

APPROVED By Olivia Yu at 12:00 pm, Dec 28, 2017

> NMOCD approves of the delineation completed and proposed remediation for 1RP-4673. See email correspondence for stipulations.

Electronic Correspondence

December 12, 2017

Ms. Olivia Wu Environmental Specialist State of New Mexico Oil Conservation Division 1625 N. French Drive Hobbs, NM 88240 Olivia.wu@state.nm.us

Re: Assessment Report & Corrective Action Plan Nearburg Producing – Chisolm Energy Pennzoil Battery API No.: 30-025-26498, U-I, Sec 1, T19S, R33E – 2180' FSL & 660 FEL Depth to Groundwater: 415-420' (USGS) Lea County, NM Latitude: 32.687958, Longitude: -103.6100569 RP#: 1RP-4673

Dear Ms. Wu:

Etech Environmental & Safety Solutions, Inc. (Etech) has been contracted by Nearburg Producing Company (Nearburg) to provide environmental services including mitigation on the Pennzoil Battery, 1RP-4673 which is currently operated by Chisolm Energy. As a part of the move towards completion of mitigation, Etech has performed an assessment of the site and also developed a corrective action plan pending your review and approval. Details of the assessment and the proposed corrective actions are presented below.

Assessment

Background

A release occurred at the site on March 27, 2017. The source of the release was from production processing equipment (heater treater). Notification was placed to Kent Caffal & Shelly Tucker (BLM) on the following day. According to the C-141, the release was listed as 65 bbls, with 30 bbls recovered. Corrective actions described were the excavation, transportation and disposal of the impacted soil to the R360 landfill following with the backfilling of the excavation. During the initial phase of the assessment, data collection on the events concerning the release and corrective actions were performed by Etech. It was found that Nearburg had sold the property to Chisolm Energy and former employees of Nearburg were no longer available to substantiate the information on the nature of the release, actual volumes reported, or what corrective actions had been taken. However, the course of the corrective action was consistent with what Nearburg had employed on similar spills as part of its standard operating procedures.

Physical Inspection

The site consisted of production storage tanks located on the south side of the pad on an east-west orientation. Production processing equipment including free water knockouts and a heater treater were located along the north side of the pad. There were separate containments for the storage tanks and production processing equipment. The heater treater was located closer to the west side of the pad near the northwest corner. Secondary containment for the production processing equipment was an inverted "L" shape approximately 120 feet long on the west side (long leg of the L), 20 feet wide and 2 feet tall. The northern portion of the containment that contained the free water knockouts was 55 feet long, 65feet wide and 2 feet tall. The heater treater was in the longer leg of the Inverted L.

The interior of the containment did not show any signs of significant impacts in the bottom or sides of the containment. There was an area directly west of the heater treater that had a slight discoloration. This area was approximately 60 feet long and 3-4 feet wide. It was also noted that this area was slightly concaved.

Delineation

Five (5) sampling points were selected within the discolored area. They were noted as follows:

SP 1:	North end of discoloration
SP2:	.Between the heater treater and SP 1
SP 3:	.South of the heater treater and the end of the discoloration
SP 4:	.Southern end of the discoloration
SP 5:	.Due west of the heater treater

A hand auger was used to advance soil boings at each point. Samples were collected in 1 foot intervals. Each sample was evaluated for color and odor, then placed in a certified clean glass jar and chilled. A summary of the physical findings of each sample point are as follows:

Sample Point (SP)	Depth (ft.)	Composition	Color	Odor	Other Remarks
1	0-1	fine sandy loam	gray-tan	Strong	
1	1-2	fine sandy loam	tan	Slight	
1	2-3	fine sandy loam	tan	None	Refusal met after this sample was collected, boring terminated.
2	0-1	fine sandy loam	tan	None	
2	1-2	fine sandy loam	tan	None	
2	2-3	fine sandy loam	tan	None	Refusal met after this sample was collected, boring terminated.
3	0-1	fine sandy loam	tan	None	
3	1-2	fine sandy loam	tan	None	
3	2-3	fine sandy loam	tan	None	Refusal met after this sample was collected, boring terminated.
4	0-1	fine sandy loam	tan	None	
4	1-2	fine sandy loam	tan	None	
4	2-3	fine sandy loam	tan	None	Refusal met after this sample was collected, boring terminated.
5	0-1	fine sandy loam	gray tan	Strong	Sample moist, no free product noted
5	1-2	fine sandy loam	tan	Faint	Sample moist, no free product noted
5	2-3	fine sandy loam	tan	None	Sample moist, no free product noted
5	3-4	fine sandy loam	tan	Faint	Sample moist, no free product noted
5	4-5	fine sandy loam & clay	tan-gray	None	Sample slightly moist, bottom 2"of core was clay. Potential confining layer, boring terminated.

Samples were sent to Permian Basin Environmental Laboratories in Midland, Texas. Samples were analyzed for Total Petroleum Hydrocarbons, (TPH) by method 8015 modified, Chlorides by Standard Methods, and Benzene, Toluene, Ethylbenzene and M & P Xylenes (BTEX) by Gas Chromatography. Progressive analyses was utilized once a sample had cleared regulatory threshold levels, the next sample in line for the respective boring was not analyzed. The results of analyses are as follows:

	Summary of Delineation Sampling Analytical Results Total Petroleum Hydrocarbons - [TPH (mg/kg)] & Chlorides (mg/kg)										
Sample #	Depth (ft)	Date	TPH C6-C12	TPH >C12-C28	TPH <c28-c35< th=""><th>Total TPH</th><th>Chlorides</th></c28-c35<>	Total TPH	Chlorides				
SP-1	0-1	10/11/17	3050	9050	1520	13600	ND				
SP-1	1-2	10/11/17	ND	100	29.1	130	NA				
SP-1	2-3	10/11/17	ND	ND	ND	ND	NA				
SP-2	0-1	10/11/17	ND	ND	ND	ND	ND				
SP-3	0-1	10/11/17	ND	ND	ND	ND	492				
SP-4	0-1	10/11/17	ND	ND	ND	ND	28.5				
SP-5	0-1	10/11/17	54.2	3040	600	3690	4500				
SP-5	1-2	10/11/17	ND	181	142	323	1340				
SP-5	2-3	10/11/17	ND	212	102	314	1240				
SP-5	3-4	10/11/17	ND	717	150	867	1960				
SP-5	4-5	10/11/17	ND	45.6	ND	45.6	194				

Results of analyses following remediation activities are as follows:

* ND = Non-Detect

NA = Not Analyzed

	Summary of Delineation Sampling Analytical Results for BTEX (mg/kg)										
Sample # Depth (ft) Date Benzene Toluene Ethylbenzene Xylene (p/m)											
SP-1	0-1	10/11/17	ND	ND	0.214	5.52	4.43				
SP-1	1-2	10/11/17	ND	ND	ND	ND	ND				
SP-2	0-1	10/11/17	ND	ND	ND	ND	ND				
SP-3	0-1	10/11/17	ND	ND	ND	ND	ND				
SP-4	0-1	10/11/17	ND	ND	ND	ND	ND				
SP-5	0-1	10/11/17	ND	0.598	0.254	0.762	0.405				
SP-5	1-2	10/11/17	ND	ND	ND	ND	ND				

* ND = Non-Detect

All sampling equipment was thoroughly decontaminated between each sample collection. Nitrile gloves were used when handling each sample and changed between each sample collection. All samples were placed in certified clean glass jars then immediately chilled. Routine chain of custody was observed in all phases.

Conclusion

Based upon all of the data collected from the assessment there does appear to be impacted soils adjacent to, north, and south of the heater treater. However, with the exception of the area directly next to the treater, the majority of the impacts are confined to the first 1-2 feet of soil. The area adjacent to the treater (SP5) does extend further vertically but appears to clear regulatory threshold levels by 4 feet vertical. However, due to the nature of the close proximity to the heater treater and the nature of the soils in the area, complete mitigation may not prove practicable.

Supportive documentation for the assessment is provided as follows:	
Annotated Aerial Imagery and Topographic Map	Attachment A
USGS Groundwater Data	Attachment B
Laboratory Analytical Data	Attachment C

The corrective action plan for the mitigation of the site is provided on the next page.

Corrective Action Plan

Scope of Work

The scope of this project is for the remediation of a produced water/hydrocarbon impact. Completion of remediation will involve the following actions:

- 1. Placement of a one-call for utility location.
- Excavation of impacted soils in pasture areas until the chloride levels are less than 1,000 mg/kg and/or hydrocarbon levels of less than 5,000 mg/kg are reached. However, with respect to SP-5, the maximum depth that can be safely achieved next to the treater is 2.5 feet vertical and will have to be sloped away from the treater itself.
- 3. Once excavation has reached the desired objective, the bottom of the excavation will be sampled to confirm that remediation goals have been reached. If the excavation depth is greater than 2 feet vertical, side wall samples will be collected as well. Samples will be collected from the same sample points used during the assessment and will be analyzed for the same parameters as used in the assessment.
- 4. If the results of analysis determine that the contaminant levels are above regulatory threshold levels, additional excavation will be performed until the remediation objectives are met. It should be noted that there may be circumstance that arise where additional excavation is not practical. This includes reaching the limits of excavation with chlorides that are close to objective levels, safety issues such as the close proximity of equipment, or other site specific issues. In this event, you will be contacted to discuss the issue at hand and determine any alternative course of action that could be employed or if the site can be backfilled.
- 5. Backfilling of the excavated area(s) will be achieved by placing clean fill similar to the existing material from the site to within 6 inches of the surface. The last 6" will be backfilled with caliche.

Notifications and Special Conditions

- 1. The OCD and BLM will be notified prior to the commencement of on-site operations.
- 2. The OCD and BLM will be notified prior to any sampling event to allow the opportunity to witness the sampling events. Splits will be made available if requested.
- 3. The OCD and BLM (if applicable) will be notified when the mitigation is complete.
- 4. A final report documenting the closure of the site will be submitted along with a final C-141 and Sundry Notice to the BLM.

Thank you for your assistance on this matter. Should you have any questions, require additional information, or have any additional stipulations for this site, me at (432) 631-3757 (cell) or via email at <u>fred@etechenv.com</u>.

Respectfully:

And Holnex

Fred Holmes Senior

Project

Manager

Attachment A Annotated Aerial Imagery and Topographic Map

er		Delineation	Lease Name:	Pennzoil Battery		Case I	No.:	1RP-467	/3	
el	EVITI Environmental & Safety Solutions, Inc.	& Assessment Report ©	Date Assessed:	09/12/17 & 10/11/17		Project	No: 8	394-870	5-000	
			* · · · · · · · · · · · · · · · · · · ·	CONTRACTOR OF THE OWNER		A	ssessm	ent Res	ults	
	SP1		Li	The second	Samp I.D.	le [Depth (ft.)	Chlorid (mg/k	es g)	TPH (mg/kg)
and the second			the		SP1		0-1	ND		13600
1		and the start the local		Ref. Contraction of the	SP1		1-2	NA		140
150	SP2	A state of the second	The Ant		SP1		2-3	NA		ND
129		and the second second	1111	and the second second	SP2		0-1	ND		ND
200			TX-	and the second s	SP3		0-1	492		ND
1	Finder (Finder	Carles - All	80/12/20	17	SP4		0-1	28.5		ND
PG.	SP5	and the second s		in a	SP5		0-1	4500)	3690
100		and the second of the second s	A second second	1402	SP5		1-2	1340)	323
Sec.		2 I		a start and the second	SP5		2-3	1240)	314
22	(JP3)	2 4			SP5		3-4	1960)	867
24-9	The state of the	e t	-	Carlos Bringsh	SP5		4-5	194		45.6
1.1			1							
100	SP4	Participan 1	I Dia Dan			٨٥٥٥	ocemon	+ RTEV E	oculte	
(76) =	1 DA	South Barrier Barrier			C	ASSC	SSILLEI		Courto	
	计输行		09/12/20	17	I.D.	Depth (ft.)	В	т	E	х
Mar .	444 . 1		1.19		SP1	0-1	ND	ND	0.214	9.95
530		C	NAMES IN TRACE	Contraction of the second s	SP1	1-2	ND	ND	ND	ND
411	1. 1. 2	Pennzoii Fed	Bellieny	The state of the s	SP2	0-1	ND	ND	ND	ND
39		and a state of the state		and the second s	SP3	0-1	ND	ND	ND	ND
100					SP4	0-1	ND	ND	ND	ND
16.	SALE L	and a state		E	SP5	0-1	0.598	0.254	0.762	0.405
199	二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	Testada Automotive	- let	Handy.	SP5	1-2	ND	ND	ND	ND
			6		Notes: • ND= • Enco • Enco the a pote	Non Det ountered ountered 4-5 interv ential cor	tect, NA Refusal Dense (val (`2" d nfining la	=Not Ana at 3' on Clay Laye of core). ayer.	lyzed SPs 1,2, 3 r at the t Termina	3,and 4. oottom of ted as

Party Alberta

10000

10.5

1.40

1

© DeLorme. XMap® 7.

www.delorme.com

Attachment B USGS Groundwater Data

Click to hideNews Bulletins

- <u>Please see news on new formats</u>
- Full News 🔊

Groundwater levels for the Nation

Search Results -- 1 sites found

site_no list =

• 324126103411201

Minimum number of levels = 1 <u>Save file of selected sites</u> to local disk for future upload

USGS 324126103411201 19S.33E.05.12322

Groundwater: Field measurements V GO

Lea County, New Mexico Hydrologic Unit Code 13060011 Latitude 32°41'26", Longitude 103°41'12" NAD27 Land-surface elevation 3,708 feet above NAVD88 The depth of the well is 700 feet below land surface. This well is completed in the Santa Rosa Sandstone (231SNRS) local aquifer.

Output formats

Table of data

Tab-separated data

Graph of data

Reselect period

Breaks in the plot represent a gap of at least one year between field measurements. Download a presentation-quality graph

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility Plug-Ins	FOIA	Privacy	Policies and Notices
------------------------	------	---------	----------------------

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2017-12-12 18:37:04 EST 0.98 0.86 nadww01 Attachment C Laboratory Analytical Data PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Fred Holmes E Tech Environmental & Safety Solutions, Inc. 13000 West County Road 100 Odessa, TX 79765

> Project: Pennzoil Battery Project Number: 894-8706 Location: NM

Lab Order Number: 7J12018

NELAP/TCEQ # T104704516-16-7

Report Date: 10/16/17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP1 0-1'	7J12018-01	Soil	10/11/17 12:00	10-12-2017 13:14
SP1 1-2'	7J12018-02	Soil	10/11/17 12:10	10-12-2017 13:14
SP1 2-3'	7J12018-03	Soil	10/11/17 12:20	10-12-2017 13:14
SP2 0-1'	7J12018-04	Soil	10/11/17 12:30	10-12-2017 13:14
SP3 0-1'	7J12018-07	Soil	10/11/17 12:45	10-12-2017 13:14
SP4 0-1'	7J12018-10	Soil	10/11/17 13:05	10-12-2017 13:14
SP5 0-1'	7J12018-13	Soil	10/11/17 13:25	10-12-2017 13:14
SP5 1-2'	7J12018-14	Soil	10/11/17 13:30	10-12-2017 13:14
SP5 2-3'	7J12018-15	Soil	10/11/17 13:35	10-12-2017 13:14
SP5 3-4'	7J12018-16	Soil	10/11/17 13:40	10-12-2017 13:14
SP5 4-5'	7J12018-17	Soil	10/11/17 13:50	10-12-2017 13:14

SP1 0-1'

7J12018-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perr	nian Basin I	Environme	ntal Lab, 1	L.P.				
Organics by GC									
Benzene	ND	0.0217	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Toluene	ND	0.0435	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Ethylbenzene	0.214	0.0217	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Xylene (p/m)	5.52	0.0435	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Xylene (0)	4.43	0.0217	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	75-125		P7J1214	10/12/17	10/13/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.8 %	75-1	25	P7J1214	10/12/17	10/13/17	EPA 8021B	
General Chemistry Parameters by EF	PA / Standard Methoo	ls							
Chloride	ND	1.09	mg/kg dry	1	P7J1301	10/13/17	10/13/17	EPA 300.0	
% Moisture	8.0	0.1	%	1	P7J1305	10/13/17	10/13/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 80	15M							
C6-C12	3050	136	mg/kg dry	5	P7J1206	10/12/17	10/13/17	TPH 8015M	
>C12-C28	9050	136	mg/kg dry	5	P7J1206	10/12/17	10/13/17	TPH 8015M	
>C28-C35	1520	136	mg/kg dry	5	P7J1206	10/12/17	10/13/17	TPH 8015M	
Surrogate: 1-Chlorooctane		116 %	70-1	130	P7J1206	10/12/17	10/13/17	TPH 8015M	
Surrogate: o-Terphenyl		131 %	70-1	130	P7J1206	10/12/17	10/13/17	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	13600	136	mg/kg dry	5	[CALC]	10/12/17	10/13/17	calc	

E Tech Environmental & Safety Solutions, Inc
13000 West County Road 100
Odessa TX, 79765

SP1 1-2'

7J12018-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	1ian Basin H	Environme	ntal Lab, 1	L.P.				
Organics by GC									
Benzene	ND	0.00104	mg/kg dry	1	P7J1214	10/12/17	10/12/17	EPA 8021B	
Toluene	ND	0.00208	mg/kg dry	1	P7J1214	10/12/17	10/12/17	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P7J1214	10/12/17	10/12/17	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P7J1214	10/12/17	10/12/17	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P7J1214	10/12/17	10/12/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.0 %	75-1	25	P7J1214	10/12/17	10/12/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.0 %	75-1	25	P7J1214	10/12/17	10/12/17	EPA 8021B	
General Chemistry Parameters by EF	A / Standard Method	S							
% Moisture	4.0	0.1	%	1	P7J1305	10/13/17	10/13/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 80	15M							
C6-C12	ND	26.0	mg/kg dry	1	P7J1206	10/12/17	10/13/17	TPH 8015M	
>C12-C28	100	26.0	mg/kg dry	1	P7J1206	10/12/17	10/13/17	TPH 8015M	
>C28-C35	29.1	26.0	mg/kg dry	1	P7J1206	10/12/17	10/13/17	TPH 8015M	
Surrogate: 1-Chlorooctane		104 %	70-1	30	P7J1206	10/12/17	10/13/17	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-1	30	P7J1206	10/12/17	10/13/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	130	26.0	mg/kg dry	1	[CALC]	10/12/17	10/13/17	calc	

SP1 2-3'

7J12018-03 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	1ian Basin E	Invironmer	ıtal Lab, l	L. P.				
General Chemistry Parameters by EPA	Standard Method	<u>s</u>							
% Moisture	5.0	0.1	%	1	P7J1305	10/13/17	10/13/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 I	oy EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P7J1206	10/12/17	10/13/17	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P7J1206	10/12/17	10/13/17	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P7J1206	10/12/17	10/13/17	TPH 8015M	
Surrogate: 1-Chlorooctane		71.2 %	70-1	30	P7J1206	10/12/17	10/13/17	TPH 8015M	
Surrogate: o-Terphenyl		83.5 %	70-1	30	P7J1206	10/12/17	10/13/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	10/12/17	10/13/17	calc	

SP2 0-1'

7J12018-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin F	Environme	ntal Lab, I	L. P.				
Organics by GC									
Benzene	ND	0.00110	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Toluene	ND	0.00220	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Ethylbenzene	ND	0.00110	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Xylene (p/m)	ND	0.00220	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Xylene (o)	ND	0.00110	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		107 %	75-1	25	P7J1214	10/12/17	10/13/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.4 %	75-1	25	P7J1214	10/12/17	10/13/17	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	ls							
Chloride	ND	1.10	mg/kg dry	1	P7J1301	10/13/17	10/13/17	EPA 300.0	
% Moisture	9.0	0.1	%	1	P7J1305	10/13/17	10/13/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	15M							
C6-C12	ND	27.5	mg/kg dry	1	P7J1206	10/12/17	10/13/17	TPH 8015M	
>C12-C28	ND	27.5	mg/kg dry	1	P7J1206	10/12/17	10/13/17	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P7J1206	10/12/17	10/13/17	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-1	30	P7J1206	10/12/17	10/13/17	TPH 8015M	
Surrogate: o-Terphenyl		128 %	70-1	30	P7J1206	10/12/17	10/13/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.5	mg/kg dry	1	[CALC]	10/12/17	10/13/17	calc	

SP3 0-1'

7J12018-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin F	Environmer	ıtal Lab, I	L. P.				
Organics by GC									
Benzene	ND	0.00103	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Toluene	ND	0.00206	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		88.2 %	75-1	25	P7J1214	10/12/17	10/13/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		94.4 %	75-1	25	P7J1214	10/12/17	10/13/17	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	ls							
Chloride	492	1.03	mg/kg dry	1	P7J1301	10/13/17	10/13/17	EPA 300.0	
% Moisture	3.0	0.1	%	1	P7J1305	10/13/17	10/13/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	15M							
C6-C12	ND	25.8	mg/kg dry	1	P7J1213	10/12/17	10/13/17	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P7J1213	10/12/17	10/13/17	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P7J1213	10/12/17	10/13/17	TPH 8015M	
Surrogate: 1-Chlorooctane		96.4 %	70-1	30	P7J1213	10/12/17	10/13/17	TPH 8015M	
Surrogate: o-Terphenyl		115 %	70-1	30	P7J1213	10/12/17	10/13/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	10/12/17	10/13/17	calc	

SP4 0-1'

7J12018-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Invironmen	ıtal Lab, l	L.P.				
Organics by GC									
Benzene	ND	0.00104	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Toluene	ND	0.00208	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P7J1214	10/12/17	10/13/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		104 %	75-1	25	P7J1214	10/12/17	10/13/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	75-1.	25	P7J1214	10/12/17	10/13/17	EPA 8021B	
General Chemistry Parameters by EPA /	<u>/ Standard Method</u>	ls							
Chloride	28.5	1.04	mg/kg dry	1	P7J1301	10/13/17	10/13/17	EPA 300.0	
% Moisture	4.0	0.1	%	1	P7J1305	10/13/17	10/13/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 I	by EPA Method 80	<u>15M</u>							
C6-C12	ND	26.0	mg/kg dry	1	P7J1213	10/12/17	10/13/17	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P7J1213	10/12/17	10/13/17	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P7J1213	10/12/17	10/13/17	TPH 8015M	
Surrogate: 1-Chlorooctane		93.7 %	70-1	30	P7J1213	10/12/17	10/13/17	TPH 8015M	
Surrogate: o-Terphenyl		111 %	70-1.	30	P7J1213	10/12/17	10/13/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	10/12/17	10/13/17	calc	

SP5 0-1'

7J12018-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin I	Environme	ntal Lab, I	L. P.				
Organics by GC									
Benzene	ND	0.0235	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Toluene	0.598	0.0471	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Ethylbenzene	0.254	0.0235	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Xylene (p/m)	0.762	0.0471	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Xylene (0)	0.405	0.0235	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.5 %	75-1	25	P7J1214	10/12/17	10/13/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.0 %	75-125		P7J1214	10/12/17	10/13/17	EPA 8021B	
General Chemistry Parameters by El	PA / Standard Method	S							
Chloride	4500	5.88	mg/kg dry	5	P7J1301	10/13/17	10/13/17	EPA 300.0	
% Moisture	15.0	0.1	%	1	P7J1305	10/13/17	10/13/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	54.2	29.4	mg/kg dry	1	P7J1213	10/12/17	10/16/17	TPH 8015M	
>C12-C28	3040	29.4	mg/kg dry	1	P7J1213	10/12/17	10/16/17	TPH 8015M	
>C28-C35	600	29.4	mg/kg dry	1	P7J1213	10/12/17	10/16/17	TPH 8015M	
Surrogate: 1-Chlorooctane		101 %	70-1	30	P7J1213	10/12/17	10/16/17	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-1	30	P7J1213	10/12/17	10/16/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	3690	29.4	mg/kg dry	1	[CALC]	10/12/17	10/16/17	calc	

E Tech Environmental & Safety Solutions, Inc
13000 West County Road 100
Odessa TX, 79765

SP5 1-2'

7J12018-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin I	Environme	ntal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.0211	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Toluene	ND	0.0421	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Ethylbenzene	ND	0.0211	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Xylene (p/m)	ND	0.0421	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Xylene (o)	ND	0.0211	mg/kg dry	20	P7J1214	10/12/17	10/13/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		100 %	75-1	25	P7J1214	10/12/17	10/13/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	75-125		P7J1214	10/12/17	10/13/17	EPA 8021B	
General Chemistry Parameters by EF	PA / Standard Methods	5							
Chloride	1340	5.26	mg/kg dry	5	P7J1301	10/13/17	10/13/17	EPA 300.0	
% Moisture	5.0	0.1	%	1	P7J1305	10/13/17	10/13/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 801	15M							
C6-C12	ND	26.3	mg/kg dry	1	P7J1213	10/12/17	10/16/17	TPH 8015M	
>C12-C28	181	26.3	mg/kg dry	1	P7J1213	10/12/17	10/16/17	TPH 8015M	
>C28-C35	142	26.3	mg/kg dry	1	P7J1213	10/12/17	10/16/17	TPH 8015M	
Surrogate: 1-Chlorooctane		100 %	70-1	30	P7J1213	10/12/17	10/16/17	TPH 8015M	
Surrogate: o-Terphenyl		119 %	70-1	30	P7J1213	10/12/17	10/16/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	323	26.3	mg/kg dry	1	[CALC]	10/12/17	10/16/17	calc	

SP5 2-3'

7J12018-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin I	Environmer	ntal Lab,	L.P.				
General Chemistry Parameters by EP	A / Standard Methods								
Chloride	1240	1.05	mg/kg dry	1	P7J1301	10/13/17	10/13/17	EPA 300.0	
% Moisture	5.0	0.1	%	1	P7J1305	10/13/17	10/13/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method 801	5M							
C6-C12	ND	26.3	mg/kg dry	1	P7J1213	10/12/17	10/16/17	TPH 8015M	
>C12-C28	212	26.3	mg/kg dry	1	P7J1213	10/12/17	10/16/17	TPH 8015M	
>C28-C35	102	26.3	mg/kg dry	1	P7J1213	10/12/17	10/16/17	TPH 8015M	
Surrogate: 1-Chlorooctane		99.4 %	70-1	30	P7J1213	10/12/17	10/16/17	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-1	30	P7J1213	10/12/17	10/16/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	314	26.3	mg/kg dry	1	[CALC]	10/12/17	10/16/17	calc	

SP5 3-4'

7J12018-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	ian Basin I	Environmer	ntal Lab,	L.P.				
General Chemistry Parameters by EI	PA / Standard Methods								
Chloride	1960	1.08	mg/kg dry	1	P7J1301	10/13/17	10/13/17	EPA 300.0	
% Moisture	7.0	0.1	%	1	P7J1305	10/13/17	10/13/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 801	5M							
C6-C12	ND	26.9	mg/kg dry	1	P7J1213	10/12/17	10/14/17	TPH 8015M	
>C12-C28	717	26.9	mg/kg dry	1	P7J1213	10/12/17	10/14/17	TPH 8015M	
>C28-C35	150	26.9	mg/kg dry	1	P7J1213	10/12/17	10/14/17	TPH 8015M	
Surrogate: 1-Chlorooctane		101 %	70-1	30	P7J1213	10/12/17	10/14/17	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-1	30	P7J1213	10/12/17	10/14/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	867	26.9	mg/kg dry	1	[CALC]	10/12/17	10/14/17	calc	

SP5 4-5'

7J12018-17 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin I	Environme	ntal Lab,	L.P.				
General Chemistry Parameters by El	PA / Standard Methods								
Chloride	194	1.06	mg/kg dry	1	P7J1301	10/13/17	10/13/17	EPA 300.0	
% Moisture	6.0	0.1	%	1	P7J1305	10/13/17	10/13/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 801	5M							
C6-C12	ND	26.6	mg/kg dry	1	P7J1213	10/12/17	10/14/17	TPH 8015M	
>C12-C28	45.6	26.6	mg/kg dry	1	P7J1213	10/12/17	10/14/17	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P7J1213	10/12/17	10/14/17	TPH 8015M	
Surrogate: 1-Chlorooctane		98.4 %	70-1	30	P7J1213	10/12/17	10/14/17	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-1	30	P7J1213	10/12/17	10/14/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	45.6	26.6	mg/kg dry	1	[CALC]	10/12/17	10/14/17	calc	

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting	Units	Spike	Source	%REC	%REC	RPD	RPD Limit	Notes
nikiye	Result	Linit	Onto	Level	Result	JUILLE	Linits	NI D	Linit	110105
Batch P7J1214 - General Preparation (GC)										
Blank (P7J1214-BLK1)				Prepared &	Analyzed:	10/12/17				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00200	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.0564		"	0.0600		93.9	75-125			
Surrogate: 4-Bromofluorobenzene	0.0599		"	0.0600		99.8	75-125			
LCS (P7J1214-BS1)				Prepared &	Analyzed:	10/12/17				
Benzene	0.112	0.00100	mg/kg wet				70-130			
Toluene	0.106	0.00200	"				70-130			
Ethylbenzene	0.116	0.00100	"				70-130			
Xylene (p/m)	0.218	0.00200	"				70-130			
Xylene (o)	0.117	0.00100	"				70-130			
Surrogate: 4-Bromofluorobenzene	0.0605		"	0.0600		101	75-125			
Surrogate: 1,4-Difluorobenzene	0.0640		"	0.0600		107	75-125			
LCS Dup (P7J1214-BSD1)				Prepared &	Analyzed:	10/12/17				
Benzene	0.112	0.00100	mg/kg wet				70-130		20	
Toluene	0.109	0.00200	"				70-130		20	
Ethylbenzene	0.117	0.00100	"				70-130		20	
Xylene (p/m)	0.212	0.00200	"				70-130		20	
Xylene (o)	0.117	0.00100	"				70-130		20	
Surrogate: 1,4-Difluorobenzene	0.0628		"	0.0600		105	75-125			
Surrogate: 4-Bromofluorobenzene	0.0631		"	0.0600		105	75-125			
Calibration Check (P7J1214-CCV1)				Prepared &	Analyzed:	10/12/17				
Benzene	0.110	0.00100	mg/kg wet	0.100		110	80-120			
Toluene	0.106	0.00200	"	0.100		106	80-120			
Ethylbenzene	0.107	0.00100	"	0.100		107	80-120			
Xylene (p/m)	0.219	0.00200	"	0.200		110	80-120			
Xylene (o)	0.114	0.00100	"	0.100		114	80-120			
Surrogate: 4-Bromofluorobenzene	0.0602		"	0.0600		100	75-125			
Surrogate: 1,4-Difluorobenzene	0.0642		"	0.0600		107	75-125			

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7J1214 - General Preparation (GC)										
Calibration Check (P7J1214-CCV2)				Prepared:	10/12/17 Ai	nalyzed: 10	/13/17			
Benzene	0.106	0.00100	mg/kg wet	0.100		106	80-120			
Toluene	0.0968	0.00200	"	0.100		96.8	80-120			
Ethylbenzene	0.100	0.00100	"	0.100		100	80-120			
Xylene (p/m)	0.216	0.00200	"	0.200		108	80-120			
Xylene (o)	0.114	0.00100	"	0.100		114	80-120			
Surrogate: 1,4-Difluorobenzene	0.0614		"	0.0600		102	75-125			
Surrogate: 4-Bromofluorobenzene	0.0583		"	0.0600		97.2	75-125			
Calibration Check (P7J1214-CCV3)				Prepared:	10/12/17 Aı	nalyzed: 10	/13/17			
Benzene	0.0980	0.00100	mg/kg wet	0.100		98.0	80-120			
Toluene	0.0901	0.00200	"	0.100		90.1	80-120			
Ethylbenzene	0.0940	0.00100	"	0.100		94.0	80-120			
Xylene (p/m)	0.194	0.00200	"	0.200		97.2	80-120			
Xylene (o)	0.100	0.00100	"	0.100		100	80-120			
Surrogate: 1,4-Difluorobenzene	0.0647		"	0.0600		108	75-125			
Surrogate: 4-Bromofluorobenzene	0.0589		"	0.0600		98.1	75-125			
Matrix Spike (P7J1214-MS1)	Sou	rce: 7J12018	-17	Prepared:	10/12/17 Ar	nalyzed: 10	/13/17			
Benzene	0.0859	0.00106	mg/kg dry		ND		80-120			
Toluene	0.0856	0.00213	"		ND		80-120			
Ethylbenzene	0.0945	0.00106	"		0.000862		80-120			
Xylene (p/m)	0.195	0.00213	"		ND		80-120			
Xylene (o)	0.0823	0.00106	"		ND		80-120			
Surrogate: 4-Bromofluorobenzene	0.0728		"	0.0638		114	75-125			
Surrogate: 1,4-Difluorobenzene	0.0685		"	0.0638		107	75-125			

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Doporting		Spiles	Source		%PEC		רות מ	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7J1301 - *** DEFAULT PREP ***										
Blank (P7J1301-BLK1)				Prepared &	د Analyzed:	10/13/17				
Chloride	ND	1.00	mg/kg wet							
LCS (P7J1301-BS1)				Prepared &	analyzed:	10/13/17				
Chloride	421	1.00	mg/kg wet	400		105	80-120			
LCS Dup (P7J1301-BSD1)				Prepared &	د Analyzed:	10/13/17				
Chloride	428	1.00	mg/kg wet	400		107	80-120	1.51	20	
Duplicate (P7J1301-DUP1)	Sour	ce: 7J12018	-01	Prepared &	د Analyzed:	10/13/17				
Chloride	ND	1.09	mg/kg dry		ND				20	
Duplicate (P7J1301-DUP2)	Sour	ce: 7J12018	-11	Prepared &	د Analyzed:	10/13/17				
Chloride	41.2	1.06	mg/kg dry		40.9			0.726	20	
Matrix Spike (P7J1301-MS1)	Sour	ce: 7J12018	-01	Prepared &	k Analyzed:	10/13/17				
Chloride	1140	1.09	mg/kg dry	1090	ND	105	80-120			
Batch P7J1305 - *** DEFAULT PREP ***										
Blank (P7J1305-BLK1)				Prepared &	د Analyzed:	10/13/17				
% Moisture	ND	0.1	%							
Duplicate (P7J1305-DUP1)	Sour	ce: 7J12018	-16	Prepared &	analyzed:	10/13/17				
% Moisture	6.0	0.1	%		7.0			15.4	20	

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7J1206 - General Preparation (GC)										
Blank (P7J1206-BLK1)				Prepared &	Analyzed:	10/12/17				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	95.1		"	100		95.1	70-130			
Surrogate: o-Terphenyl	55.9		"	50.0		112	70-130			
LCS (P7J1206-BS1)				Prepared &	Analyzed:	10/12/17				
C6-C12	921	25.0	mg/kg wet	1000		92.1	75-125			
>C12-C28	948	25.0		1000		94.8	75-125			
Surrogate: 1-Chlorooctane	117		"	100		117	70-130			
Surrogate: o-Terphenyl	54.7		"	50.0		109	70-130			
LCS Dup (P7J1206-BSD1)				Prepared &	Analyzed:	10/12/17				
C6-C12	878	25.0	mg/kg wet	1000		87.8	75-125	4.80	20	
>C12-C28	906	25.0		1000		90.6	75-125	4.51	20	
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	56.3		"	50.0		113	70-130			
Calibration Check (P7J1206-CCV1)				Prepared &	Analyzed:	10/12/17				
C6-C12	532	25.0	mg/kg wet	500		106	85-115			
>C12-C28	551	25.0		500		110	85-115			
Surrogate: 1-Chlorooctane	113		"	100		113	70-130			
Surrogate: o-Terphenyl	59.4		"	50.0		119	70-130			
Calibration Check (P7J1206-CCV2)				Prepared: 1	10/12/17 Ai	nalyzed: 10	/13/17			
C6-C12	560	25.0	mg/kg wet	500		112	85-115			
>C12-C28	569	25.0		500		114	85-115			
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	62.8		"	50.0		126	70-130			

Permian Basin Environmental Lab, L.P.

Permian Basin Environmental Lab, L.P.

Analista	D 14	Reporting	TT. ''	Spike	Source	0/ D EC	%REC	DDD	RPD	Ner
Апагуте	Kesult	Limit	Units	Level	Kesult	%REC	Limits	КРД	Limit	Notes
Batch P7J1206 - General Preparation (GC)										
Calibration Check (P7J1206-CCV3)				Prepared: 1	10/12/17 Aı	nalyzed: 10	/13/17			
C6-C12	568	25.0	mg/kg wet	500		114	85-115			
>C12-C28	574	25.0		500		115	85-115			
Surrogate: 1-Chlorooctane	121		"	100		121	70-130			
Surrogate: o-Terphenyl	63.8		"	50.0		128	70-130			
Matrix Spike (P7J1206-MS1)	Sou	rce: 7J12006-	-27	Prepared:	1 <u>0/1</u> 2/17 Aı	nalyzed: 10	/13/17			
C6-C12	1100	26.6	mg/kg dry	1060	12.2	102	75-125			
>C12-C28	1090	26.6	"	1060	14.0	101	75-125			
Surrogate: 1-Chlorooctane	113		"	106		106	70-130			
Surrogate: o-Terphenyl	60.3		"	53.2		113	70-130			
Matrix Spike Dup (P7J1206-MSD1)	Sou	rce: 7J12006-	-27	Prepared:	<u>10/12</u> /17 Aı	nalyzed: 10	/13/17			
C6-C12	1040	26.6	mg/kg dry	1060	12.2	96.6	75-125	5.59	20	
>C12-C28	1060	26.6	"	1060	14.0	98.3	75-125	3.08	20	
Surrogate: 1-Chlorooctane	133		"	106		125	70-130			
Surrogate: o-Terphenyl	58.0		"	53.2		109	70-130			
Batch P7J1213 - General Preparation (GC)										
Blank (P7J1213-BLK1)				Prepared:	10/12/17 Aı	nalyzed: 10	/13/17			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0								
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	93.1		"	100		93.1	70-130			
Surrogate: o-Terphenyl	55.1		"	50.0		110	70-130			
LCS (P7J1213-BS1)				Prepared:	<u>10/12/</u> 17 Ar	nalyzed: 10	/13/17			
C6-C12	887	25.0	mg/kg wet	1000		88.7	75-125			
>C12-C28	919	25.0	"	1000		91.9	75-125			
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	51.9		"	50.0		104	70-130			

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7J1213 - General Preparation (GC)										
LCS Dup (P7J1213-BSD1)				Prepared:	10/12/17 Ai	nalyzed: 10	/13/17			
C6-C12	926	25.0	mg/kg wet	1000		92.6	75-125	4.33	20	
>C12-C28	957	25.0	"	1000		95.7	75-125	4.03	20	
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	54.2		"	50.0		108	70-130			
Calibration Check (P7J1213-CCV1)				Prepared: 1	10/12/17 Ai	nalyzed: 10	/13/17			
C6-C12	483	25.0	mg/kg wet	500		96.6	85-115			
>C12-C28	475	25.0	"	500		95.1	85-115			
Surrogate: 1-Chlorooctane	103		"	100		103	70-130			
Surrogate: o-Terphenyl	58.6		"	50.0		117	70-130			
Calibration Check (P7J1213-CCV2)				Prepared: 1	10/12/17 Ai	nalyzed: 10	/13/17			
C6-C12	462	25.0	mg/kg wet	500		92.3	85-115			
>C12-C28	494	25.0	"	500		98.9	85-115			
Surrogate: 1-Chlorooctane	101		"	100		101	70-130			
Surrogate: o-Terphenyl	57.0		"	50.0		114	70-130			
Calibration Check (P7J1213-CCV3)				Prepared: 1	10/12/17 Ai	nalyzed: 10	/14/17			
C6-C12	523	25.0	mg/kg wet	500		105	85-115			
>C12-C28	512	25.0	"	500		102	85-115			
Surrogate: 1-Chlorooctane	111		"	100		111	70-130			
Surrogate: o-Terphenyl	58.3		"	50.0		117	70-130			
Matrix Spike (P7J1213-MS1)	So	ource: 7J12018	-17	Prepared: 1	10/12/17 Ai	nalyzed: 10	/14/17			
C6-C12	1110	26.6	mg/kg dry	1060	12.8	104	75-125			
>C12-C28	1170	26.6	"	1060	45.6	105	75-125			
Surrogate: 1-Chlorooctane	124		"	106		116	70-130			
Surrogate: o-Terphenyl	66.3		"	53.2		125	70-130			

Permian Basin Environmental Lab, L.P.

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7J1213 - General Preparation (GC)										
Matrix Spike Dup (P7J1213-MSD1)	Source	e: 7J12018-1	17	Prepared: 1	0/12/17 At	nalyzed: 10	/14/17			
C6-C12	1090	26.6	mg/kg dry	1060	12.8	102	75-125	1.90	20	
>C12-C28	1120	26.6		1060	45.6	101	75-125	3.90	20	
Surrogate: 1-Chlorooctane	124		"	106		117	70-130			
Surrogate: o-Terphenyl	65.0		"	53.2		122	70-130			

Notes and Definitions

S-GC	Surrogate recovery	outside of c	ontrol limits.	The data was acc	epted based on	valid recovery	of the remaining surrogate.
5.00	Surrogate recovery	outside of e	onnor minus.	The data was dee	epica basea on	vana recover	of the remaining surrogate.

BULK Samples received in Bulk soil containers

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike

Report Approved By:

Dup Duplicate

Sun Barron

Date: 10/16/2017

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

								2	Ş	•											4 .						
	Relinquished by	Relinquished by	P22	Snecial Instrum	1 8	12	61	<u> </u>	Le	\sim	7	6	in,	1	W	P	1	LAB # (lab use only)		ORDER #:	(lab use only	Sampler Signa	Phone: 432	City/State/Zip	Company Nar	Project Mana	1400 Ranki
*			K PL	525	505	SPE	SP4	5 P4	593	523	SP3	SP2	582	SP 2	521	1921	125			JJ12	1	ature:	-563-22) Od	ne: Ete	ger: BR.	n Hwy
			REV	5 2-3'	1-2'	0-1'	2-3.	1-2'	2-3'	1-2'	0-1'	2-3'	1-2-	0-11	2-3	1-2'	0-1'	FIELD C		016	2	Genalon	00 Fax: 432-9	essa, Texas	ch Environm	ANDON WIL	η
Jare	Date	Date	F)DE			\langle	Much	<u>;63-2213</u>	19765	iental & Safe	SON	/lidland, Texas
	Time	S Line	F						-								-						Z		ty Sol		; 7970
		S Z	R															Start Depth					()		utio		1
	eceiv	eceiv	X													1		End Depth	Pre						<u>ns, l</u>		
ea by	ed by:	ed by:	1000	16-11-17	10-11-17	10-11-17	10-11-17	10-11-17	10-11-17	1-11-02	10-11-17	10-11-17	10-111	10-11-17	10-11-17	10-11-17	N-11-01	Date Sampled	servation & # o			email: bra	1		nc.		Phone
		6	ð K	13:35	13:30	13:25	13:15	13:10	12:53	12:50	12:45	12:40	12:35	12:30	12:20	12:10	00:21	Time Sampled	f Containers			ndon@e	PEC S				: 432-686
			J	_			-	-	11	~	l	-			-		9	No. of Containers				tec			•		-723
			म्।														N I					hen					ű
				片	H													HCI	ŀ			V.CC					
			Ľ															H ₂ SO ₄				ă				· · ·	
			à	1⊒														NaOH									
			W.	┢╧														Na ₂ S ₂ O ₃								• •	
101																		Other (Specify)									
$\frac{10}{2}$	ate	ale]	1	1]]]		DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-PotableSpecify Other	Matrix				Repor		Area:	Projec	Projec
	Ime	I	1 ge		6	Ð	-8-	-	Π.		P	Ð		-			R.	GPH 418.1 (8015M) 1005 1006	5				Form	• •		t #J	t Z
	000	<u> </u>																Cations (Ca, Mg, Na, K)		-			nat: S			5	me
emp	iar by	listo	anp															Anions (Cl, SO4, CO3, HCO3))		5		TANI	κ	R	effe	
eratu		dy s	le Co															SAR / ESP / CEC		₽.	F		JARE	· · ·	3 6	K)	M
lie U	npler Tier	eals eals	intair of															Metals: As Ag Ba Cd Cr Pb Hg	Se				\mathbb{N}				Z
pon		ono	iers				·□											Volatiles				₽	·		5	Pro	C
Rece		ontai	nen: Intac															Semi volatiles				alyz	RRP		10	iect	6
p \	Ϋ́.̈́	ner(; (s)	j 75 9						믜									BTEX 8021B/5030 or BTEX 826	60	· 📙		For	Ö,		Ĩ.	Б	2
0	Ę	s		H			님	片		ᆜ	늼	님				님	늼		-		\neg	"			X'	∷	1
2	Ţ							붠										Chlorides					NPE		Ø	6	Ø
15		<i>₹</i> ₹	~	Ē)ES:[0	$ \mathcal{A} $	3
2 ع	`~ `~																							•			2
ဂံ	ne z z	zzz:	zz															RUSH TAT(Pre-Schedule) 24,	48,	72 hi	rs						N
	ष्ट्			4			9		8	Ð					-6	-		STANDARD TAT		<u>.</u>							V V

elinquished by:	relinquished by:	Z		Special Instruc										10	1.0	LAB # (lab use only)		ORDER #	(lab use only)	Sampler Signa	City/State/Zip	Company Nan Company Mail	Project Manag
		Ill	1250	tions:										SPS	SPS				ł	ture:	Odess	ie: Etech ing Address:	er: BRAN
			PFI			. ·								4-5	3-4	FIELD				randon	ia, Texas Fav: 432	Environ	DON WI
		Z	R								-				1					TUT!	79765	nental 62228	LSON
ate	ate	N A	E																	2		& Safety	
Ime	Time	All -	K	-												Start Depth				AN A		<u>/ Solutio</u>	
No.	Rece		R Ki		1										\square	End Depth]_				1	ons,	
wed by:	ived by:		SOL S											10-11-17	10-11-17	Date Sampled	eservation & # of			email: bra u	1 1 1	Inc.	
7			2											13:50	13:40	Time Sampled	Containers				1		
				`										-	4 00	No. of Containers				tec	it ti Solar		н 1 — 1
			12						무										۰. ب	hen			
				片		片						片		H	님	HCI				V.CC			
			B													H ₂ SO ₄			it it.	B			
			B	밑											믹	NaOH							
		1	- B					님	님					님	┟╞┤								
5	J	C			片				\exists							Other (Specify)	łł						
	ate		800			1]				1	I	I			DW=Drinking Water SL=Sludge GW = Groundwater S=Soll/Solid NP=Non-PotableSpecify Other	Matrix			Repor		Area:	Projec
	Time													A	Q	418.1 (15M) 1005 1006	5			Forn			t#:
<u>بہ</u>	000	201	_ \/ > < ∞	┍┨□												Cations (Ca, Mg, Na, K)				nat: S			$\left \right\rangle$
	arby	usto Insto	ampl	<u>8</u>												Anions (Cl, SO4, CO3, HCO3))	ō	10	TAN		8	R
	San	e Hai	Free													SAR / ESP / CEC		2	5	DARD		₿ C	ste
	npler	bals of	of F	ត្តំ 🗆											旦	Metals: As Ag Ba Cd Cr Pb Hg	Se					3	N.
5	/Qlier	on co	lers lead												日	Volatiles			믜			42	ro
	- nt Re	Doler	ntac													Semi volatiles				RR	0	abb	iect
្ពុ	้ วั	(s) (s)	8	s 🗌				믬	믭							BTEX 8021B/5030 or BTEX 820	60		╝┇		2/0		Б
	Ĺ	٩		╠				붜	늼	님					片		+		- "		l n		Ω _
3.	g g			┠╴												Chlorides	-		4	NP	U.		7
	1 1 1 2	57	₹33	T												······································				DES:			ğ
$\sum_{i=1}^{k}$	- -	- U	${}^{\sim}$																1.			· · ·	L?
, Ì	zz	zzz	zzz													RUSH TAT(Pre-Schedule) 24,	48, 7	2 hrs	s	ľ			1
) č	9	99 CC		1 A B				 		 										-			