	ane		90.1	99.8	90	70-135	
o-Terphenyl			45.3	49.9	91	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders : 549416, **Project ID:** TRC# 273818

Units:	mg/kg	Date Analyzed: 03/25/17 03:24	SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	tane		99.2	99.8	99	70-135			
o-Terpheny	1		51.2	49.9	103	70-135			

Units: mg/kg Date Analyzed: 03/25/17/03:50 SURROGATE RECOVERY ST							
	ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	ctane		98.5	99.8	99	70-135	
o-Terpheny	yl		45.8	49.9	92	70-135	

Units: mg/kg Date Analyzed: 03/25/17 04:43 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	94.6	99.7	95	70-135	
o-Terphenyl	48.2	49.9	97	70-135	

Units:	mg/kg	Date Analyzed: 03/25/17 12:48	SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	tane		96.7	99.9	97	70-135			
o-Terphenyl			49.7	50.0	99	70-135			

Units: mg/kg Date Analyzed: 03/25/17 13:10 SURROGATE RECOVERY STUDY							
	ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chloroocta	ane		91.3	99.8	91	70-135	
o-Terphenyl			46.9	49.9	94	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders : 549416, **Project ID:** TRC# 273818

Units: mg/kg Date Analyzed: 03/25/17 13:52 SURROGATE RECOVERY STUDY							
	ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooct	tane		105	99.7	105	70-135	
o-Terpheny	1		53.1	49.9	106	70-135	

Units: mg/kg **Date Analyzed:** 03/25/17 14:13 SURROGATE RECOVERY STUDY **Amount** True Control TPH By SW8015 Mod Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 102 99.9 102 70-135 o-Terphenyl 51.8 50.0 104 70-135

Units: mg/kg Date Analyzed: 03/25/17 14:33 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	88.8	99.8	89	70-135	
o-Terphenyl	45.5	49.9	91	70-135	

Units:	mg/kg	Date Analyzed: 03/25/17 14:54	SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		88.1	99.8	88	70-135			
o-Terphenyl			44.8	49.9	90	70-135			

Units: mg/kg Date Analyzed: 03/25/17 15:14 SURROGATE RECOVERY STUD							
TPH By SW8015 Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]		
1-Chloroocta	ane		91.7	99.6	92	70-135	
o-Terphenyl			45.5	49.8	91	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders : 549416, **Project ID:** TRC# 273818

Lab Batch #: 3013499 **Sample:** 549416-019 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 03/25/17 15:35 SURROGATE RECOVERY STUDY							
	ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooct	ane		91.7	99.6	92	70-135	
o-Terpheny	1		46.2	49.8	93	70-135	

Units:	mg/kg	Date Analyzed: 03/25/17 15:57	SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooc	tane		98.1	99.7	98	70-135			
o-Terpheny	<i>i</i> 1		49.7	49.9	100	70-135			

Units: mg/kg Date Analyzed: 03/26/17 03:23 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	89.4	99.8	90	70-135	
o-Terphenyl	46.2	49.9	93	70-135	

Units: mg/kg Date Analyzed: 03/26/17 03:43 SURROGATE RECOVERY STUDY							
	ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	ctane		96.9	99.7	97	70-135	
o-Terpheny	yl		40.5	49.9	81	70-135	

Units:	Inits: mg/kg Date Analyzed: 03/26/17/04:27 SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]				
1-Chloroocta	ane		85.8	99.9	86	70-135			
o-Terphenyl			44.0	50.0	88	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders : 549416, **Project ID:** TRC# 273818

Units:	mg/kg	Date Analyzed: 03/26/17 04:47	SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane	1110119 000	89.3	100	89	70-135			
o-Terphenyl	1		46.1	50.0	92	70-135			

Units:	nits: mg/kg Date Analyzed: 03/26/17/05:07 SURROGATE RECOVERY STUDY							
	ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1-Chlorooc	etane		92.7	99.8	93	70-135		
o-Terpheny	/1		44.0	49.9	88	70-135		

Units: mg/kg Date Analyzed: 03/26/17 05:29 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	85.0	99.8	85	70-135	
o-Terphenyl	43.0	49.9	86	70-135	

Units:	mg/kg	Date Analyzed: 03/26/17 06:11	SURROGATE RECOVERY STUDY							
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooct	ane		96.4	99.6	97	70-135				
o-Terpheny	[40.0	49.8	80	70-135				

Units:	Juits: mg/kg Date Analyzed: 03/26/17/06:31 SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]				
1-Chloroocta	ane		94.2	99.6	95	70-135			
o-Terphenyl			42.9	49.8	86	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders : 549416, **Project ID:** TRC# 273818

Lab Batch #: 3013499 **Sample:** 549416-013 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 03/26/17 06:50	SURROGATE RECOVERY STUDY							
	ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chlorooct	ane		102	100	102	70-135				
o-Terpheny	1		51.8	50.0	104	70-135				

Units:	Units: mg/kg Date Analyzed: 03/27/17 06:44 SURROGATE RECOVERY STUDY							
	ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1-Chlorooc	ctane		101	99.7	101	70-135		
o-Terpheny	yl		43.2	49.9	87	70-135		

Units: mg/kg Date Analyzed: 03/27/17 08:55 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0324	0.0300	108	80-120	
4-Bromofluorobenzene	0.0297	0.0300	99	80-120	

Units:	mg/kg	Date Analyzed: 03/27/17 21:58	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluoro	obenzene	<u> </u>	0.0349	0.0300	116	80-120			
4-Bromoflu	orobenzene		0.0296	0.0300	99	80-120			

Units: mg	g/kg	Date Analyzed: 03/27/17 22:14	SURROGATE RECOVERY STUDY						
		by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzer			0.0338	0.0300	113	80-120			
4-Bromofluorobenz	zene		0.0342	0.0300	114	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders : 549416, **Project ID:** TRC# 273818

Lab Batch #: 3013451 **Sample:** 549416-004 / SMP **Batch:** 1 **Matrix:** Soil

Units:	Units: mg/kg Date Analyzed: 03/28/17 01:13 SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B			Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1,4-Difluoro	obenzene		0.0332	0.0300	111	80-120			
4-Bromoflu	orobenzene		0.0280	0.0300	93	80-120			

Units:	mg/kg	Date Analyzed: 03/28/17 06:14	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorob	benzene	Timing tes	0.0251	0.0300	84	80-120			
4-Bromofluo	robenzene		0.0287	0.0300	96	80-120			

Units: mg/kg Date Analyzed: 03/28/17 09:14 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0316	0.0300	105	80-120	
4-Bromofluorobenzene	0.0296	0.0300	99	80-120	

Units:	mg/kg	Date Analyzed: 03/28/17 09:29	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluoro	benzene		0.0321	0.0300	107	80-120			
4-Bromofluc	orobenzene		0.0267	0.0300	89	80-120			

Units: mg/kg	Date Analyzed: 03/28/17 09:46	SURROGATE RECOVERY STUDY						
В	TEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
	Analytes			ردا				
1,4-Difluorobenzene		0.0286	0.0300	95	80-120			
4-Bromofluorobenzene		0.0256	0.0300	85	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: A14 Compressor Station Sump

Project ID: TRC# 273818 Work Orders: 549416,

Lab Batch #: 3013527 Sample: 549416-007 / SMP Matrix: Soil Batch: 1

Units:	mg/kg	Date Analyzed: 03/28/17 10:02	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorob	penzene		0.0354	0.0300	118	80-120		
4-Bromofluoi	robenzene		0.0247	0.0300	82	80-120		

Lab Batch #: 3013527 Sample: 549416-008 / SMP Batch: 1 Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/28/17 10:19	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluoro	benzene	randiy ees	0.0328	0.0300	109	80-120			
4-Bromoflu	orobenzene		0.0267	0.0300	89	80-120			

Sample: 549416-009 / SMP **Lab Batch #:** 3013527 Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 03/28/17 10:35 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0327	0.0300	109	80-120	
4-Bromofluorobenzene	0.0271	0.0300	90	80-120	

Lab Batch #: 3013527 **Sample:** 549416-011 / SMP Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/28/17 10:51	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluoro	benzene	•	0.0323	0.0300	108	80-120			
4-Bromoflu	orobenzene		0.0323	0.0300	108	80-120			

Lab Batch #: 3013527 Sample: 549416-012 / SMP Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/28/17 11:08	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenz	zene		0.0313	0.0300	104	80-120		
4-Bromofluorobo	enzene		0.0288	0.0300	96	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: A14 Compressor Station Sump

Project ID: TRC# 273818 Work Orders: 549416,

Lab Batch #: 3013527 **Sample:** 549416-014 / SMP Matrix: Soil Batch: 1

Units:	mg/kg	Date Analyzed: 03/28/17 11:23	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]			
1,4-Difluorobenzene			0.0316	0.0300	105	80-120		
4-Bromofluorobenzene			0.0279	0.0300	93	80-120		

Lab Batch #: 3013527 Sample: 549416-015 / SMP Batch: 1 Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/28/17 11:40	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluorobenzene			0.0320	0.0300	107	80-120			
4-Bromofluorobenzene			0.0261	0.0300	87	80-120			

Sample: 549416-016 / SMP **Lab Batch #:** 3013527 Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 03/28/17 13:35 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0309	0.0300	103	80-120	
4-Bromofluorobenzene	0.0275	0.0300	92	80-120	

Lab Batch #: 3013527 **Sample:** 549416-017 / SMP Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/28/17 13:52	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene			0.0340	0.0300	113	80-120		
4-Bromofluorobenzene			0.0278	0.0300	93	80-120		

Lab Batch #: 3013527 Sample: 549416-018 / SMP Batch: Matrix: Soil

Units:	ng/kg	Date Analyzed: 03/28/17 14:08	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene			0.0349	0.0300	116	80-120		
4-Bromofluorobenzene			0.0317	0.0300	106	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: A14 Compressor Station Sump

Project ID: TRC# 273818 Work Orders: 549416,

Lab Batch #: 3013527 **Sample:** 549416-019 / SMP Matrix: Soil Batch: 1

Units:	mg/kg	Date Analyzed: 03/28/17 14:25	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1,4-Difluorobe	nzene		0.0293	0.0300	98	80-120		
4-Bromofluorobenzene			0.0243	0.0300	81	80-120		

Lab Batch #: 3013527 Sample: 549416-020 / SMP Batch: 1 Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/28/17 14:41	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
		Analytes			[D]			
1,4-Difluorobenzene			0.0345	0.0300	115	80-120		
4-Bromofluorobenzene			0.0241	0.0300	80	80-120		

Sample: 549416-021 / SMP **Lab Batch #:** 3013527 Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 03/28/17 14:57 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0309	0.0300	103	80-120	
4-Bromofluorobenzene	0.0251	0.0300	84	80-120	

Lab Batch #: 3013527 Sample: 549416-022 / SMP Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/28/17 15:21	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluoro	1,4-Difluorobenzene			0.0300	117	80-120		
4-Bromofluorobenzene			0.0310	0.0300	103	80-120		

Lab Batch #: 3013527 Sample: 549416-023 / SMP Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/28/17 15:37	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorob	penzene		0.0306	0.0300	102	80-120		
4-Bromofluorobenzene			0.0244	0.0300	81	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders : 549416, **Project ID:** TRC# 273818

Lab Batch #: 3013589 **Sample:** 549416-026 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 03/28/17 18:05	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorob	enzene		0.0330	0.0300	110	80-120		
4-Bromofluorobenzene			0.0275	0.0300	92	80-120		

Units: mg/kg Date Analyzed: 03/28/17 18:22 SURROGATE RECOVERY STUDY							
	BTEX by EPA 8021B			True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	robenzene		0.0312	0.0300	104	80-120	
4-Bromofluorobenzene			0.0264	0.0300	88	80-120	

Units: mg/kg Date Analyzed: 03/28/17 23:47 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0326	0.0300	109	80-120	
4-Bromofluorobenzene	0.0254	0.0300	85	80-120	

Lab Batch #: 3013602 **Sample:** 549416-024 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 03/29/17 07:08 SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0343	0.0300	114	80-120			
4-Bromofluorobenzene	0.0299	0.0300	100	80-120			

Lab Batch #: 3013499 Sample: 722212-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/24/17 23:55 SURROGATE RECOVERY STUDY							
	TPH By SW8015 Mod			True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane			94.8	100	95	70-135	
o-Terphenyl			49.0	50.0	98	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders: 549416, **Project ID:** TRC# 273818

Lab Batch #: 3013501 Sample: 722214-1-BLK/BLK Batch: 1 Matrix: Solid

Date Analyzed: 03/26/17 01:18 **Units:** mg/kg SURROGATE RECOVERY STUDY True Control Amount TPH By SW8015 Mod **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1-Chlorooctane 102 102 100 70-135 o-Terphenyl 50.0 105 52.7 70-135

Lab Batch #: 3013449 Sample: 722180-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/27/17 08:39 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0355 0.0300 118 80-120 4-Bromofluorobenzene 0.0341 0.0300 114 80-120

Lab Batch #: 3013527 Sample: 722233-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/27/17 08:39 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0355	0.0300	118	80-120	
4-Bromofluorobenzene	0.0341	0.0300	114	80-120	

Lab Batch #: 3013451 Sample: 722182-1-BLK/BLK Batch: 1 Matrix: Solid

Units: Date Analyzed: 03/27/17 21:41 mg/kg SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits **Flags** [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0332 0.0300 111 80-120 4-Bromofluorobenzene 0.0271 0.0300 90 80-120

Lab Batch #: 3013589 Sample: 722268-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/28/17 17:49 SURROGATE RECOVERY STUDY								
	BTEX by EPA 8021B			True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes	[A]		[D]			
1,4-Difluorobenzene			0.0341	0.0300	114	80-120		
4-Bromofluo	orobenzene		0.0272	0.0300	91	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders: 549416, **Project ID:** TRC# 273818

Lab Batch #: 3013602 Sample: 722269-1-BLK / BLK Batch: 1 Matrix: Solid

mg/kg **Units:** Date Analyzed: 03/29/17 01:42 SURROGATE RECOVERY STUDY True Control Amount BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0280 0.0300 93 80-120 4-Bromofluorobenzene 0.0293 0.0300 98 80-120

Lab Batch #: 3013499 Sample: 722212-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/24/17 23:06 SURROGATE RECOVERY STUDY **Amount** True Control TPH By SW8015 Mod Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 107 100 107 70-135 o-Terphenyl 55.2 50.0 110 70-135

Lab Batch #: 3013501 Sample: 722214-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/26/17 01:40 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	92.4	100	92	70-135	
o-Terphenyl	46.3	50.0	93	70-135	

Lab Batch #: 3013449 Sample: 722180-1-BKS / BKS Batch: 1 Matrix: Solid

Units: Date Analyzed: 03/27/17 07:17 mg/kg SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits **Flags** [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0324 0.0300 108 80-120 4-Bromofluorobenzene 0.0312 0.0300 104 80-120

Lab Batch #: 3013527 Sample: 722233-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/27/17 07:17 SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0324	0.0300	108	80-120			
4-Bromofluorobenzene	0.0312	0.0300	104	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders : 549416, **Project ID:** TRC# 273818

Lab Batch #: 3013451 Sample: 722182-1-BKS / BKS Batch: 1 Matrix: Solid

mg/kg **Date Analyzed:** 03/27/17 20:19 **Units:** SURROGATE RECOVERY STUDY True Control Amount BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0339 0.0300 113 80-120 4-Bromofluorobenzene 0.0282 0.0300 94 80-120

Lab Batch #: 3013589 Sample: 722268-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/28/17 16:27 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0336 0.0300 112 80-120 4-Bromofluorobenzene 0.0305 0.0300 102 80-120

Lab Batch #: 3013602 Sample: 722269-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/29/17 00:20 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0341	0.0300	114	80-120	
4-Bromofluorobenzene	0.0273	0.0300	91	80-120	

Lab Batch #: 3013499 Sample: 722212-1-BSD/BSD Batch: 1 Matrix: Solid

Units: Date Analyzed: 03/24/17 23:30 mg/kg SURROGATE RECOVERY STUDY Amount True Control TPH By SW8015 Mod Found Amount Recovery Limits **Flags** [B] %R %R [A] [D] **Analytes** 1-Chlorooctane 70-135 117 100 117 o-Terphenyl 50.0 70-135 55.7 111

Lab Batch #: 3013501 Sample: 722214-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/26/17 02:00 SURROGATE RECOVERY STUDY							
	ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane			101	100	101	70-135	
o-Terphenyl			50.8	50.0	102	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders : 549416, **Project ID:** TRC# 273818

Lab Batch #: 3013449 Sample: 722180-1-BSD / BSD Batch: 1 Matrix: Solid

Date Analyzed: 03/27/17 07:33 **Units:** mg/kg SURROGATE RECOVERY STUDY True Control Amount BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0316 0.0300 105 80-120 4-Bromofluorobenzene 0.0252 0.0300 84 80-120

Lab Batch #: 3013527 Sample: 722233-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/27/17 07:33 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0316 0.0300 105 80-120 4-Bromofluorobenzene 0.0252 0.0300 84 80-120

Lab Batch #: 3013451 Sample: 722182-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/27/17 20:35 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0347	0.0300	116	80-120	
4-Bromofluorobenzene	0.0329	0.0300	110	80-120	

Lab Batch #: 3013589 Sample: 722268-1-BSD / BSD Batch: 1 Matrix: Solid

Units: Date Analyzed: 03/28/17 16:43 mg/kg SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits **Flags** [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0330 0.0300 110 80-120 4-Bromofluorobenzene 0.0308 0.0300 103 80-120

Lab Batch #: 3013602Sample: 722269-1-BSD / BSDBatch: 1Matrix: Solid

Units: mg/kg Date Analyzed: 03/29/17 00:36 SURROGATE RECOVERY STUDY							
	BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
1,4-Difluorobenzen	ne e	0.0347	0.0300	116	80-120		
4-Bromofluorobenz	zene	0.0265	0.0300	88	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders: 549416, **Project ID:** TRC# 273818

Units:	mg/kg	Date Analyzed: 03/25/17 00:44	SURROGATE RECOVERY STUDY					
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooct	ane	Timuly tes	103	99.9	103	70-135		
o-Terphenyl			47.5	50.0	95	70-135		

Units:	mg/kg	Date Analyzed: 03/26/17 02:41	SURROGATE RECOVERY STUDY					
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooct	ane		96.5	99.9	97	70-135		
o-Terphenyl	[48.2	50.0	96	70-135		

Lab Batch #: 3013449 **Sample:** 549416-001 S / MS **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 03/27/17 07:50 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0308	0.0300	103	80-120	
4-Bromofluorobenzene	0.0304	0.0300	101	80-120	

Units:	mg/kg	Date Analyzed: 03/27/17 20:52	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene			0.0357	0.0300	119	80-120			
4-Bromofluo	orobenzene		0.0351	0.0300	117	80-120			

Units:	mg/kg	Date Analyzed: 03/28/17 08:08	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
		Analytes			[D]			
1,4-Difluorobenzene			0.0328	0.0300	109	80-120		
4-Bromofluoro	obenzene		0.0296	0.0300	99	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders : 549416, **Project ID:** TRC# 273818

Lab Batch #: 3013589 **Sample:** 549416-026 S / MS **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 03/28/17 17:00	SU	RROGATE RI	ECOVERY S	STUDY	
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorobenzene			0.0323	0.0300	108	80-120	
4-Bromoflu	iorobenzene		0.0318	0.0300	106	80-120	

Lab Batch #: 3013602 **Sample:** 549418-001 S / MS **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 03/29/17 00:53 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0356 0.0300 119 80-120 4-Bromofluorobenzene 0.0330 0.0300 80-120 110

Units: mg/kg Date Analyzed: 03/25/17 01:10 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	98.3	99.7	99	70-135	
o-Terphenyl	46.2	49.9	93	70-135	

Lab Batch #: 3013501 **Sample:** 549418-001 SD / MSD **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 03/26/17 03:03	SU	RROGATE RE	ECOVERY S	STUDY	
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	ane		89.0	99.9	89	70-135	
o-Terpheny	1		43.7	50.0	87	70-135	

Units:	mg/kg	Date Analyzed: 03/2//17 08:06	SU	RROGATE RI	ECOVERY S	STUDY	
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	1	Analytes			[D]		
1,4-Difluoro	benzene		0.0350	0.0300	117	80-120	
4-Bromoflu	orobenzene		0.0329	0.0300	110	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station Sump

Work Orders: 549416, **Project ID:** TRC# 273818

Lab Batch #: 3013451 **Sample:** 549416-002 SD / MSD **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 03/27/17 21:08 SURROGATE RECOVERY STUDY True Control Amount BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0358 0.0300 119 80-120 4-Bromofluorobenzene 0.0338 0.0300 113 80-120

Units: mg/kg Date Analyzed: 03/28/17 08:25 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0339 0.0300 113 80-120 4-Bromofluorobenzene 0.0310 0.0300 103 80-120

Units: mg/kg Date Analyzed: 03/28/17 17:16 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0345	0.0300	115	80-120	
4-Bromofluorobenzene	0.0300	0.0300	100	80-120	

Lab Batch #: 3013602 **Sample:** 549418-001 SD / MSD **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 03/29/17 01:09	SU	RROGATE RE	ECOVERY S	STUDY	
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0335	0.0300	112	80-120	
4-Bromoflu	orobenzene		0.0317	0.0300	106	80-120	

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: A14 Compressor Station Sump

Work Order #: 549416 Project ID: TRC# 273818

Analyst: ALJ Date Prepared: 03/27/2017 Date Analyzed: 03/27/2017

 Lab Batch ID: 3013449
 Sample: 722180-1-BKS
 Batch #: 1
 Matrix: Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00150	0.0998	0.0829	83	0.100	0.0801	80	3	70-130	35	
Toluene	< 0.00200	0.0998	0.0936	94	0.100	0.0851	85	10	70-130	35	
Ethylbenzene	< 0.00200	0.0998	0.0919	92	0.100	0.0876	88	5	71-129	35	
m_p-Xylenes	< 0.00200	0.200	0.178	89	0.201	0.173	86	3	70-135	35	
o-Xylene	< 0.00299	0.0998	0.0940	94	0.100	0.0892	89	5	71-133	35	

Analyst: ALJ Date Prepared: 03/27/2017 Date Analyzed: 03/27/2017

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00150	0.0998	0.0802	80	0.0992	0.0878	89	9	70-130	35	
Toluene	< 0.00200	0.0998	0.0850	85	0.0992	0.0947	95	11	70-130	35	
Ethylbenzene	<0.00200	0.0998	0.0833	83	0.0992	0.0958	97	14	71-129	35	
m_p-Xylenes	< 0.00200	0.200	0.161	81	0.198	0.186	94	14	70-135	35	
o-Xylene	<0.00299	0.0998	0.0845	85	0.0992	0.0966	97	13	71-133	35	

BS / BSD Recoveries

Project Name: A14 Compressor Station Sump

Work Order #: 549416 Project ID: TRC# 273818

Analyst: ALJ Date Prepared: 03/28/2017 Date Analyzed: 03/27/2017

Lab Batch ID: 3013527Sample: 722233-1-BKSBatch #: 1Matrix: Solid

Units: mg/kg BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00150	0.0998	0.0829	83	0.100	0.0799	80	4	70-130	35	
Toluene	< 0.00200	0.0998	0.0936	94	0.100	0.0849	85	10	70-130	35	
Ethylbenzene	< 0.00200	0.0998	0.0919	92	0.100	0.0875	88	5	71-129	35	
m_p-Xylenes	< 0.00200	0.200	0.178	89	0.200	0.173	87	3	70-135	35	
o-Xylene	< 0.00299	0.0998	0.0940	94	0.100	0.0890	89	5	71-133	35	

Analyst: ALJ Date Prepared: 03/28/2017 Date Analyzed: 03/28/2017

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	< 0.00150	0.100	0.107	107	0.0998	0.0921	92	15	70-130	35	
Toluene	< 0.00200	0.100	0.112	112	0.0998	0.0993	99	12	70-130	35	
Ethylbenzene	< 0.00200	0.100	0.118	118	0.0998	0.104	104	13	71-129	35	
m_p-Xylenes	< 0.00200	0.200	0.228	114	0.200	0.200	100	13	70-135	35	
o-Xylene	< 0.00301	0.100	0.119	119	0.0998	0.103	103	14	71-133	35	

mg/kg

Units:

BS / BSD Recoveries

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Project Name: A14 Compressor Station Sump

Work Order #: 549416 Project ID: TRC# 273818

Analyst: ALJ Date Prepared: 03/28/2017 Date Analyzed: 03/29/2017

 Lab Batch ID: 3013602
 Sample: 722269-1-BKS
 Batch #: 1
 Matrix: Solid

			,11,121,111,111,								
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	< 0.00149	0.0990	0.0886	89	0.100	0.0825	83	7	70-130	35	
Toluene	< 0.00198	0.0990	0.0935	94	0.100	0.0856	86	9	70-130	35	
Ethylbenzene	< 0.00198	0.0990	0.0942	95	0.100	0.0873	87	8	71-129	35	
m_p-Xylenes	< 0.00198	0.198	0.183	92	0.201	0.171	85	7	70-135	35	
o-Xylene	< 0.00297	0.0990	0.0965	97	0.100	0.0905	91	6	71-133	35	

Analyst: ALA Date Prepared: 04/01/2017 Date Analyzed: 04/01/2017

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	10.0	9.91	99	10.0	10.0	100	1	80-120	20	

BS / BSD Recoveries

Project Name: A14 Compressor Station Sump

Work Order #: 549416 Project ID: TRC# 273818

 Analyst:
 ALA
 Date Prepared:
 04/01/2017
 Date Analyzed:
 04/02/2017

 Lab Batch ID: 3013926
 Sample: 722476-1-BKS
 Batch #: 1
 Matrix: Solid

Units: mg/kg BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	10.0	10.1	101	10.0	10.1	101	0	80-120	20	

Analyst: ALA **Date Prepared:** 04/03/2017 **Date Analyzed:** 04/03/2017

Lab Batch ID: 3014002 **Sample:** 722515-1-BKS **Batch #:** 1 **Matrix:** Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	<2.00	20.0	20.2	101	20.0	19.8	99	2	80-120	20	

Analyst: ARM **Date Prepared:** 03/24/2017 **Date Analyzed:** 03/24/2017

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C10 Gasoline Range Hydrocarbons	<15.0	1000	1070	107	1000	1150	115	7	70-135	35	
C10-C28 Diesel Range Organics	<15.0	1000	1060	106	1000	1130	113	6	70-135	35	

BS / BSD Recoveries

Project Name: A14 Compressor Station Sump

Work Order #: 549416 Project ID: TRC# 273818

Analyst: ARM **Date Prepared:** 03/24/2017 **Date Analyzed:** 03/26/2017

Lab Batch ID: 3013501 **Sample:** 722214-1-BKS **Batch #:** 1 **Matrix:** Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C10 Gasoline Range Hydrocarbons	<15.0	1000	908	91	1000	1040	104	14	70-135	35	
C10-C28 Diesel Range Organics	<15.0	1000	885	89	1000	1000	100	12	70-135	35	

Project Name: A14 Compressor Station Sump

Work Order #: 549416 **Project ID:** TRC# 273818

Lab Batch ID: 3013449 **QC- Sample ID:** 549416-001 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 03/27/2017 Date Prepared: 03/27/2017 Analyst: ALJ

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00150	0.0998	0.0740	74	0.0994	0.0741	75	0	70-130	35	
Toluene	< 0.00200	0.0998	0.0771	77	0.0994	0.0743	75	4	70-130	35	
Ethylbenzene	< 0.00200	0.0998	0.0752	75	0.0994	0.0704	71	7	71-129	35	
m_p-Xylenes	< 0.00200	0.200	0.149	75	0.199	0.142	71	5	70-135	35	
o-Xylene	< 0.00299	0.0998	0.0818	82	0.0994	0.0756	76	8	71-133	35	

Lab Batch ID: 3013451 **QC- Sample ID:** 549416-002 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 03/27/2017 **Date Prepared:** 03/27/2017 **Analyst:** ALJ

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00149	0.0990	0.0701	71	0.0994	0.0736	74	5	70-130	35	
Toluene	< 0.00198	0.0990	0.0732	74	0.0994	0.0717	72	2	70-130	35	
Ethylbenzene	< 0.00198	0.0990	0.0708	72	0.0994	0.0702	71	1	71-129	35	
m_p-Xylenes	< 0.00198	0.198	0.143	72	0.199	0.133	67	7	70-135	35	X
o-Xylene	< 0.00297	0.0990	0.0736	74	0.0994	0.0727	73	1	71-133	35	

Project Name: A14 Compressor Station Sump

Work Order #: 549416 **Project ID:** TRC# 273818

Lab Batch ID: 3013527 **QC- Sample ID:** 549416-013 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 03/28/2017 Date Prepared: 03/28/2017 Analyst: ALJ

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00151	0.101	0.0864	86	0.101	0.0755	75	13	70-130	35	
Toluene	< 0.00201	0.101	0.0896	89	0.101	0.0767	76	16	70-130	35	
Ethylbenzene	< 0.00201	0.101	0.0860	85	0.101	0.0735	73	16	71-129	35	
m_p-Xylenes	< 0.00201	0.201	0.166	83	0.202	0.143	71	15	70-135	35	
o-Xylene	< 0.00302	0.101	0.0928	92	0.101	0.0735	73	23	71-133	35	

Lab Batch ID: 3013589 **QC- Sample ID:** 549416-026 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 03/28/2017 **Date Prepared:** 03/28/2017 **Analyst:** ALJ

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00150	0.0998	0.0874	88	0.0994	0.0811	82	7	70-130	35	
Toluene	< 0.00200	0.0998	0.0879	88	0.0994	0.0795	80	10	70-130	35	
Ethylbenzene	< 0.00200	0.0998	0.0853	85	0.0994	0.0723	73	16	71-129	35	
m_p-Xylenes	< 0.00200	0.200	0.164	82	0.199	0.137	69	18	70-135	35	X
o-Xylene	< 0.00299	0.0998	0.0903	90	0.0994	0.0744	75	19	71-133	35	

Final 1.000

Project Name: A14 Compressor Station Sump

Work Order #: 549416 **Project ID:** TRC# 273818

Lab Batch ID: 3013602 **QC- Sample ID:** 549418-001 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 03/29/2017 Date Prepared: 03/28/2017 Analyst: ALJ

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00151	0.100	0.0716	72	0.101	0.0798	79	11	70-130	35	
Toluene	< 0.00201	0.100	0.0726	73	0.101	0.0815	81	12	70-130	35	
Ethylbenzene	< 0.00201	0.100	0.0728	73	0.101	0.0819	81	12	71-129	35	
m_p-Xylenes	< 0.00201	0.201	0.143	71	0.202	0.155	77	8	70-135	35	
o-Xylene	< 0.00301	0.100	0.0713	71	0.101	0.0841	83	16	71-133	35	

Lab Batch ID: 3013911 **QC- Sample ID:** 549265-021 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 04/01/2017 **Date Prepared:** 04/01/2017 **Analyst:** ALA

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	1160	99.4	1380	221	99.4	1360	201	1	80-120	20	X

Lab Batch ID: 3013911 **QC- Sample ID:** 549416-002 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 04/01/2017 **Date Prepared:** 04/01/2017 **Analyst:** ALA

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[C]	[D]	[E]	Kesun [F]	[G]	70	70K	70KI D	
Chloride	38.8	98.8	142	104	98.8	141	103	1	80-120	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: A14 Compressor Station Sump

Work Order #: 549416 Project ID: TRC# 273818

Lab Batch ID: 3013926 **QC- Sample ID:** 549416-014 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 04/02/2017 **Date Prepared:** 04/01/2017 **Analyst:** ALA

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
122225		[2]		[2]	[2]		[0]				
Chloride	62.5	99.8	164	102	99.8	164	102	0	80-120	20	

Lab Batch ID: 3013926 **QC- Sample ID:** 549416-024 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 04/02/2017 **Date Prepared:** 04/01/2017 **Analyst:** ALA

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride	34.8	98.8	136	102	98.8	136	102	0	80-120	20	

Lab Batch ID: 3014002 **QC- Sample ID:** 549470-012 S **Batch #:** 1 **Matrix:** Solid

Date Analyzed: 04/03/2017 Date Prepared: 04/03/2017 Analyst: ALA

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	8090	100	7970	0	100	7980	0	0	80-120	20	X

Project Name: A14 Compressor Station Sump

Work Order #: 549416 Project ID: TRC# 273818

Lab Batch ID: 3014002 **QC- Sample ID:** 549470-020 S **Batch #:** 1 **Matrix:** Solid

Date Analyzed: 04/04/2017 **Date Prepared:** 04/03/2017 **Analyst:** ALA

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
·											
Chloride	43.6	100	148	104	100	147	103	1	80-120	20	

Lab Batch ID: 3013499 **QC- Sample ID:** 549416-001 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 03/25/2017 **Date Prepared:** 03/24/2017 **Analyst:** ARM

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C10 Gasoline Range Hydrocarbons	<15.0	999	1050	105	997	998	100	5	70-135	35	
C10-C28 Diesel Range Organics	79.9	999	1030	95	997	993	92	4	70-135	35	

Lab Batch ID: 3013501 **QC- Sample ID:** 549418-001 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 03/26/2017 **Date Prepared:** 03/24/2017 **Analyst:** ARM

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]		Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C10 Gasoline Range Hydrocarbons	<15.0	999	972	97	999	879	88	10	70-135	35	
C10-C28 Diesel Range Organics	<15.0	999	951	95	999	872	87	9	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Xenco Laboratories

The Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	AND ANALYSI	S REQUEST
st I-20 East	Phone:	Phone: 432-563-1800
exas 79765	Fax:	Fax: 432-563-1713

	Relinqu	Relinqu	Relinquished	Bill to I	Specia											LAB # (lab use only)	ORDER #:	(lab use only)							The En
	Relinquished by:	Relinquished by:	ished by:	Slade at Energy	Special Instructions:	5-1010"	5-51	5-411	5-46"	5-31	5-369	5-2 -	5-2 6"	5-1 11	5-16	Fi	R# 6491	only)	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	The Environmental Lab of Texas
			den	Transfer.											4	FIELD CODE	911		The state of the s	432.520.7720	Midland, Texas 79703	: 2057 Commerce Drive	TRC Environmental Corporation	Nikki Green	as
	Date	Date	3/24/																M		79703	e Drive	ental Corpor		
			7/1										-			Beginning Depth			2	>			ation		
	Time	ime	A ime													Ending Depth	1		3						
	Received by ELOT:	Received by:	Received by:		F	3/23	+								3/22	Date Sampled			2						
	LOT:		AMER		246	930	1858	1535	1530.	1340.	1335	1200	13/5	1305	1300	Time Sampled			e-mail:	Fax No:					
			10													Field Filtered			ì	1					
					->	-	-	-		->	-	->	_	->	->	Total #. of Containers	+		rog						0 -
					×	×	×	×	×	×	×	×	×	×	×	Ice HNO ₃	Pre	1	rose.slade@energytransfer.c	-					12600 West I-20 Odessa, Texas
					-	+		\vdash						-	H	HCI	Preservation & #	0	lade						sa,
						+										H ₂ SO ₄	ation a	100	98						Texa
					\vdash	+										NaOH	6	000	ner						-20 I
																Na ₂ S ₂ O ₃	of Containers	1000	rgytransfer.com						79765
ı	-		- \													None	ainer	10	ans						OI
	D	D	000													Other (Specify)	T o		er.c						
	Date	Date	Pate				1,0	1,0			-	-	100	100	100	DW=Drinking Water SL=Sludge	3		mo	70					
-			-		Soll	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	GW = Groundwater S=Soil/Solid	Matrix		1	еро				P	
	=	-	=		×	14	×	×	×	×	×	×	×	×	×	NP=Non-Potable Specify Other TPH: 418.1 8015M 80	15B/	L. H	dd3	F		Proj	70	ojec	
- 1	Time	ime	1		^	×	^	Ĥ	Ĥ	<u> </u>	^	<u> </u>	1	1	_	TPH: TX 1005 TX 1006			1	Report Format:	v	Project Loc:	Project #:	Project Name:	
ŀ	T _e	S	005	< S	5	+										Cations (Ca, Mg, Na, K)		Ш			PO #:	00:	#	me:	
	adme	by by	ustoc	ocs	bor -											Anions (CI, SO4, Alkalinity)	70	7		_Q	1	1			
	Temperature Up	Sample Hand Delivered by Sampler/Client Rep. ? by Courier? UPS	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Sample Containers Intact? VOCs Free of Headspace?	Laboratory Comments:						-			-		SAR / ESP / CEC	TOTAL:	TCLP:		Standard	4	Н			70
	re U	nd [pler/ rier?	conta	ntair of h	0											Metals: As Ag Ba Cd Cr Pb Hg	Se Se		2	ndar				14	hone Fax:
- 1		Clier	ainer on co	ners lead												Volatiles			Analyze For:	a		1		Cor	9.
0	Temp:	ered t Re	ontai ontai	Inta	ents	1										Semivolatiles		1	F			Lea	TRC #:	npre	32-
orrec	+0 	. 5	ner(s)	ct?	×	×	×	×	×	×	×	×	×	×	×	BTEX 8021B/5030 or BTEX 82	260	Ц.	1			Co	#	SSS	563-
ted	Temp:	모	(8		_	-	-		-				-	-		RCI		\dashv		TRRP		inty,	27:	or S	Phone: 432-563-1800 Fax: 432-563-1713
G	1	OY.					-								1	N.O.R.M.		-		U		Lea County, NM	273818	tati	ω 0
Corrected Leine	10	20	< < <		×	×	×	×	×	×	×	×	×	×	×	Chlorides E 300.1		-					00	A14 Compressor Station Sump	
1	(0)	F	, , , ,		_	+	-	-	-		H			-	-					NPDES	1			mus	
	h	IR ID:R-8	zzz	ZZ	-	+	-	-	-	-	-		-	\vdash		RUSH TAT (Pre-Schedule) 24	4, 48, 72	hrs	1	PDE				P	
		8-			-	-	×	×	×	×	×	×	×	×	×	Standard TAT	1		_	S					
- 1					IX	IX	1.	10	10	100	10	10	10	10	100						1	1	110		

Xenco Laboratories

The Environmental Lab of Texas

12600 West I-20 East Odessa, Texas 79765 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Phone: 432-563-1800 Fax: 432-563-1713

1	Relinquished by:		Relinquished by	Bill to Rose	Special											LAB # (lab use only)	ORDE	1	(lab use only)						
	hed by:		Miller Street	Bill to Rose Slade at Energy Transfer.	Special Instructions:	= 0 111	C	U. S. L.D."	0-3 16"	25-81	NS-KO!	00-1	NV-II	1771	77 60	FIELD CODE	ORDER#: 7 1 1 1 0	クユロニニ	only)	Sampler Signature:	Telephone No: 432.520.7720	City/State/Zip: Midland,	Company Address: 2057 Con	Company Name TRC Env	Sold State of State o
	Date	, Date	3/24/1	Mate													-			Maltin	7720	Midland, Texas 79703	2057 Commerce Drive	TRC Environmental Corporation	
	1		417				ii	1								Beginning Depth				Doe	+	1		ration	
	Time	d	7													Ending Depth				10					
	Received by ELOT:	Received by:	Received by		١										3/33	Date Sampled									
	OT:		RAM		1170	170	1139	1128	1170	STI	1100	opal	1010	1005	450	Time Sampled				e-mail:	Fax No:				
			1													Field Filtered					1				
			1 2		-	-	-	-	-	-	_				-	Total #. of Containers	\vdash			0					
					×	×	×	×	×	×	×	×	×	×	×	Ice	P		ng	rose.slade@energytransfer.com					
					\vdash	+	+	+	\vdash	-	-	-	-	\vdash		HNO ₃	Preservation &		ngreen@trc	slad					
						+	+	+	-		-	-		-		HCI	/atio		n@	e@				1	
						+	+	+	\vdash		-	-	-			H ₂ SO ₄	n&#</td><td></td><td>tres</td><td>ene</td><td></td><td></td><td></td><td></td><td>П</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td>+</td><td>+</td><td>_</td><td>-</td><td>_</td><td>-</td><td></td><td></td><td></td><td>NaOH</td><td>of C</td><td></td><td>solutions.com</td><td>ergy</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>_</td><td></td><td>- ^</td><td></td><td></td><td>+</td><td>-</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Na₂S₂O₃</td><td>of Containers</td><td></td><td>itio</td><td>ytra</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td>_</td><td>B</td><td></td><td></td><td>-</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>None</td><td>iners</td><td></td><td>18.0</td><td>nsf</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>200</td><td>Date</td><td>Date</td><td>Pate</td><td></td><td></td><td>1</td><td>1</td><td>-</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>Other (Specify)</td><td>Ц</td><td></td><td>nio</td><td>er.c</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>q</td><td>P</td><td>Ф</td><td>Fe</td><td></td><td>C.</td><td>0</td><td>S</td><td>S</td><td>S</td><td>S</td><td>S</td><td>S</td><td>S</td><td>S</td><td>S</td><td>DW=Drinking Water SL=Sludge</td><td>3</td><td></td><td></td><td>mom</td><td>ZJ</td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>+</td><td></td><td>_</td><td></td><td>Soll</td><td>100</td><td>Soil</td><td>Soil</td><td>Soil</td><td>Soil</td><td>Soil</td><td>Soil</td><td>Soil</td><td>Soil</td><td>Soil</td><td>GW = Groundwater S=Soil/Solid</td><td>Matrix</td><td></td><td>U</td><td></td><td>epo</td><td></td><td></td><td></td><td>-</td></tr><tr><td>=</td><td>3</td><td>Ħ</td><td>长言</td><td></td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>NP=Non-Potable Specify Other TPH: 418.1 8015M 801</td><td>-</td><td>ماه</td><td>Ho</td><td>d35</td><td>4</td><td></td><td>Pro</td><td>- 77</td><td>roje</td></tr><tr><td>ā</td><td></td><td>ime</td><td>N. me</td><td></td><td>-</td><td>+</td><td>1</td><td>1</td><td>52</td><td>-</td><td></td><td>100</td><td>-</td><td>-</td><td>^</td><td>TPH: TX 1005 TX 1006</td><td>*</td><td>eru</td><td>~</td><td>100</td><td>Report Format:</td><td>-</td><td>Project Loc:</td><td>Project #:</td><td>Project Name:</td></tr><tr><td>Te</td><td>_</td><td>SS</td><td>552</td><td>< S .</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Cations (Ca, Mg, Na, K)</td><td>\exists</td><td></td><td>П</td><td></td><td>at:</td><td>PO #:</td><td>L00</td><td>ct #</td><td>ame</td></tr><tr><td>Tempera</td><td>by</td><td>dE de</td><td>bels</td><td>OCs</td><td></td><td>+</td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Anions (CI, SO4, Alkalinity)</td><td>-</td><td>,</td><td>П</td><td></td><td></td><td>1</td><td>1"</td><td>1.77</td><td>I.</td></tr><tr><td>316</td><td>0 8</td><td>S E</td><td>dy s</td><td>Fre C</td><td>-</td><td>+</td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SAR/ESP/CEC</td><td>O AL</td><td>TCLP:</td><td>П</td><td></td><td>S</td><td></td><td></td><td></td><td>Ш</td></tr><tr><td>0</td><td>by Cr Temp:</td><td>and</td><td>Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)</td><td>Sample Containers Intact? VOCs Free of Headspace?</td><td>5</td><td>+</td><td>1</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Metals: As Ag Ba Cd Cr Pb Hg S</td><td></td><td>, o</td><td></td><td></td><td>Standard</td><td></td><td></td><td></td><td>></td></tr><tr><td>orre</td><td>Temp:</td><td>De</td><td>ntair s on</td><td>ine</td><td>-</td><td>+</td><td>+</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>00</td><td>+</td><td>Ana</td><td></td><td>lard</td><td></td><td></td><td></td><td>4</td></tr><tr><td>cte</td><td>5</td><td>liver</td><td>cor cor</td><td>rs Ir</td><td>-</td><td>+</td><td>+</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Volatiles</td><td>+</td><td>+</td><td>lyze</td><td></td><td></td><td></td><td></td><td></td><td>Cor</td></tr><tr><td>Corrected Temp:</td><td>1</td><td>-ed</td><td>s) itain iler(</td><td>ntac pace</td><td>2</td><td>+</td><td>-</td><td>-</td><td>33.4</td><td></td><td>2.7</td><td>5.47</td><td></td><td></td><td>17.0</td><td>Semivolatiles</td><td></td><td>+</td><td>Analyze For:</td><td></td><td></td><td></td><td>Lea</td><td>NZ</td><td>John</td></tr><tr><td>due</td><td>_</td><td>1</td><td>er(s s)</td><td>5 5</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>BTEX 8021B/5030 or BTEX 826</td><td>0</td><td>L</td><td>3</td><td></td><td></td><td></td><td>Lea County, NM</td><td>TRC #: 273818</td><td>A14 Compressor Station Sump</td></tr><tr><td>19</td><td></td><td></td><td><u></u></td><td></td><td>_</td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>RCI</td><td></td><td></td><td>П</td><td></td><td>TRRP</td><td></td><td>unt</td><td>27</td><td>9</td></tr><tr><td>"</td><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td>N.O.R.M.</td><td></td><td></td><td>П</td><td></td><td>ס</td><td></td><td>Z</td><td>38</td><td>Sta</td></tr><tr><td>1</td><td>IR ID:R-8</td><td></td><td>د د د</td><td></td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>Chlorides E 300.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>8</td><td>tion</td></tr><tr><td>,</td><td>.H-8</td><td>. <</td><td>~ ~ ~</td><td>~ ~</td><td></td><td></td><td></td><td></td><td></td><td>1.11</td><td>1 1</td><td></td><td>1</td><td>111</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>35</td></tr><tr><td></td><td></td><td>215</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NPDES</td><td></td><td></td><td></td><td>JE.</td></tr><tr><td>ဂိ</td><td>ne Star</td><td>ZZ</td><td>ZZZ</td><td>ZZ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>RUSH TAT (Pre-Schedule) 24,</td><td>48, 72</td><td>hrs</td><td></td><td></td><td>DES</td><td></td><td></td><td></td><td>I</td></tr><tr><td></td><td>프</td><td></td><td></td><td></td><td>V</td><td>V</td><td>~</td><td>~</td><td>~</td><td>V</td><td>~</td><td>~</td><td>V</td><td>~</td><td>~</td><td>Standard TAT</td><td></td><td></td><td></td><td></td><td>٠,</td><td></td><td>1</td><td></td><td></td></tr></tbody></table>								

Xenco Laboratories

The Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 343

12600 West I-20 East Odessa, Texas 79765

711	P
Fax	0
	ne
43	43
2-6	2-
56	56
μ	မှ
7	8
-	9
-	_

Relinquished by	Relinquished by	Relinquishe	Bill to Ro	2											LAB # (lab use only)	ORDER #:	(lab use only)							
ned by:	ned by:	The by	Bill to Rose Slade at Energy Transfer							5-5 6	NU-5	55-4	M-SN	5-4	n n	2	7		Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:
		OL/O	Transfer.							1011	11	11	11	2	FIELD CODE	21716	111			432.520,7720	Midland, Texas 79703	s: 2057 Commerce Drive	TRC Environ	Nikki Green
Date	Date	3/24/17																	Mus		as 79703	erce Drive	TRC Environmental Corporation	
T		14											'n	11	Beginning Depth								ation	
Time	Time	2				ī									Ending Depth									
Received by ELOT:	Received by:	Received by:	A							3/22	1-			323	Date Sampled									
OT:		AMO								1550	1320	1310	1300	1150	Time Sampled				e-mail:	Fax No:				
		1													Field Filtered					P				
		1				_	<u> </u>	_	_	_		-	-	_	Total #. of Containers	-			170					
						×	×	×	×	×	×	×	×	×	Ice	- p		00	se.s					
															HNO ₃	Preservation & #		ngreen@trcsolutions.com	rose.slade@ene					
															HCI	vation		n@	e@					
					Н										H ₂ SO ₄	₩		tres	ene					
				\vdash		-								-	NaOH Na ₂ S ₂ O ₃	of Containers		olut	rgy					
					\blacksquare										None	ntain		ions	tran					
	_	63				\dashv									Other (Specify)	ers		S.CO	sfer					
Date	Date	Pate		Н											DW=Drinking Water SL=Sludge	Н		13	rgytransfer.com	1.	1	1	1	4
111		-				Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	GW = Groundwater S=Soil/Solid	Matrix			IZ	Rep				
		1				_	_	_		_		T.			NP=Non-Potable Specify Other	1	_	4	1	9		Pr		Proj
Time	Time	Time				×	×	×	×	×	×	×	×	×		15B/	eu	do	950	Report Format:		Project Loc:	Pro	Project Name:
11		11													TPH: TX 1005 TX 1006					nat:	PO #:	t Lo	Project #:	Vam
Tem	Sam	Cus	Sam												Cations (Ca, Mg, Na, K)						*	ñ	#	ē
Temperature Upon	nple Hand I by Sampler by Courier?	tody tody	ple S F												Anions (CI, SO4, Alkalinity)	- 5	TCLP:			Standard Standard				
atur	Han	sea sea	Con			\Box									SAR / ESP / CEC			1		Stan				>
- Up	er?	ontai ils o	Con tain												Metals: As Ag Ba Cd Cr Pb Hg	Se	+	Ana		dard				4
on	Sample Hand Delivered by Sampler/Client Rep. ? by Courier?	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?												Volatiles	-	+	Analyze						Cor
00.	red t Rej	(s) intai oler	intac												Semivolatiles	-	+	For:				Lea	TRC	npr
CF: +0.1	P. 2	ner(s	, to	Ш		×	×	×	×	×	×	×	×	×	BTEX 80219/5030 or BTEX 82	60		13				Cot	#	ess
0.1	-	s													RCI					TRRP		inty	27	or s
CF: +0.1 \mathcal{A} Corrected Temp.															N.O.R.M.			1		0		Lea County, NM	273818	Stati
-	1 1	~ ~ ~	11			×	×	×	×	×	×	×	×	×	Chlorides E 300.1							-	00	A14 Compressor Station Sump
77		177		\vdash			-		-									1		Z				Sur
E/C	250		77	Н											DUCHTAT					NPDES				du
P.R.O.I.RI	N N Star	ZZZ	22				100								RUSH TAT (Pre-Schedule) 24	, 48, 7	hrs			S				
7	7					×	×	×	×	×	×	×	×	×	Standard TAT							1.	1	1

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions, Inc

Date/ Time Received: 03/24/2017 02:55:00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Work Order #: 549416

Temperature Measuring device used: R8

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		2.2
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seal present on shipping co	ontainer/ cooler?	N/A
#5 *Custody Seals intact on shipping cor	ntainer/ cooler?	N/A
#6 Custody Seals intact on sample bottle	es?	N/A
#7 *Custody Seals Signed and dated?		N/A
#8 *Chain of Custody present?		Yes
#9 Sample instructions complete on Cha	in of Custody?	Yes
#10 Any missing/extra samples?		No
#11 Chain of Custody signed when reline	quished/ received?	Yes
#12 Chain of Custody agrees with sample	le label(s)?	Yes
#13 Container label(s) legible and intact	?	Yes
#14 Sample matrix/ properties agree with	n Chain of Custody?	Yes
#15 Samples in proper container/ bottle?		Yes
#16 Samples properly preserved?		Yes
#17 Sample container(s) intact?		Yes
#18 Sufficient sample amount for indicat	ed test(s)?	Yes
#19 All samples received within hold time	e?	Yes
#20 Subcontract of sample(s)?		N/A
#21 VOC samples have zero headspace	?	N/A
#22 <2 for all samples preserved with HI samples for the analysis of HEM or HEM analysts.		N/A
#23 >10 for all samples preserved with N	NaAsO2+NaOH, ZnAc+NaOH?	N/A
* Must be completed for after-hours de		the refrigerator
Analyst:	PH Device/Lot#:	
Checklist completed by:	Jessica Vramer Jessica Kramer	Date: <u>03/24/2017</u>
Checklist reviewed by:	Kelsey Brooks	Date: <u>03/27/2017</u>

Analytical Report 549418

for TRC Solutions, Inc

Project Manager: Nikki Green
A14 Compressor Station

03-APR-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)

Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

03-APR-17

Project Manager: Nikki Green

TRC Solutions, Inc 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 549418

A14 Compressor Station

Project Address: Lea County, NM

Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 549418. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 549418 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knus Hoah

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 549418

TRC Solutions, Inc, Midland, TX

A14 Compressor Station

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BG-1 1'	S	03-23-17 16:45	- 1 ft	549418-001

XENCO

CASE NARRATIVE

Client Name: TRC Solutions, Inc Project Name: A14 Compressor Station

Project ID: Report Date: 03-APR-17
Work Order Number(s): 549418
Date Received: 03/24/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3013602 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Certificate of Analysis Summary 549418

TRC Solutions, Inc, Midland, TX

Project Name: A14 Compressor Station

Project Id: Contact:

Nikki Green

Project Location: Lea County, NM

Date Received in Lab: Fri Mar-24-17 02:55 pm

Report Date: 03-APR-17 **Project Manager:** Kelsey Brooks

	Lab Id:	549418-001			
Analysis Requested	Field Id:	BG-1 1'			
Analysis Requested	Depth:	1 ft			
	Matrix:	SOIL			
	Sampled:	Mar-23-17 16:45			
BTEX by EPA 8021B	Extracted:	Mar-28-17 16:50			
	Analyzed:	Mar-29-17 01:58			
	Units/RL:	mg/kg RL			
Benzene		ND 0.00151			
Toluene		ND 0.00201			
Ethylbenzene		ND 0.00201			
m_p-Xylenes		ND 0.00201			
o-Xylene		ND 0.00301			
Total Xylenes		ND 0.00201			
Total BTEX		ND 0.00151			
Chloride by EPA 300	Extracted:	Apr-01-17 14:14			
SUB: TX104704215	Analyzed:	Apr-02-17 11:11			
	Units/RL:	mg/kg RL			
Chloride		ND 9.96			
TPH By SW8015 Mod	Extracted:	Mar-24-17 17:00			
	Analyzed:	Mar-26-17 02:20			
	Units/RL:	mg/kg RL			
C6-C10 Gasoline Range Hydrocarbons		ND 15.0			
C10-C28 Diesel Range Organics		ND 15.0			
C28-C35 Oil Range Hydrocarbons		ND 15.0			
Total TPH		ND 15.0			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Knis Roah

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

Phone Fax
4147 Greenbriar Dr, Stafford, TX 77477 (281) 240-4200 (281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335
1211 W Florida Ave, Midland, TX 79701 (432) 563-1800 (432) 563-1713
2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282 (602) 437-0330

Project Name: A14 Compressor Station

 Work Orders:
 549418,
 Project ID:

 Lab Batch #:
 3013501
 Sample:
 549418-001 / SMP
 Batch:
 1
 Matrix:
 Soil

Units: mg/kg Date Analyzed: 03/26/17 02:20 SURROGATE RECOVERY STUDY							
	TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		103	99.8	103	70-135		
o-Terphenyl		52.6	49.9	105	70-135		

Lab Batch #: 3013602 **Sample:** 549418-001 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 03/29/17 01:58	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
		Analytes			[D]				
1,4-Difluor	obenzene		0.0358	0.0300	119	80-120			
4-Bromofluorobenzene			0.0356	0.0300	119	80-120			

Lab Batch #: 3013501 Sample: 722214-1-BLK/BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/26/17 01:18 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	102	100	102	70-135	
o-Terphenyl	52.7	50.0	105	70-135	

Lab Batch #: 3013602 Sample: 722269-1-BLK/BLK Batch: 1 Matrix: Solid

Units: mg/kg	Date Analyzed: 03/29/17 01:42	SUI	RROGATE RI	ECOVERY S	STUDY	
BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0280	0.0300	93	80-120	
4-Bromofluorobenzene	0.0293	0.0300	98	80-120		

Lab Batch #: 3013501 Sample: 722214-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/26/17 01:40 SURROGATE RECOVERY STUDY								
	TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1-Chloroocta	ane		92.4	100	92	70-135		
o-Terphenyl			46.3	50.0	93	70-135		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station

Work Orders: 549418,
Lab Batch #: 3013602
Sample: 722269-1-BKS / BKS
Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/29/17 00:20 SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0341	0.0300	114	80-120				
4-Bromofluorobenzene	0.0273	0.0300	91	80-120				

Lab Batch #: 3013501 Sample: 722214-1-BSD / BSD Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 03/26/17 02:00	SU	RROGATE RE	ECOVERY S	STUDY	
TPH By SW8015 Mod Analytes		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]		
1-Chlorooc	tane		101	100	101	70-135	
o-Terpheny	ıl		50.8	50.0	102	70-135	

Lab Batch #: 3013602 Sample: 722269-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/29/17 00:36 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0347	0.0300	116	80-120	
4-Bromofluorobenzene	0.0265	0.0300	88	80-120	

Units:	mg/kg	Date Analyzed: 03/26/17 02:41	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod Analytes			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	tane		96.5	99.9	97	70-135			
o-Terpheny	1		48.2	50.0	96	70-135			

 Lab Batch #: 3013602
 Sample: 549418-001 S / MS
 Batch: 1
 Matrix: Soil

Units: mg/kg Date Analyzed: 03/29/17 00:53 SURROGATE RECOVERY STUDY								
	BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
	Analytes			[D]				
1,4-Difluoro	benzene	0.0356	0.0300	119	80-120			
4-Bromofluo	probenzene	0.0330	0.0300	110	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: A14 Compressor Station

 Work Orders:
 549418,
 Project ID:

 Lab Batch #:
 3013501
 Sample:
 549418-001 SD / MSD
 Batch:
 1
 Matrix:
 Soil

Units: mg/kg Date Analyzed: 03/26/17 03:03 SURROGATE RECOVERY STUDY								
	TPH 1	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1-Chlorooct	ane		89.0	99.9	89	70-135		
o-Terphenyl			43.7	50.0	87	70-135		

Lab Batch #: 3013602 **Sample:** 549418-001 SD / MSD **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 03/29/17 01:09 SURROGATE RECOVERY STUDY							
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0335	0.0300	112	80-120	
4-Bromoflu	orobenzene		0.0317	0.0300	106	80-120	

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: A14 Compressor Station

Work Order #: 549418 Project ID:

Analyst: ALJ Date Prepared: 03/28/2017 Date Analyzed: 03/29/2017

Lab Batch ID: 3013602Sample: 722269-1-BKSBatch #: 1Matrix: Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes Benzene	<0.00149	0.0990	0.0886	89	0.100	0.0825	83	7	70-130	35	
Toluene	<0.00198	0.0990	0.0935	94	0.100	0.0856	86	9	70-130	35	
Ethylbenzene	< 0.00198	0.0990	0.0942	95	0.100	0.0873	87	8	71-129	35	
m_p-Xylenes	< 0.00198	0.198	0.183	92	0.201	0.171	85	7	70-135	35	
o-Xylene	< 0.00297	0.0990	0.0965	97	0.100	0.0905	91	6	71-133	35	

Analyst: ALA Date Prepared: 04/01/2017 Date Analyzed: 04/02/2017

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	10.0	9.91	99	10.0	9.77	98	1	80-120	20	

BS / BSD Recoveries

Project Name: A14 Compressor Station

Work Order #: 549418 Project ID:

Analyst: ARM **Date Prepared:** 03/24/2017 **Date Analyzed:** 03/26/2017

Lab Batch ID: 3013501 **Sample:** 722214-1-BKS **Batch #:** 1 **Matrix:** Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C10 Gasoline Range Hydrocarbons	<15.0	1000	908	91	1000	1040	104	14	70-135	35	
C10-C28 Diesel Range Organics	<15.0	1000	885	89	1000	1000	100	12	70-135	35	

Project Name: A14 Compressor Station

Work Order #: 549418 Project ID:

Lab Batch ID: 3013602 **QC- Sample ID:** 549418-001 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 03/29/2017 **Date Prepared:** 03/28/2017 **Analyst:** ALJ

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
•		0.100	0.0716	72	0.101	0.0798	79	11	70-130	35	
Benzene	<0.00151							11			
Toluene	< 0.00201	0.100	0.0726	73	0.101	0.0815	81	12	70-130	35	
Ethylbenzene	< 0.00201	0.100	0.0728	73	0.101	0.0819	81	12	71-129	35	
m_p-Xylenes	< 0.00201	0.201	0.143	71	0.202	0.155	77	8	70-135	35	
o-Xylene	< 0.00301	0.100	0.0713	71	0.101	0.0841	83	16	71-133	35	

Lab Batch ID: 3013954 **QC- Sample ID:** 549418-001 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 04/02/2017 **Date Prepared:** 04/01/2017 **Analyst:** ALA

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<9.96	99.6	104	104	99.6	103	103	1	80-120	20	

Lab Batch ID: 3013954 **QC- Sample ID:** 549469-007 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 04/02/2017 Date Prepared: 04/01/2017 Analyst: ALA

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride	29.4	99.0	132	104	99.0	131	103	1	80-120	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: A14 Compressor Station

Work Order #: 549418 Project ID:

Lab Batch ID: 3013501 **QC- Sample ID:** 549418-001 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 03/26/2017 Date Prepared: 03/24/2017 Analyst: ARM

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C10 Gasoline Range Hydrocarbons	<15.0	999	972	97	999	879	88	10	70-135	35	
C10-C28 Diesel Range Organics	<15.0	999	951	95	999	872	87	9	70-135	35	

Xenco Laboratories

The Environmental Lab of Texas

12600 West I-20 East Odessa, Texas 79765 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST USE Phone: 432.553 4555

Fax:	Phone:	
432-563-1713	432-563-1800	

een	Project Name:	A14 Compressor Station
Environmental Corporation	Project #:	

Date Time		Background Bo	Ending Depth Ending Depth Date Sampled Time Sampled Time Sampled Time Sampled Total #. of Containers Ice HNO ₃ HCI H ₂ SO ₄ NaOH Na ₂ S ₂ O ₃ None Other (Specify) DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other TPH: 418.1 &015M &015M &011 TPH: TX 1005 TX 1006 Cations (Ca, Mg, Na, K) Anions (CI, SO ₄ , Alkalinity) SAR / ESP / CEC		(lab use only) TCLP:	sampler signature: ### e-mail: rose.slade@energytransrer.com ngreen@trcsolutions.com	432.520.7720 Fax No: Report Format:	City/State/Zip: Midland, Texas 79703	Company Address: 2057 Commerce Drive Project Loc:	Company Name TRC Environmental Corporation Project #:	Project Manager: Nikki Green Project Name:
1			HCI H ₂ SO ₄ NaOH Na ₂ S ₂ O ₃ None Other (Specify) DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	Containers Matrix	JŁ.	reen@trcsolutions.com	Report Fo		Proje	Pr	Project
Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace? Time Labels on container(s) Custody seals on cooler(s) Custody seals on cooler(s) Sample Hand Delivered		×	TPH: TX 1005 TX 1006 Cations (Ca, Mg, Na, K) Anions (Cl, SO4, Alkalinity) SAR / ESP / CEC Metals: As Ag Ba Cd Cr Pb Hg S Volatiles Semivolatiles BTEX 8021B/5030 or BTEX 826 RCI N.O.R.M.	Se	TCLP:	Analyze For:	rmat: ☐ Standard ☐ TRRP	PO #:	ect Loc: Lea County, NM	oject#:	t Name: A14 Compressor Station
<<<<<<		×	Chlorides E 300.1 RUSH TAT (Pre-Schedule) 24, Standard TAT	48, 7	72 hrs		NPDES				ation

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions, Inc

Date/ Time Received: 03/24/2017 02:55:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Comments

Work Order #: 549418

Temperature Measuring device used: R8

#1 *Temperature of cooler(s)?		2.2
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seal present on shipping co	ontainer/ cooler?	N/A
#5 *Custody Seals intact on shipping con	ntainer/ cooler?	N/A
#6 Custody Seals intact on sample bottle	es?	N/A
#7 *Custody Seals Signed and dated?		N/A
#8 *Chain of Custody present?		Yes
#9 Sample instructions complete on Cha	in of Custody?	Yes
#10 Any missing/extra samples?		No
#11 Chain of Custody signed when reline	quished/ received?	Yes
#12 Chain of Custody agrees with samp	e label(s)?	Yes
#13 Container label(s) legible and intact	?	Yes
#14 Sample matrix/ properties agree with	n Chain of Custody?	Yes
#15 Samples in proper container/ bottle?	•	Yes
#16 Samples properly preserved?		Yes
#17 Sample container(s) intact?		Yes
#18 Sufficient sample amount for indicat	ed test(s)?	Yes
#19 All samples received within hold time	e?	Yes
#20 Subcontract of sample(s)?		N/A
#21 VOC samples have zero headspace	?	N/A
#22 <2 for all samples preserved with HI samples for the analysis of HEM or HEM analysts.		N/A
#23 >10 for all samples preserved with N	laAsO2+NaOH, ZnAc+NaOH?	N/A
* Must be completed for after-hours de Analyst:	livery of samples prior to placing in PH Device/Lot#:	the refrigerator
Checklist completed by:	Jessica Kramer	Date: 03/24/2017
Checklist reviewed by:	Kelsey Brooks	Date: 03/27/2017

Sample Receipt Checklist

TRC#273818

Nikki Green

Lea County, NM

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 553893

TRC Solutions, Inc, Midland, TX

Project Name: A-14 Compressor Station Sump

Date Received in Lab: Wed May-24-17 04:10 pm

Report Date: 30-MAY-17 Project Manager: Liz Givens

			1	1	
	Lab Id:	553893-001			
Analysis Requested	Field Id:	BH-1@ 8"			
71nutysis Requesteu	Depth:	8 In			
	Matrix:	SOIL			
	Sampled:	May-23-17 11:25			
BTEX by EPA 8021B	Extracted:	May-25-17 08:00			
	Analyzed:	May-25-17 10:36			
	Units/RL:	mg/kg RL			
Benzene		< 0.00353 0.00353			
Toluene		< 0.00353 0.00353			
Ethylbenzene		< 0.00353 0.00353			
m,p-Xylenes		< 0.00707 0.00707			
o-Xylene		< 0.00353 0.00353			
Total Xylenes		< 0.00353 0.00353			
Total BTEX		< 0.00353 0.00353			
Chloride by EPA 300	Extracted:	May-26-17 08:00			
	Analyzed:	May-26-17 09:47			
	Units/RL:	mg/kg RL			
Chloride		8.06 4.98			
TPH by SW8015 Mod	Extracted:	May-26-17 17:00			
	Analyzed:	May-27-17 14:48			
	Units/RL:	mg/kg RL			
C6-C10 Gasoline Range Hydrocarbons		<15.0 15.0			
C10-C28 Diesel Range Organics		203 15.0			
C28-C35 Oil Range Hydrocarbons		303 15.0			
Total TPH		506 15.0			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brandi Ritcherson Project Manager

Analytical Report 553893

for TRC Solutions, Inc

Project Manager: Nikki Green
A-14 Compressor Station Sump
TRC#273818
30-MAY-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

30-MAY-17

Project Manager: Nikki Green

TRC Solutions, Inc 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 553893

A-14 Compressor Station Sump Project Address: Lea County, NM

Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 553893. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 553893 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brandi Ritcherson

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and OUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 553893

TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BH-1@ 8"	S	05-23-17 11:25	- 8 In	553893-001

CASE NARRATIVE

Client Name: TRC Solutions, Inc

Project Name: A-14 Compressor Station Sump

Project ID: TRC#273818 Report Date: 30-MAY-17 Work Order Number(s): 553893 Date Received: 05/24/2017

Sample receipt non conformances and comments:

5/30/17: 1.001 corrected project name.

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3018244 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Page 5 of 12

Final 1.001

TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: BH-1@ 8" Matrix: Soil Date Received:05.24.17 16.10

Lab Sample Id: 553893-001 Date Collected: 05.23.17 11.25 Sample Depth: 8 In

Analytical Method: Chloride by EPA 300 Prep Method: E300P

% Moisture:

% Moisture:

Analyst: MGO Date Prep: 05.26.17 08.00 Basis: Wet Weight

Seq Number: 3018325

MGO

Tech:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 8.06
 4.98
 mg/kg
 05.26.17 09.47
 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

Tech: ARM

Analyst: ARM Date Prep: 05.26.17 17.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
C6-C10 Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	05.27.17 14.48	U	1
C10-C28 Diesel Range Organics	C10C28DRO	203	15.0		mg/kg	05.27.17 14.48		1
C28-C35 Oil Range Hydrocarbons	PHCG2835	303	15.0		mg/kg	05.27.17 14.48		1
Total TPH	PHC635	506	15.0		mg/kg	05.27.17 14.48		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	99	%	70-135	05.27.17 14.48		
o-Terphenyl		84-15-1	102	%	70-135	05.27.17 14.48		

TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: BH-1@ 8" Matrix: Soil Date Received:05.24.17 16.10

Lab Sample Id: 553893-001 Date Collected: 05.23.17 11.25 Sample Depth: 8 In

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

% Moisture:

Analyst: ALJ Date Prep: 05.25.17 08.00 Basis: Wet Weight

Seq Number: 3018244

ALJ

Tech:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00353	0.00353		mg/kg	05.25.17 10.36	U	1
Toluene	108-88-3	< 0.00353	0.00353		mg/kg	05.25.17 10.36	U	1
Ethylbenzene	100-41-4	< 0.00353	0.00353		mg/kg	05.25.17 10.36	U	1
m,p-Xylenes	179601-23-1	< 0.00707	0.00707		mg/kg	05.25.17 10.36	U	1
o-Xylene	95-47-6	< 0.00353	0.00353		mg/kg	05.25.17 10.36	U	1
Total Xylenes	1330-20-7	< 0.00353	0.00353		mg/kg	05.25.17 10.36	U	1
Total BTEX		< 0.00353	0.00353		mg/kg	05.25.17 10.36	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	93	%	80-120	05.25.17 10.36		
4-Bromofluorobenzene		460-00-4	113	%	80-120	05.25.17 10.36		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

| Phone | Fax | 4147 Greenbriar Dr, Stafford, TX 77477 | (281) 240-4200 | (281) 240-4280 |

QC Summary 553893

TRC Solutions, Inc

A-14 Compressor Station Sump

Analytical Method: Chloride by EPA 300

3018325 Matrix: Solid

LCS Sample Id: 725214-1-BKS

E300P Prep Method:

05.26.17

MB Sample Id:

725214-1-BLK

LCSD Sample Id: 725214-1-BSD

Date Prep:

MB Spike LCS LCS Limits %RPD RPD LCSD LCSD Units **Parameter** Amount Result Limit Result %Rec Result %Rec

Chloride 90-110 20 mg/kg 05.26.17 09:09 < 5.00 250 264 106 263 105 0

Analytical Method: Chloride by EPA 300

3018325 Matrix: Soil

Spike

Amount

Date Prep:

E300P

05.26.17

Units

Parent Sample Id: 553892-001 MS Sample Id: 553892-001 S

Prep Method: MSD Sample Id:

553892-001 SD

05.26.17 09:32

Analysis

Date

Flag

Parameter

MS MS

%Rec

Limits **MSD**

%Rec

%RPD RPD

Limit

Analysis Flag Date

Chloride 52.5 247 301 101 302 101 90-110 0 20 mg/kg

Result

Analytical Method: TPH by SW8015 Mod

3018367

Matrix: Solid

Prep Method: Date Prep: 05.26.17

TX1005P

Seq Number: MB Sample Id:

Seq Number:

Seq Number:

725298-1-BLK

Parent

Result

LCS Sample Id:

725298-1-BKS

MSD

Result

LCSD Sample Id: 725298-1-BSD

Flag

RPD LCS MB Spike LCS LCSD LCSD Limits %RPD Units Analysis **Parameter** Result Limit Result Date Amount %Rec Result %Rec C6-C10 Gasoline Range Hydrocarbons 05.27.17 13:04 <15.0 1000 1010 101 1110 70-135 9 35 111 mg/kg 05.27.17 13:04 70-135 C10-C28 Diesel Range Organics 1000 1030 103 1070 107 4 35 <15.0 mg/kg

MB MB LCS LCS LCSD LCSD Limits Units Analysis **Surrogate** %Rec Flag %Rec Flag %Rec Flag Date 05.27.17 13:04 1-Chlorooctane 118 105 120 70-135 % 104 70-135 % 05.27.17 13:04 o-Terphenyl 117 117

Analytical Method: TPH by SW8015 Mod

3018367

Prep Method:

TX1005P

Seq Number: Matrix: Soil Date Prep: Parent Sample Id: 553892-001

553892-001 S MS Sample Id:

MSD Sample Id: 553892-001 SD

05.26.17

RPD MS %RPD **Parent** Spike MS **MSD** MSD Limits Units Analysis Flag **Parameter** Result Amount Result %Rec Limit Date Result %Rec C6-C10 Gasoline Range Hydrocarbons <15.0 999 981 98 1030 70-135 5 35 05.27.17 14:06 103 mg/kg

C10-C28 Diesel Range Organics 187 999 1130 94 1150 70-135 2 05.27.17 14:06 96 35 mg/kg

MS MS **MSD** Limits Units Analysis MSD Surrogate %Rec Flag Flag Date %Rec 05.27.17 14:06 100 70-135 1-Chlorooctane 118 % 05.27.17 14:06 o-Terphenyl 76 108 70-135 %

QC Summary 553893

TRC Solutions, Inc

A-14 Compressor Station Sump

Analytical Method:BTEX by EPA 8021BPrep Method:SW5030BSeq Number:3018244Matrix:SolidDate Prep:05.25.17

MB Sample Id: 725225-1-BLK LCS Sample Id: 725225-1-BKS

LCSD Sample Id: 725225-1-BSD

RPD RPD Units Analysis Flag

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	1
Benzene	< 0.00201	0.100	0.0826	83	0.0767	76	70-130	7	35	mg/kg	05.25.17 07:20	
Toluene	< 0.00201	0.100	0.0823	82	0.0810	80	70-130	2	35	mg/kg	05.25.17 07:20	
Ethylbenzene	< 0.00201	0.100	0.0915	92	0.0810	80	71-129	12	35	mg/kg	05.25.17 07:20	
m,p-Xylenes	< 0.00402	0.201	0.177	88	0.165	82	70-135	7	35	mg/kg	05.25.17 07:20	
o-Xylene	< 0.00201	0.100	0.0865	87	0.0803	80	71-133	7	35	mg/kg	05.25.17 07:20	

MB LCSD LCS Units Analysis MB LCS LCSD Limits **Surrogate** Date %Rec Flag %Rec Flag Flag %Rec 1,4-Difluorobenzene 93 115 101 80-120 % 05.25.17 07:20 4-Bromofluorobenzene 92 118 101 80-120 % 05.25.17 07:20

Analytical Method:BTEX by EPA 8021BPrep Method:SW5030BSeq Number:3018244Matrix:SoilDate Prep:05.25.17

Parent Sample Id: 553764-001 MS Sample Id: 553764-001 S MSD Sample Id: 553764-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00201	0.100	0.0527	53	0.0647	65	70-130	20	35	mg/kg	05.25.17 07:52	X
Toluene	< 0.00201	0.100	0.0553	55	0.0688	69	70-130	22	35	mg/kg	05.25.17 07:52	X
Ethylbenzene	< 0.00201	0.100	0.0562	56	0.0640	64	71-129	13	35	mg/kg	05.25.17 07:52	X
m,p-Xylenes	< 0.00402	0.201	0.102	51	0.125	63	70-135	20	35	mg/kg	05.25.17 07:52	X
o-Xylene	< 0.00201	0.100	0.0543	54	0.0658	66	71-133	19	35	mg/kg	05.25.17 07:52	X

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	100		100		80-120	%	05.25.17 07:52
4-Bromofluorobenzene	117		118		80-120	%	05.25.17 07:52

Xenco Laboratories

The Environmental Lab of Texas

12600 West I-20 East Odessa, Texas 79765 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Phone: 432-563-1800 Fax: 432-563-1713

20	R C	Re	BIII		T					22.3. Tal. 3.	9)	(lab						
remindusined by.	Religion by the by	Relinquish	Bill to Rose Slade at Energy Transfer.							LAB # (lab use only)	ORDER #:	1	(lab use only)						
	2	No.	ose		+			+			- #	:	only	S	Te	Ω	S	C	7
vy.	2 3	53	Sla									1	3	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager.
	2	100	de a								10)	1	er	hon	tate	any	any	N N
	15	3	t En								(5	1	Sigr	e	Zip	Ad	Na	9
	10	00	ergy				1 1			_	(X	1	natu	0	,c,	dre	me	ge
0	3	8	Tra						BH-1 @ 8"	FIELD CODE	lò	人父父人		9					
(130	2	ınsf				11		100	D C	_	5			432	Mid	2057 Commerce Drive	TRO	NIKKI Green
	13	2	3						\ \@	ODE	(X	7		432.520.7720	land	700	En	9
	7													2	772	Te	m	viror	een
	1s	~					11							8	40	Midland, Texas 79703	erce	ıme	
,	1	100					1 1								t.	7970	Dri	ntal	
Date	24	24						11						15	-	33	Ve	Corp	
_	7	7		H	+	+	+	++	-		+			2	0			TRC Environmental Corporation	1
	16/0	530		Н	1			\perp		Beginning Depth	1			5				S	
ō	0 0	30								Ending Depth				-					
Neceived by ELOT.	Received by	Received by			T				Ŋ.		1						1		
d v d	elve	Relye					1 1		5/23/217	Date Sampled									
y	D DY:	Sy							217	1									
5		5		-	+	-	+				-			-1	L				
	7																		
									1125	Time Sampled				Ф	Fa				1
				1 1	1		11		6					e-mail:	Fax No:				
				-	+	++	+	+		Field Filtered	+			93					
					+		+			Total #. of Containers	1			1	1				
							11		×	Ice	\uparrow			1 SO.					
							\top			HNO ₃	Pres			ore Size					
										HCI	ervati			ende					
										H ₂ SO ₄	Preservation & #			Øer Øtro					
										NaOH				rose.slade@energytransfer.com					
				-						Na ₂ S ₂ O ₃	of Containers			ytra					
		0								None	iners			nsf					
Date	Date	Date 24								Other (Specify)	Ш			er.c			Į.		1
ā	6	ate W							S	DW=Drinking Water SL=Sludge	3			IS IS	20				
	-								Soil	GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	Matrix			1	epoi		1		7
=	=	(0,/c		-	+	++	++	++	×		15B		Т	7	Report Format:		Project Loc:	70	ojec
ā	Time	o'lo		+	+		+	11		TPH: TX 1005 TX 1006					rma	70	ect	Project #:	EN 3
7	U.	000	< S L	1	+		+			Cations (Ca, Mg, Na, K)			1	1	17	PO #:	00:	# 33	Project Name:
mp	by	usto	ampl	+	1	11	++			Anions (CI, SO4, Alkalinity)	-	70	ا ـ		P	1	1	1	1
eratu	by Sampler/ by Courier?	dy so	e Co	1)	0 1				SAR / ESP / CEC		TOTAL:	TCLP:		Standard				
ire (ppler rier?	cont eals	y Co ontai	- è		Temp: CF:(0-6		-1-1-		Metals: As Ag Ba Cd Cr Pb Hg	Se			P	nda				<u>A</u>
pon	by Sampler/Client Rep by Courier? UPS	aine on c	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	_ cc	6-2	Temp: CF:(0-6: -0.				Volatiles				Analyze For:	ď				8
Rec	nt Rep	r(s) onta	Inta	- ed	ξ ώ.	-0				Semivolatiles				T T			Le le	쿴	mp
Temperature Upon Receipt:	by Sampler/Client Rep. ? by Courier? UPS	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	e	1 0	عظم			×	BTEX 8021B/5030 or BTEX 8	260			3			a Co	C #	res
2.0	DHL	(s)		T T T T T	(6-23: +0.2°C)	5				RCI					TRRP		Junt	: 27	IOS
					~					N.O.R.M.					P		Lea County, NM	TRC #: 273818	0
	FedEx					=			×	Chlorides E 300.1			\Box				<	8	C
		~~~	~ ~	10		3 12													A14 Compressor Station Sump
	N Lone Star					IR ID:R-8	$\Box$						$\perp$	-	NPDES				du
°C	Sta N	ZZZ	ZZ	-		œ				RUSH TAT (Pre-Schedule) 2	4, 48,	72 h	rs		ES				
	=			Ti.					l ×	Standard 3-Day TAT	1								



### XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In



Client: TRC Solutions, Inc

Date/ Time Received: 05/24/2017 04:10:00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Work Order #: 553893

Temperature Measuring device used: r8

Sai	mple Receipt Checklist	Comments
#1 *Temperature of cooler(s)?	1.6	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seal present on shipping container	/ cooler? N/A	
#5 *Custody Seals intact on shipping container/	cooler? N/A	
#6 Custody Seals intact on sample bottles?	N/A	
#7 *Custody Seals Signed and dated?	N/A	
#8 *Chain of Custody present?	Yes	
#9 Sample instructions complete on Chain of Cu	ustody? Yes	
#10 Any missing/extra samples?	No	
#11 Chain of Custody signed when relinquished	/ received? Yes	
#12 Chain of Custody agrees with sample label(	(s)? Yes	
#13 Container label(s) legible and intact?	Yes	
#14 Sample matrix/ properties agree with Chain	of Custody? Yes	
#15 Samples in proper container/ bottle?	Yes	
#16 Samples properly preserved?	Yes	
#17 Sample container(s) intact?	Yes	
#18 Sufficient sample amount for indicated test(	s)? Yes	
#19 All samples received within hold time?	Yes	
#20 Subcontract of sample(s)?	N/A	
#21 VOC samples have zero headspace?	N/A	
* Must be completed for after-hours delivery of	of samples prior to placing in the refrige	rator

Must be	completed for after-hours de	livery of samples prior to place	cing in the refrigerator
Analyst:		PH Device/Lot#:	
	Checklist completed by:	Marithza Anaya	Date: <u>05/24/2017</u>
	Checklist reviewed by:	Hely Taylor Holly Taylor	Date: <u>05/26/2017</u>



TRC Solutions, Inc, Midland, TX

Project Name: A-14 Sump



**Project Id:** 

Contact: Nikki Green
Project Location: Lea County, NM

Date Received in Lab: Wed Jun-21-17 08:40 am

**Report Date:** 26-JUN-17 **Project Manager:** Kelsey Brooks

	1								
	Lab Id:	555846-0	001	555846-0	002	555846-0	03		
Analysis Requested	Field Id:	BH-6 6	,"	BH-7 6	"	BH-2 6	"		
Anatysis Requested	Depth:	6- In		6- In		6- In			
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	Jun-15-17 1	16:00	Jun-15-17	6:10	Jun-16-17 1	1:00		
BTEX by EPA 8021B	Extracted:	Jun-24-17	11:30	Jun-24-17 1	1:30	Jun-24-17 1	1:30		
	Analyzed:	Jun-25-17 (	05:48	Jun-25-17 (	06:04	Jun-25-17 0	6:20		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00198	0.00198		
Toluene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00198	0.00198		
Ethylbenzene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00198	0.00198		
m,p-Xylenes		< 0.00402	0.00402	< 0.00399	0.00399	< 0.00397	0.00397		
o-Xylene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00198	0.00198		
Total Xylenes		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00198	0.00198		
Total BTEX		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00198	0.00198		
Chloride by EPA 300	Extracted:	Jun-26-17	10:05	Jun-26-17 1	0:05	Jun-26-17 1	0:05		
	Analyzed:	Jun-26-17	12:20	Jun-26-17 1	2:28	Jun-26-17 1	2:51		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		8.45	4.96	5.85	4.93	32.4	4.99		
TPH by SW8015 Mod	Extracted:	Jun-24-17	16:00	Jun-24-17 1	6:00	Jun-24-17 1	6:00		
	Analyzed:	Jun-25-17 (	05:08	Jun-25-17 (	05:29	Jun-25-17 0	6:33		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons		<15.0	15.0	<15.0	15.0	<15.0	15.0		
Diesel Range Organics		97.1	15.0	109	15.0	<15.0	15.0		
Oil Range Hydrocarbons		63.2	15.0	122	15.0	<15.0	15.0		
Total TPH		160	15.0	231	15.0	<15.0	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Knis Roah

#### **Analytical Report 555846**

## for TRC Solutions, Inc

Project Manager: Nikki Green
A-14 Sump

26-JUN-17

Collected By: Client





#### 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)

Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)





26-JUN-17

Project Manager: Nikki Green

**TRC Solutions, Inc** 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 555846

A-14 Sump

Project Address: Lea County, NM

#### Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 555846. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 555846 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knus Hoah

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America



#### Sample Cross Reference 555846



#### $TRC\ Solutions, Inc,\ Midland, TX$

A-14 Sump

Sample Id	Matrix	<b>Date Collected</b>	Sample Depth	Lab Sample Id
BH-6 6"	S	06-15-17 16:00	6 In	555846-001
BH-7 6"	S	06-15-17 16:10	6 In	555846-002
BH-2 6"	S	06-16-17 11:00	6 In	555846-003

## XENCO

#### CASE NARRATIVE

Client Name: TRC Solutions, Inc

Project Name: A-14 Sump

Project ID: Report Date: 26-JUN-17 Work Order Number(s): 555846 Date Received: 06/21/2017

#### Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

**Analytical non conformances and comments:** 

Batch: LBA-3020665 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Page 5 of 16

Final 1.000





#### TRC Solutions, Inc, Midland, TX

A-14 Sump

BH-6 6" Matrix: Date Received:06.21.17 08.40 Sample Id: Soil

Lab Sample Id: 555846-001 Date Collected: 06.15.17 16.00 Sample Depth: 6 In

Analytical Method: Chloride by EPA 300 Prep Method: E300P

% Moisture:

Tech: MGO % Moisture:

Analyst: MGO Basis: Wet Weight Date Prep: 06.26.17 10.05

Seq Number: 3020684

**Parameter** Cas Number Result RLUnits **Analysis Date** Flag Dil 16887-00-6 Chloride mg/kg 06.26.17 12.20 8.45 4.96 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

ARMTech:

ARM Analyst: 06.24.17 16.00 Basis: Wet Weight Date Prep:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.25.17 05.08	U	1
Diesel Range Organics	C10C28DRO	97.1	15.0		mg/kg	06.25.17 05.08		1
Oil Range Hydrocarbons	PHCG2835	63.2	15.0		mg/kg	06.25.17 05.08		1
Total TPH	PHC635	160	15.0		mg/kg	06.25.17 05.08		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	109	%	70-135	06.25.17 05.08		
o-Terphenyl	;	84-15-1	104	%	70-135	06.25.17 05.08		





#### TRC Solutions, Inc, Midland, TX

A-14 Sump

Sample Id: BH-6 6" Matrix: Soil Date Received:06.21.17 08.40

Lab Sample Id: 555846-001 Date Collected: 06.15.17 16.00 Sample Depth: 6 In

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Tech: ALJ % Moisture:

Analyst: ALJ Date Prep: 06.24.17 11.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	06.25.17 05.48	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	06.25.17 05.48	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	06.25.17 05.48	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	06.25.17 05.48	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	06.25.17 05.48	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	06.25.17 05.48	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	06.25.17 05.48	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	84	%	80-120	06.25.17 05.48		
4-Bromofluorobenzene		460-00-4	91	%	80-120	06.25.17 05.48		





#### TRC Solutions, Inc, Midland, TX

A-14 Sump

Sample Id: BH-7 6" Matrix: Soil Date Received:06.21.17 08.40

Lab Sample Id: 555846-002 Date Collected: 06.15.17 16.10 Sample Depth: 6 In

Analytical Method: Chloride by EPA 300 Prep Method: E300P

% Moisture:

% Moisture:

Analyst: MGO Date Prep: 06.26.17 10.05 Basis: Wet Weight

Seq Number: 3020684

MGO

Tech:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 5.85
 4.93
 mg/kg
 06.26.17 12.28
 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

Tech: ARM

Analyst: ARM Date Prep: 06.24.17 16.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.25.17 05.29	U	1
Diesel Range Organics	C10C28DRO	109	15.0		mg/kg	06.25.17 05.29		1
Oil Range Hydrocarbons	PHCG2835	122	15.0		mg/kg	06.25.17 05.29		1
Total TPH	PHC635	231	15.0		mg/kg	06.25.17 05.29		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	110	%	70-135	06.25.17 05.29		
o-Terphenyl		84-15-1	107	%	70-135	06.25.17 05.29		





#### TRC Solutions, Inc, Midland, TX

A-14 Sump

Sample Id: BH-7 6" Matrix: Soil Date Received:06.21.17 08.40

Lab Sample Id: 555846-002 Date Collected: 06.15.17 16.10 Sample Depth: 6 In

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

ALJ % Moisture:

Analyst: ALJ Date Prep: 06.24.17 11.30 Basis: Wet Weight

Seq Number: 3020665

Tech:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.25.17 06.04	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.25.17 06.04	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.25.17 06.04	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	06.25.17 06.04	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.25.17 06.04	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.25.17 06.04	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.25.17 06.04	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	89	%	80-120	06.25.17 06.04		
1,4-Difluorobenzene		540-36-3	88	%	80-120	06.25.17 06.04		





#### TRC Solutions, Inc, Midland, TX

A-14 Sump

Sample Id: BH-2 6" Matrix: Soil Date Received:06.21.17 08.40

Lab Sample Id: 555846-003 Date Collected: 06.16.17 11.00 Sample Depth: 6 In

Analytical Method: Chloride by EPA 300 Prep Method: E300P

% Moisture:

Analyst: MGO Date Prep: 06.26.17 10.05 Basis: Wet Weight

Seq Number: 3020684

MGO

Tech:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 32.4
 4.99
 mg/kg
 06.26.17 12.51
 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

Tech: ARM % Moisture:

Analyst: ARM Date Prep: 06.24.17 16.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.25.17 06.33	U	1
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.25.17 06.33	U	1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.25.17 06.33	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.25.17 06.33	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	108	%	70-135	06.25.17 06.33		
o-Terphenyl		84-15-1	106	%	70-135	06.25.17 06.33		





#### TRC Solutions, Inc, Midland, TX

A-14 Sump

Sample Id: BH-2 6" Matrix: Soil Date Received:06.21.17 08.40

Lab Sample Id: 555846-003 Date Collected: 06.16.17 11.00 Sample Depth: 6 In

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Tech: ALJ % Moisture:

Analyst: ALJ Date Prep: 06.24.17 11.30 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	06.25.17 06.20	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	06.25.17 06.20	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	06.25.17 06.20	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397		mg/kg	06.25.17 06.20	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	06.25.17 06.20	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	06.25.17 06.20	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	06.25.17 06.20	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	84	%	80-120	06.25.17 06.20		
1,4-Difluorobenzene		540-36-3	87	%	80-120	06.25.17 06.20		



#### Flagging Criteria



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

**DL** Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

 Phone
 Fax

 4147 Greenbriar Dr, Stafford, TX 77477
 (281) 240-4200
 (281) 240-4280

 9701 Harry Hines Blvd , Dallas, TX 75220
 (214) 902 0300
 (214) 351-9139

 5332 Blackberry Drive, San Antonio TX 78238
 (210) 509-3334
 (210) 509-3335

 1211 W Florida Ave, Midland, TX 79701
 (432) 563-1800
 (432) 563-1713

 2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282
 (602) 437-0330



#### **QC Summary** 555846

#### TRC Solutions, Inc

A-14 Sump

Analytical Method: Chloride by EPA 300

Seq Number:

Parent Sample Id:

3020684 Matrix: Solid

LCS Sample Id: 726721-1-BKS MB Sample Id: 726721-1-BLK

Prep Method:

Prep Method:

Prep Method:

E300P

E300P

E300P

TX1005P

06.26.17

555846-002 SD

Flag

Flag

Date Prep: 06.26.17

LCSD Sample Id: 726721-1-BSD

MB Spike LCS LCS Limits %RPD **RPD** LCSD LCSD Units Analysis **Parameter** Result Result Limit Date Amount %Rec %Rec Result

Chloride 250 99 20 06.26.17 10:21 < 5.00 247 99 248 90-110 0 mg/kg

Analytical Method: Chloride by EPA 300

Seq Number: 3020684 Matrix: Soil

> MS Sample Id: 555846-002 S 555846-002

Date Prep: MSD Sample Id:

Parent MS MS Limits %RPD RPD Units Spike **MSD** MSD Analysis **Parameter** Result Amount Result %Rec Limit Date Result %Rec

Chloride 5.85 247 245 97 244 96 90-110 0 20 mg/kg 06.26.17 12:36

Analytical Method: Chloride by EPA 300

Prep Method: Seq Number: 3020684 Matrix: Soil Date Prep: 06.26.17

MS Sample Id: 556064-003 S MSD Sample Id: 556064-003 SD Parent Sample Id: 556064-003

RPD MS Parent Spike MS MSD **MSD** Limits %RPD Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec

20 06.26.17 10:49 Chloride 16.6 246 261 99 259 99 90-110 mg/kg

Analytical Method: TPH by SW8015 Mod

Seq Number: 3020771 Matrix: Solid 06.24.17 Date Prep:

LCS Sample Id: 726685-1-BKS LCSD Sample Id: 726685-1-BSD MB Sample Id: 726685-1-BLK

RPD LCS LCS %RPD MB Spike LCSD Limits Units Analysis LCSD Flag **Parameter** Limit Result Amount Result %Rec Date Result %Rec 06.25.17 00:55 Gasoline Range Hydrocarbons 1000 992 99 1020 70-135 3 35 <15.0 102 mg/kg 70-135 06.25.17 00:55 Diesel Range Organics 1000 1010 101 979 3 35 <15.0 98 mg/kg

MB MB LCS LCS LCSD Limits Units LCSD Analysis **Surrogate** %Rec Flag %Rec Flag %Rec Flag Date 06.25.17 00:55 1-Chlorooctane 113 108 114 70-135 % 100 107 70-135 06.25.17 00:55 o-Terphenyl 122 %



o-Xylene

#### QC Summary 555846

#### TRC Solutions, Inc

A-14 Sump

Analytical Method:TPH by SW8015 ModPrep Method:TX1005PSeg Number:3020771Matrix: SoilDate Prep:06.24.17

 Seq Number:
 3020771
 Matrix:
 Soil
 Date Prep:
 06.24.17

 Parent Sample Id:
 555795-001
 MS Sample Id:
 555795-001 SD
 MSD Sample Id:
 555795-001 SD

Spike MS MS Limits %RPD **RPD** Parent **MSD MSD** Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec Gasoline Range Hydrocarbons 70-135 06.25.17 01:58 <15.0 997 1060 106 974 98 8 35 mg/kg 997 987 99 70-135 35 06.25.17 01:58 Diesel Range Organics <15.0 998 100 mg/kg

MS MS **MSD MSD** Limits Units Analysis **Surrogate** Flag %Rec %Rec Flag Date 1-Chlorooctane 107 100 70-135 % 06.25.17 01:58 o-Terphenyl 101 98 70-135 % 06.25.17 01:58

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

0.100

< 0.00200

0.106

Seq Number: 3020665 Matrix: Solid Date Prep: 06.24.17 MB Sample Id: 726706-1-BLK LCS Sample Id: 726706-1-BKS LCSD Sample Id: 726706-1-BSD

LCS LCS %RPD RPD MB Units Spike Limits Analysis **LCSD** LCSD **Parameter** Result Amount Result %Rec %Rec Limit Date Result 0.100 0.107 107 0.0950 70-130 12 35 06.25.17 03:55 Benzene < 0.00200 96 mg/kg 06.25.17 03:55 Toluene < 0.00200 0.100 0.101 101 0.0876 88 70-130 14 35 mg/kg 06.25.17 03:55 71-129 Ethylbenzene 0.100 0.111 111 0.0966 97 14 35 < 0.00200 mg/kg 06.25.17 03:55 m,p-Xylenes < 0.00401 0.200 0.200 100 0.173 87 70-135 14 35 mg/kg

0.0914

92

71-133

15

35

mg/kg

LCS LCSD MB MB LCS LCSD Limits Units Analysis **Surrogate** %Rec Flag %Rec Flag Flag Date %Rec 06.25.17 03:55 1.4-Difluorobenzene 99 90 93 80-120 % 06.25.17 03:55 4-Bromofluorobenzene 98 93 92 80-120 %

106

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

 Seq Number:
 3020665
 Matrix:
 Soil
 Date Prep:
 06.24.17

 Parent Sample Id:
 556138-002
 MS Sample Id:
 556138-002 S
 MSD Sample Id:
 556138-002 SD

MS MS Limits %RPD **RPD** Parent Spike MSD MSD Units Analysis Flag **Parameter** Result Amount Result %Rec Limit Date Result %Rec 35 06.25.17 04:27 0.0785 79 0.0898 70-130 13 Benzene < 0.00200 0.100 90 mg/kg Toluene < 0.00200 0.100 0.0785 79 0.0795 80 70-130 1 35 mg/kg 06.25.17 04:27 06.25.17 04:27 Ethylbenzene < 0.00200 0.100 0.0770 77 0.0764 76 71-129 1 35 mg/kg 0.200 70-135 35 06.25.17 04:27 0.00688 0.144 69 0.135 6 X m,p-Xylenes 64 mg/kg 06.25.17 04:27 0.100 0.0771 0.0762 76 71-133 35 o-Xylene < 0.00200 77 mg/kg

MS MSD MS **MSD** Limits Units Analysis **Surrogate** %Rec Flag %Rec Flag Date 1,4-Difluorobenzene 80-120 06.25.17 04:27 112 112 % 4-Bromofluorobenzene 116 112 80-120 % 06.25.17 04:27

Flag

06.25.17 03:55



Stafford, Texas (281-240-4200)

# CHAIN OF CUSTODY

San Antonio, Texas (210-509-3334)

Phoenix, Arizona (480-355-0900)

									Analytic	Analytical Information	S	
Client / Reporting Information			Project Information	mation				4				
⊓ ≌ ।	Proj	Project Name/Number:	er:									
Company Address:	A-1	A-14 Sump					1	_				
Company Address: 2057 Commerce Drive Midland TX 79703	Lea	Lea County, NM										
Email:	Phone No: Invo	Invoice To:						В				
ngreen@trcsolutions.com rose.slade@energytransfer.com	Ros	șe Slade, ETC	Field Service	Rose Slade, ETC Field Services, San Antonio	0		15M		JU.1			
Project Contact:	POI	PO Number:					d 80		'A 3			
Samplers's Name	THE MICHELLE	)					tho		E			
(	Cc	Collection			Number of pr	Number of preserved bottles	Met		e by			
No. Field ID / Point of Sollaction	Sample		Metric	# of	aOH/Zn cetate NO3	aOH aHSO4	E ΓΡΗ by	BTEX b	Chloride			
1 BH-6 6"		017		ŀ	-		-	-	×	-		
2 BH-7 6"	6" 6)	6/15/2017 16	1610 S	1- 40Z glass			×	×	×	-		
3 BH-26"	6" 6/	6/16/2017 11	1100 S	1- 4oz glass			×	×	×	-		
4												
51											Щ	
6												
7												
8												
9											E	
10							-					
Turnaround Time ( Business days)				Data Deliverable Information	nformation					Notes:	-	
Same Day TAT	5 Day TAT	П	Level II Std QC	1 QC		Level IV (Full Data Pkg	okg /raw data)	ata)		INV.	INVOICE TO ETC	
Next Day EMERGENCY	7 Day TAT	П	Level III Sto	Level III Std QC+ Forms		TRRP Level IV						
2 Day EMERGENCY	Contract TAT	П	Level 3 (CLP Forms)	P Forms)		UST / RG -411						- 1
3 Day EMERGENCY		П	TRRP Checklist	cklist								
TAT Starts Day received by Lab, if received by 5:00 pm	b, if received by 5:00 pm									FED-EX / UPS: Tracki	JPS: Tr	ac
Relinquished by Sampler	SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY    Dath Time:   Received Ruc.	UMENTED BELL	OW EACH TIME	SAMPLES CHAN	NGE POSSESSI	ION, INCLUDING COL	RIER DELIN	41	ato Timo:		Bacai	9
Relinquished by Sampler	Date Time:	1084	Received By:	10/21/	177 2	Relinquished By:			Date Time:		Received 2	
Relinquished by:	Date Time: /	Rec 3	Received By:	1	4 R	Relinquished By:			Date Time:		Received	
Relinquished by:	Date Time:	Rec	Received By:		C) -	Custody Seal #		Preser	Preserved where applicable	applicable	-	

Page 15 of 16

Final 1.000



### XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In



Client: TRC Solutions, Inc

Date/ Time Received: 06/21/2017 08:40:00 AM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Work Order #: 555846

Temperature Measuring device used: r8

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		3.5
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seal present on shipping co	ntainer/ cooler?	N/A
#5 *Custody Seals intact on shipping cor	ntainer/ cooler?	N/A
#6 Custody Seals intact on sample bottle	es?	N/A
#7 *Custody Seals Signed and dated?		N/A
#8 *Chain of Custody present?		Yes
#9 Sample instructions complete on Cha	in of Custody?	Yes
#10 Any missing/extra samples?		No
#11 Chain of Custody signed when reline	quished/ received?	Yes
#12 Chain of Custody agrees with sample	e label(s)?	Yes
#13 Container label(s) legible and intact	?	Yes
#14 Sample matrix/ properties agree with	n Chain of Custody?	Yes
#15 Samples in proper container/ bottle?		Yes
#16 Samples properly preserved?		Yes
#17 Sample container(s) intact?		Yes
#18 Sufficient sample amount for indicat	ed test(s)?	Yes
#19 All samples received within hold time	e?	Yes
#20 Subcontract of sample(s)?		N/A
#21 VOC samples have zero headspace	?	N/A
* Must be completed for after-hours de		the refrigerator
Analyst:	PH Device/Lot#:	
Checklist completed by:	Marithza Anaya	Date: 06/21/2017
Checklist reviewed by:	Mmy froak Kelsey Brooks	Date: <u>06/21/2017</u>



#### TRC Solutions, Inc, Midland, TX

**Project Name: A-14 Compressor Station Sump** 



Project Id: Contact:

**Project Location:** 

Nikki Green

Lea County, NM

**Date Received in Lab:** Fri Jun-23-17 03:33 pm

Report Date: 28-JUN-17

Project Manager: Kelsey Brooks

										ı			
	Lab Id:	556209-001		556209-002		556209-003		556209-004		556209-005		556209-006	
Analysis Requested	Field Id:	BH-3 2'		ESW-1 1'		WSW-1 1'		BH-5 6"		BH-4 2'		NSW-1 1'	
Anatysis Requested	Depth:	2- ft		1- ft		1- ft		6- In		2- ft		1- ft	
Matrix:		SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-19-17 16:00		Jun-19-17 16:15		Jun-19-17 16:17		Jun-19-17 16:30		Jun-20-17 10:00		Jun-20-17 10:05	
BTEX by EPA 8021B	Extracted:	Jun-27-17 15:00											
	Analyzed:	Jun-27-17 21:53		Jun-27-17 22:09		Jun-27-17 22:25		Jun-27-17 22:42		Jun-27-17 22:58		Jun-27-17 23:14	
	Units/RL:	mg/kg	RL										
Benzene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00199	0.00199
Toluene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00199	0.00199
Ethylbenzene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00199	0.00199
m,p-Xylenes		< 0.00402	0.00402	< 0.00399	0.00399	< 0.00400	0.00400	< 0.00402	0.00402	< 0.00398	0.00398	< 0.00398	0.00398
o-Xylene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00199	0.00199
Total Xylenes		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00199	0.00199
Total BTEX		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00199	0.00199
Chloride by EPA 300	Extracted:	Jun-27-17 13:50											
	Analyzed:	Jun-27-17 22:47		Jun-27-17 22:55		Jun-27-17 23:17		Jun-27-17 23:25		Jun-27-17 23:48		Jun-27-17 23:55	
	Units/RL:	mg/kg	RL										
Chloride		48.9	4.96	36.3	4.99	165	4.91	20.0	4.97	65.3	4.98	39.7	4.98
TPH by SW8015 Mod	Extracted:	Jun-26-17	07:00	Jun-26-17 (	07:00	Jun-26-17	07:00	Jun-26-17	07:00	Jun-26-17	07:00	Jun-26-17	07:00
	Analyzed:	Jun-26-17 11:36		Jun-26-17 12:36		Jun-26-17 12:56		Jun-26-17 13:16		Jun-26-17 13:36		Jun-26-17 13:56	
	Units/RL:	mg/kg	RL										
Gasoline Range Hydrocarbons		<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	<15.0	15.0	<15.0	15.0
Diesel Range Organics		53.3	15.0	25.8	15.0	255	15.0	<14.9	14.9	<15.0	15.0	<15.0	15.0
Oil Range Hydrocarbons		64.7	15.0	<15.0	15.0	66.2	15.0	<14.9	14.9	<15.0	15.0	<15.0	15.0
Total TPH		118	15.0	25.8	15.0	321	15.0	<14.9	14.9	<15.0	15.0	<15.0	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Knis Roah



#### TRC Solutions, Inc, Midland, TX

**Project Name: A14 Compressor Station Sump** 



Project Id: TRC#273818

Contact: Nikki Green

Lea County, NM

**Project Location:** 

**Date Received in Lab:** Wed May-24-17 04:10 pm

**Report Date:** 30-MAY-17 **Project Manager:** Liz Givens

	Lab Id:	553892-001			
Analysis Requested	Field Id:	Hydrovac Solids			
	Depth:				
	Matrix:	SOIL			
	Sampled:	May-23-17 11:30			
BTEX by EPA 8021B	Extracted:	May-25-17 08:00			
	Analyzed:	May-25-17 10:02			
	Units/RL:	mg/kg RL			
Benzene		< 0.00201 0.00201			
Toluene		< 0.00201 0.00201			
Ethylbenzene		< 0.00201 0.00201			
m,p-Xylenes		< 0.00402 0.00402			
o-Xylene		< 0.00201 0.00201			
Total Xylenes		< 0.00201 0.00201			
Total BTEX		< 0.00201 0.00201			
Chloride by EPA 300	Extracted:	May-26-17 08:00			
	Analyzed:	May-26-17 09:24			
	Units/RL:	mg/kg RL			
Chloride		52.5 4.93			
TPH by SW8015 Mod	Extracted:	May-26-17 17:00			
	Analyzed:	May-27-17 13:45			
	Units/RL:	mg/kg RL			
C6-C10 Gasoline Range Hydrocarbons		<15.0 15.0			
C10-C28 Diesel Range Organics		187 15.0			
C28-C35 Oil Range Hydrocarbons		265 15.0			
Total TPH		452 15.0			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Brandi Ritcherson Project Manager



#### TRC Solutions, Inc, Midland, TX

**Project Name: A-14 Compressor Station Sump** 

TNI CHEORETON

Project Id: Contact:

Nikki Green

**Project Location:** Lea County, NM

Date Received in Lab: Fri Jun-23-17 03:33 pm

**Report Date:** 28-JUN-17

Project Manager: Kelsey Brooks

	Lab Id:	556209-0	007	556209-008		556209-009		556209-	010		
Analysis Requested	Field Id:	ESW-2 1'		SSW-1 1'		NSW-2 1'		WSW-2	2 1'		
	Depth:	1- ft		1- ft		1- ft		1- ft			
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	Jun-20-17 10:10		Jun-20-17	10:15	Jun-20-17 11:00		Jun-20-17	11:15		
BTEX by EPA 8021B	Extracted:	Jun-27-17 15:00		Jun-27-17 15:00		Jun-27-17 15:00		Jun-27-17	15:00		
	Analyzed:	Jun-27-17 23:30		Jun-27-17 23:46		Jun-28-17 00:02		Jun-28-17 00:18			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00202	0.00202	< 0.00201	0.00201		
Toluene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00202	0.00202	< 0.00201	0.00201		
Ethylbenzene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00202	0.00202	< 0.00201	0.00201		
m,p-Xylenes		< 0.00398	0.00398	< 0.00399	0.00399	< 0.00403	0.00403	< 0.00402	0.00402		
o-Xylene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00202	0.00202	< 0.00201	0.00201		
Total Xylenes		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00202	0.00202	< 0.00201	0.00201		
Total BTEX		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00202	0.00202	< 0.00201	0.00201		
Chloride by EPA 300	Extracted:	: Jun-27-17 13:50		Jun-27-17 13:50		Jun-27-17 13:50		Jun-27-17	13:50		
	Analyzed:	Jun-28-17 00:03		Jun-28-17 00:11		Jun-28-17 00:18		Jun-28-17 00:26			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		64.6	4.97	146	4.97	9.95	4.93	16.7	4.96		
TPH by SW8015 Mod	Extracted:	Jun-26-17 07:00		Jun-26-17 07:00		Jun-26-17 07:00		Jun-26-17 07:00			
	Analyzed:	Jun-26-17 14:16		Jun-26-17 14:36		Jun-26-17 14:56		Jun-26-17 15:16			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0		
Diesel Range Organics		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0		
Oil Range Hydrocarbons		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0		
Total TPH		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Knis Roah

#### **Analytical Report 556209**

## for TRC Solutions, Inc

Project Manager: Nikki Green A-14 Compressor Station Sump

28-JUN-17

Collected By: Client





#### 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)

Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)





28-JUN-17

Project Manager: Nikki Green

**TRC Solutions, Inc** 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 556209

**A-14 Compressor Station Sump** Project Address: Lea County, NM

#### Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 556209. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 556209 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knus Hoah

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America



#### **Sample Cross Reference 556209**



#### $TRC\ Solutions,\ Inc,\ Midland,\ TX$

A-14 Compressor Station Sump

Sample Id	Matrix	<b>Date Collected</b>	Sample Depth	Lab Sample Id
BH-3 2'	S	06-19-17 16:00	2 ft	556209-001
ESW-1 1'	S	06-19-17 16:15	1 ft	556209-002
WSW-1 1'	S	06-19-17 16:17	1 ft	556209-003
BH-5 6"	S	06-19-17 16:30	6 In	556209-004
BH-4 2'	S	06-20-17 10:00	2 ft	556209-005
NSW-1 1'	S	06-20-17 10:05	1 ft	556209-006
ESW-2 1'	S	06-20-17 10:10	1 ft	556209-007
SSW-1 1'	S	06-20-17 10:15	1 ft	556209-008
NSW-2 1'	S	06-20-17 11:00	1 ft	556209-009
WSW-2 1'	S	06-20-17 11:15	1 ft	556209-010



#### CASE NARRATIVE

Client Name: TRC Solutions, Inc

Project Name: A-14 Compressor Station Sump

Project ID: Report Date: 28-JUN-17 Work Order Number(s): 556209 Date Received: 06/23/2017

#### Sample receipt non conformances and comments:

#### Sample receipt non conformances and comments per sample:

None

#### Analytical non conformances and comments:

Batch: LBA-3020931 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Lab Sample ID 556209-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Ethylbenzene recovered below QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 556209-001, -002, -003, -004, -005, -006, -007, -008, -009, -010.

The Laboratory Control Sample for Toluene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits, therefore the data was accepted.





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: BH-3 2' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-001 Date Collected: 06.19.17 16.00 Sample Depth: 2 ft

Analytical Method: Chloride by EPA 300 Prep Method: E300P

% Moisture:

% Moisture:

Analyst: MGO Date Prep: 06.27.17 13.50 Basis: Wet Weight

Seq Number: 3020947

MGO

Tech:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 48.9
 4.96
 mg/kg
 06.27.17 22.47
 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

Tech: ARM

Analyst: ARM Date Prep: 06.26.17 07.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.26.17 11.36	U	1
Diesel Range Organics	C10C28DRO	53.3	15.0		mg/kg	06.26.17 11.36		1
Oil Range Hydrocarbons	PHCG2835	64.7	15.0		mg/kg	06.26.17 11.36		1
Total TPH	PHC635	118	15.0		mg/kg	06.26.17 11.36		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	106	%	70-135	06.26.17 11.36		
o-Terphenyl		84-15-1	109	%	70-135	06.26.17 11.36		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: BH-3 2' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-001 Date Collected: 06.19.17 16.00 Sample Depth: 2 ft

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

ALJ % Moisture:

Analyst: ALJ Date Prep: 06.27.17 15.00 Basis: Wet Weight

Seq Number: 3020931

Tech:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	06.27.17 21.53	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	06.27.17 21.53	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	06.27.17 21.53	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	06.27.17 21.53	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	06.27.17 21.53	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	06.27.17 21.53	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	06.27.17 21.53	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	103	%	80-120	06.27.17 21.53		
4-Bromofluorobenzene		460-00-4	115	%	80-120	06.27.17 21.53		





Wet Weight

#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Date Received:06.23.17 15.33 Sample Id: ESW-1 1' Matrix: Soil

Lab Sample Id: 556209-002 Date Collected: 06.19.17 16.15 Sample Depth: 1 ft

Analytical Method: Chloride by EPA 300 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.27.17 13.50

Basis:

Parameter Cas Number Result RLUnits **Analysis Date** Flag Dil Chloride 16887-00-6 06.27.17 22.55 36.3 4.99 mg/kg 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

ARM% Moisture: Tech:

ARM Analyst: 06.26.17 07.00 Basis: Wet Weight Date Prep:

Seq Number: 3021003

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.26.17 12.36	U	1
Diesel Range Organics	C10C28DRO	25.8	15.0		mg/kg	06.26.17 12.36		1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.26.17 12.36	U	1
Total TPH	PHC635	25.8	15.0		mg/kg	06.26.17 12.36		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	103	%	70-135	06.26.17 12.36		
o-Terphenyl		84-15-1	106	%	70-135	06.26.17 12.36		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: ESW-1 1' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-002 Date Collected: 06.19.17 16.15 Sample Depth: 1 ft

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Tech: ALJ % Moisture:

Analyst: ALJ Date Prep: 06.27.17 15.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.27.17 22.09	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.27.17 22.09	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.27.17 22.09	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	06.27.17 22.09	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.27.17 22.09	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.27.17 22.09	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.27.17 22.09	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	94	%	80-120	06.27.17 22.09		
1,4-Difluorobenzene		540-36-3	87	%	80-120	06.27.17 22.09		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: WSW-1 1' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-003 Date Collected: 06.19.17 16.17 Sample Depth: 1 ft

Analytical Method: Chloride by EPA 300 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.27.17 13.50 Basis: Wet Weight

Seq Number: 3020947

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 165
 4.91
 mg/kg
 06.27.17 23.17
 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

Tech: ARM % Moisture:

Analyst: ARM Date Prep: 06.26.17 07.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.26.17 12.56	U	1
Diesel Range Organics	C10C28DRO	255	15.0		mg/kg	06.26.17 12.56		1
Oil Range Hydrocarbons	PHCG2835	66.2	15.0		mg/kg	06.26.17 12.56		1
Total TPH	PHC635	321	15.0		mg/kg	06.26.17 12.56		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	107	%	70-135	06.26.17 12.56		
o-Terphenyl		84-15-1	110	%	70-135	06.26.17 12.56		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: WSW-1 1' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-003 Date Collected: 06.19.17 16.17 Sample Depth: 1 ft

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

ALJ % Moisture:

Analyst: ALJ Date Prep: 06.27.17 15.00 Basis: Wet Weight

Seq Number: 3020931

Tech:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.27.17 22.25	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.27.17 22.25	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.27.17 22.25	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	06.27.17 22.25	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.27.17 22.25	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.27.17 22.25	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.27.17 22.25	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	108	%	80-120	06.27.17 22.25		
1,4-Difluorobenzene		540-36-3	98	%	80-120	06.27.17 22.25		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: BH-5 6" Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-004 Date Collected: 06.19.17 16.30 Sample Depth: 6 In

Analytical Method: Chloride by EPA 300 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.27.17 13.50 Basis: Wet Weight

Seq Number: 3020947

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 20.0
 4.97
 mg/kg
 06.27.17 23.25
 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

Tech: ARM % Moisture:

Analyst: ARM Date Prep: 06.26.17 07.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<14.9	14.9		mg/kg	06.26.17 13.16	U	1
Diesel Range Organics	C10C28DRO	<14.9	14.9		mg/kg	06.26.17 13.16	U	1
Oil Range Hydrocarbons	PHCG2835	<14.9	14.9		mg/kg	06.26.17 13.16	U	1
Total TPH	PHC635	<14.9	14.9		mg/kg	06.26.17 13.16	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	102	%	70-135	06.26.17 13.16		
o-Terphenyl		84-15-1	104	%	70-135	06.26.17 13.16		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: BH-5 6" Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-004 Date Collected: 06.19.17 16.30 Sample Depth: 6 In

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

ALJ % Moisture:

Analyst: ALJ Date Prep: 06.27.17 15.00 Basis: Wet Weight

Seq Number: 3020931

Tech:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	06.27.17 22.42	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	06.27.17 22.42	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	06.27.17 22.42	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	06.27.17 22.42	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	06.27.17 22.42	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	06.27.17 22.42	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	06.27.17 22.42	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	103	%	80-120	06.27.17 22.42		
4-Bromofluorobenzene		460-00-4	98	%	80-120	06.27.17 22.42		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: BH-4 2' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-005 Date Collected: 06.20.17 10.00 Sample Depth: 2 ft

Analytical Method: Chloride by EPA 300 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.27.17 13.50 Basis: Wet Weight

Seq Number: 3020947

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 65.3
 4.98
 mg/kg
 06.27.17 23.48
 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

Tech: ARM % Moisture:

Analyst: ARM Date Prep: 06.26.17 07.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.26.17 13.36	U	1
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.26.17 13.36	U	1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.26.17 13.36	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.26.17 13.36	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	104	%	70-135	06.26.17 13.36		
o-Terphenyl		84-15-1	107	%	70-135	06.26.17 13.36		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: BH-4 2' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-005 Date Collected: 06.20.17 10.00 Sample Depth: 2 ft

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

ALJ % Moisture:

Analyst: ALJ Date Prep: 06.27.17 15.00 Basis: Wet Weight

Seq Number: 3020931

Tech:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.27.17 22.58	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.27.17 22.58	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.27.17 22.58	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.27.17 22.58	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.27.17 22.58	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.27.17 22.58	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.27.17 22.58	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	114	%	80-120	06.27.17 22.58		
1,4-Difluorobenzene		540-36-3	96	%	80-120	06.27.17 22.58		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: NSW-11' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-006 Date Collected: 06.20.17 10.05 Sample Depth: 1 ft

Analytical Method: Chloride by EPA 300 Prep Method: E300P

% Moisture:

% Moisture:

Analyst: MGO Date Prep: 06.27.17 13.50 Basis: Wet Weight

Seq Number: 3020947

MGO

Tech:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 39.7
 4.98
 mg/kg
 06.27.17 23.55
 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

Tech: ARM

Analyst: ARM Date Prep: 06.26.17 07.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.26.17 13.56	U	1
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.26.17 13.56	U	1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.26.17 13.56	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.26.17 13.56	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	103	%	70-135	06.26.17 13.56		
o-Terphenyl		84-15-1	105	%	70-135	06.26.17 13.56		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: NSW-11' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-006 Date Collected: 06.20.17 10.05 Sample Depth: 1 ft

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Tech: ALJ % Moisture:

Analyst: ALJ Date Prep: 06.27.17 15.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.27.17 23.14	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.27.17 23.14	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.27.17 23.14	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.27.17 23.14	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.27.17 23.14	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.27.17 23.14	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.27.17 23.14	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	92	%	80-120	06.27.17 23.14		
4-Bromofluorobenzene		460-00-4	115	%	80-120	06.27.17 23.14		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: ESW-21' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-007 Date Collected: 06.20.17 10.10 Sample Depth: 1 ft

Analytical Method: Chloride by EPA 300 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.27.17 13.50 Basis: Wet Weight

Seq Number: 3020947

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 64.6
 4.97
 mg/kg
 06.28.17 00.03
 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

Tech: ARM % Moisture:

Analyst: ARM Date Prep: 06.26.17 07.00 Basis: Wet Weight

Parameter Cas Number Res			RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.26.17 14.16	U	1
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.26.17 14.16	U	1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.26.17 14.16	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.26.17 14.16	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	103	%	70-135	06.26.17 14.16		
o-Terphenyl		84-15-1	106	%	70-135	06.26.17 14.16		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: ESW-2 1' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-007 Date Collected: 06.20.17 10.10 Sample Depth: 1 ft

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Tech: ALJ % Moisture:

Analyst: ALJ Date Prep: 06.27.17 15.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.27.17 23.30	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.27.17 23.30	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.27.17 23.30	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.27.17 23.30	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.27.17 23.30	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.27.17 23.30	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.27.17 23.30	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	113	%	80-120	06.27.17 23.30		
1,4-Difluorobenzene		540-36-3	108	%	80-120	06.27.17 23.30		



MGO

Seq Number: 3020947

#### **Certificate of Analytical Results 556209**



Wet Weight

Basis:

#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: SSW-11' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-008 Date Collected: 06.20.17 10.15 Sample Depth: 1 ft

Analytical Method: Chloride by EPA 300 Prep Method: E300P

% Moisture:

Analyst: MGO Date Prep: 06.27.17 13.50

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 146
 4.97
 mg/kg
 06.28.17 00.11
 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

Tech: ARM % Moisture:

Analyst: ARM Date Prep: 06.26.17 07.00 Basis: Wet Weight

Seq Number: 3021003

Tech:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.26.17 14.36	U	1
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.26.17 14.36	U	1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.26.17 14.36	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.26.17 14.36	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	104	%	70-135	06.26.17 14.36		
o-Terphenyl		84-15-1	106	%	70-135	06.26.17 14.36		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: SSW-11' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-008 Date Collected: 06.20.17 10.15 Sample Depth: 1 ft

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Tech: ALJ % Moisture:

Analyst: ALJ Date Prep: 06.27.17 15.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.27.17 23.46	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.27.17 23.46	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.27.17 23.46	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	06.27.17 23.46	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.27.17 23.46	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.27.17 23.46	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.27.17 23.46	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	89	%	80-120	06.27.17 23.46		
1,4-Difluorobenzene		540-36-3	100	%	80-120	06.27.17 23.46		





Wet Weight

#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Soil Date Received:06.23.17 15.33 Sample Id: NSW-2 1' Matrix:

Lab Sample Id: 556209-009 Date Collected: 06.20.17 11.00 Sample Depth: 1 ft

Analytical Method: Chloride by EPA 300 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.27.17 13.50 Seq Number: 3020947

Basis:

Parameter Cas Number Result RLUnits **Analysis Date** Flag Dil Chloride 16887-00-6 06.28.17 00.18 9.95 4.93 mg/kg 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

ARM% Moisture: Tech:

ARM Analyst: 06.26.17 07.00 Basis: Wet Weight Date Prep:

Parameter	Cas Number	Cas Number Result RL				Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.26.17 14.56	U	1
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.26.17 14.56	U	1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.26.17 14.56	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.26.17 14.56	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	102	%	70-135	06.26.17 14.56		
o-Terphenyl		84-15-1	103	%	70-135	06.26.17 14.56		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: NSW-21' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-009 Date Collected: 06.20.17 11.00 Sample Depth: 1 ft

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Tech: ALJ % Moisture:

Analyst: ALJ Date Prep: 06.27.17 15.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	06.28.17 00.02	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	06.28.17 00.02	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	06.28.17 00.02	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	06.28.17 00.02	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	06.28.17 00.02	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	06.28.17 00.02	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	06.28.17 00.02	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	107	%	80-120	06.28.17 00.02		
1,4-Difluorobenzene		540-36-3	107	%	80-120	06.28.17 00.02		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: WSW-2 1' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-010 Date Collected: 06.20.17 11.15 Sample Depth: 1 ft

Analytical Method: Chloride by EPA 300 Prep Method: E300P

% Moisture:

Analyst: MGO Date Prep: 06.27.17 13.50 Basis: Wet Weight

Seq Number: 3020947

MGO

Tech:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 16.7
 4.96
 mg/kg
 06.28.17 00.26
 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

Tech: ARM % Moisture:

Analyst: ARM Date Prep: 06.26.17 07.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.26.17 15.16	U	1
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.26.17 15.16	U	1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.26.17 15.16	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.26.17 15.16	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	103	%	70-135	06.26.17 15.16		
o-Terphenyl		84-15-1	105	%	70-135	06.26.17 15.16		





#### TRC Solutions, Inc, Midland, TX

A-14 Compressor Station Sump

Sample Id: WSW-2 1' Matrix: Soil Date Received:06.23.17 15.33

Lab Sample Id: 556209-010 Date Collected: 06.20.17 11.15 Sample Depth: 1 ft

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

% Moisture:

Tech: ALJ Analyst: 06.27.17 15.00 Basis: Wet Weight Date Prep:

Seq Number: 3020931

ALJ

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	06.28.17 00.18	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	06.28.17 00.18	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	06.28.17 00.18	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	06.28.17 00.18	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	06.28.17 00.18	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	06.28.17 00.18	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	06.28.17 00.18	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	92	%	80-120	06.28.17 00.18		
4-Bromofluorobenzene		460-00-4	103	%	80-120	06.28.17 00.18		



### **Flagging Criteria**



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

**DL** Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

Hone Fax
(281) 240-4200 (281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335
1211 W Florida Ave, Midland, TX 79701 (432) 563-1800 (432) 563-1713
2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282 (602) 437-0330



#### **QC Summary** 556209

#### TRC Solutions, Inc

A-14 Compressor Station Sump

Analytical Method: Chloride by EPA 300

3020947 Matrix: Solid

LCS Sample Id: 726861-1-BKS MB Sample Id: 726861-1-BLK

E300P Prep Method:

Date Prep: 06.27.17

LCSD Sample Id: 726861-1-BSD

MB Spike LCS LCS LCSD **Parameter** 

Result

36.3

MB

115

Limits

**RPD** 

Units Analysis Flag Date

Result Result Limit Amount %Rec %Rec Result Chloride 20 06.27.17 20:53 < 5.00 250 249 100 240 96 90-110 4 mg/kg

Analytical Method: Chloride by EPA 300

3020947

Matrix: Soil

%Rec

Prep Method:

E300P

Seq Number: Parent Sample Id:

555795-008

MS Sample Id: 555795-008 S Date Prep:

RPD

Limit

06.27.17

555795-008 SD MSD Sample Id:

**Parameter** 

Seq Number:

Parent

MS MS

Result

MSD %Rec

**MSD** 

LCSD

Limits %RPD

%RPD

Units

Analysis Flag Date

Amount Result Chloride 9.20 246 253 99 254 100 90-110 0 20 mg/kg 06.27.17 21:16

Analytical Method: Chloride by EPA 300

Seq Number: 3020947

Matrix: Soil

250

Spike

Spike

Prep Method:

E300P

Parent Sample Id:

556209-002

MS

556209-002 S

Date Prep:

RPD

06.27.17

**Parameter** 

**Parameter** 

o-Terphenyl

MS Sample Id: MS

**MSD** 

**MSD** 

Limits %RPD

MSD Sample Id: 556209-002 SD

Units

mg/kg

Units

%

Analysis

Chloride

Parent Result

Spike Amount

Result %Rec 289 101

LCS

Result 290 %Rec 101

90-110

Limits

Limit 20 0

Flag Date 06.27.17 23:02

Analytical Method: TPH by SW8015 Mod

Seq Number: 3021003 Matrix: Solid

LCSD

Prep Method: Date Prep:

RPD

Limit

TX1005P

MB Sample Id: 726785-1-BLK LCS Sample Id: LCS

726785-1-BKS

LCSD

LCSD Sample Id: %RPD

726785-1-BSD

06.26.17

Analysis Flag Date

Result Amount Result %Rec Result %Rec 06.26.17 10:55 Gasoline Range Hydrocarbons 1000 1030 103 1030 70-135 0 35 <15.0 103 mg/kg 70-135 06.26.17 10:55 Diesel Range Organics 1000 1050 105 1040 35 104 1 mg/kg <15.0

MB MB LCS LCS LCSD Limits LCSD Units Analysis **Surrogate** %Rec Flag %Rec Flag %Rec Flag Date 1-Chlorooctane 107 101 102 70-135 % 06.26.17 10:55 100 99 70-135 06.26.17 10:55



#### QC Summary 556209

#### TRC Solutions, Inc

A-14 Compressor Station Sump

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

 Seq Number:
 3021003
 Matrix:
 Soil
 Date Prep:
 06.26.17

 Parent Sample Id:
 556209-001
 MS Sample Id:
 556209-001 S
 MSD Sample Id:
 556209-001 SD

Spike MS MS Limits %RPD **RPD** Parent **MSD MSD** Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec Gasoline Range Hydrocarbons 06.26.17 11:56 <15.0 998 1030 103 1020 102 70-135 35 mg/kg 998 70-135 35 06.26.17 11:56 Diesel Range Organics 53.3 1050 100 1040 99 mg/kg

MS MS **MSD MSD** Limits Units Analysis **Surrogate** Flag %Rec %Rec Flag Date 1-Chlorooctane 107 101 70-135 % 06.26.17 11:56 o-Terphenyl 99 96 70-135 % 06.26.17 11:56

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Seq Number: 3020931 Matrix: Solid Date Prep: 06.27.17

MB Sample Id: 726847-1-BLK LCS Sample Id: 726847-1-BKS LCSD Sample Id: 726847-1-BSD

%RPD RPD MB LCS LCS Units Spike Limits Analysis **LCSD** LCSD **Parameter** Result Amount Result %Rec %Rec Limit Date Result 0.101 102 0.103 70-130 0 35 06.27.17 20:16 Benzene < 0.00202 0.103 103 mg/kg Toluene < 0.00202 0.101 0.0908 90 0.0903 90 70-130 35 06.27.17 20:16 1 mg/kg 06.27.17 20:16 < 0.00202 71-129 Ethylbenzene 0.101 0.0968 96 0.0998 100 3 35 mg/kg 06.27.17 20:16 m,p-Xylenes < 0.00404 0.202 0.176 87 0.177 88 70-135 1 35 mg/kg 0.0917 0.0933 93 71-133 35 06.27.17 20:16 o-Xylene < 0.00202 0.101 mg/kg

Flag

LCSD MB MB LCS LCS LCSD Limits Units Analysis **Surrogate** %Rec Flag %Rec Flag Flag Date %Rec 06.27.17 20:16 1.4-Difluorobenzene 97 92 101 80-120 % 06.27.17 20:16 4-Bromofluorobenzene 99 107 100 80-120 %

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

 Seq Number:
 3020931
 Matrix:
 Soil
 Date Prep:
 06.27.17

 Parent Sample Id:
 556209-001
 MS Sample Id:
 556209-001 S
 MSD Sample Id:
 556209-001 SD

MS MS Limits %RPD **RPD** Parent Spike MSD MSD Units Analysis Flag **Parameter** Result Amount Result %Rec Limit Date Result %Rec 06.27.17 20:48 0.0814 81 0.0750 74 70-130 8 35 Benzene < 0.00200 0.100 mg/kg Toluene < 0.00200 0.100 0.0665 67 0.0653 65 70-130 2 35 mg/kg 06.27.17 20:48 X mg/kg 06.27.17 20:48 Ethylbenzene < 0.00200 0.100 0.0708 71 0.0610 60 71-129 15 35 X 0.200 0.105 70-135 35 06.27.17 20:48 X < 0.00400 0.117 59 52 11 m,p-Xylenes mg/kg 06.27.17 20:48 0.100 0.0656 0.0628 71-133 35 X o-Xylene < 0.00200 66 62 mg/kg

MS MS MSD **MSD** Limits Units Analysis **Surrogate** %Rec Flag %Rec Flag Date 1,4-Difluorobenzene 90 80-120 06.27.17 20:48 116 % 4-Bromofluorobenzene 91 117 80-120 % 06.27.17 20:48

Final 1.000

# Xenco Laboratories

The Environmental Lab of Texas

12600 West I-20 East CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Phone: 432-563-1800

Project Name: A14 Compressor Station Sur
Coessa, lexas (9/65)
COLUMN CANDINE

	Relinquished by:	Zeilindustied	Relinquished	Bill to Ro	2											LAB # (lab use only)	ORDER #:		(lab use only)							
	ed by:	ed by	The Guen	Bill to Rose Slade at Energy Transfer.		WSW-2 1'	NSW-2 1'	SSW-1 1'	ESW-2 1'	NSW-1 1'	BH-4 2'	BH-5 6"	WSW-1 1'	ESW-1 1'	BH-3 2'	FIELD CODE	# 20000	Sh www	nly)		Sampler Signature: MW	Telephone No: 432.520.7720	City/State/Zip: Midland, Texas 79703	Company Address: 2057 Commerce Drive	Company Name TRC Envir	Nikki Green
	Date	/ Daily	(0)23/17														-	<u> </u>	)		di d	20	xas 79703	nerce Drive	TRC Environmental Corporation	
	=	=	9=													Beginning Depth					2				ation	
	Time	i	)33													Ending Depth				1	ے					
Corr	Rece CI.(		Received by			6/20/2017	6/20/2017	6/20/2017	6/20/2017	6/20/2017	6/20/2017	6/19/2017	6/19/2017	6/19/2017	6/19/2017	Date Sampled										
Corrected Temp:	(6-23: +0.2°C)	Temp: Disco	0			1115	1100	1015	1010	1005	1000	1630	1617	1615	1600	Time Sampled				1	e-mail:	Fax No:				
0	0															Field Filtered	1				***	Y				
7.0		Ħ				-		-	_	->	-	-	-		->	Total #. of Containers	1	ı			10					
		Ō				×	×	×	×	×	×	×	×	×	×	Ice	Pr		1	DG	se.s					
		IR ID:R-8			H	$\vdash$										HNO₃ HCI	Preservation & #			reer	lade					
					-	-	-									H ₂ SO ₄	ation			<u>10</u>	e@6					
					-											NaOH				CSC	ener					
ā					-	+										Na ₂ S ₂ O ₃	of Containers			ngreen@trcsolutions.com	rose.slade@energytransfer.com					
1			8													None	tainer			ons.	ans					
	Date	Date	Date (23)													Other ( Specify)	l"			com	fer.c					
	te	te	N 60		1	S	S	S	S	S	S	S	S	S	S	DW=Drinking Water SL=Sludge	N N		ľ		mo	70				
H			~			Soil	GW = Groundwater S=Soil/Solid  NP=Non-Potable Specify Other	Matrix			1		Report Format:				3									
	Time	Time	Time			×	×	×	×	×	×	×	×	×	×	AND A RESIDENCE OF THE PARTY OF	58	7	H	4	35	t Fo		roj	P	ojec
	Э	96	هر المحا													TPH: TX 1005 TX 1006		ľ		1		rmai	P	Project Loc:	Project #:	Project Name.
	Te	Sa	Cult	Sai												Cations (Ca, Mg, Na, K)			П	١			PO #:	00:	#	ile.
	npe	by s	Labels on container(s) Custody seals on cont Custody seals on cool	nple Cs F												Anions (CI, SO4, Alkalinity)		101	10	١		口				
	atur	Han	on c	Cor												SAR / ESP / CEC		TOTAL:	TCLP:	1		Standard		4		,
	e U	oler/o	onta als c	Con tain of H												Metals: As Ag Ba Cd Cr Pb Hg	Se		Ц	A		daro				1
	on	Clien	iner n cc	ers ead												Volatiles	_		4	Analyze		_			100	5
	Temperature Upon Receipt:	Sample Hand Delivered by Sampler/Client Rep. ? by Courier? UPS	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?												Semivolatiles		Ш	Ц	e For:				Lea	TR	2
	eipt:	. 2	ner( (s)	 		×	×	×	×	×	×	×	×	×	×	BTEX 80219/5030 or BTEX 82	60		Ц	3				Col	#:	A14 Compressor Station Sump
		H	S		-								_			RCI			$\dashv$			TRRP		unty	27:	2
									101	7.21						N.O.R.M. Chlorides E 300.1	_		-			U		Lea County, NM	TRC #: 273818	, Cati
		FedEx	~~~	~ ~		×	×	×	×	×	×	×	×	×	×	Ciliolides E 300.1		_	-						00	15
						-												_	$\dashv$			Z.				1
	ငိ	N Lone Star	zzz	zz												RUSH TAT (Pre-Schedule) 24,	48,	72 h	irs	-		NPDES				0
		Star				×	×	×	×	×	×	×	×	×	×	Standard 3-Day TAT				_		S				
					1	1.5	100	1.	5-7-	1 2	1.0	515	100	11	100		1						1	1	1	



# **XENCO Laboratories** Prelogin/Nonconformance Report- Sample Log-In



Client: TRC Solutions, Inc

Date/ Time Received: 06/23/2017 03:33:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 556209

Temperature Measuring device used: R8

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		2.4
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seal present on shipping co	ntainer/ cooler?	N/A
#5 *Custody Seals intact on shipping cor	ntainer/ cooler?	N/A
#6 Custody Seals intact on sample bottle	es?	N/A
#7 *Custody Seals Signed and dated?		N/A
#8 *Chain of Custody present?		Yes
#9 Sample instructions complete on Cha	in of Custody?	Yes
#10 Any missing/extra samples?		No
#11 Chain of Custody signed when relind	quished/ received?	Yes
#12 Chain of Custody agrees with sampl	e label(s)?	Yes
#13 Container label(s) legible and intact?	)	Yes
#14 Sample matrix/ properties agree with	Yes	
#15 Samples in proper container/ bottle?	Yes	
#16 Samples properly preserved?		Yes
#17 Sample container(s) intact?		Yes
#18 Sufficient sample amount for indicate	ed test(s)?	Yes
#19 All samples received within hold time	e?	Yes
#20 Subcontract of sample(s)?		N/A
#21 VOC samples have zero headspace	?	N/A
* Must be completed for after-hours de  Analyst:	livery of samples prior to placing in PH Device/Lot#:	the refrigerator
Checklist completed by:		Date: <u>06/23/2017</u>
Checklist reviewed by:	Jessica Kramer  Muss Hoah  Kelsey Brooks	Date: 06/26/2017

# **Analytical Report 553892**

# for TRC Solutions, Inc

Project Manager: Nikki Green
A14 Compressor Station Sump
TRC#273818
30-MAY-17

Collected By: Client





#### 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)

Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)





30-MAY-17

Project Manager: Nikki Green

**TRC Solutions, Inc** 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 553892

**A14 Compressor Station Sump** Project Address: Lea County, NM

#### Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 553892. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 553892 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

**Brandi Ritcherson** 

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America



# **Sample Cross Reference 553892**



# $TRC\ Solutions,\ Inc,\ Midland,\ TX$

A14 Compressor Station Sump

Sample Id	Matrix	<b>Date Collected</b>	Sample Depth	Lab Sample Id
Hydrovac Solids	S	05-23-17 11:30		553892-001

Version: 1.%



#### CASE NARRATIVE

Client Name: TRC Solutions, Inc

Project Name: A14 Compressor Station Sump

Project ID: TRC#273818 Report Date: 30-MAY-17 Work Order Number(s): 553892 Date Received: 05/24/2017

#### Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3018244 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.





#### TRC Solutions, Inc, Midland, TX

A14 Compressor Station Sump

Sample Id: Hydrovac Solids Matrix: Soil Date Received:05.24.17 16.10

Lab Sample Id: 553892-001 Date Collected: 05.23.17 11.30

Analytical Method: Chloride by EPA 300 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 05.26.17 08.00 Basis: Wet Weight

Seq Number: 3018325

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 52.5
 4.93
 mg/kg
 05.26.17 09.24
 1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P

Tech: ARM % Moisture:

Analyst: ARM Date Prep: 05.26.17 17.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
C6-C10 Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	05.27.17 13.45	U	1
C10-C28 Diesel Range Organics	C10C28DRO	187	15.0		mg/kg	05.27.17 13.45		1
C28-C35 Oil Range Hydrocarbons	PHCG2835	265	15.0		mg/kg	05.27.17 13.45		1
Total TPH	PHC635	452	15.0		mg/kg	05.27.17 13.45		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	112	%	70-135	05.27.17 13.45		
o-Terphenyl		84-15-1	110	%	70-135	05.27.17 13.45		





#### TRC Solutions, Inc, Midland, TX

A14 Compressor Station Sump

Sample Id: **Hydrovac Solids** Matrix: Soil Date Received:05.24.17 16.10

Lab Sample Id: 553892-001 Date Collected: 05.23.17 11.30

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Tech: ALJ % Moisture:

Analyst: ALJ Date Prep: 05.25.17 08.00 Basis: Wet Weight

Parameter	Cas Number	Result	sult RL			Analysis Date	Flag	Dil	
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	05.25.17 10.02	U	1	
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	05.25.17 10.02	U	1	
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	05.25.17 10.02	U	1	
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	05.25.17 10.02	U	1	
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	05.25.17 10.02	U	1	
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	05.25.17 10.02	U	1	
Total BTEX		< 0.00201	0.00201		mg/kg	05.25.17 10.02	U	1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
4-Bromofluorobenzene		460-00-4	111	%	80-120	05.25.17 10.02			
1,4-Difluorobenzene		540-36-3	86	%	80-120	05.25.17 10.02			



### **Flagging Criteria**



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

**DL** Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

Hone Fax
(281) 240-4200 (281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335
1211 W Florida Ave, Midland, TX 79701 (432) 563-1800 (432) 563-1713
2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282 (602) 437-0330



#### **QC Summary** 553892

#### TRC Solutions, Inc

A14 Compressor Station Sump

Analytical Method: Chloride by EPA 300

Seq Number:

3018325 Matrix: Solid

LCS Sample Id: 725214-1-BKS MB Sample Id: 725214-1-BLK

E300P Prep Method:

Prep Method:

MSD Sample Id:

Prep Method:

Date Prep:

Date Prep: 05.26.17 LCSD Sample Id: 725214-1-BSD

E300P

05.26.17

TX1005P

553892-001 SD

Flag

Flag

MB Spike LCS LCS Limits %RPD **RPD** LCSD LCSD Units Analysis Flag **Parameter** Amount Result Limit Date Result %Rec Result %Rec

Chloride 90-110 20 05.26.17 09:09 < 5.00 250 264 106 263 105 0 mg/kg

Analytical Method: Chloride by EPA 300

Seq Number: 3018325 Matrix: Soil

MS Sample Id: Parent Sample Id: 553892-001 553892-001 S

Parent MS MS Limits %RPD RPD Units Spike **MSD** MSD Analysis **Parameter** Result Amount Result %Rec Limit Date Result %Rec

Chloride 52.5 247 301 101 302 101 90-110 0 20 mg/kg 05.26.17 09:32

Analytical Method: TPH by SW8015 Mod

Seq Number: 3018367 Matrix: Solid

725298-1-BKS LCS Sample Id: MB Sample Id: 725298-1-BLK

Date Prep: 05.26.17 LCSD Sample Id: 725298-1-BSD

RPD LCS MB Spike LCS LCSD LCSD Limits %RPD Units Analysis **Parameter** Result Limit Result Date Amount %Rec Result %Rec C6-C10 Gasoline Range Hydrocarbons 05.27.17 13:04 <15.0 1000 1010 101 1110 70-135 9 35 111 mg/kg 05.27.17 13:04 70-135 C10-C28 Diesel Range Organics 1000 1030 103 1070 107 4 35 <15.0 mg/kg

MB MB LCS LCS LCSD LCSD Limits Units Analysis **Surrogate** %Rec Flag %Rec Flag %Rec Flag Date 05.27.17 13:04 1-Chlorooctane 118 105 120 70-135 % 70-135 05.27.17 13:04 o-Terphenyl 117 104 117 %

Analytical Method: TPH by SW8015 Mod

Seq Number: 3018367 Matrix: Soil

MS Sample Id: 553892-001 S Parent Sample Id: 553892-001

Prep Method: TX1005P

Date Prep: 05.26.17 MSD Sample Id: 553892-001 SD

RPD MS %RPD Parent Spike MS **MSD MSD** Limits Units Analysis Flag **Parameter** Amount Result Result %Rec Limit Date Result %Rec C6-C10 Gasoline Range Hydrocarbons 1030 70-135 05.27.17 14:06 <15.0 999 981 98 103 5 35 mg/kg

1130 70-135 2 05.27.17 14:06 C10-C28 Diesel Range Organics 187 999 94 1150 96 35 mg/kg MS MS **MSD** Limits Units Analysis **MSD** 

**Surrogate** Flag %Rec Flag Date %Rec 05.27.17 14:06 1-Chlorooctane 100 118 70-135 % 05.27.17 14:06 o-Terphenyl 108 70-135 % 76



#### QC Summary 553892

#### **TRC Solutions, Inc**

A14 Compressor Station Sump

Flag

Analytical Method:BTEX by EPA 8021BPrep Method:SW5030BSeq Number:3018244Matrix:SolidDate Prep:05.25.17

MB Sample Id: 725225-1-BLK LCS Sample Id: 725225-1-BKS LCSD Sample Id: 725225-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	]
Benzene	< 0.00201	0.100	0.0826	83	0.0767	76	70-130	7	35	mg/kg	05.25.17 07:20	
Toluene	< 0.00201	0.100	0.0823	82	0.0810	80	70-130	2	35	mg/kg	05.25.17 07:20	
Ethylbenzene	< 0.00201	0.100	0.0915	92	0.0810	80	71-129	12	35	mg/kg	05.25.17 07:20	
m,p-Xylenes	< 0.00402	0.201	0.177	88	0.165	82	70-135	7	35	mg/kg	05.25.17 07:20	
o-Xylene	< 0.00201	0.100	0.0865	87	0.0803	80	71-133	7	35	mg/kg	05.25.17 07:20	
Surragata	MB	MB	L	cs i	LCS	LCSI	) LCS	D Li	mits	Units	Analysis	

LCSD **Surrogate** Flag Flag Flag Date %Rec %Rec %Rec 1,4-Difluorobenzene 93 115 101 05.25.17 07:20 80-120 % 92 05.25.17 07:20 4-Bromofluorobenzene 118 101 80-120 %

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

 Seq Number:
 3018244
 Matrix:
 Soil
 Date Prep:
 05.25.17

 Parent Sample Id:
 553764-001
 MS Sample Id:
 553764-001 S
 MSD Sample Id:
 553764-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00201	0.100	0.0527	53	0.0647	65	70-130	20	35	mg/kg	05.25.17 07:52	X
Toluene	< 0.00201	0.100	0.0553	55	0.0688	69	70-130	22	35	mg/kg	05.25.17 07:52	X
Ethylbenzene	< 0.00201	0.100	0.0562	56	0.0640	64	71-129	13	35	mg/kg	05.25.17 07:52	X
m,p-Xylenes	< 0.00402	0.201	0.102	51	0.125	63	70-135	20	35	mg/kg	05.25.17 07:52	X
o-Xylene	< 0.00201	0.100	0.0543	54	0.0658	66	71-133	19	35	mg/kg	05.25.17 07:52	X

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date		
1,4-Difluorobenzene	100		100		80-120	%	05.25.17 07:52		
4-Bromofluorobenzene	117		118		80-120	%	05.25.17 07:52		

# Xenco Laboratories

The Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST
12600 West 1-20 East
Phone: 432-563-1800
Odessa, Texas 79765
Fax: 432-563-1713

remiquismed by.	Relinquished by	Relinquished	Special Instructions: Bill to Rose Slade at				LAB # (lab use only)	ORDER #:	(lab use only)	S	Te	0	C	9
(	ance Book	il Sur	Special Instructions:  Bill to Rose Slade at Energy Transfer.			Hydro	FIE	553		Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Manie
	rhe 5	1 5/	ansfer.			Hydrovac solids	FIELD CODE	892	-	Mulle	432.520.7720	Midland, Texas 79703	2057 Commerce Drive	The Eliviroliniella Colporation
Care	W/n	Date DY//7								1	_	703	rive	al Colpois
	16/0	5	4				Beginning Depth			12				HOI
č	/ O	7 30					Ending Depth	7		7				
Medelyed by ELOT.	Received by El O	Many S				5/23/2017	Date Sampled							
7	7	/-				1130	Time Sampled			e-mail:	Fax No:			
							Field Filtered			-				
							Total #. of Containers			12	1	1		
						×	Ice	-	120	ose.				
							HNO ₃	Preservation & # of	ngreen@trcso	slad				
							HCI	vation	000	e@				Ш
				$\vdash$			H ₂ SO ₄ NaOH	- 0° #	tres	ene				
				$\vdash$			Na ₂ S ₂ O ₃		oluti	rgyt				
_		M	4 7	-			None	Containers	lutions.com	rans				
		Date 124					Other ( Specify)	S	.cor	sfer.				1
aic	Date	Î				Soil	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	Matrix	)D	rose.slade@energytransfer.com	Report Format:		70	
=	Time	Time (U/O	1			×		015B			Forr		Project Loc:	Pro
							TPH: TX 1005 TX 1006	3			nat	PO #:	t Lo	Project #:
Tem	Sam	Cust Cust	Sam				Cations (Ca, Mg, Na, K)					*	.8	
pera	ble l	ody ody	ple (	$\square$	-		Anions (CI, SO4, Alkalinity) SAR / ESP / CEC	TOTAL:	TCLP:		Standard			П
ture	ample	seal seal	Cont ee o		0 1		Metals: As Ag Ba Cd Cr Pb Hg		7		tand			
Temperature Upon Receipt:	Sample Hand Delivered by Sampler/Client Rep. ? by Courier? UPS	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	Corrected Temp:	Temp:   Q CF:(0-6: -0.2°C		Volatiles	5 5 5	Analyze For:		ard			
on R	lient	con	rs In	rec	(0-6 (0-6 (0-6		Semivolatiles		yze				_	-
ecei	Rep. PS	tain ler(s	itact	ted	۶۶. ·	×	BTEX 80219/5030 or BTEX 8	260	For:				ea (	1
pt:	P P	er(s)	·2 ·2	Te	5 22.		RCI				TRRP		oun	#. 1
	DHL	-		mp:	1p: (0-6: -0.2°C)		N.O.R.M.		1		RP		Lea County, NM	INC #. 2/3010
	Fee				٠	×	Chlorides E 300.1						Z	0
	Y FedEx	~~~	< < <	3	₹ .	EEE								
	Lon			[5	IR ID:R-8						NPDES			
ဂိ	N Lone Star	ZZZ	ZZZ		Ä.		RUSH TAT (Pre-Schedule) 2	4, 48, 72 h	rs		SES			
	2				ά	×	Standard 3-Day TAT	2						



# XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In



Client: TRC Solutions, Inc

Date/ Time Received: 05/24/2017 04:10:00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Work Order #: 553892

Temperature Measuring device used: r8

	Sample Receipt Checklist	Comments								
#1 *Temperature of cooler(s)?		1.6								
#2 *Shipping container in good condition	?	Yes								
#3 *Samples received on ice?		Yes								
#4 *Custody Seal present on shipping co	ntainer/ cooler?	N/A								
#5 *Custody Seals intact on shipping cor	tainer/ cooler?	N/A								
#6 Custody Seals intact on sample bottle	s?	N/A								
#7 *Custody Seals Signed and dated?		N/A								
#8 *Chain of Custody present?		Yes								
#9 Sample instructions complete on Cha	in of Custody?	Yes								
#10 Any missing/extra samples?		No								
#11 Chain of Custody signed when relind	uished/ received?	Yes								
#12 Chain of Custody agrees with sampl	e label(s)?	Yes								
#13 Container label(s) legible and intact?	•	Yes								
#14 Sample matrix/ properties agree with	Yes									
#15 Samples in proper container/ bottle?		Yes								
#16 Samples properly preserved?		Yes								
#17 Sample container(s) intact?		Yes								
#18 Sufficient sample amount for indicate	ed test(s)?	Yes								
#19 All samples received within hold time	e?	Yes								
#20 Subcontract of sample(s)?		N/A								
#21 VOC samples have zero headspace	?	N/A								
* Must be completed for after-hours delivery of samples prior to placing in the refrigerator  Analyst: PH Device/Lot#:										
Checklist completed by: Checklist reviewed by:	Marithza Anaya  Marithza Anaya	Date: 05/24/2017								
Checklist reviewed by:	Holly Taylor	Date: <u>05/26/2017</u>								

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

#### State of New Mexico Energy Minerals and Natural Resources

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141

Revised August 8, 2011

			Rele	ease Notifi	catio	on and Co	orrective A	ction						
					•	<b>OPERA</b>	ГOR		Initial	al Report	Final Report			
Name of Co	ompany: E	TC Field Se	rvices, LI	.C		Contact: Rose Slade								
Address: 80 78249	00 East Son	nterra Rd. S	uite 2 Sar	Antonio, TX		Telephone No. 210-403-6525								
Facility Na	me: A-14 (	Below Grou	nd Sump	)		Facility Typ	e: Gathering Pi	peline						
Surface Ow	ner: (BLN	f) Bureau of	Land	Mineral	Owner	· N/A			API No	N/A				
Managemen	*	<i>1)                                    </i>												
		Τ	1 _			ON OF REI		1		T				
Unit Letter   Section   Township   Range   Feet from the   North/South Line   Feet from the   East/West Line   County: Lea														
				Latitude: 32.	.24618	ongitude	-103.40200	00						
				NA'	TURI	E OF REL								
		Oil/ Produced					Release: <5bbls			Recovered: O	2/22/17			
Source of Re	elease: Belov	w Ground Su	np			Unknown	our of Occurrence	:	Date and	Hour of Disco	very: 2/23/17			
Was Immedi	ate Notice (					If YES, To								
Required Yes No Not Notification was made to Ms. Olivia Yu on 3/3/17 at approximately 8:19 AM											ately 8:19 AM			
By Whom?						Date and Hour:								
Was a Water	course Read	ched?	Yes 🗵	l No		If YES, Vol	ume Impacting th	e Water	course.					
							RECEIVE	בח:						
If a Waterco	urse was Im	pacted, Descr	ibe Fully.	* N/A			By Olivia		12:56	pm, Mar	· 09, 2017			
ground sump initial respon the tank.	located insuse activities	ide the ETC As the, ETC per	A-14 Composition	oressor Station. I a vacuum trucl	The cark come a	use of the relea	discovered a crude se was due to and the remaining liq	over-run uids fron	of the belon within th	ow ground sun ne tank and the	np. During the double wall of			
ran outside the ETC conduction	he tank mov ted a site as	ring toward th sessment of th	e southwe ie release a	st of the facility and will submit a	outside a work-p	the fence line. plan to the NM	at an area impacte ETC representat OCD Hobbs Distr	ive and a	an environ	mental consult Bureau Of Lar	tant representing nd Management.			
regulations a public health should their or the enviro	Ill operators or the envi- operations honment. In a	are required to are failed to	o report and acceptant adequately OCD accept	nd/or file certain te of a C-141 reprinted investigate and	release port by t remedia	notifications as the NMOCD mate contaminati	knowledge and und perform correct arked as "Final R on that pose a three the operator of	etive acti eport" de eat to gre	ons for release oes not release ound water	eases which m ieve the operat r, surface wate	nay endanger tor of liability er, human health			
							OIL CON	SERV	ATION	DIVISION	1			
Signature: D	ocel Slad	•							Q	<u> </u>	_			
Signature: Rose L. Slade  Approved by Environmental Specialist:														
Title: Sr. En	vironmental	Specialist				Approval Date: 3/9/2017 Expiration Date:								
E-mail Address: Rose.Slade@energytransfer.com  Date: 3/3/17 Phone: 210-403-6525							Conditions of Approval:  See attached directive  Attached							
* Attach Addi	itional She	ets If Necess	ary											

1RP-4635

fOY1706953656

nOY1706954734

#### Operator/Responsible Party,

The OCD has received the form C-141 you provided on _3/3/2017_ regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number __1R-_4635___ has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District _1_ office in __Hobbs____ on or before _4/10/2017_. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

- Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.
- Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.
- Nominal detection limits for field and laboratory analyses must be provided.
- Composite sampling is not generally allowed.
- Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

- •Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.
- If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.
- Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

#### Jim Griswold

OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us