

December 14, 2017

Ms. Olivia Yu Environmental Specialist New Mexico Oil Conservation Division Hobbs District 1 Office 1625 French Drive Hobbs, New Mexico 88240

SUBMITTED VIA EMAIL Olivia.Yu@state.nm.us

APPROVED By Olivia Yu at 1:44 pm, Jan 04, 2018

Re: Release Characterization Report and Proposed Remediation Work Plan – Addendum 2 Yates State #2 Tank Battery NMOCD Case No. 1R-4587 Lea County, New Mexico

NMOCD approves of the proposed remediation for 1RP-4587 with the stipulations indicated in the email correspondence.

Dear Ms. Yu:

On July 31, 2017, Enviro Clean Cardinal, LLC (ECC) submitted a document titled **Release Characterization Report and Proposed Remediation Work Plan** to the New Mexico Oil Conservation Division (NMOCD) regarding the Yates State #2 Tank Battery site on behalf of our client RAM Energy Resources (RAM). On August 29 and 30, 2017, the NMOCD provided RAM and ECC with comments on this submitted document. On September 7, 2017, a conference call was held that included representatives of the NMOCD (Olivia Yu and Brad Billings), RAM (Darrell Pennington), and ECC (George Richardson) to discuss RAM's responses to the NMOCD's comments. On September 19, 2017, ECC submitted a document titled **Release Characterization Report and Proposed Remediation Work Plan – Addendum** which contained RAM's formal responses to the NMOCD's comments. On October 2, 2017, NMOCD approved of the proposed remediation plan and location of the proposed locations of the 2 temporary groundwater monitoring wells for 1RP-4587 with the following stipulations:

- 1. If feasible, NMOCD prefers three bore volumes to be bailed out before sampling.
- 2. Due to the depth to groundwater and proximity of the playa, NMOCD requests that the groundwater be tested with the full list of constituents in Method 8260.
- 3. Provide the locations and the logs of the soil bores for the temporary monitoring wells in the subsequent report.
- 4. As the soil bores for the temporary groundwater monitoring wells can be used as a proxy to complete vertical delineation, laboratory analyses of chlorides in 5 ft. intervals of the soil bores are required until muddying up commences.
- 5. If feasible, NMOCD prefers 4 ft. excavation for the tank battery area before proper placement of a minimum 20 mil liner. If not, ensure that the liner is flushed up against the tanks.

Y:\Projects\RamEnergy\RAMRNM0002_YatesState2\03_Report\DFT\201712_RPT\Assess Rpt.docx

- 6. Laboratory analyses (TPH extended, chlorides) of confirmation bottom and sidewalls samples are required of the excavated areas. Sample locations should be no greater than 50 ft. apart.
- 7. Permissible chloride levels for remediation is 600 mg/kg.
- 8. Provide a scaled map with the confirmation sample locations demarcated and areas with differing excavation depths outlined and annotated.

This document is a second addendum to the **Release Characterization Report and Proposed Remediation Work Plan** described above, and is intended to provide the NMOCD with the information obtained by the installation of the two (2) temporary groundwater monitoring wells at the locations selected by the NMOCD, and to request NMOCD's concurrence to proceed with the soil remediation previously approved (and as amended above by NMOCD's comments).

Supplement Soil and Groundwater Assessment

On November 2, 2017, ECC and their drilling subcontractor, Scarborough Drilling/Lamesa, Texas, mobilized to the Site and drilled/sampled two borings requested by the NMOCD. The locations of the two borings/temporary monitoring wells are shown on the attached **Figure 1**. It should be noted that the location of the southeastern boring had to be moved approximately 12 feet towards the south because the drilling rig could not access inside the containment wall on the southern side of the tank battery. Additional soil samples were not collected from TMW-2 because this boring was approximately 8 feet northwest of the previously sampled boring SSB-3. A copy of ECC's field notes are provided in the attached **Appendix A**.

The TMW-1 boring was located approximately 70 feet northwest of the northwest corner of the tank battery (geographic coordinates 33.279488° latitude and -103.094808° longitude). This location has been shown to be hydraulically upgradient of the tank battery based upon regional groundwater flows within the High Plains aquifer (USGS Hydrologic Investigations Atlas HA-679, 1985, Donald L. Hart, Jr. and Douglas P. McAda) which shows groundwater flows generally towards the east-southeast (S60°E). The TMW-2 boring was located immediately south of the south-center of the tank battery (geographic coordinates 33.279254° latitude and -103.094528° longitude). The borings were drilled using air rotary methods. Both borings were drilled to total depths of 40 feet below ground level (BGL). Groundwater was encountered at 26.70 feet BGL in TMW-1 and 27.28 feet BGL in TMW-2. Boring records for these borings are provided in attached Appendix B. The lithologic materials encountered in both borings was predominantly finegrained unconsolidated sand. Soil samples were collected on 5-foot depth intervals in boring TMW-1 to a depth of 25 feet BGL and submitted to Xenco Laboratory in Midland, Texas for chloride analysis. No soil samples were taken from the TMW-2 boring as previously discussed. The results of these chloride analyses are summarized on the attached **Table 1** and **Figure 1**. The complete laboratory report and chain-of-custody are provided in **Appendix C**.

When total depths had been reached in the two borings, new sections of 2-inch diameter PVC 0.010-inch slotted screens and casing were lowered into the boreholes and filter packed. The wells were bailed using dedicated bailers and monofilament line until 6 gallons of water were removed (calculated to be more than 3 well volumes). The groundwater was placed into 55-gallon steel drums and labeled. Following purging, the wells were sampled using the dedicated bailers and the groundwater was poured directly into containers prepared by the laboratory. The sample containers were labeled as to source, packed in ice in a cooler, placed under chain-of-custody control and transported to Xenco Laboratory where they were hand-delivered. A trip blank was also submitted with these samples. Field measurements were also made of aliquots of the groundwater for specific conductance, pH, and temperature. The water samples, including the trip blank, were submitted to the laboratory were analyzed for full volatile organic compounds

(VOCs) by Method 8260. The water samples from TMW-1 and TMW-2 were also analyzed for chloride (EPA Method 300) and sodium (EPA Method 6010B). The results of these laboratory analyses and field measurements are summarized on **Table 2** and **Figure 2**. The complete laboratory report and chain-of-custody are provided in **Appendix C**.

Results of Analyses

The chloride levels in the samples collected from the TMW-1 boring on 5-foot depth intervals ranged between <9.56 mg/kg to 42.5 mg/kg. These levels are well below the NMOCD's delineation and remediation levels and indicate that this active portion of the site has not been impacted by the release produced water.

Both groundwater samples taken from the TMW-1 and TMW-2 temporary monitoring wells were analyzed for full Method 8260 VOCs and no detections were reported. Assuming that TMW-2 is located hydraulically downgradient relative to TMW-1, it appears that the subject release of produced water, or the previous release which occurred in March 2012 (NMOCD Case No. 1RP-2781), may have slightly effected the groundwater raising the chloride levels from 114 mg/L to 1,090 mg/L, the sodium levels from 65.6 mg/L to 398 mg/L, and the TDS levels from 570 mg/L to 2,010 mg/L. These results indicate that the groundwater flowing onto the site contains levels of TDS that exceed EPA's Secondary Drinking Water Maximum Contaminant Level (SMCL) of 500 mg/L. However, guidance provided by the New Mexico State University Cooperative Extension Service in their Guide M-112, Water Quality for Livestock and Poultry (Runyan, C., Bader, J., Mathis, C., and Sallenave, R., revised 2016) state that waters with TDS less than 3,000 mg/L are considered very satisfactory for all classes of livestock and poultry. So, although slight impacts to groundwater may have occurred from the operations at this lease, the groundwater flowing onto the site does not meet levels acceptable for drinking water purposes and the impacts do not appear to have rendered the water unusable for agricultural purposes directly downgradient of the source area.

ECC is hopeful the NMOCD will now find RAM's Release Characterization Report and Proposed Remediation Work Plan (including its Addendum and Addendum 2) fully responsive to their C-141 directives, and with the submittal and implementation of this Addendum will concur that the soil remediation work should proceed as proposed. If you have questions regarding this document, please do not hesitate to contact Mr. Darrell Pennington at RAM at 918-947-6304, or myself at 918-794-7828.

Sincerely, Enviro Clean Cardinal, LLC

George H. (Buddy) Richardson, P.G. Manager Hydrogeology

Attachments: Table 1 – Summary of Laboratory Analytical Results for Soil Samples Table 2 – Summary of Laboratory Analytical Results for Water Samples Figure 1 – Analytical Results for Soils Figure 2 – Analytical Results for Groundwater Appendix A – ECC Field Notes Appendix B – Boring Records Appendix C – Laboratory Analytical Report

ATTACHMENTS

TABLE 1

SUMMARY OF LABORATORY ANALYTICAL RESULTS FOR SOIL SAMPLES

Table 1: Summary of Laboratory Analytical Results for Soil SamplesRAM Energy Resources, Yates State #2, NMOCD # 1R-4587Lea County, New Mexico

		Sample ID:	TMW-1	TMW-1	TMW-1	TMW-1	TMW-1	TMW-1
	Regulatory	Sample ID.	(0-1 ft)	(4-5 ft)	(9-10 ft)	(14-15 ft)	(19-20 ft)	(24-25 ft)
Parameters	Limit	Sample Date:	2-Nov-17	2-Nov-17	2-Nov-17	2-Nov-17	2-Nov-17	2-Nov-17
General Chemistry		Units						
Chloride	600	mg/kg	38.6	27.8	42.5	10.3	<9.56	16.4

Notes:

1. mg/kg : milligrams per kilogram.

2. < : Analyte not detected at the laboratory reporting limit (RL).

3. Blue shaded block denotes sample results greater than the laboratory RL.

TABLE 1

SUMMARY OF LABORATORY ANALYTICAL RESULTS FOR WATER SAMPLES

Table 2: Summary of Laboratory Analytical Results for Water SamplesRAM Energy Resources, Yates State #2, NMOCD # 1R-4587Lea County, New Mexico

	Sample ID:	TMW-1	TMW-2
Parameters	Sample Date:	2-Nov-17	2-Nov-17
Volatile Organic Compounds (VOCs)	Units		
1,1,1,2-Tetrachloroethane	mg/L	<0.00500	<0.00500
1,1,1-Trichloroethane	mg/L	< 0.00500	< 0.00500
1,1,2,2-Tetrachloroethane	mg/L	<0.00500	<0.00500
1,1,2-Trichloroethane	mg/L	<0.00500	<0.00500
1,1-Dichloroethane	mg/L	<0.00500	<0.00500
1,1-Dichloroethene	mg/L	< 0.00500	<0.00500
1,1-Dichloropropene	mg/L	<0.00500	<0.00500
1,2,3-Trichlorobenzene	mg/L	<0.00500	<0.00500
1,2,3-Trichloropropane	mg/L	<0.00500	<0.00500
1,2,4-Trichlorobenzene	mg/L	< 0.00500	< 0.00500
1,2,4-Trimethylbenzene	mg/L	<0.00500	<0.00500
1,2-Dibromo-3-chloropropane	mg/L	<0.00500	< 0.00500
1,2-Dibromoethane	mg/L	< 0.00500	< 0.00500
1,2-Dichlorobenzene	mg/L	< 0.00500	< 0.00500
1,2-Dichloroethane	mg/L	<0.00500	< 0.00500
1,2-Dichloropropane	mg/L	<0.00500	< 0.00500
1,3-Dichloropropane	mg/L	<0.00500	< 0.00500
1,3,5-Trimethylbenzene	mg/L	<0.00500	<0.00500
1,3-Dichlorobenzene	mg/L	<0.00500	< 0.00500
1,4-Dichlorobenzene	mg/L	<0.00500	<0.00500
2,2-Dichloropropane	mg/L	<0.00500	<0.00500
2-Chlorotoluene	mg/L	<0.00500	<0.00500
4-Chlorotoluene	mg/L	<0.00500	<0.00500
4-Isopropyltoluene	mg/L	<0.00500	<0.00500
Benzene	mg/L	<0.00500	<0.00500
Bromobenzene	mg/L	<0.00500	<0.00500
Bromochloromethane	mg/L	<0.00500	<0.00500
Bromodichloromethane	mg/L	<0.00500	<0.00500
Bromoform	mg/L	<0.00500	<0.00500
Carbon tetrachloride	mg/L	<0.00500	<0.00500
Chlorobenzene	mg/L	<0.00500	<0.00500
Chlorodibromomethane	mg/L	<0.00500	<0.00500
Chloroethane	mg/L	<0.0100	<0.00000
Chloroform	mg/L	<0.00500	<0.00500
cis-1,2-Dichloroethene	mg/L	<0.00500	<0.00500
cis-1,3-Dichloropropene	mg/L	<0.00500	<0.00500
Dibromomethane	mg/L	<0.00500	<0.00500
Dichlorodifluoromethane	mg/L	<0.00500	<0.00500
Ethylbenzene	mg/L	<0.00500	<0.00500
Hexachlorobutadiene	mg/L	<0.00500	<0.00500
Isopropylbenzene	mg/L	<0.00500	<0.00500
m&p-Xylenes	mg/L	<0.0100	<0.00500
Methyl bromide	mg/L	<0.00500	<0.00500
Methyl chloride	mg/L	<0.0100	<0.00500
Methyl tert-butyl ether	mg/L	<0.00500	<0.00500
Methylene chloride	mg/L	<0.00500	<0.00500
Naphthalene	mg/L	<0.0100	<0.00500
n-Butylbenzene	mg/L	<0.00500	<0.00500
n-Propylbenzene	mg/L	<0.00500	<0.00500
	niy/∟	<0.00000	<0.00000

Table 2: Summary of Laboratory Analytical Results for Water SamplesRAM Energy Resources, Yates State #2, NMOCD # 1R-4587Lea County, New Mexico

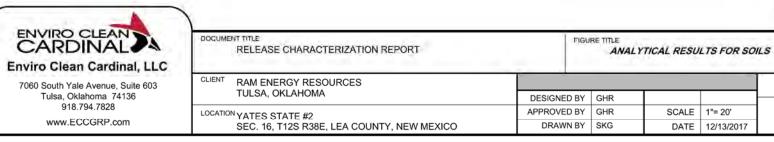
	Sample ID:	TMW-1	TMW-2
Parameters	Sample Date:	2-Nov-17	2-Nov-17
Volatile Organic Compounds (VOCs)	Units		
o-Xylene	mg/L	<0.00500	<0.00500
sec-Butylbenzene	mg/L	<0.00500	<0.00500
Styrene	mg/L	<0.00500	<0.00500
tert-Butylbenzene	mg/L	<0.00500	<0.00500
Tetrachloroethene	mg/L	<0.00500	<0.00500
Toluene	mg/L	<0.00500	<0.00500
trans-1,2-Dichloroethene	mg/L	<0.00500	<0.00500
trans-1,3-Dichloropropylene	mg/L	<0.00500	<0.00500
Trichloroethene	mg/L	<0.00500	<0.00500
Trichlorofhloromethane	mg/L	< 0.00500	<0.00500
Vinyl chloride	mg/L	<0.00200	<0.00200
Xylenes, total	mg/L	<0.00500	<0.00500
Metals	Units		
Sodium	mg/L	65.6	398
General Chemistry	Units		
Chloride	mg/L	114	1,090
Total Dissolved Solids (TDS)	mg/L	570	2,010
Field Measurements	Units		
Depth to Groundwater	Ft-BGL	26.70	27.28
Specific Conductance	µmhos/cm	891.1	4,067

Notes:

1. mg/L : milligrams per liter.

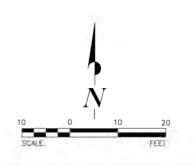
2. µmhos/cm : micromhos per centimeter.

3. < : Analyte not detected at the laboratory reporting limit (RL).


4. Blue shaded block denotes sample results greater than the laboratory RL.

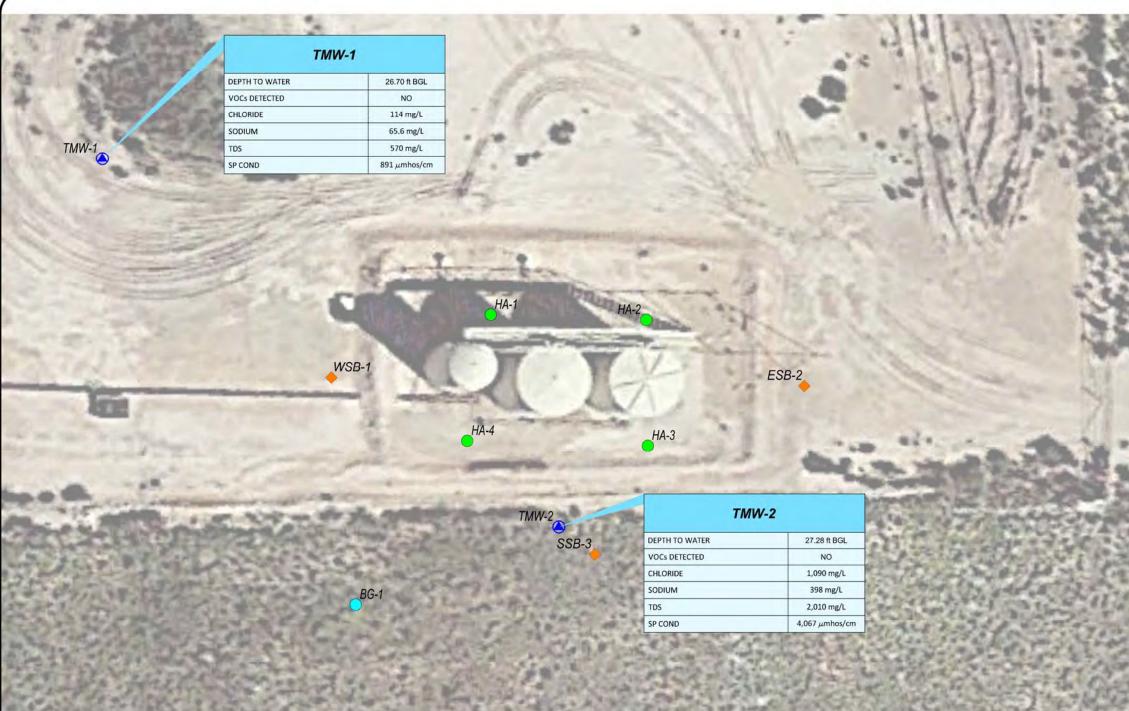
5. Ft-BGL : Feet below ground level.

FIGURE 1 ANALYTICAL RESULTS FOR SOILS


		2		1	SAMPLE 1/2/2017	CHLORIDE (mg/kg)	S								1	100	111	-
	- 23		100	TMW-1		38.6			1710.50						×.,	20131	1044	
	1.263	53	1 m -	TMW-1		27.8	1.4.1	- 11 - 6	1 .	-	SAMPLE 6/7/2017	CHLC (mg		PH g/kg)		12131		
	1.24			-	(14-15ft)	10.3	10.00	100	20	Ya	ates #2 HA-2 3'	1,9	70	-	1.10	1.11	1 11 3	2
	TMW-1	1	300	-	(19-20ft)	<9.56	A	100		Ya	ates #2 HA-2 5'	42	.5	-	4.5	1.001	102	8
			- and the second	TMW-1	(24-25ft)	16.4		1	P	Ya	ates #2 HA-2 7'	93	.8		1.4	1 Post	TIP	16
		20	103		-		- Print	de-		Ya	ates #2 HA-2 10'	2	5	-	1.3	1.1.10	1272	1
			and the second second		1-1-10	Carl St.	Same	13-			ates #2 HA-2 15'	68		-	600	1152	B_{1}	
			1000		at the sea	Contraction of the local division of the loc				Ya	ates #2 HA-2 20'	98	.0	-		1 1 4 2	Alt -	
	3	192		d	SAMPL 4/11/201			1	and the second	erenigia.		AMPLE 11/2017	CHLORIE (mg/kg)			297		
		-		100	HA-1 0-6"	11,100	2,250	2000	Alter a		HA-2 0-6	6	23,000	<15.0)			
		Survey of Street, or other		1	HA-1 6-12"	4,170	994	HA-1	120	and the second s	HA-2 6-1		15,900	<14.9)			
1						100 March 100		and the second second				Statement of the second second	and the second second					
	SAM 4/11/		CHLORIDE (mg/kg)	TPH (mg/kg)		WSB-1	1	Л		CV	-	E	SB-2	-		SAMPLE 4/11/2017	CHLORIDE (mg/kg)	
	4/11/ WSB-10'		(mg/kg) 1,000	(mg/kg) 60.6		WSB-1	X	1		(H	1	E	SB-2	-	-	4/11/2017 ESB-2 0'	(mg/kg) 3,390	
	4/11/ WSB-10' WSB-15'		(mg/kg) 1,000 54.9	(mg/kg) 60.6		WSB-1	1	Z		(A		E	SB-2	-	1	4/11/2017 ESB-2 0' ESB-2 5'	(mg/kg) 3,390 157	
	4/11/ WSB-10' WSB-15' WSB-110'		(mg/kg) 1,000 54.9 41.8	(mg/kg) 60.6 		WSB-1	~	HA-4	0		A-3	E	SB-2		1	4/11/2017 ESB-2 0' ESB-2 5' ESB-2 10'	(mg/kg) 3,390 157 325	
	4/11/ WSB-10' WSB-15'		(mg/kg) 1,000 54.9	(mg/kg) 60.6		WSB-1	~	HA-4		H	A-3	A A A A A A A A A A A A A A A A A A A	SB-2			4/11/2017 ESB-2 0' ESB-2 5'	(mg/kg) 3,390 157	
	4/11/ WSB-1 0' WSB-1 5' WSB-1 10' WSB-1 15'		(mg/kg) 1,000 54.9 41.8 112	(mg/kg) 60.6 		WSB-1	~	HA-4		H	A-3	E	SB-2			4/11/2017 ESB-2 0' ESB-2 5' ESB-2 10' ESB-2 15'	(mg/kg) 3,390 157 325 90.2	E (1
	4/11// WSB-1 0' WSB-1 5' WSB-1 10' WSB-1 15' WSB-1 20'		(mg/kg) 1,000 54.9 41.8 112 269	(mg/kg) 60.6 	SAMPLE 4/11/2017	CHLORIDE	TPH (mg/kg)	-	MW-2	H	SAMPI	E Cł		TPH		4/11/2017 ESB-2 0' ESB-2 5' ESB-2 10' ESB-2 15' ESB-2 20'	(mg/kg) 3,390 157 325 90.2 6.05	
	4/11// WSB-1 0' WSB-1 5' WSB-1 10' WSB-1 15' WSB-1 20'		(mg/kg) 1,000 54.9 41.8 112 269	(mg/kg) 60.6 	4/11/2017	CHLORIDE (mg/kg)	(mg/kg)	-		500	SAMPI 4/11/20	E CP	ILORIDE mg/kg)	(mg/kg)		4/11/2017 ESB-2 0' ESB-2 5' ESB-2 10' ESB-2 15' ESB-2 20'	(mg/kg) 3,390 157 325 90.2 6.05	
	4/11// WSB-1 0' WSB-1 5' WSB-1 10' WSB-1 15' WSB-1 20'		(mg/kg) 1,000 54.9 41.8 112 269	(mg/kg) 60.6 H	4/11/2017 IA-4 0-6"	CHLORIDE		-	MW-2 SSB-3	500	SAMPI 4/11/20 HA-3 0-6"	E CP				4/11/2017 ESB-2 0' ESB-2 5' ESB-2 10' ESB-2 15' ESB-2 20'	(mg/kg) 3,390 157 325 90.2 6.05	
	4/11// WSB-1 0' WSB-1 5' WSB-1 10' WSB-1 15' WSB-1 20'		(mg/kg) 1,000 54.9 41.8 112 269	(mg/kg) 60.6 H	4/11/2017	CHLORIDE (mg/kg) 8,840	(mg/kg) 1,660	-		500	SAMPI 4/11/20	E CP	ULORIDE mg/kg) 4,540	(mg/kg) 7,480		4/11/2017 ESB-2 0' ESB-2 5' ESB-2 10' ESB-2 15' ESB-2 20'	(mg/kg) 3,390 157 325 90.2 6.05	
Contract of the second	4/11// WSB-1 0' WSB-1 5' WSB-1 10' WSB-1 15' WSB-1 20'	2017	(mg/kg) 1,000 54.9 41.8 112 269 373	(mg/kg) 60.6 H	4/11/2017 IA-4 0-6"	CHLORIDE (mg/kg) 8,840	(mg/kg) 1,660	-		500	SAMPI 4/11/20 HA-3 0-6" HA-3 6-9"		ULORIDE mg/kg) 4,540	(mg/kg) 7,480		4/11/2017 ESB-2 0' ESB-2 5' ESB-2 10' ESB-2 15' ESB-2 20'	(mg/kg) 3,390 157 325 90.2 6.05	
	4/11/ WSB-10' WSB-110' WSB-110' WSB-120' WSB-125'	2017 SAM 4/18/	(mg/kg) 1,000 54.9 41.8 112 269 373 373 MPLE	(mg/kg) 60.6 H H H H	4/11/2017 IA-4 0-6" IA-4 6-12" TPH	CHLORIDE (mg/kg) 8,840 3,490	(mg/kg) 1,660	-	SSB-3	SAMP	SAMPI 4/11/20 HA-3 0-6" HA-3 6-9"	E Cł 17 Cł 10 LORIDE (r	LORIDE mg/kg) 4,540 2,200 TPH	(mg/kg) 7,480		4/11/2017 ESB-2 0' ESB-2 5' ESB-2 10' ESB-2 15' ESB-2 20'	(mg/kg) 3,390 157 325 90.2 6.05	
The second se	4/11/ WSB-10' WSB-110' WSB-110' WSB-120' WSB-125'	2017	(mg/kg) 1,000 54.9 41.8 112 269 373 373 MPLE	(mg/kg) 60.6 H H H H H	4/11/2017 IA-4 0-6" IA-4 6-12" TPH (mg/kg)	CHLORIDE (mg/kg) 8,840 3,490 BG-1 S/	(mg/kg) 1,660 17,700	T	SSB-3	SAMP 4/11/2	SAMPI 4/11/20 HA-3 0-6" HA-3 6-9" PLE 017 CH (1)	E Cł 17 (LORIDE ng/kg) (r	LORIDE mg/kg) 4,540 2,200 TPH 1g/kg)	(mg/kg) 7,480		4/11/2017 ESB-2 0' ESB-2 5' ESB-2 10' ESB-2 15' ESB-2 20'	(mg/kg) 3,390 157 325 90.2 6.05	
	4/11/ WSB-10' WSB-110' WSB-110' WSB-120' WSB-125'	2017 SAM 4/18/	(mg/kg) 1,000 54.9 41.8 112 269 373 373 MPLE	(mg/kg) 60.6 H H H H H	4/11/2017 IA-4 0-6" IA-4 6-12" TPH (mg/kg)	CHLORIDE (mg/kg) 8,840 3,490 BG-1 S/	(mg/kg) 1,660 17,700	T	SSB-3	SAMP 4/11/20 SSB-3 0'	SAMPI 4/11/20 HA-3 0-6" HA-3 6-9" PLE 017 CH 017	E CF 17 CF (10 LORIDE ng/kg) (r 628	LLORIDE mg/kg) 4,540 2,200 TPH ng/kg) 29.3	(mg/kg) 7,480		4/11/2017 ESB-2 0' ESB-2 5' ESB-2 10' ESB-2 15' ESB-2 20'	(mg/kg) 3,390 157 325 90.2 6.05	

SOURCE: AERIAL PHOTOGRAPH DATED SEPTEMBER 30, 2014, GOOGLE EARTH PRO SCREEN CAPTURE

	LEGEND
HA-1	LOCATION OF SOIL BORING SAMPLE
SSB-3	LOCATION OF HAND AUGERED SAMPLE
BG-1	LOCATION OF BACKGROUND SOIL SAMPLE
TMW-1	LOCATION OF TEMPORARY MONITORING WELL


1

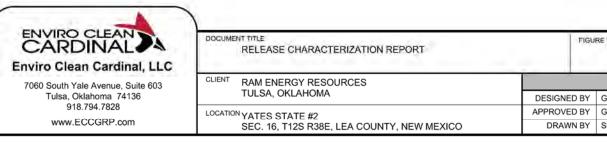
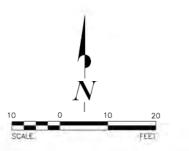

ANALT	IICAL RESU	LISFORSO	23	
			PROJECT NUMBER	FIGURE NUMBER
GHR				
GHR	SCALE	1"= 20'	RAMRNM0002	1
SKG	DATE	12/13/2017		

FIGURE 2


ANALYTICAL RESULTS FOR GROUNDWATER

SOURCE: AERIAL PHOTOGRAPH DATED SEPTEMBER 30, 2014, GOOGLE EARTH PRO SCREEN CAPTURE

	LEGEND											
● ^{HA-1}	LOCATION OF SOIL BORING SAMPLE											
SSB-3	LOCATION OF HAND AUGERED SAMPLE											
● ^{BG-1}	LOCATION OF BACKGROUND SOIL SAMPLE											
TMW-1	LOCATION OF TEMPORARY MONITORING WELL											

	ORARY MONI YTICAL RESU		LS AND OUNDWATER	
	1	_	PROJECT NUMBER	FIGURE NUMBER
GHR				
GHR	SCALE	1"= 20'	RAMRNM0002	2
SKG	DATE	12/13/2017		

APPENDIX A ECC FIELD NOTES

RAMRNM0002 Vates # 2 Tank ENVIRONMENTAL Kesources, LLC Rite in the hain . KAM ENERGY FIELD BOOK ALL-WEATHER Nº 550F 11,10 Battery And Forestry Suppliers, Inc. www.forestry-suppliers.com Stock No. 49325 800-647-5368 Sales Call Toll-Free

ALL-WEATHER ALL-WEATHER ALL-WEATHER BOOK Numbered Pages	ENVIRO CLEAN CARDINAL Enviro Clean Cardinal, LLC 7060 South Yale Avenue, Suite 603 7060 South Yale Avenue, Suite 603 708-794-7828 www.EnviroCleanPS.com	A MARKAN A M
	Name	

For TSS (Salinity) Soil Salinity and Chloride Field Screening

147 148 149 150 151 152 153 153 153 155

Convert salinity measurement to ppm (x1,000). Measure mixture salinity with meter. Results are given in parts per thousand (ppt) Mix 50 grams of soil with 50 grams of DI water in a 500 mL plastic bottle. Shake vigorously for 30 secs.

Equals TSS (Salinity) in ppm paste extract equivilent. Multiply converted salinity measurement in ppm by 2.26 conversion factor to estimate lab paste extract.

DATE

PAGE

For chloride

tion)

Well ring

Divide TSS (Salinity) paste extract result from above by 1.8066

3 Soil Samples collected for chlanide 0800 Buddy Richardson and Nett Migaven an-site E lite in the K Location Jakes #2 Tark Bilk Date 11/2/17 of NW correr bern of tank Frot 24-25, 9-10, 14-15, 19-20 Scarboraugh Drilling arrives an Stake Accetions of temp well borings Thru-1 and Thru-2 Tailighte H+5 meethy. Set up on TMW-1 boring Taw-1 90 Pt NU Sunny 52°F Wind NW Smph 1100 Collected groundwater Sample Prom TAW-1 for CI, Nat, TDS, VOC. 1005 Pulling drill rig off to set temp well. Project / Client RAM Every location, approx arive on-site aalysis: battery. 0830 0400 0405 DATE CONTENTS REFERENCE PAGE 2

-103.09480 3 TMW. -7: 33.279254, -102.594528 each boing was Riteine Date. TMW -1: 33.279488 Total depth of temporary well Continutes 40 fet Project / Client Location _ Field Conductivity = 4,067 45/cm TMW-1 Conductivity = 891.1 45/cm TMW-2 Collected grandwater Sample for CI, Na+ TDS, 10CS anal 7515 DTW- 2470 200 26.70' BC-L PURSE WOLM - Le gals DT water - 3.1 yS/cm 1413 45/cm standard - 1429-45/cm TMW-1)-2" PVC well+ casing. Date. Field nuesurements for DTW BGL - 27.28 Condectici ty su - 2.05 50 - 3.05' Project / Client Location _ DTC check 1205 Burg B

APPENDIX B BORING RECORDS

		BC	RING	REC	COF	RD)									
GEOLOG. UNIT	DEPTH	LITHOLOGIC DESCRIPTION	L ON	U			OVM : PPM						1	1PLE	1	REMARKS
	(FEET)	Start: Stop:	UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG	2 4					4 16	<u>5 18</u>	NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL: PPM AIR: PPM
	0	GROUND SURFACE: CALICHE: PINKISH WHITE, 7.5YR 8/2, 100% CALICHE, HARD, DRY, NO ODOR NOT COLLECTED:	-									-		40.0		0 - -
	4.0— 5 — —	SILT: DARK BROWN, 7.5YR 3/2, 100% SILT, FIRM, DRY, NO ODOR NOT COLLECTED:	SC									_				- 5 — -
	9.0— 10—	SAND, CALICHE: LIGHT BROWN, 7.5YR 6/4, 90% SAND, 10% CALICHE, SOFT, SLIGHTLY MOIST, NO ODOR, MINOR CLAY COMPONENT NOT COLLECTED:	SC													- - 10 — -
	 14.0 — 15 — 	SAND: REDDISH YELLOW, 7.5YR 6/6, 100% VERY FINE SAND, SOFT, SLIGHTLY MOIST, NO ODOR NOT COLLECTED:	SC									_				- - 15 — -
	 19.0 — 20 — 	SAND: SAME AS 14'-15' NOT COLLECTED:	SC										-			- 20
	24.0 — 25 — 	SAND: SAME AS 14'-15' BUT MOIST NOT COLLECTED:	SC													- 25— -
	 29.0 — 30 —	SAND: REDDISH YELLOW, 7.5YR 6/6, 90% SAND, 10% ROUNDED NODULES OF SANDSTONE/CLAYSTONE, MOIST, SOFT, NO ODOR NOT COLLECTED:	SC													-
	 34.0 — Сме. сом	SAND: REDDISH YELLOW, 7.5YR 6/6, 100% VERY FINE SAND, MOIST, SOFT, NO ODOR	SC E (TIME OF	BORING)		R JO	<u>АМ</u> в №		EN.	ER NU	GY	F R <i>F</i>	YA PAM		5 #	- - - 2 TB 02
<u> </u>	WATER T	ABLE (24 HOURS) NR: NO RECOVER	RY				RIN						'MW			
	7060 S. Yal	ENVIRO CLEADO CARDINALO le Ave., Suite 603 • Tulsa, Oklahoma 74136 • 97 www.EnviroCleanPS.com	18-794-7828	3		Di Di LC	ATE I RILLII RILLE DGGE HECK RAWN	NG I ID E ID B IED	METI BY _ IY _ BY_		AIR SC. M.N M.N	/2/201 ROTA ARBOR IUGAVE IUGAVE RAUE	7 RY DUGH E :RO	DRILLIN	RAWIN	G NO. <u>TMW-1_BOR</u> 1 OF 2

	-	В	ORING	RE	20	DR	2D												
GEOLOG. UNIT	DEPTH	LITHOLOGIC DESCRIPTION	ON L	U					SOIL X					SAMPLE				REMARKS	
	(FEET)	Start: Stop:	L UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG		24			10		14 1	<u>6 18</u>	3	NUMBER	OVM READING	RECOVERY	DEPTH	Background ovm reading: soil: Pf air: Pf	
	35 — — — —	GROUND SURFACE: NOT COLLECTED:													0	40.0		35 —	_
	39.0 — 40 —	SAND: SAME AS 34'-35' TOTAL DEPTH: 40.0 FEET	SC										_				40.0	40 -	
																		45 -	
																		50 -	_
	55 																	55 –	
	60 — – –																	60 -	
	65 — – –																	65 –	-
		ITINUOUS AUGER SAMPLER WATER TA ABLE (24 HOURS) NR: NO RECO	BLE (TIME OF	BORING)		<u> </u>	JOE	3 N	JAM	1E/	'NL	IME	Y Bef	۲ <i>R</i>	AM	RNI	5 #, 100	2 TB ^{70—} 02	
	7060 S. Yal	ENVIRO CLEAN CARDINAL e Ave., Suite 603 • Tulsa, Oklahoma 74136 • www.EnviroCleanPS.com	918-794-7828	3			DA DRI DRI LOC	te i Illi Ille Gge Eck	G I DRIL NG I ED E ED B (ED	LED MET BY BY BY) НО[1) <u>A</u> S M	IR F CAR 1.MU	/2017 ROTAF	RY RO	RILLIN	RAWIN	G NO. <u>TMW-1_BO</u> 2 OF 2	- - RE

		BC	DRING	REC	ECORD
GEOLOG UNIT	· DEPTH	LITHOLOGIC DESCRIPTION	L ON	ы	OVM SOIL GAS SAMPLE REMARKS
	(FEET)	Start: Stop:	UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG	2 4 6 8 10 12 14 16 18 OUTO Display Background OVM READING: Soil: Display PPM Air: PPM Air: PPM Air: PPM PPM Air: PPM Air:
	0 1.0 -	GROUND SURFACE: CALICHE: PINKISH WHITE, 7.5YR 8/2, 100% CALICHE, HARD, DRY, NO ODOR NOT COLLECTED:	-		
	4.0 <i>—</i> - 5 —	SILT: DARK BROWN, 7.5YR 3/2, 100% SILT, FIRM, DRY, NO ODOR NOT COLLECTED:	SC		
	9.0 —	SAND, CALICHE: LIGHT BROWN, 7.5YR 6/4,	SC		
	- 10 — - - -	90% SAND, 10% CALICHE, SOFT, SLIGHTLY MOIST, NO ODOR, MINOR CLAY COMPONENT NOT COLLECTED:		<u>, 7 : 2 : </u>	
	14.0 — - 15 — 	SAND: REDDISH YELLOW, 7.5YR 6/6, 100% VERY FINE SAND, SOFT, SLIGHTLY MOIST, NO ODOR NOT COLLECTED:	SC		
	 19.0 — 20 — 	SAND: SAME AS 14'-15' NOT COLLECTED:	SC		- - 20- -
	 24.0 <i>—</i> 25 <i>—</i>	SAND: SAME AS 14'-15' BUT MOIST NOT COLLECTED:	SC		
	29.0 —	SAND: REDDISH YELLOW, 7.5YR 6/6, 90% SAND,	SC		
	- 30 — - - -	10% ROUNDED NODULES OF SANDSTONE/CLAYSTONE, MOIST, SOFT, NO ODOR NOT COLLECTED:		<u>1997 (B. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199</u>	
	34.0 — 35 — CME COM	SAND: REDDISH YELLOW, 7.5YR 6/6, 100% VERY FINE SAND, MOIST, SOFT, NO ODOR	SC Le (TIME OF	BORING)	RAM ENERGY – YATES #2 TB JOB NAME/NUMBER RAMRNM0002
-	WATER T	ABLE (24 HOURS) NR: NO RECOVE	RY		BORING NUMBER TMW-2
י עדי טלכנים עזעווובויפוב	7060 S. Yal	ENVIRO CLEAD CARDINAL Me Ave., Suite 603 • Tulsa, Oklahoma 74136 • 9 www.EnviroCleanPS.com	18-794-7828	3	DATE DRILLED 11/2/2017 DRILLING METHOD AIR ROTARY DRILLED BY SCARBOROUGH DRILLING LOGGED BY M.MUGAVERO CHECKED BY M.MUGAVERO DRAWING NO. TMW-2_BORG DRAWN BY: S.GRAUE PAGE

D:\Projects\RamEnergy\RAMRNM0002_YatesState2\04_CAD\TMW-2_BORE.dwg on Nov 30. 2017-11:48a

	-	В	ORING	RE	20	DR	2D											
GEOLOG. UNIT	DEPTH	LITHOLOGIC DESCRIPTION	ON L	U					SOIL X_						SAM	IPLE		REMARKS
	(FEET)	Start: Stop:	L UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG		24			10			16 1	8	NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL: PPM AIR: PPM
	35 — — — —	GROUND SURFACE: NOT COLLECTED:													0	40.0		35
	39.0— 40—	SAND: SAME AS 34'-35' TOTAL DEPTH: 40.0 FEET	SC														40.0	 40
																		- - 45
																		 50
	 55 																	- - 55 -
																		- 60 — - -
	65 — 																	- 65 — - -
		ITINUOUS AUGER SAMPLER WATER TA ABLE (24 HOURS) NR: NO RECO	BLE (TIME OF	BORING)		<u> </u>	JOE	3 1	1AN	1E/	'NL	JME	BEI	– R R	YA YA	TES RNI	5 #1 100	
	7060 S. Yal	e Ave., Suite 603 • Tulsa, Oklahoma 74136 • www.EnviroCleanPS.com	918-794-7828	3		E	DA DR DR LO CH	TE ILLI ILLE GGE	G I DRIL NG ED E ED E (ED	LEC MET 3Y 3Y _ BY _) HO[1 0 <u>/</u> 0 1	11/2 AIR SCAI И.МЦ И.МЦ	2/2017 ROTAF	RY DUGH E RO	DRILLIN	RAWIN	G NO. <u>TMW-2_BOR</u> E 2 OF 2

APPENDIX C LABORATORY ANALYTICAL REPORT

Analytical Report 567387

for Enviroclean- Midland

Project Manager: Julie Czech

Ram Yates #2 TB

RAMRNM0002

13-NOV-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

13-NOV-17

Project Manager: **Julie Czech Enviroclean- Midland** 2405 ECR 123 Midland, TX 79706

Reference: XENCO Report No(s): 567387 Ram Yates #2 TB Project Address: TX

Julie Czech:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 567387. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 567387 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

he p

Mike Kimmel Client Services Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 567387

Enviroclean- Midland, Midland, TX

Ram Yates #2 TB

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
TMW-1	W	11-02-17 11:00		567387-001
TMW-2	W	11-02-17 12:05		567387-002
Trip Blank	W	11-02-17 00:00		567387-003

CASE NARRATIVE

Client Name: Enviroclean- Midland Project Name: Ram Yates #2 TB

Project ID: *RAMRNM0002* Work Order Number(s): 567387
 Report Date:
 13-NOV-17

 Date Received:
 11/02/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Certificate of Analysis Summary 567387

Enviroclean- Midland, Midland, TX Project Name: Ram Yates #2 TB

Date Received in Lab:Thu Nov-02-17 04:21 pmReport Date:13-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	567387-0	001	567387-0	02	567387-003		
	Field Id:	TMW-		TMW-2	-	Trip Blank		
Analysis Requested	Depth:		-			<u>r</u> =		
	Matrix:	WATE	R	WATE	2	WATER		
	Sampled:	Nov-02-17	11:00	Nov-02-17	12:05	Nov-02-17 00:00		
Inorganic Anions by EPA 300	Extracted:	Nov-09-17	16:00	Nov-09-17	16:00			
SUB: TX104704215-17-23	Analyzed:	Nov-09-17	18:26	Nov-09-17	18:54			
	Units/RL:	mg/L	RL	mg/L	RL			
Chloride		114	0.500	1090 D	50.0			
TDS by SM2540C	Extracted:							
SUB: TX104704215-17-23	Analyzed:	Nov-07-17	11:00	Nov-07-17	11:00			
	Units/RL:	mg/L	RL	mg/L	RL			
Total Dissolved Solids		570	5.00	2010	5.00			
Total Metals by EPA 6010B	Extracted:	Nov-08-17	13:00	Nov-08-17	13:00			
SUB: TX104704215-17-23	Analyzed:	Nov-08-17	20:20	Nov-08-17 2	20:24			
	Units/RL:	mg/L	RL	mg/L	RL			
Sodium		65.6	0.500	398	25.0			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 567387

Enviroclean- Midland, Midland, TX Project Name: Ram Yates #2 TB

Date Received in Lab:Thu Nov-02-17 04:21 pmReport Date:13-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	567387-	001	567387-0	002	567387-0	003		
Assertusia De sus este d	Field Id:	TMW	-1	TMW-	2	Trip Bla	nk		
Analysis Requested	Depth:								
	Matrix:	WATE	R	WATE	R	WATE	R		
	Sampled:	Nov-02-17	11:00	Nov-02-17	12:05	Nov-02-17	00:00		
VOCs by SW864 8260B	Extracted:	Nov-05-17	16:50	Nov-06-17	20:00	Nov-05-17	16:50		
SUB: TX104704215-17-23	Analyzed:	Nov-05-17		Nov-06-17		Nov-05-17 Nov-05-17			
	2 -						RL		
Demonstra	Units/RL:	mg/L ND	RL 0.00500	mg/L ND	RL 0.00500	mg/L ND	6.00500		
Benzene			0.00500		0.00500		0.00500		
Bromobenzene		ND		ND		ND			
Bromochloromethane		ND	0.00500	ND	0.00500	ND	0.00500		
Bromodichloromethane		ND	0.00500	ND	0.00500	ND	0.00500		
Bromoform		ND	0.00500	ND	0.00500	ND	0.00500		
Methyl bromide		ND	0.00500	ND	0.00500	ND	0.00500		
n-Butylbenzene		ND	0.00500	ND	0.00500	ND	0.00500		
Sec-Butylbenzene		ND	0.00500	ND	0.00500	ND	0.00500		
tert-Butylbenzene		ND	0.00500	ND	0.00500	ND	0.00500		
Carbon Tetrachloride		ND	0.00500	ND	0.00500	ND	0.00500		
Chlorobenzene		ND	0.00500	ND	0.00500	ND	0.00500		
Chloroethane		ND	0.0100	ND	0.0100	ND	0.0100		
Chloroform		ND	0.00500	ND	0.00500	ND	0.00500		
Methyl Chloride		ND	0.0100	ND	0.0100	ND	0.0100		
2-Chlorotoluene		ND	0.00500	ND	0.00500	ND	0.00500		
4-Chlorotoluene		ND	0.00500	ND	0.00500	ND	0.00500		
p-Cymene (p-Isopropyltoluene)		ND	0.00500	ND	0.00500	ND	0.00500		
Dibromochloromethane		ND	0.00500	ND	0.00500	ND	0.00500		
1,2-Dibromo-3-Chloropropane		ND	0.00500	ND	0.00500	ND	0.00500		
1,2-Dibromoethane		ND	0.00500	ND	0.00500	ND	0.00500		
Methylene bromide		ND	0.00500	ND	0.00500	ND	0.00500		
1,2-Dichlorobenzene		ND	0.00500	ND	0.00500	ND	0.00500		
1,3-Dichlorobenzene		ND	0.00500	ND	0.00500	ND	0.00500		
1,4-Dichlorobenzene		ND	0.00500	ND	0.00500	ND	0.00500		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use.

The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories.

XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 567387

Enviroclean- Midland, Midland, TX Project Name: Ram Yates #2 TB

Date Received in Lab:Thu Nov-02-17 04:21 pmReport Date:13-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	567387-	001	567387-0	002	567387-0	003		
An aluaia Domonata d	Field Id:	TMW	-1	TMW-	2	Trip Bla	nk		
Analysis Requested	Depth:								
	Matrix:	WATE	R	WATE	R	WATE	R		
	Sampled:	Nov-02-17	11:00	Nov-02-17	12:05	Nov-02-17	00:00		
VOCs by SW864 8260B	Extracted:	Nov-05-17	16:50	Nov-06-17	20:00	Nov-05-17	16:50		
SUB: TX104704215-17-23	Analyzed:	Nov-05-17	17:36	Nov-06-17	22:44	Nov-05-17	17:13		
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL		
Dichlorodifluoromethane		ND	0.00500	ND	0.00500	ND	0.00500		
1,1-Dichloroethane		ND	0.00500	ND	0.00500	ND	0.00500		
1,2-Dichloroethane		ND	0.00500	ND	0.00500	ND	0.00500		
1,1-Dichloroethene		ND	0.00500	ND	0.00500	ND	0.00500		
cis-1,2-Dichloroethylene		ND	0.00500	ND	0.00500	ND	0.00500		
trans-1,2-dichloroethylene		ND	0.00500	ND	0.00500	ND	0.00500		
1,2-Dichloropropane		ND	0.00500	ND	0.00500	ND	0.00500		
1,3-Dichloropropane		ND	0.00500	ND	0.00500	ND	0.00500		
2,2-Dichloropropane		ND	0.00500	ND	0.00500	ND	0.00500		
1,1-Dichloropropene		ND	0.00500	ND	0.00500	ND	0.00500		
cis-1,3-Dichloropropene		ND	0.00500	ND	0.00500	ND	0.00500		
Dichloropropane Dichloropropane Dichloropropene 1,3-Dichloropropene s-1,3-dichloropropene		ND	0.00500	ND	0.00500	ND	0.00500		
Ethylbenzene		ND	0.00500	ND	0.00500	ND	0.00500		
Hexachlorobutadiene		ND	0.00500	ND	0.00500	ND	0.00500		
Isopropylbenzene		ND	0.00500	ND	0.00500	ND	0.00500		
Methylene Chloride		ND	0.00500	ND	0.00500	ND	0.00500		
MTBE		ND	0.00500	ND	0.00500	ND	0.00500		
Naphthalene		ND	0.0100	ND	0.0100	ND	0.0100		
n-Propylbenzene		ND	0.00500	ND	0.00500	ND	0.00500		
Styrene		ND	0.00500	ND	0.00500	ND	0.00500		
1,1,1,2-Tetrachloroethane		ND	0.00500	ND	0.00500	ND	0.00500		
1,1,2,2-Tetrachloroethane		ND	0.00500	ND	0.00500	ND	0.00500		
Tetrachloroethylene		ND	0.00500	ND	0.00500	ND	0.00500		
Toluene		ND	0.00500	ND	0.00500	ND	0.00500		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use.

The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories.

XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 567387

Enviroclean- Midland, Midland, TX Project Name: Ram Yates #2 TB

Date Received in Lab:Thu Nov-02-17 04:21 pmReport Date:13-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	567387-	001	567387-	002	567387-0	003		
Analysis Requested	Field Id:	TMW	-1	TMW-	2	Trip Bla	nk		
Analysis Requested	Depth:								
	Matrix:	WATE	ER	WATE	R	WATE	R		
	Sampled:	Nov-02-17	11:00	Nov-02-17	12:05	Nov-02-17	00:00		
VOCs by SW864 8260B	Extracted:	Nov-05-17	16:50	Nov-06-17	20:00	Nov-05-17	16:50		
SUB: TX104704215-17-23	Analyzed:	Nov-05-17	17:36	Nov-06-17	22:44	Nov-05-17	17:13		
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL		
1,2,3-Trichlorobenzene		ND	0.00500	ND	0.00500	ND	0.00500		
,2,4-Trichlorobenzene		ND	0.00500	ND	0.00500	ND	0.00500		
1,1-Trichloroethane		ND	0.00500	ND	0.00500	ND	0.00500		
1,1,2-Trichloroethane		ND	0.00500	ND	0.00500	ND	0.00500		
Trichloroethylene		ND	0.00500	ND	0.00500	ND	0.00500		
Trichlorofluoromethane		ND	0.00500	ND	0.00500	ND	0.00500		
1,2,3-Trichloropropane		ND	0.00500	ND	0.00500	ND	0.00500		
1,2,4-Trimethylbenzene		ND	0.00500	ND	0.00500	ND	0.00500		
1,3,5-Trimethylbenzene		ND	0.00500	ND	0.00500	ND	0.00500		
o-Xylene		ND	0.00500	ND	0.00500	ND	0.00500		
m,p-Xylenes		ND	0.0100	ND	0.0100	ND	0.0100		
Vinyl Chloride		ND	0.00200	ND	0.00200	ND	0.00200		
Total Xylenes		ND	0.00500	ND	0.00500	ND	0.00500		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

Form 2 - Surrogate Recoveries

Project Name: Ram Yates #2 TB

	ders : 56738 #: 3032625	7, Sample: 567387-003 / SMP	Bate		RAMRNM	0002	
Units:	mg/L	Date Analyzed: 11/05/17 17:13	SU	JRROGATE F	RECOVERY	STUDY	
	VOCs	by SW864 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
Dibromoflu	oromethane		0.0496	0.0500	99	75-131	
1,2-Dichlor	oethane-D4		0.0559	0.0500	112	63-144	
Toluene-D8			0.0546	0.0500	109	80-117	
4-Bromoflu	orobenzene		0.0487	0.0500	97	74-124	
Lab Batch	#: 3032625	Sample: 567387-001 / SMP	Batc	ch: 1 Matrix	: Water		
J nits:	mg/L	Date Analyzed: 11/05/17 17:36	SU	JRROGATE F	RECOVERY	STUDY	
	VOCs	by SW864 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromoflu	oromethane	-	0.0501	0.0500	100	75-131	
1,2-Dichlor	oethane-D4		0.0544	0.0500	109	63-144	
Toluene-D8			0.0542	0.0500	108	80-117	
4-Bromoflu	orobenzene		0.0480	0.0500	96	74-124	
Lab Batch	#: 3032517	Sample: 567387-002 / SMP	Batc	h: 1 Matrix	K: Water		
U nits:	mg/L	Date Analyzed: 11/06/17 22:44	SU	JRROGATE F	RECOVERYS	STUDY	
	VOCs	by SW864 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromoflu	oromethane	-	0.0503	0.0500	101	75-131	
1,2-Dichlor	oethane-D4		0.0489	0.0500	98	63-144	
Toluene-D8			0.0509	0.0500	102	80-117	
4-Bromoflu	orobenzene		0.0523	0.0500	105	74-124	
Lab Batch	#: 3032625	Sample: 7633969-1-BLK / E	LK Batc	h: 1 Matrix	K: Water		
U nits:	mg/L	Date Analyzed: 11/05/17 16:50	SU	JRROGATE F	RECOVERY	STUDY	
	VOCs	by SW864 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
Dibromoflu	oromethane		0.0498	0.0500	100	75-131	
1,2-Dichlor	oethane-D4		0.0549	0.0500	110	63-144	
			0.0545	0.0500	109	80-117	
Toluene-D8			0.0545	0.0500	107	0011/	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Ram Yates #2 TB

Units:	mg/L	Date Analyzed: 11/06/17 21:59	CIII	RROCATE I	RECOVERY	TUDV	
		by SW864 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes	[A]	լոյ	[D]	701	
Dibromofluc	promethane		0.0497	0.0500	99	75-131	
1,2-Dichloro	ethane-D4		0.0473	0.0500	95	63-144	
Toluene-D8			0.0521	0.0500	104	80-117	
4-Bromofluc	orobenzene		0.0524	0.0500	105	74-124	
ab Batch	#: 3032625	Sample: 7633969-1-BKS /	BKS Batch	: 1 Matri	x: Water		
U nits:	mg/L	Date Analyzed: 11/05/17 13:41	SU	RROGATE H	RECOVERYS	STUDY	
	VOCs	by SW864 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromofluc	promethane		0.0474	0.0500	95	75-131	
1,2-Dichloro			0.0524	0.0500	105	63-144	
Toluene-D8			0.0522	0.0500	104	80-117	
4-Bromofluc	orobenzene		0.0490	0.0500	98	74-124	
Lab Batch :	#: 3032517	Sample: 7633902-1-BKS /			x: Water		
Units:	mg/L	Date Analyzed: 11/06/17 19:21			RECOVERY	STUDY	
	VOCs	by SW864 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromofluc	oromethane		0.0494	0.0500	99	75-131	
1,2-Dichloro	ethane-D4		0.0481	0.0500	96	63-144	
Toluene-D8			0.0501	0.0500	100	80-117	
4-Bromofluc	orobenzene		0.0498	0.0500	100	74-124	
ab Batch	#: 3032625	Sample: 7633969-1-BSD /	BSD Batch	: 1 Matri	x: Water		
U nits:	mg/L	Date Analyzed: 11/05/17 14:49	SU	RROGATE I	RECOVERYS	STUDY	
	VOCs	by SW864 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes	L-1	[20]	[D]		
Dibromofluc	oromethane		0.0476	0.0500	95	75-131	
	ethane-D4		0.0532	0.0500	106	63-144	
1,2-Dichloro			1		1		
1,2-Dichloro Toluene-D8			0.0524	0.0500	105	80-117	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Ram Yates #2 TB

	r ders : 56738 #: 3032517	87, Sample: 7633902-1-BSD / B	SD Batc	-	: RAMRNM(: Water	0002	
Units:	mg/L	Date Analyzed: 11/06/17 20:06		RROGATE R	ECOVERY S	STUDY	
	VOCs	by SW864 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromoflu	oromethane		0.0493	0.0500	99	75-131	
1,2-Dichlor	oethane-D4		0.0483	0.0500	97	63-144	
Toluene-D8	3		0.0497	0.0500	99	80-117	
4-Bromoflu	orobenzene		0.0499	0.0500	100	74-124	
Lab Batch	#: 3032625	Sample: 567387-001 S / MS	Batc	h: 1 Matrix	Water		
U nits:	mg/L	Date Analyzed: 11/05/17 15:16	SU	RROGATE R	ECOVERY	STUDY	
	VOCs	by SW864 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
Dibromoflu	oromethane		0.0469	0.0500	94	75-131	
1,2-Dichlor	oethane-D4		0.0531	0.0500	106	63-144	
Toluene-D8	3		0.0526	0.0500	105	80-117	
4-Bromoflu	orobenzene		0.0506	0.0500	101	74-124	
Lab Batch	#: 3032517	Sample: 567539-001 S / MS	Batc	h: 1 Matrix	Water		
U nits:	mg/L	Date Analyzed: 11/06/17 20:29	SU	RROGATE R	ECOVERY	STUDY	
	VOCs	by SW864 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromoflu	oromethane		0.0500	0.0500	100	75-131	
1,2-Dichlor	oethane-D4		0.0499	0.0500	100	63-144	
Toluene-D8	3		0.0503	0.0500	101	80-117	
4-Bromoflu	1		0.0501	0.0500	100	74-124	

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Ram Yates #2 TB

Work Order #: 567387							Proj	ject ID:	RAMRNM	0002	
Analyst: DHE	D	ate Prepar	ed: 11/09/201	7			Date A	nalyzed:	1/09/2017		
Lab Batch ID: 3032887 Sample: 7634113-1	-BKS	Batcl	n #: 1					Matrix: \	Water		
Units: mg/L		BLAN	K /BLANK S	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	DY	
Inorganic Anions by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<0.500	10.0	10.1	101	10.0	9.91	99	2	90-110	20	
Analyst: YAV	D	ate Prepar	ed: 11/07/201	7			Date A	nalyzed:	1/07/2017		
Lab Batch ID: 3032558 Sample: 3032558-1-	-BKS	Batcl	n #: 1					Matrix: V	Water		
Units: mg/L		BLAN	K /BLANK S	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	DY	
TDS by SM2540C Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Total Dissolved Solids	<5.00	1000	966	97	1000	995	100	3	80-120	10	
Total Dissolved Solids Analyst: DEP			966 ed: 11/08/201		1000	995			80-120 1/08/2017	10	
	D		ed: 11/08/201		1000	995	Date A		1/08/2017	10	
Analyst: DEP	D	ate Prepar Batcl	ed: 11/08/201	17		<u> </u>	Date A	nalyzed: 1 Matrix: V	1/08/2017 Water		
Analyst: DEP Lab Batch ID: 3032786 Sample: 7634024-1	D	ate Prepar Batcl	ed: 11/08/201	17		<u> </u>	Date A	nalyzed: 1 Matrix: V	1/08/2017 Water		Flag

SUP ACCREDIE

Project Name: Ram Yates #2 TB

Work Order #: 567387							Proj	ect ID: 1	RAMRNM	0002	
Analyst: SAD	D	ate Prepar	red: 11/06/201	17			Date A	nalyzed: 1	1/06/2017		
Lab Batch ID: 3032517 Sample: 7633902-1	-BKS	Batcl	h #: 1					Matrix: \	Water		
Units: mg/L		BLAN	K/BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	DY	
VOCs by SW864 8260B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00500	0.0500	0.0452	90	0.0500	0.0503	101	11	68-123	25	
Bromobenzene	< 0.00500	0.0500	0.0466	93	0.0500	0.0523	105	12	83-124	25	
Bromochloromethane	< 0.00500	0.0500	0.0443	89	0.0500	0.0505	101	13	68-119	25	
Bromodichloromethane	< 0.00500	0.0500	0.0477	95	0.0500	0.0526	105	10	72-132	25	
Bromoform	< 0.00500	0.0500	0.0435	87	0.0500	0.0477	95	9	65-136	25	
Methyl bromide	< 0.00500	0.0500	0.0403	81	0.0500	0.0447	89	10	48-120	25	
n-Butylbenzene	< 0.00500	0.0500	0.0480	96	0.0500	0.0529	106	10	82-128	25	
Sec-Butylbenzene	< 0.00500	0.0500	0.0479	96	0.0500	0.0528	106	10	83-130	25	
tert-Butylbenzene	< 0.00500	0.0500	0.0471	94	0.0500	0.0530	106	12	83-131	25	
Carbon Tetrachloride	< 0.00500	0.0500	0.0472	94	0.0500	0.0505	101	7	68-135	25	
Chlorobenzene	< 0.00500	0.0500	0.0447	89	0.0500	0.0500	100	11	78-124	25	
Chloroethane	< 0.0100	0.0500	0.0426	85	0.0500	0.0465	93	9	55-120	25	
Chloroform	< 0.00500	0.0500	0.0450	90	0.0500	0.0507	101	12	71-119	25	
Methyl Chloride	< 0.0100	0.0500	0.0424	85	0.0500	0.0467	93	10	54-114	25	
2-Chlorotoluene	< 0.00500	0.0500	0.0461	92	0.0500	0.0514	103	11	83-128	25	
4-Chlorotoluene	< 0.00500	0.0500	0.0453	91	0.0500	0.0513	103	12	81-125	25	
p-Cymene (p-Isopropyltoluene)	< 0.00500	0.0500	0.0477	95	0.0500	0.0534	107	11	85-129	25	
Dibromochloromethane	< 0.00500	0.0500	0.0476	95	0.0500	0.0530	106	11	74-135	25	
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0418	84	0.0500	0.0474	95	13	62-134	25	
1,2-Dibromoethane	< 0.00500	0.0500	0.0457	91	0.0500	0.0521	104	13	77-129	25	

Project Name: Ram Yates #2 TB

Work Order #: 567387

Project ID: RAMRNM0002

Analyst:	SAD
Lab Batch ID:	3032517

7 Sample: 7633902-1-BKS

Date Prepared: 11/06/2017 Batch #: 1

Date Analyzed: 11/06/2017 Matrix: Water

Units: mg/L

VOCs by SW864 8260B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Methylene bromide	< 0.00500	0.0500	0.0456	91	0.0500	0.0507	101	11	71-124	25	
1,2-Dichlorobenzene	< 0.00500	0.0500	0.0457	91	0.0500	0.0515	103	12	81-123	25	
1,3-Dichlorobenzene	< 0.00500	0.0500	0.0452	90	0.0500	0.0508	102	12	82-126	25	
1,4-Dichlorobenzene	< 0.00500	0.0500	0.0454	91	0.0500	0.0502	100	10	80-119	25	-
Dichlorodifluoromethane	< 0.00500	0.0500	0.0422	84	0.0500	0.0446	89	6	59-121	25	<u> </u>
1,1-Dichloroethane	< 0.00500	0.0500	0.0457	91	0.0500	0.0507	101	10	75-125	25	
1,2-Dichloroethane	< 0.00500	0.0500	0.0444	89	0.0500	0.0499	100	12	64-130	25	-
1,1-Dichloroethene	< 0.00500	0.0500	0.0446	89	0.0500	0.0476	95	7	68-116	25	-
cis-1,2-Dichloroethylene	< 0.00500	0.0500	0.0457	91	0.0500	0.0516	103	12	74-130	25	
trans-1,2-dichloroethylene	< 0.00500	0.0500	0.0442	88	0.0500	0.0491	98	11	64-109	25	-
1,2-Dichloropropane	< 0.00500	0.0500	0.0465	93	0.0500	0.0515	103	10	72-127	25	-
1,3-Dichloropropane	< 0.00500	0.0500	0.0445	89	0.0500	0.0508	102	13	79-133	25	1
2,2-Dichloropropane	< 0.00500	0.0500	0.0482	96	0.0500	0.0515	103	7	71-134	25	
1,1-Dichloropropene	< 0.00500	0.0500	0.0457	91	0.0500	0.0498	100	9	69-124	25	
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0490	98	0.0500	0.0540	108	10	74-138	25	-
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0484	97	0.0500	0.0539	108	11	70-132	25	1
Ethylbenzene	< 0.00500	0.0500	0.0459	92	0.0500	0.0513	103	11	69-131	25	
Hexachlorobutadiene	< 0.00500	0.0500	0.0450	90	0.0500	0.0503	101	11	74-130	25	
Isopropylbenzene	< 0.00500	0.0500	0.0480	96	0.0500	0.0527	105	9	66-133	25	1
Methylene Chloride	< 0.00500	0.0500	0.0437	87	0.0500	0.0483	97	10	60-121	25	1

Project Name: Ram Yates #2 TB

Work Order #: 567387

Project ID: RAMRNM0002

Analyst:	SAD
Lab Batch ID:	3032517

SAD 3032517 Sample: 7633902-1-BKS **Date Prepared:** 11/06/2017

Batch #: 1

Date Analyzed: 11/06/2017 Matrix: Water

Units: mg/L

VOCs by SW864 8260B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes											<u> </u>
MTBE	< 0.00500	0.0500	0.0454	91	0.0500	0.0527	105	15	60-152	25	
Naphthalene	< 0.0100	0.0500	0.0420	84	0.0500	0.0497	99	17	69-140	25	
n-Propylbenzene	< 0.00500	0.0500	0.0475	95	0.0500	0.0525	105	10	86-129	25	
Styrene	< 0.00500	0.0500	0.0471	94	0.0500	0.0531	106	12	79-128	25	
1,1,1,2-Tetrachloroethane	< 0.00500	0.0500	0.0472	94	0.0500	0.0528	106	11	78-131	25	
1,1,2,2-Tetrachloroethane	< 0.00500	0.0500	0.0447	89	0.0500	0.0503	101	12	80-133	25	
Tetrachloroethylene	< 0.00500	0.0500	0.0453	91	0.0500	0.0495	99	9	79-122	25	
Toluene	< 0.00500	0.0500	0.0450	90	0.0500	0.0504	101	11	62-132	25	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0426	85	0.0500	0.0498	100	16	76-126	25	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0432	86	0.0500	0.0498	100	14	77-127	25	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0454	91	0.0500	0.0511	102	12	72-124	25	
1,1,2-Trichloroethane	< 0.00500	0.0500	0.0445	89	0.0500	0.0510	102	14	71-135	25	
Trichloroethylene	< 0.00500	0.0500	0.0463	93	0.0500	0.0509	102	9	74-123	25	
Trichlorofluoromethane	< 0.00500	0.0500	0.0427	85	0.0500	0.0441	88	3	70-143	25	
1,2,3-Trichloropropane	< 0.00500	0.0500	0.0452	90	0.0500	0.0525	105	15	75-134	25	
1,2,4-Trimethylbenzene	< 0.00500	0.0500	0.0478	96	0.0500	0.0537	107	12	79-132	25	
1,3,5-Trimethylbenzene	< 0.00500	0.0500	0.0466	93	0.0500	0.0519	104	11	72-139	25	1
o-Xylene	< 0.00500	0.0500	0.0467	93	0.0500	0.0520	104	11	67-132	25	1
m,p-Xylenes	< 0.0100	0.100	0.0922	92	0.100	0.102	102	10	69-132	25	1
Vinyl Chloride	< 0.00200	0.0500	0.0425	85	0.0500	0.0454	91	7	59-124	25	1

Project Name: Ram Yates #2 TB

lyst: SAD	D	ate Prepar	ed: 11/05/20	17			Date A	nalyzed:	11/05/2017				
Batch ID: 3032625 Sample: 7633	3969-1-BKS	Batcl	n #: 1			Matrix: Water							
is: mg/L		BLAN	K /BLANK	BLANK S	NK SPIKE DUPLICATE RECOVERY STUDY								
VOCs by SW864 8260B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Benzene	<0.00500	0.0500	0.0451	90	0.0500	0.0479	96	6	68-123	25			
Bromobenzene		0.0500	0.0451	104		0.0479		7	83-124	25			
Bromochloromethane	<0.00500		0.0320	85	0.0500	0.0555	111			25			
Bromodichloromethane	<0.00500	0.0500		96	0.0500		88	4	68-119 72-132	25			
Bromoform	<0.00500	0.0500	0.0480	96	0.0500	0.0504	-	5 7		25			
	<0.00500	0.0500	0.0491	68	0.0500		105	-	65-136 48-120	25			
Methyl bromide n-Butylbenzene	<0.00500	0.0500			0.0500	0.0350	70	3		-			
<i>y</i>	<0.00500	0.0500	0.0537	107	0.0500	0.0565	113	5	82-128	25			
Sec-Butylbenzene	<0.00500	0.0500	0.0519	104	0.0500	0.0547	109	5	83-130	25			
tert-Butylbenzene	< 0.00500	0.0500	0.0511	102	0.0500	0.0548	110	7	83-131	25			
Carbon Tetrachloride	< 0.00500	0.0500	0.0452	90	0.0500	0.0471	94	4	68-135	25			
Chlorobenzene	< 0.00500	0.0500	0.0487	97	0.0500	0.0520	104	7	78-124	25			
Chloroethane	< 0.0100	0.0500	0.0340	68	0.0500	0.0365	73	7	55-120	25			
Chloroform	< 0.00500	0.0500	0.0435	87	0.0500	0.0458	92	5	71-119	25			
Methyl Chloride	< 0.0100	0.0500	0.0379	76	0.0500	0.0398	80	5	54-114	25			
2-Chlorotoluene	< 0.00500	0.0500	0.0506	101	0.0500	0.0531	106	5	83-128	25			
4-Chlorotoluene	< 0.00500	0.0500	0.0510	102	0.0500	0.0545	109	7	81-125	25			
p-Cymene (p-Isopropyltoluene)	< 0.00500	0.0500	0.0495	99	0.0500	0.0527	105	6	85-129	25			
Dibromochloromethane	< 0.00500	0.0500	0.0503	101	0.0500	0.0534	107	6	74-135	25			
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0394	79	0.0500	0.0413	83	5	62-134	25			
1,2-Dibromoethane	< 0.00500	0.0500	0.0487	97	0.0500	0.0517	103	6	77-129	25			

Project Name: Ram Yates #2 TB

Work Order #: 567387

Project ID: RAMRNM0002

Analyst:	SAD
Lab Batch ID:	3032625

Sample: 7633969-1-BKS

Date Prepared: 11/05/2017 **Batch #:** 1 Date Analyzed: 11/05/2017 Matrix: Water

Units: mg/L

VOCs by SW864 8260B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Methylene bromide	<0.00500	0.0500	0.0455	91	0.0500	0.0487	97	7	71-124	25	
1,2-Dichlorobenzene	<0.00500	0.0500	0.0512	102	0.0500	0.0550	110	7	81-123	25	
1,3-Dichlorobenzene	<0.00500	0.0500	0.0515	103	0.0500	0.0550	110	7	82-126	25	
1,4-Dichlorobenzene	< 0.00500	0.0500	0.0513	103	0.0500	0.0548	110	7	80-119	25	
Dichlorodifluoromethane	< 0.00500	0.0500	0.0452	90	0.0500	0.0457	91	1	59-121	25	+
1,1-Dichloroethane	< 0.00500	0.0500	0.0434	87	0.0500	0.0462	92	6	75-125	25	
1,2-Dichloroethane	< 0.00500	0.0500	0.0456	91	0.0500	0.0490	98	7	64-130	25	+
1,1-Dichloroethene	< 0.00500	0.0500	0.0472	94	0.0500	0.0484	97	3	68-116	25	<u> </u>
cis-1,2-Dichloroethylene	< 0.00500	0.0500	0.0425	85	0.0500	0.0448	90	5	74-130	25	
trans-1,2-dichloroethylene	< 0.00500	0.0500	0.0433	87	0.0500	0.0458	92	6	64-109	25	
1,2-Dichloropropane	< 0.00500	0.0500	0.0460	92	0.0500	0.0484	97	5	72-127	25	
1,3-Dichloropropane	< 0.00500	0.0500	0.0477	95	0.0500	0.0509	102	6	79-133	25	
2,2-Dichloropropane	< 0.00500	0.0500	0.0405	81	0.0500	0.0422	84	4	71-134	25	
1,1-Dichloropropene	< 0.00500	0.0500	0.0429	86	0.0500	0.0451	90	5	69-124	25	
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0467	93	0.0500	0.0503	101	7	74-138	25	
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0535	107	0.0500	0.0565	113	5	70-132	25	
Ethylbenzene	< 0.00500	0.0500	0.0501	100	0.0500	0.0535	107	7	69-131	25	1
Hexachlorobutadiene	< 0.00500	0.0500	0.0521	104	0.0500	0.0545	109	5	74-130	25	1
Isopropylbenzene	< 0.00500	0.0500	0.0492	98	0.0500	0.0520	104	6	66-133	25	1
Methylene Chloride	< 0.00500	0.0500	0.0437	87	0.0500	0.0469	94	7	60-121	25	1

Project Name: Ram Yates #2 TB

Work Order #: 567387

Project ID: RAMRNM0002

Analyst:	SAD
Lab Batch ID:	3032625

625 Sample: 7633969-1-BKS

Date Prepared: 11/05/2017 **Batch #:** 1 Date Analyzed: 11/05/2017 Matrix: Water

Units: mg/L

VOCs by SW864 8260B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
MTBE	0.00500	0.0500	0.0410	0.1	0.0500	0.0444	00		60.150	25	
	< 0.00500	0.0500	0.0418	84	0.0500	0.0444	89	6	60-152	25	<u> </u>
Naphthalene	< 0.0100	0.0500	0.0398	80	0.0500	0.0421	84	6	69-140	25	
n-Propylbenzene	< 0.00500	0.0500	0.0515	103	0.0500	0.0552	110	7	86-129	25	
Styrene	< 0.00500	0.0500	0.0523	105	0.0500	0.0562	112	7	79-128	25	
1,1,1,2-Tetrachloroethane	< 0.00500	0.0500	0.0490	98	0.0500	0.0517	103	5	78-131	25	
1,1,2,2-Tetrachloroethane	< 0.00500	0.0500	0.0486	97	0.0500	0.0505	101	4	80-133	25	
Tetrachloroethylene	< 0.00500	0.0500	0.0508	102	0.0500	0.0525	105	3	79-122	25	
Toluene	< 0.00500	0.0500	0.0494	99	0.0500	0.0521	104	5	62-132	25	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0379	76	0.0500	0.0403	81	6	76-126	25	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0436	87	0.0500	0.0466	93	7	77-127	25	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0450	90	0.0500	0.0469	94	4	72-124	25	
1,1,2-Trichloroethane	< 0.00500	0.0500	0.0498	100	0.0500	0.0529	106	6	71-135	25	
Trichloroethylene	< 0.00500	0.0500	0.0452	90	0.0500	0.0475	95	5	74-123	25	
Trichlorofluoromethane	< 0.00500	0.0500	0.0394	79	0.0500	0.0399	80	1	70-143	25	
1,2,3-Trichloropropane	< 0.00500	0.0500	0.0473	95	0.0500	0.0505	101	7	75-134	25	
1,2,4-Trimethylbenzene	< 0.00500	0.0500	0.0506	101	0.0500	0.0538	108	6	79-132	25	
1,3,5-Trimethylbenzene	< 0.00500	0.0500	0.0515	103	0.0500	0.0565	113	9	72-139	25	
o-Xylene	< 0.00500	0.0500	0.0518	104	0.0500	0.0548	110	6	67-132	25	1
m,p-Xylenes	< 0.0100	0.100	0.0999	100	0.100	0.106	106	6	69-132	25	1
Vinyl Chloride	< 0.00200	0.0500	0.0346	69	0.0500	0.0368	74	6	59-124	25	<u> </u>

Project Name: Ram Yates #2 TB

 Work Order #:
 567387

 Lab Batch #:
 3032517

 Date Analyzed:
 11/06/2017

 QC- Sample ID:
 567539-001 S

 Reporting Units:
 mg/L

Project ID: RAMRNM0002

Date Analyzed: 11/06/2017 Date	te Prepared: 11/0	6/2017	А	.nalyst: S	AD	
QC- Sample ID: 567539-001 S	Batch #: 1		Ν	Matrix: V	Vater	
Reporting Units: mg/L	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
VOCs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
· · · · · · · · · · · · · · · · · · ·		0.0500	0.0522	105	76.110	
Benzene	<0.00500	0.0500	0.0523	105	76-110	
Bromobenzene	<0.00500	0.0500	0.0538	108	77-114	
Bromochloromethane		0.0500		104	72-112	
Bromodichloromethane	<0.00500	0.0500	0.0558	112	75-116	
Bromoform	<0.00500	0.0500	0.0500	100	66-119	
Methyl bromide	<0.00500	0.0500	0.0479	96	60-110	
n-Butylbenzene	< 0.00500	0.0500	0.0569	114	74-128	
Sec-Butylbenzene	< 0.00500	0.0500	0.0564	113	76-126	
tert-Butylbenzene	< 0.00500	0.0500	0.0563	113	77-124	
Carbon Tetrachloride	< 0.00500	0.0500	0.0547	109	77-119	
Chlorobenzene	< 0.00500	0.0500	0.0515	103	78-110	
Chloroethane	< 0.0100	0.0500	0.0494	99	62-113	
Chloroform	< 0.00500	0.0500	0.0522	104	79-111	
Methyl Chloride	< 0.0100	0.0500	0.0554	111	64-115	
2-Chlorotoluene	< 0.00500	0.0500	0.0539	108	79-113	
4-Chlorotoluene	< 0.00500	0.0500	0.0528	106	76-114	
p-Cymene (p-Isopropyltoluene)	< 0.00500	0.0500	0.0575	115	71-123	
Dibromochloromethane	< 0.00500	0.0500	0.0550	110	74-117	
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0565	113	70-124	
1,2-Dibromoethane	< 0.00500	0.0500	0.0527	105	75-117	
Methylene bromide	< 0.00500	0.0500	0.0521	104	72-114	
1,2-Dichlorobenzene	< 0.00500	0.0500	0.0542	108	77-115	
1,3-Dichlorobenzene	< 0.00500	0.0500	0.0533	107	79-112	
1,4-Dichlorobenzene	< 0.00500	0.0500	0.0518	104	76-112	
Dichlorodifluoromethane	< 0.00500	0.0500	0.0507	101	64-138	
1,1-Dichloroethane	< 0.00500	0.0500	0.0530	106	71-121	
1,2-Dichloroethane	< 0.00500	0.0500	0.0521	104	72-111	
1,1-Dichloroethene	< 0.00500	0.0500	0.0520	104	74-124	
cis-1,2-Dichloroethylene	< 0.00500	0.0500	0.0518	104	72-121	
trans-1,2-dichloroethylene	< 0.00500	0.0500	0.0507	101	72-117	
1,2-Dichloropropane	< 0.00500	0.0500	0.0567	113	75-113	
1,3-Dichloropropane	< 0.00500	0.0500	0.0516	103	74-113	
2,2-Dichloropropane	< 0.00500	0.0500	0.0575	115	58-131	
1,1-Dichloropropene	< 0.00500	0.0500	0.0531	106	77-116	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

Work Order #: 567387 Lab Batch #: 3032517 Date Analyzed: 11/06/2017 Q R

Project ID: RAMRNM0002

Date Analyzed: 11/06/2017	Date Prepared: 11/06	5/2017	A	nalyst: S	AD	
QC- Sample ID: 567539-001 S	Batch #: 1		Ν	Matrix: W	Vater	
Reporting Units: mg/L	MATR	IX / MA	TRIX SPIKE	RECO	VERY STU	DY
VOCs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
cis-1,3-Dichloropropene	<0.00500	0.0500	0.0568	114	75-119	
trans-1,3-dichloropropene	<0.00500	0.0500	0.0558	114	75-123	
Ethylbenzene	<0.00500	0.0500	0.0525	105	80-116	
Hexachlorobutadiene	<0.00500	0.0500	0.0525	115	79-123	
Isopropylbenzene	<0.00500	0.0500	0.0549	110	79-117	
Methylene Chloride	<0.00500	0.0500	0.0484	97	67-116	
MTBE	< 0.00500	0.0500	0.0536	107	70-125	
Naphthalene	<0.0100	0.0500	0.0649	130	72-157	
n-Propylbenzene	<0.00500	0.0500	0.0553	111	75-121	
Styrene	< 0.00500	0.0500	0.0148	30	74-124	x
1,1,1,2-Tetrachloroethane	< 0.00500	0.0500	0.0540	108	75-114	
1,1,2,2-Tetrachloroethane	< 0.00500	0.0500	0.0529	106	75-113	
Tetrachloroethylene	< 0.00500	0.0500	0.0526	105	78-117	
Toluene	< 0.00500	0.0500	0.0514	103	77-112	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0639	128	70-140	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0567	113	71-135	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0534	107	75-118	
1,1,2-Trichloroethane	< 0.00500	0.0500	0.0502	100	75-114	
Trichloroethylene	< 0.00500	0.0500	0.0533	107	70-123	
Trichlorofluoromethane	< 0.00500	0.0500	0.0506	101	69-118	
1,2,3-Trichloropropane	< 0.00500	0.0500	0.0541	108	73-115	
1,2,4-Trimethylbenzene	< 0.00500	0.0500	0.0551	110	74-118	
1,3,5-Trimethylbenzene	<0.00500	0.0500	0.0507	101	77-119	
o-Xylene	<0.00500	0.0500	0.0525	105	78-122	
m,p-Xylenes	<0.0100	0.100	0.106	106	79-118	
Vinyl Chloride	<0.00200	0.0500	0.0480	96	65-114	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

Project Name: Ram Yates #2 TB

Work Order #: 567387 Lab Batch #: 3032625 11/05/2017 ~la. D ۸. Q R

Project ID: RAMRNM0002

$Lab Batch \pi$. 5052025	D (D) 11/05	0017	Ũ			
Date Analyzed: 11/05/2017	Date Prepared: 11/05	6/2017		nalyst: S		
QC- Sample ID: 567387-001 S	Batch #: 1			Aatrix: W		
Reporting Units: mg/L	MATR	IX / MA	TRIX SPIKE	RECO	VERY STU	DY
VOCs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Benzene	<0.00500	0.0500	0.0449	90	76-110	
Bromobenzene	<0.00500	0.0500	0.0523	105	77-114	
Bromochloromethane	< 0.00500	0.0500	0.0416	83	72-112	
Bromodichloromethane	< 0.00500	0.0500	0.0474	95	75-116	
Bromoform	< 0.00500	0.0500	0.0487	97	66-119	
Methyl bromide	<0.00500	0.0500	0.0352	70	60-110	
n-Butylbenzene	< 0.00500	0.0500	0.0552	110	74-128	
Sec-Butylbenzene	<0.00500	0.0500	0.0539	108	76-126	
tert-Butylbenzene	< 0.00500	0.0500	0.0522	104	77-124	
Carbon Tetrachloride	<0.00500	0.0500	0.0448	90	77-119	
Chlorobenzene	<0.00500	0.0500	0.0487	97	78-110	
Chloroethane	< 0.0100	0.0500	0.0348	70	62-113	
Chloroform	< 0.00500	0.0500	0.0424	85	79-111	
Methyl Chloride	<0.0100	0.0500	0.0376	75	64-115	
2-Chlorotoluene	<0.00500	0.0500	0.0503	101	79-113	
4-Chlorotoluene	<0.00500	0.0500	0.0513	103	76-114	
p-Cymene (p-Isopropyltoluene)	< 0.00500	0.0500	0.0510	102	71-123	
Dibromochloromethane	<0.00500	0.0500	0.0496	99	74-117	
1,2-Dibromo-3-Chloropropane	<0.00500	0.0500	0.0426	85	70-124	
1,2-Dibromoethane	<0.00500	0.0500	0.0485	97	75-117	
Methylene bromide	< 0.00500	0.0500	0.0442	88	72-114	
1,2-Dichlorobenzene	< 0.00500	0.0500	0.0530	106	77-115	
1,3-Dichlorobenzene	< 0.00500	0.0500	0.0520	104	79-112	
1,4-Dichlorobenzene	< 0.00500	0.0500	0.0523	105	76-112	
Dichlorodifluoromethane	< 0.00500	0.0500	0.0431	86	64-138	
1,1-Dichloroethane	< 0.00500	0.0500	0.0426	85	71-121	
1,2-Dichloroethane	<0.00500	0.0500	0.0457	91	72-111	
1,1-Dichloroethene	<0.00500	0.0500	0.0452	90	74-124	
cis-1,2-Dichloroethylene	<0.00500	0.0500	0.0423	85	72-121	
trans-1,2-dichloroethylene	<0.00500	0.0500	0.0426	85	72-117	
1,2-Dichloropropane	<0.00500	0.0500	0.0462	92	75-113	
1,3-Dichloropropane	<0.00500	0.0500	0.0468	94	74-113	
2,2-Dichloropropane	<0.00500	0.0500	0.0389	78	58-131	
1,1-Dichloropropene	< 0.00500	0.0500	0.0426	85	77-116	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

Project Name: Ram Yates #2 TB

Work Order #: 567387 Lab Batch #: 3032625 **Date Analyzed:** 11/05/2017 (

Project ID: RAMRNM0002

Date Analyzed: 11/05/2017	Date Prepared: 11/05	5/2017	A	nalyst: S.	AD	
QC- Sample ID: 567387-001 S	Batch #: 1		Ν	Aatrix: W	/ater	
Reporting Units: mg/L	MATR	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
VOCs by SW-846 8260B	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes						
cis-1,3-Dichloropropene	<0.00500	0.0500	0.0470	94	75-119	
trans-1,3-dichloropropene	<0.00500	0.0500	0.0528	106	75-123	
Ethylbenzene	< 0.00500	0.0500	0.0504	101	80-116	
Hexachlorobutadiene	<0.00500	0.0500	0.0564	113	79-123	
Isopropylbenzene	<0.00500	0.0500	0.0491	98	79-117	
Methylene Chloride	< 0.00500	0.0500	0.0423	85	67-116	
MTBE	< 0.00500	0.0500	0.0415	83	70-125	
Naphthalene	< 0.0100	0.0500	0.0564	113	72-157	
n-Propylbenzene	<0.00500	0.0500	0.0531	106	75-121	
Styrene	< 0.00500	0.0500	0.0519	104	74-124	
1,1,1,2-Tetrachloroethane	< 0.00500	0.0500	0.0484	97	75-114	
1,1,2,2-Tetrachloroethane	< 0.00500	0.0500	0.0483	97	75-113	
Tetrachloroethylene	< 0.00500	0.0500	0.0505	101	78-117	
Toluene	< 0.00500	0.0500	0.0485	97	77-112	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0511	102	70-140	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0503	101	71-135	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0437	87	75-118	
1,1,2-Trichloroethane	< 0.00500	0.0500	0.0486	97	75-114	
Trichloroethylene	< 0.00500	0.0500	0.0454	91	70-123	
Trichlorofluoromethane	< 0.00500	0.0500	0.0398	80	69-118	
1,2,3-Trichloropropane	< 0.00500	0.0500	0.0486	97	73-115	
1,2,4-Trimethylbenzene	<0.00500	0.0500	0.0510	102	74-118	
1,3,5-Trimethylbenzene	< 0.00500	0.0500	0.0537	107	77-119	
o-Xylene	< 0.00500	0.0500	0.0518	104	78-122	
m,p-Xylenes	<0.0100	0.100	0.0998	100	79-118	
Vinyl Chloride	<0.00200	0.0500	0.0357	71	65-114	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Ram Yates #2 TB

Work Order # :	567387						Project II): RAMF	RNM0002			
Lab Batch ID:	3032887	QC- Sample ID:	567262	-001 S	Ba	tch #:	1 Matrix	k: Ground	d Water			
Date Analyzed:	11/09/2017	Date Prepared:	11/09/2	017	An	alyst: I	OHE					
Reporting Units:	mg/L		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inor	ganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	Kesutt [F]	[G]	/0	/ux		
Chloride		386	200	569	92	200	574	94	1	90-110	20	
Lab Batch ID:	3032887	QC- Sample ID:	567445	-001 S	Ba	tch #:	1 Matrix	k: Water				
Date Analyzed:	11/09/2017	Date Prepared:	11/09/2	017	An	alyst: I	OHE					
Reporting Units:	mg/L		Ν	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inor	ganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		[D]	[E]	Kesun [F]	[G]	/0	70K	70KI D	
Chloride		166	50.0	215	98	50.0	214	96	0	90-110	20	
Lab Batch ID:	3032786	QC- Sample ID:	567307	-001 S	Ba	tch #:	1 Matrix	k: Ground	d Water			
Date Analyzed:	11/08/2017	Date Prepared:	11/08/2	017	An	alyst: I	DEP					
Reporting Units:	mg/L		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Tot	al Metals by EPA 6010B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Sodium		372	25.0	399	108	25.0	399	108	0	75-125	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Project Name: Ram Yates #2 TB

Work Order #: 567387

Lab Batch #: 3032558				Project I	D: RAMRN	M0002
Date Analyzed: 11/07/2017 11:00	Date Prepar	ed: 11/07/2017	7 Anal	yst:YAV		
QC- Sample ID: 567261-001 D	Batch	n#: 1	Mat	rix: Groun	d Water	
Reporting Units: mg/L		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C		Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte			[B]			
Total Dissolved Solids		12800	12600	2	10	
Lab Batch #: 3032558						
Date Analyzed: 11/07/2017 11:00	Date Prepar	ed: 11/07/2017	7 Anal	yst:YAV		
QC- Sample ID: 567305-001 D	Batch	n#: 1	Mat	rix: Drinki	ing Water	
Reporting Units: mg/L		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total Dissolved Solids		605	606	0	10	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

RAMRNA RAMRNA	3ER: ハ ゆゆ2		#2 TB	coc / of /
SHIPPED TO:	XENCO	MATT MUGAV	ER:	TAT: Standard
				-
-	1	1 - 84		
	SODIUM TDS	TCL-VOC.		
WT 7	×			псимпка
L 13	××			
-				
/				
		P		
	1	X		
				111
			Temp CF:(0	Temp: /, // IR ID:R-8 CF:(0-6: -0.2°C)
			(6 Corre	(6-23: +0.2°C) Corrected Temp: /, 2
1			-	
DATER 217	RECEIVED BY:	addit		1:2041
DATE	RECEIVED BY:	W		
	AIRBILL NUMBER:			
DATE	Send PDF, EDD, an	INVOICE (if applicable	e) to: YFCH at iulie czech@e	
-	LABORATORY ADDRESS:	And	Midland TX	10165
		Image: State of Sample Containers Image: State of Sample Containers Image: State of Sample Containers Image: State of Sample Containers	ECT NUMBER: PROJECT M R.V.M Ødp2 KAM V V V </td <td>ECT NUMBER: MR.//M ØØ2 PROJECT MANAGER: XEVCO PROJECT MANAGER: NATT/MULAVERO MATT/MULAVERO NATT/MULAVERO ATT NULLORIDE Sold NDF, EDD, and INVOICE (If applicable) to: JULIE CZECH at julie.czech</td>	ECT NUMBER: MR.//M ØØ2 PROJECT MANAGER: XEVCO PROJECT MANAGER: NATT/MULAVERO MATT/MULAVERO NATT/MULAVERO ATT NULLORIDE Sold NDF, EDD, and INVOICE (If applicable) to: JULIE CZECH at julie.czech

Page 26 of 29

Final 1.000

Inter-Office Shipment

Page 1 of 1

IOS Number 1051319

Date/Time:	11/03/17 10:47
Lab# From:	Midland
Lab# To:	Houston

Created by: Jessica Kramer **Delivery Priority:**

770668844250

Air Bill No.:

Please send report to: Kelsey Brooks

Address: 1211 W. Florida Ave, Midland TX 79701 Phone:

E-Mail: kelsey.brooks@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	PM	Analytes	Sign
567387-001	W	TMW-1	11/02/17 11:00	E300	Inorganic Anions by EPA 300	11/08/17	11/30/17	KEB	CL	
567387-001	W	TMW-1	11/02/17 11:00	SW6010B	Total Metals by EPA 6010B	11/08/17	05/01/18	KEB	NA	
567387-001	W	TMW-1	11/02/17 11:00	SW8260B	VOCs by SW864 8260B	11/08/17	11/16/17	KEB	BDCME BRBZ BRCLME]	
567387-001	W	TMW-1	11/02/17 11:00	SM2540C	TDS by SM2540C	11/08/17	11/09/17	KEB	TDS	
567387-002	W	TMW-2	11/02/17 12:05	SW6010B	Total Metals by EPA 6010B	11/08/17	05/01/18	KEB	NA	
567387-002	W	TMW-2	11/02/17 12:05	SM2540C	TDS by SM2540C	11/08/17	11/09/17	KEB	TDS	
567387-002	W	TMW-2	11/02/17 12:05	SW8260B	VOCs by SW864 8260B	11/08/17	11/16/17	KEB	BDCME BRBZ BRCLME]	
567387-002	W	TMW-2	11/02/17 12:05	E300	Inorganic Anions by EPA 300	11/08/17	11/30/17	KEB	CL	
567387-003	W	Trip Blank	11/02/17 00:00	SW8260B	VOCs by SW864 8260B	11/08/17	11/16/17	KEB	BDCME BRBZ BRCLME]	

Inter Office Shipment or Sample Comments:

fession knomen

Relinquished By

Jessica Kramer

Date Relinquished: 11/03/2017

Received By:

Jean Quila

Date Received: 11/04/2017 10:30

Cooler Temperature: <u>3.6</u>

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Houston IOS #: 1051319

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used :

Sent By:	Jessica Kramer	Date Sent:	11/03/2017 10:47 AM
Received By:	Jean Quila	Date Received:	11/04/2017 10:30 AM

Sample Receipt Checklist

Comments

· · ·	
#1 *Temperature of cooler(s)?	3.6
#2 *Shipping container in good condition?	Yes
#3 *Samples received with appropriate temperature?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	No
#5 *Custody Seals Signed and dated for Containers/coolers	No
#6 *IOS present?	Yes
#7 Any missing/extra samples?	No
#8 IOS agrees with sample label(s)/matrix?	Yes
#9 Sample matrix/ properties agree with IOS?	Yes
#10 Samples in proper container/ bottle?	Yes
#11 Samples properly preserved?	Yes
#12 Sample container(s) intact?	Yes
#13 Sufficient sample amount for indicated test(s)?	Yes
#14 All samples received within hold time?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by:

1		
-		
	2	2

Date: 11/04/2017

Jean Quila

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Enviroclean- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 11/02/2017 04:21:00 PM Temperature Measuring device used : R8 Work Order #: 567387 Comments Sample Receipt Checklist 1.2 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? Yes Houston #18 Water VOC samples have zero headspace? Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst: JKR

PH Device/Lot#: 213315

Date: 11/03/2017

Checklist completed by: Jessica Kramer Checklist reviewed by: Markana Kelsey Brooks

Date: 11/03/2017

Analytical Report 567389

for Enviroclean- Midland

Project Manager: Julie Czech

Ram Yates #2 TB

RAMRNM0002

09-NOV-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

09-NOV-17

Project Manager: **Julie Czech Enviroclean- Midland** 2405 ECR 123 Midland, TX 79706

Reference: XENCO Report No(s): 567389 Ram Yates #2 TB Project Address: TX

Julie Czech:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 567389. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 567389 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

he p

Mike Kimmel Client Services Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 567389

Enviroclean- Midland, Midland, TX

Ram Yates #2 TB

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
TMW-1	S	11-02-17 09:05	0 - 1 ft	567389-001
TMW-1	S	11-02-17 09:05	4 - 5 ft	567389-002
TMW-1	S	11-02-17 09:05	9 - 10 ft	567389-003
TMW-1	S	11-02-17 09:05	14 - 15 ft	567389-004
TMW-1	S	11-02-17 09:05	19 - 20 ft	567389-005
TMW-1	S	11-02-17 09:05	24 - 25 ft	567389-006

CASE NARRATIVE

Client Name: Enviroclean- Midland Project Name: Ram Yates #2 TB

Project ID: *RAMRNM0002* Work Order Number(s): 567389
 Report Date:
 09-NOV-17

 Date Received:
 11/02/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Project Id:RAMRNM0002Contact:Julie CzechProject Location:TX

Certificate of Analysis Summary 567389

Enviroclean- Midland, Midland, TX Project Name: Ram Yates #2 TB

Date Received in Lab:Thu Nov-02-17 04:21 pmReport Date:09-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	567389-0	01	567389-0	02	567389-0	03	567389-0	04	567389-0	05	567389-0	06
Analysis Requested	Field Id:	TMW-	l	TMW-1		TMW-1		TMW-1		TMW-1		TMW-1	l
Analysis Kequestea	Depth:	0-1 ft		4-5 ft		9-10 ft		14-15 f	t	19-20 ft	:	24-25 ft	t
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Nov-02-17	09:05	Nov-02-17 ()9:05	Nov-02-17 ()9:05	Nov-02-17 ()9:05	Nov-02-17 (9:05	Nov-02-17 (09:05
Inorganic Anions by EPA 300	Extracted:	Nov-04-17	12:32	Nov-04-17	2:32	Nov-04-17	2:32	Nov-04-17 1	2:32	Nov-04-17 1	2:32	Nov-04-17 1	12:32
SUB: TX104704215-17-23	Analyzed:	Nov-05-17	08:44	Nov-05-17 (08:52	Nov-05-17 ()8:59	Nov-05-17 (9:21	Nov-05-17 (9:28	Nov-05-17 ()9:35
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		38.6	9.62	27.8	9.63	42.5	9.40	10.3	9.49	ND	9.56	16.4	9.88

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

Project Name: Ram Yates #2 TB

Work Order #: 567389							Pro	ject ID: 1	RAMRNM	0002	
Analyst: MAB	D	ate Prepar	ed: 11/04/20	17			Date A	nalyzed:	1/05/2017		
Lab Batch ID: 3032484 Sample: 7633865-1-	BKS	Batch	#: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUE	DY	
Inorganic Anions by EPA 300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	<10.0	100	91.5	92	100	96.4	96	5	80-120	20	

Form 3 - MS / MSD Recoveries

Project Name: Ram Yates #2 TB

Work Order # :	567389						Project II): RAMF	RNM0002			
Lab Batch ID:	3032484	QC- Sample ID:	567388	-061 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	11/05/2017	Date Prepared:	11/04/2	2017	An	alyst: 1	MAB					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
Inor	ganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		[D]	[E]	Kesunt [F]	[G]	/0	70K	70KI D	
Chloride		234	189	426	102	189	437	107	3	80-120	20	
Lab Batch ID:	3032484	QC- Sample ID:	567389	-003 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	11/05/2017	Date Prepared:	11/04/2	2017	An	alyst: 1	MAB					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
Inor	ganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	Kout [F]	[G]		701		
Chloride		42.5	190	229	98	188	233	101	2	80-120	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery $[G] = 100^{*}(F-A)/E$

ENVIRO		RAM RNMQQQ2	RAM YATES #2 TB
	SERVICES, 328	SHIPPED TO:	AT/
Matthew N- Murauen	Muraven	_	
SAMPHER:S SIGNATURE:	C	Contair	
Date Time	Sample ID	Sample # of Sample CHLO RID	
11217 090S	TMW-1 (0-151)	-	
	-	- · ·	
	-		
	-		
	TMW-1 (19-20F4)	*	
*	TMW-1 (24-\$25 \$4)	4 - ×	
	TMD -1 (29-30 Fr)		
	(Internet		
TOTAL NUMBER OF CONTAINERS	TAINERS		
RELINGUISHING		DATE 112/17 RECEIVED BX	M ladeth DATE
RELINQUISHED BY:		DATE RÉCEIVED BY:	DATE
METHOD OF SHIPMENT:	MAND DELIVERED	0	
RECEIVED IN LABORATORY BY:	RY BY:	TIME Send PDF, EDD, a	Send PDF, EDD, and INVOICE (if applicable) to: JULIE CZECH at julie.czech@eccgrp.com
Kelsev		LABORATORY ADDRESS:	

Final 1.000

Inter-Office Shipment

Page 1 of 1

IOS Number 1051322

Date/Time:	11/03/17 10:49	Created by:	Jessica Kramer	Please send report to:	Kelsey
Lab# From:	Midland	Delivery Priority:	:	Address:	1211 W
Lab# To:	Houston	Air Bill No.:	770668844250	Phone:	
				E Maile	kelsev ł

ey Brooks

W. Florida Ave, Midland TX 79701

E-Mail: kelsey.brooks@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	PM	Analytes	Sign
567389-001	S	TMW-1	11/02/17 09:05	E300	Inorganic Anions by EPA 300	11/08/17	11/30/17	KEB	CL	
567389-002	S	TMW-1	11/02/17 09:05	E300	Inorganic Anions by EPA 300	11/08/17	11/30/17	KEB	CL	
567389-003	S	TMW-1	11/02/17 09:05	E300	Inorganic Anions by EPA 300	11/08/17	11/30/17	KEB	CL	
567389-004	S	TMW-1	11/02/17 09:05	E300	Inorganic Anions by EPA 300	11/08/17	11/30/17	KEB	CL	
567389-005	S	TMW-1	11/02/17 09:05	E300	Inorganic Anions by EPA 300	11/08/17	11/30/17	KEB	CL	
567389-006	S	TMW-1	11/02/17 09:05	E300	Inorganic Anions by EPA 300	11/08/17	11/30/17	KEB	CL	

Inter Office Shipment or Sample Comments:

fession knomen

Relinquished By Jessica Kramer

Date Relinquished: 11/03/2017

Received By: Jean Quila

Date Received: 11/04/2017 10:30

Cooler Temperature: <u>3.6</u>

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Houston IOS #: 1051322

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used :

Sent By:	Jessica Kramer	Date Sent:	11/03/2017 10:49 AM
Received By:	Jean Quila	Date Received:	11/04/2017 10:30 AM

Sample Receipt Checklist

Comments

· · ·	
#1 *Temperature of cooler(s)?	3.6
#2 *Shipping container in good condition?	Yes
#3 *Samples received with appropriate temperature?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	No
#5 *Custody Seals Signed and dated for Containers/coolers	No
#6 *IOS present?	Yes
#7 Any missing/extra samples?	No
#8 IOS agrees with sample label(s)/matrix?	Yes
#9 Sample matrix/ properties agree with IOS?	Yes
#10 Samples in proper container/ bottle?	Yes
#11 Samples properly preserved?	Yes
#12 Sample container(s) intact?	Yes
#13 Sufficient sample amount for indicated test(s)?	Yes
#14 All samples received within hold time?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by:

1.1	12	A	
h	12	63.	
1	T		
1-	-		
- 1-			

Date: 11/04/2017

Jean Quila

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Enviroclean- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 11/02/2017 04:21:00 PM Temperature Measuring device used : R8 Work Order #: 567389 Comments Sample Receipt Checklist 1.2 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? Yes Houston #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 11/03/2017

Checklist completed by: Jessica Kramer Checklist reviewed by: Mark Jessica Kramer Kelsey Brooks

Date: 11/03/2017