## **Remediation Completion Report**

February 20, 2017

## Oilfield Water Logistics (OWL) Produced Water Pipeline Release Nearby OWL Red Hills SWD Section 36, T25S, R36E, Lea County, New Mexico – Case No. 1RP 4498

### **Prepared For:**



Mr. Phillip Sanders
Oilfield Water Logistics
8214 Westchester Drive, Suite 850
Dallas, Texas 75225

New Mexico Energy Minerals and Natural Resources Department (EMNRD)
Oil Conservation Division (OCD)
Ms. Olivia Yu
1220 South Saint Francis Drive
Santa Fe, New Mexico 87505

### Prepared By:



500 Moseley Road Cross Roads, Texas 76227 (940) 387-0805 Phone (940) 387-0830 Fax



500 Moseley Road Cross Roads, Texas 76227 Phone: 940-387-0805 Fax: 940-387-0830

February 20, 2018

Mr. Phillip Sanders Oilfield Water Logistics 8214 Westchester Drive, Suite 850 Dallas, Texas 75225

RE: Remediation Completion Report: Oilfield Water Logistics (OWL) Produced Water Pipeline Release Nearby OWL Red Hills SWD, Section 36, T25S, R36E, Lea County, New Mexico – Case No. 1RP 4498

Dear Mr. Sanders:

KJ Environmental Mgt., Inc. (KJE) is pleased to submit this Remediation Completion report for the Produced Water Pipeline Release located near the Red Hills Salt-Water Disposal in Lea County, New Mexico. This report discusses background information, assessment purpose and scope of work, execution of work, and documents the corresponding results.

We appreciate your selection of KJE for this project and look forward to assisting you further on other projects. If you have any questions, please do not hesitate to contact either of the undersigned at 940-387-0805. Thank you for the opportunity to provide professional environmental consulting services. It has been a pleasure working with you.

Best Regards,

Heather Leven

**Environmental Project Manager** 

Dena M. Vandenberg, REM, LEEP AP

Director of Environmental Services

## **Table of Contents**

| 1.0 Summary                  |                                                                                      | 4 |
|------------------------------|--------------------------------------------------------------------------------------|---|
| 2.0 Introduction             |                                                                                      | 4 |
| 3.0 Environmental Assessr    | nent Activities                                                                      | 5 |
| 3.1 Delineation Activities   |                                                                                      | 5 |
| 3.2 Remediation Activitie    | s                                                                                    | 6 |
| 3.3 Deviations from the S    | cope                                                                                 | 7 |
| 4.0 Soil/Groundwater Samp    | le Collection/Handling Procedures                                                    | 7 |
| 5.0 Summary of Analytical    | Results                                                                              | 7 |
| 6.0 Photographs              |                                                                                      | 8 |
| 7.0 Conclusions/Recomme      | ndations                                                                             | 8 |
| 8.0 Qualifications of Enviro | nmental Professional                                                                 | 9 |
| 9.0 Signature of Environme   | ntal Professional                                                                    | 9 |
| APPENDICES                   |                                                                                      |   |
| Appendix A – Figures:        |                                                                                      |   |
|                              | I – Boring Location Map                                                              |   |
| A                            | 2 – Soil Excavation Map                                                              |   |
| A                            | B – Detailed View of Blending Areas                                                  |   |
| Appendix B – Analytical      | Data:                                                                                |   |
|                              | able 1 – Soil Analytical Data able 2 – Stockpile Field Screening and Analytical Data |   |
| Appendix C – Photograp       | hy Exhibits                                                                          |   |
| Appendix D – Boring Lo       | gs                                                                                   |   |
| Appendix E – Laborator       | •                                                                                    |   |
| • •                          | ental Professional's Credentials                                                     |   |
| Appendix G – NMOCD A         | Approved Pertinent Information and Workplans                                         |   |

### 1.0 Summary

KJ Environmental Mgt., Inc. (KJE), was retained by Oilfield Water Logistics (OWL) to complete certain delineation and remediation activities for a produced water pipeline release to vacant land situated approximately five miles southwest of Jal in Lea County, New Mexico. The results of the delineation and remediation activities are summarized as follows:

• On October 28, 2016, KJE was notified by Mr. Phillip Sanders, Safety Director with OWL, regarding two spill occurrences at the above referenced location. Following the New Mexico Oil Conservation Division (NMOCD), part of the New Mexico Energy, Minerals, and Natural Resources Department (EMNRD) notification and approval, the two spills were assigned remediation case numbers and subsurface investigations to delineate the potential soil impacts ensued. Subsequent to soil delineation activities, soil exhibiting concentrations of chloride above the 600 parts per million (ppm), NMOCD approved action limit, were excavated to depths of four feet below ground surface (bgs). Excavated soil was stockpiled on poly liners and blended with soil deemed representative of clean, native soil. Following confirmatory sampling of the stockpiles, the soil stockpiles were backfilled into the excavations, the results of which are further summarized herein.

### 2.0 Introduction

On October 28, 2016, KJE was provided notification by Mr. Phillip Sanders, Safety Director with OWL, regarding two spill occurrences over a relatively short time frame. Mr. Sanders provided further notification to the Oil Conservation Division (OCD), part of The New Mexico Energy, Minerals, and Natural Resources Department (EMNRD), of the spill at 2:00 p.m. on October 28, 2016. KJE was notified of the second subsequent spill occurrence on November 2, 2016. Mr. Sanders notified OCD of this subsequent spill occurrence at 8:11 a.m. on November 2, 2016. It was determined that 1,659 barrels of produced water was released during the first spill event and 418 barrels of produced water was released during the second spill event. KJE submitted Form C-141 Spill reports to OCD on November 2, 2016 for their review. A response received from the OCD on November 7, 2016, indicated that both incidents were assigned remediation case numbers RP-4497 (first spill event) and RP-4498 (second spill event). The latter spill event is the subject of this report. The general view of both spills is illustrated in Appendix A on Figure A1.

Subsequent to the NMOCD directive to complete division-approved corrective action, at the request of the NMOCD, KJE completed a delineation workplan detailing the collection of soil samples for analysis to delineate the vertical and horizontal extent of produced water impacted soil. This workplan was submitted by KJE and administratively approved by Mr. Tomas Oberding on November 30, 2016. The NMOCD approved Work Plan for the Characterization of Impacts is located in Appendix G of this report.

As such, following approval of the soil delineation workplan from December 5, 2016, through December 21, 2016, forty-nine (49) soil borings were advanced within Spill Area 2, one of which

(soil boring BG-2) was advanced outside of the affected soil areas nearby each spill area in an effort confirm soil background constituents. Soil samples collected were transferred to an accredited lab and analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX), total petroleum hydrocarbons (TPH), and chloride. Analytical soil data identified concentrations of TPH (maximum concentration of 818 milligrams per kilogram [mg/kg]) and chloride (maximum concentration of 11,900 mg/kg). The impacted soil depth was verified at depths of 0 to greater than 14 feet below ground surface (bgs) with an average depth of hydrocarbon and chloride impacted soil estimated to be 5.64 feet bgs, corresponding to an estimated volume of 21,656 cubic yards.

Subsequently, KJE submitted the Spill Delineation Report, Remediation Plan, and Addendum to the Remediation Plan to the NMOCD on February 17 and April 12, 2017, respectively, in an effort to detail planned remediation efforts. Based on the laboratory analytical data, TPH and BTEX were identified at concentrations below the applicable regulatory criteria and were eliminated as constituents of concern, leaving chloride as the only constituent of concern. Details of the remediation plan and addendum included excavation of soil in areas where chloride concentrations exceeded 1,000¹ parts per million (ppm) up to a depth of four feet bgs. Subsequent to excavation, soils were to be placed on poly liner and blended with soil deemed representative of clean, native soil. Following blending activities, soil stockpile confirmation samples were collected to confirm concentrations of chloride. Once concentrations were below the applicable criteria, soil was returned to the four foot poly-lined excavations. The Spill Delineation and Remediation Plan is located in Appendix G of this report. Implementation of the remediation plan and activities are further detailed below.

### 3.0 Environmental Assessment Activities

### 3.1 Delineation Activities

In accordance with the NMOCD Approved Remediation Plan, KJE personnel observed the drilling subcontractor advance seven soil borings (TSS-1 through TSS-6 and SS-02) along the southern boundary of the identified soil impact area in an attempt to further delineate the southern extent of impact and potential groundwater impacts. The locations of the soil borings are depicted on the Soil Boring Location Site Plan in Appendix A.

The subcontracted driller advanced the borings via truck-mounted backhoe/ excavator equipment. Soil borings TSS-1 through TSS-2 were advanced to a depth of four feet bgs with the intent to further delineate the southern boundary of the impacted soil area. Soil boring SS-02 was advanced to a maximum depth of 24 feet bgs, approximately 10 feet below the known vertical extent of soil impact, and intended to assess potential groundwater impacts in the area of soil impact. Water was not encountered during the drilling activities; therefore, water was not

<sup>&</sup>lt;sup>1</sup> The NMOCD originally mandated a soil cleanup level of 600 ppm; however, the Workplan Addendum approved by the NMOCD increased the soil cleanup level to 1,000 ppm, based on the landfarm standard (Title 19, Chapter 15, Part 36.15).

developed nor sampled during the sampling event. In lieu of groundwater, soil samples were collected from SS-02 at the termination depth of the boring.

Field screening for chloride concentrations and soil conductivity was conducted using a calibrated Hanna HI993310 soil conductivity meter. Field screening for Volatile Organic Compounds (VOCs) was conducted using a calibrated Photoionization Detector (PID) (Model RAE MINIRAE Lite 0-5K ppm) to screen for the highest readings from each of the borings. Photo documentation of field activities is included in Appendix C. The soil boring lithology and field screening data table (Table 1) is included in Appendix D for review.

#### 3.2 Remediation Activities

Based on prior delineation activities and KJE's NMOCD Approved Addendum to Remediation Plan, dated April 14, 2017, KJE conducted certain remediation activities that included the removal of chloride impacted soil to depths of four feet bgs, as depicted on Figure A2 located in Appendix A. Excavated soil was stockpiled on poly-liner and segregated into designated sections (A through F and M²) consisting of approximately 20 cubic yards of soil per stockpile. Stockpiles were field screened for Chlorides using the Horiba D-73 Portable Multiparamater Chloride Meter based on a frequency of approximately one sample for each 20 cubic yards of excavated soil. Per the NMOCD directive, every 10<sup>th</sup> soil sample was submitted to the laboratory for confirmation of analytical results.

Soil from stockpiles that exhibited chloride concentrations of 1,000 ppm or greater by field meter reading were blended with native soil representative of clean soil and field screened again. The results were recorded to confirm the accuracy of the meter. Field screening, laboratory analytical confirmatory data, and blended areas are provided in the table located in Appendix B. Subsequent to confirmatory analytical data, soil from stockpiles were backfilled and compacted into the poly-lined excavations.

Subsequent to backilling activities, the Revegetation and Noxious Weed Plan was implemented. Details of this plan included the broadcast application of BLM mix No. 2 (for sandy soil), on the remediation area outside of the road right-of-way in an effort to revegetate the impacted area. Further details regarding this plan are outlined in the Revegetation and Noxious Weed Plan located in Appendix G of this report.

As previously discussed, impacted soil located within the vicinity of the pipeline easements and in a 10 foot buffer zone, were left in place due to access and safety constraints.

<sup>&</sup>lt;sup>2</sup> Stockpile samples are represented by the Section that they were designated. For example, soil samples from the Section A stockpiles were represented by ASP followed by the sample number (ASP1 through ASP62).

### 3.3 Deviations from the Scope

As indicated above, rather than advance a boring to groundwater depth (SS-02), KJE advanced a boring to ten feet below the known contamination (24 feet bgs), in response to NMOCD recommendations. Analytical data from this soil boring is discussed in Section 5.0 of this report.

### 4.0 Soil/Groundwater Sample Collection/Handling Procedures

Soil samples were collected based on field indicators, proximity to the boring termination depths, or depth of potential impact as noted above, and select samples were collected in 4 ounce laboratory supplied glass containers for laboratory analysis. The collected soil samples were placed in laboratory-supplied containers, labeled, placed in an insulated container with ice, providing a 4°C environment for sufficient preservation until delivery to Xenco Laboratories (a third-party, independent, and licensed environmental laboratory in Midland, Texas) accompanied by completed chain-of-custody. The sample collection and handling activities were conducted in accordance with USEPA Standard Operating Procedures and strict chain-of-custody protocols. Before and after installation of each of the soil borings and construction of the temporary monitoring well, the drilling augers were decontaminated.

In lieu of available groundwater from SS-02 and based on the analytical data collected during the delineation phase of assessment, soil samples were submitted to the laboratory for analysis of chloride by EPA Method 300/300.1. Based on laboratory analytical data from the prior soil delineation investigation, soil samples collected from soil borings TSS-1 through TSS-6 were analyzed for chloride by SW-846 Method 300/300.1. Soil stockpile samples and confirmatory samples were analyzed for chloride by SW-846 Method 300/300.1. These analytical methods are the EPA, NMOCD, and industry-approved standards used to determine the potential for soil contamination.

The sample results were compared to the NMOCD approved applicable criteria, as detailed below and in Appendix B.

### **5.0 Summary of Analytical Results**

#### Soil Action Limits

The NMOCD required delineation of Benzene, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes), TPH (Total Petroleum Hydrocarbons), and Chlorides for the spill areas. Published values for BTEX and TPH were obtained from the NMOCD document "Guidelines for Remediation of Leaks, Spills, and Releases, 1993". Horizontal and vertical delineation values were determined to be 10 ppm Benzene, 50 ppm BTEX, and 5,000 ppm TPH since no groundwater or surface water is present in the area of the site. Verbal directives issued by NMOCD representatives Ms. Kristen Lynch and Mr. Tomáš Oberding were that horizontal delineation for chlorides is 600 ppm and vertical delineation is 250 ppm. However, Mr. Oberding approved the Addendum to the Remediation Workplan on April 18, 2017, increasing the chloride cleanup target concentrations

to 1,000 ppm. Additionally, under the NMOCD directive, soil was to be excavated from a depth of four feet bgs. Remaining soil was to be left in place. Figure A1 in Appendix A soil borings collected and areas of exceedances. Analytical results are included on Table 2 in Appendix B for review. Laboratory reports are also included in Appendix E.

#### Soil Delineation and Remediation Activities - Analytical Results

Based on prior soil delineation analytical data, TPH and BTEX were eliminated as constituents of concern. As such, chloride was the only constituent of concern requiring remediation. In an effort to further delineate impacted soils, soil samples (TSS-01 through TSS-06 and SS-02) were collected on the southern boundary of the spill area. Additionally, following soil stockpile blending, laboratory analytical confirmatory samples were collected. Laboratory analytical data did not identify the detectable presence of chloride above the NMOCD mandated applicable regulatory criteria. Based on the laboratory analytical results, delineation and remediation of impacted soils has been completed.

Analytical summary tables of the results are included in Appendix B. Copies of the laboratory analytical reports with chain-of-custody forms are included in Appendix E.

### **6.0 Photographs**

Photo documentation of the drilling and sampling activities are included in Appendix C.

### 7.0 Conclusions/Recommendations

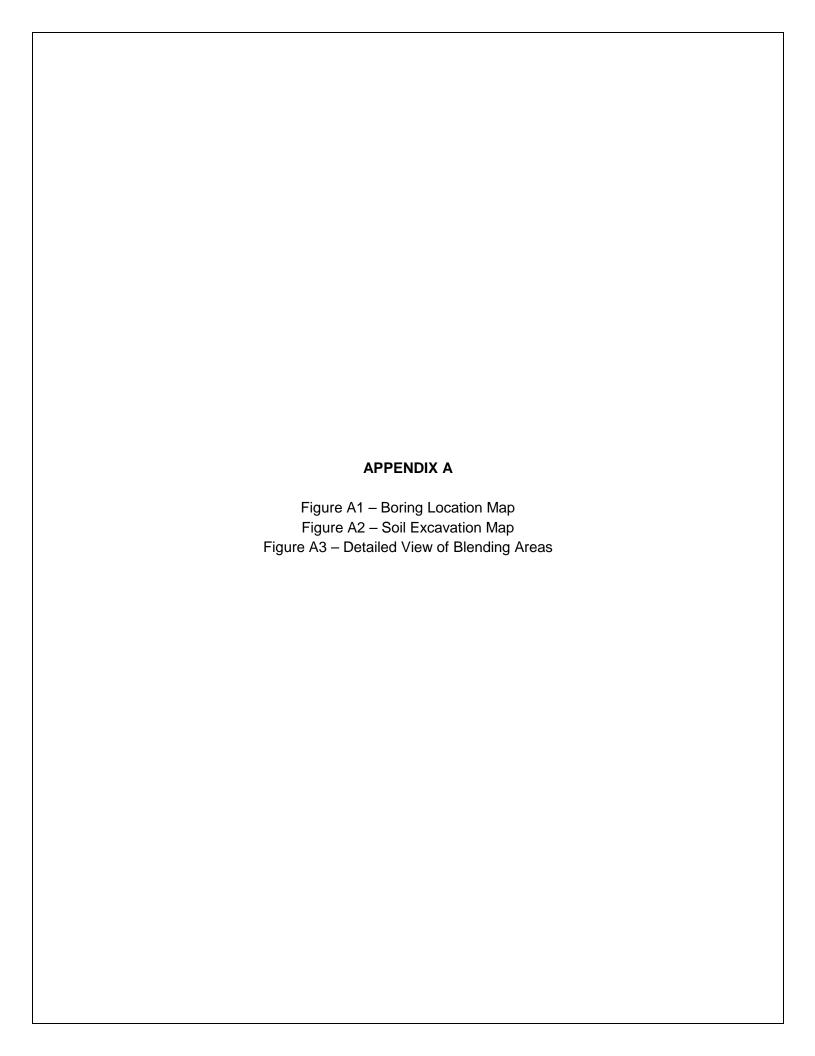
Based on laboratory analytical data, chloride was reported at concentrations above applicable NMOCD criteria. As such, following NMOCD directives, remedial activities ensued which effectively remediated chloride impacted soil to concentrations below applicable NMOCD criteria. While some areas of impact remain, KJE understands that these areas are located within the pipeline easements and buffer zones, and/or at depths greater than four feet bgs. Since there is no noticeable impact to wildlife, no surface water in the site area, groundwater depth is believed to be greater than 100 feet, chloride impacts are not anticipated to be at depths greater than 24 feet bgs, and there are no buildings on site, these chloride considerations should not be a factor.

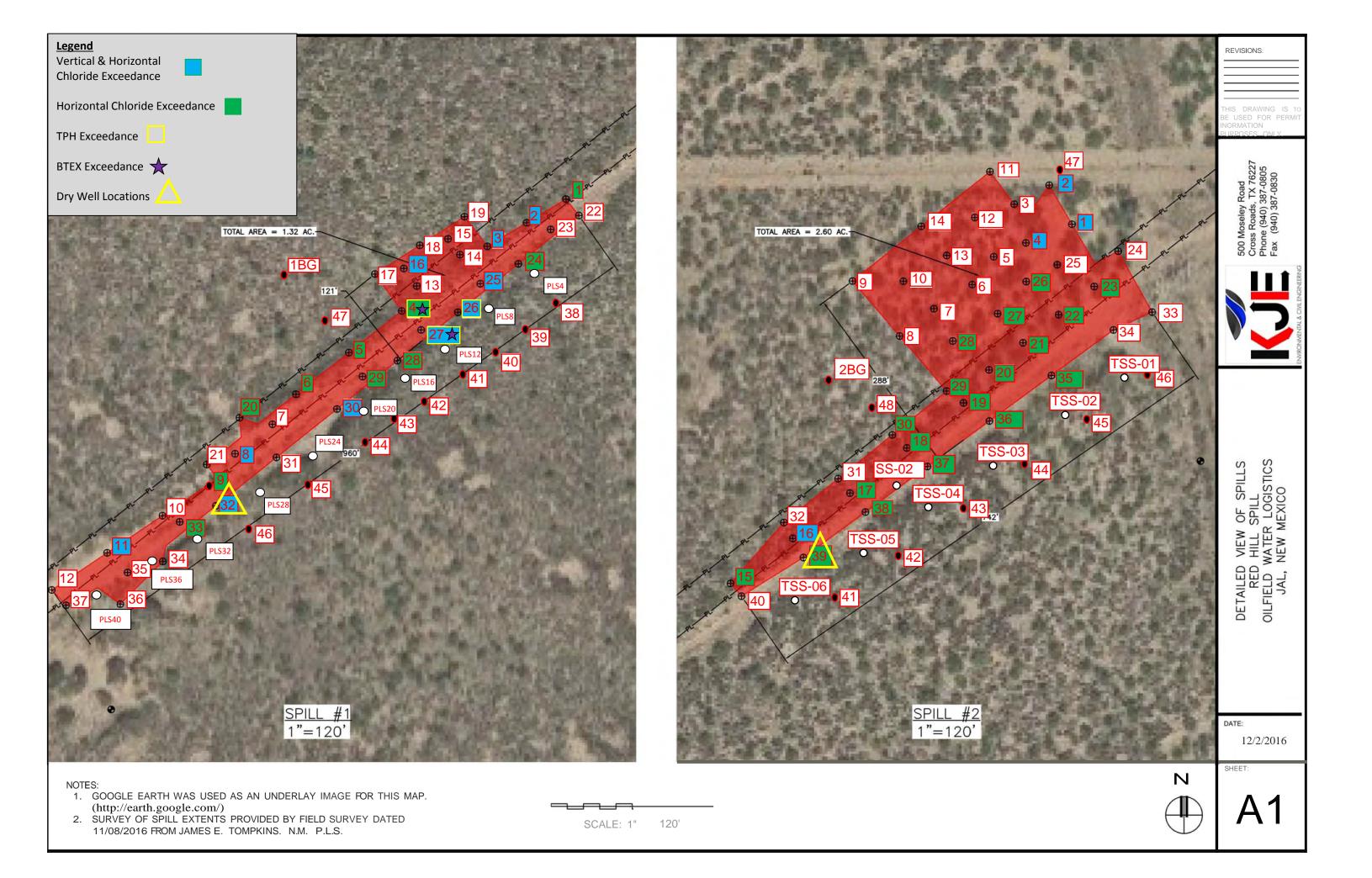
Although no environmental investigation can determine absolutely whether environmental risk exists on a particular property, based on the completed scope of work, KJE does not recommend additional remediation of the impacted on-site soil.

If we can be of further assistance, please do not hesitate to contact us at 940-387-0805. Thank you for the opportunity to provide professional environmental consulting services. It has been a pleasure working with you.

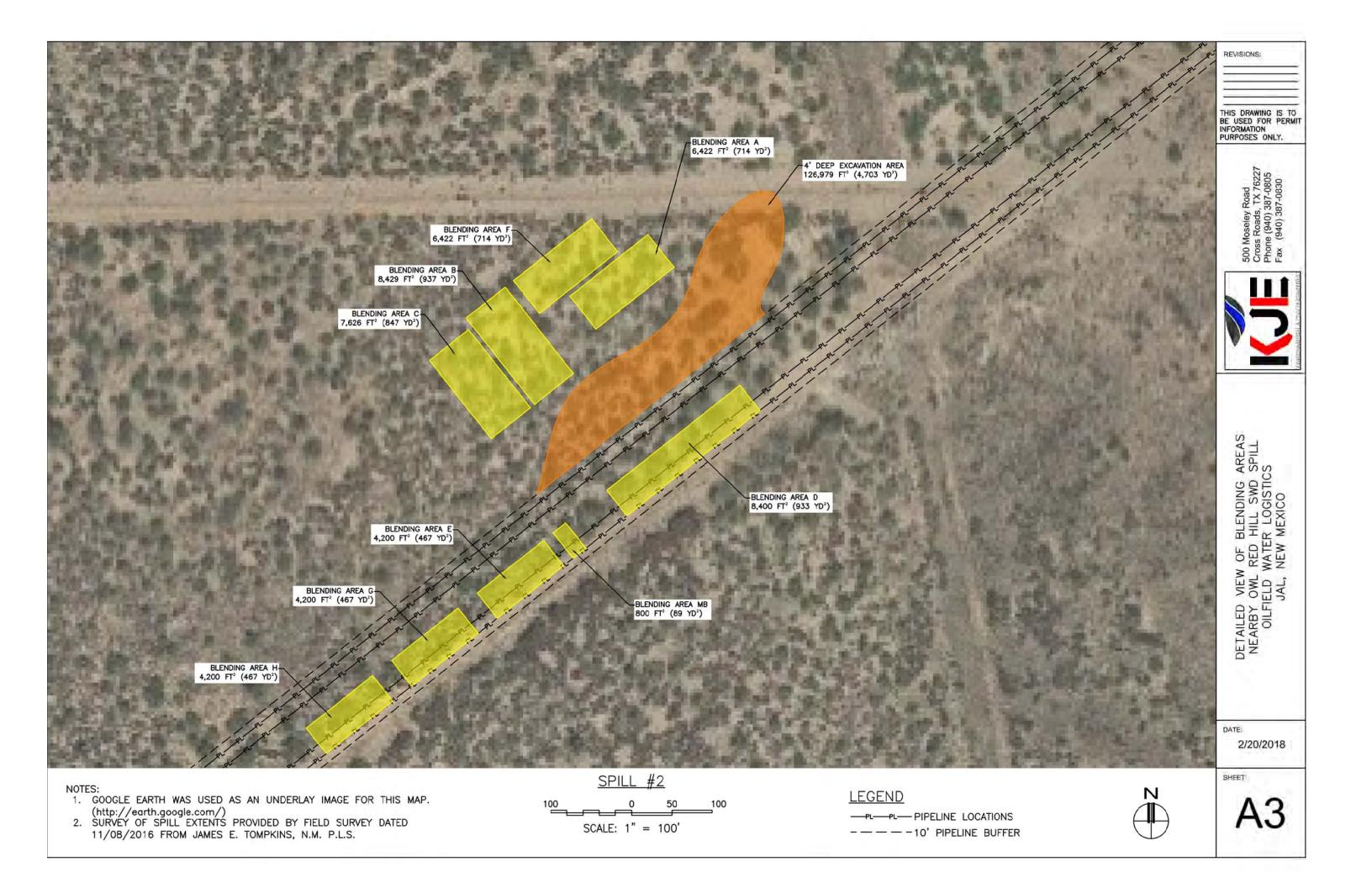
### 8.0 Qualifications of Environmental Professional

This is to certify that the Remediation Completion report completed at the site located near the Red Hills Salt-Water Disposal in Lea County, New Mexico; was performed following EPA, NMOCD, and industry-approved standards/protocols. This work was conducted between November 2, 2016 and July 2017 for Mr. Phillip Sanders, and all field activities were completed under the supervision of Ms. Dena M. Vandenberg, REM, LEED AP. Ms. Vandenberg's credentials are included in Appendix F.


## 9.0 Signature of Environmental Professional


2/20/2018

Dena M. Vandenberg, REM, LEED AP Environmental Professional Director of Environmental Services


Senat and entiry

Date











#### Table 1: Soil Analytical Data Produced Water Pipeline Release Nearby Red Hills SWD Lea County, New Mexico New Mexico - Case No. 1RP 4498 Spill 2

|                  |            |              |                                 |                          | Spill 2                                                                                                                          |                                    |              |                   | 1                | 1-1              |                                              |                 |
|------------------|------------|--------------|---------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|-------------------|------------------|------------------|----------------------------------------------|-----------------|
| Call Davidson ID |            | I au alburda | Sample ID                       | Data Callested           | Field Data                                                                                                                       | Call Calanteira                    | PID          | Chlorides         | Benzene mg/kg    | Total BTEX mg/kg | atory Results Chlorides mg/kg tion Limits    | Total TPH mg/kg |
| Soil Boring ID   | Latitude   | Longitude    | Sample ID                       | Date Collected           | Soil Type                                                                                                                        | Soil Color/Size                    | (PPM)        | (field screening) | 10 mg/kg         | 50 mg/kg         | Horizontal: 600 mg/kg<br>Vertical: 250 mg/kg | 5000 mg/kg      |
| SB1              | 32.084175° | -103.224745° | SB1 (0'-2')<br>SB1 (2'-4')      | 12/12/2016<br>12/12/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Red/Fine<br>Light red/Fine         | 10.2<br>8.6  | 165<br>460        | <0.001<br><0.001 | <0.001<br><0.001 | 353<br>483                                   | <15.0<br><15.0  |
|                  |            |              | SB1 (4'-6')                     | 12/12/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 8.7          | 440               | < 0.001          | <0.001           | 800                                          | <15.0           |
|                  |            |              | SB1 (6'-8')<br>SB1 (8'-10')     | 12/12/2016<br>12/12/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines PR                                                                | Light red/Fine<br>PR               | 10.0<br>PR   | 360<br>PR         | <0.001<br>N/A    | <0.001<br>N/A    | 539<br>N/A                                   | <15.0<br>N/A    |
| SB2              | 32.084335° | -103.224854° | SB2 (0'-2')                     | 12/12/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 7.7          | 130               | < 0.001          | <0.001           | 7.45                                         | <15.0           |
|                  |            |              | SB2 (2'-4')<br>SB2 (4'-6')      | 12/12/2016<br>12/12/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Red/Fine         | 8.4<br>12.7  | 62<br>550         | <0.001<br><0.001 | <0.001<br><0.001 | 639<br>592                                   | <15.0<br><15.0  |
|                  |            |              | SB2 (6'-8')                     | 12/12/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light gray/Fine                    | 45.7         | 75                | <0.001           | <0.001           | 728                                          | <15.0           |
| SB3              | 32.084257° | -103.225022° | SB2 (8'-10')<br>SB3 (0'-2')     | 12/12/2016<br>12/12/2016 | PR SP - Poorly - graded sands, gravelly sands, little or no fines                                                                | PR<br>Light red/Fine               | PR<br>8.0    | PR<br>85          | N/A<br><0.001    | N/A<br><0.001    | N/A<br>414                                   | N/A<br><15.0    |
|                  |            |              | SB3 (2'-4')                     | 12/12/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 5.8          | 65                | < 0.001          | <0.001           | 185                                          | <15.0           |
|                  |            |              | SB3 (4'-6')<br>SB3 (6'-8')      | 12/12/2016<br>12/12/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 7.3<br>7.3   | 10<br>10          | <0.001<br><0.001 | <0.001<br><0.001 | 8.85<br>5.85                                 | <15.0<br><15.0  |
| SB4              | 32.084099° | -103.224966° | SB4 (0'-2')                     | 12/12/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 48.4         | 270               | < 0.001          | <0.001           | 1900                                         | <15.0           |
|                  |            |              | SB4 (2'-4')<br>SB4 (4'-6')      | 12/12/2016<br>12/12/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 4.9<br>6.1   | 515<br>540        | <0.001<br><0.001 | <0.001<br><0.001 | 3990<br>5350                                 | <15.0<br><15.0  |
|                  |            |              | SB4 (6'-8')                     | 12/12/2016<br>12/12/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 6.9          | 425               | < 0.001          | < 0.001          | 6180                                         | <15.0           |
|                  |            |              | SB4 (8'-10')<br>SB4 (10'-12')   | 12/12/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>PR                                                             | Light red/Fine<br>PR               | 4.7<br>PR    | 335<br>PR         | <0.001<br>N/A    | <0.001<br>N/A    | 4400<br>N/A                                  | <15.0<br>N/A    |
| SB5              | 32.084042° | -103.225120° | SB5 (0'-2')                     | 12/12/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 4.3<br>2.4   | 5                 | <0.001           | <0.001           | 15                                           | <15.0           |
|                  |            |              | SB5 (2'-4')<br>SB5 (4'-6')      | 12/12/2016<br>12/12/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light gray/Fine  | 1.7          | 50                | <0.001<br><0.001 | <0.001<br><0.001 | <5.00<br><5.00                               | <15.0<br><15.0  |
|                  |            |              | SB5 (6'-8')                     | 12/12/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 4.4          | 65                | <0.001           | <0.001           | 5.08                                         | <15.0           |
|                  |            |              | SB5 (8'-9.5')<br>SB5 (9.5'-10') | 12/12/2016<br>12/12/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines PR                                                                | Light red/Fine<br>PR               | 3.4<br>PR    | 10<br>PR          | <0.001<br>N/A    | <0.001<br>N/A    | <5.00<br>N/A                                 | <15.0<br>N/A    |
| SB6              | 32.083929° | -103.225223° | SB6 (0'-2')                     | 12/12/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 3.8          | 5                 | < 0.001          | <0.001           | 11.9                                         | <15.0           |
|                  |            |              | SB6 (2'-4')<br>SB6 (4'-6')      | 12/12/2016<br>12/12/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light gray/Fine  | 3.9<br>4.3   | 10<br>10          | <0.001<br><0.001 | <0.001<br><0.001 | <5.00<br><5.00                               | <15.0<br><15.0  |
| CD7              | 22 000000  | 402 222 127  | SB6 (6'-8')                     | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 4.2          | 40                | < 0.001          | < 0.001          | 7.28                                         | <15.0           |
| SB7              | 32.083830° | -103.225407° | SB7 (0'-2')<br>SB7 (2'-4')      | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 2.2          | 5<br>10           | <0.001<br><0.001 | <0.001<br><0.001 | 6.22<br><5.00                                | <15.0<br><15.0  |
|                  |            |              | SB7 (4'-6')                     | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 4.3          | 30                | < 0.001          | <0.001           | <5.00                                        | <15.0           |
|                  |            |              | SB7 (6'-8')<br>SB7 (8'-10')     | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 3.0<br>2.8   | 20<br>30          | <0.001           | <0.001           | <5.00<br><5.00                               | <15.0<br><15.0  |
| SB8              | 32.083719° | -103.225571° | SB8 (0'-2')                     | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 6.6          | 0                 | < 0.001          | < 0.001          | <5.00                                        | 36.2            |
|                  |            |              | SB8 (2'-4')<br>SB8 (4'-6')      | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 7.2<br>11.3  | 5<br>15           | <0.001<br><0.001 | <0.001<br><0.001 | <5.00<br><5.00                               | <15.0<br><15.0  |
|                  |            |              | SB8 (6'-8')                     | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 8.1          | 25                | < 0.001          | <0.001           | 6.08                                         | <15.0           |
| SB9              | 32.083943° | -103.225797° | SB8 (8'-10')<br>SB9 (0'-2')     | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 8.3<br>14.3  | 45<br>10          | <0.001<br><0.001 | <0.001<br><0.001 | 5.85<br>11.2                                 | <15.0<br><15.0  |
|                  |            |              | SB9 (2'-4')                     | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 15.4         | 30                | < 0.001          | <0.001           | 18                                           | 97.7            |
|                  |            |              | SB9 (4'-6')<br>SB9 (6'-8')      | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 14.5<br>13.8 | 15<br>15          | <0.001<br><0.001 | <0.001<br><0.001 | 9.83<br>6.36                                 | 216<br><15.0    |
|                  |            |              | SB9 (8'-10')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 15.1         | 25                | < 0.001          | <0.001           | 7.45                                         | <15.0           |
| SB10             | 32.083942° | -103.225553° | SB9 (8'-10')<br>SB10 (0'-2')    | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Red/Fine         | 15.1<br>10.8 | 25<br>0           | <0.001<br><0.001 | <0.001<br><0.001 | 7.7<br>6.87                                  | <15.0<br><15.0  |
|                  |            |              | SB10 (2'-4')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 9.5          | 5                 | < 0.001          | <0.001           | <5.00                                        | <15.0           |
|                  |            |              | SB10 (4'-6')<br>SB10 (6'-8')    | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 10.6<br>15.8 | 10<br>40          | <0.001<br><0.001 | <0.001<br><0.001 | 5.31<br><5.00                                | <15.0<br><15.0  |
|                  |            |              | SB10 (8'-10')                   | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 7.5          | 55                | < 0.001          | < 0.001          | <5.00                                        | <15.0           |
| SB11             | 32.084390° | -103.225138° | SB11 (0'-2')<br>SB11 (2'-4')    | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 6.8          | 5                 | <0.001<br><0.001 | <0.001<br><0.001 | <5.00<br><5.00                               | <15.0<br><15.0  |
|                  |            |              | SB11 (4'-6')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 5.8          | 15                | <0.001           | <0.001           | <5.00                                        | <15.0           |
| SB12             | 32.084203° | -103.225211° | SB11 (6'-8')<br>SB12 (0'-2')    | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 6.2<br>7.6   | 15<br>5           | <0.001<br><0.001 | <0.001<br><0.001 | <5.00<br>25.3                                | <15.0<br><15.0  |
|                  |            |              | SB12 (2'-4')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 6.1          | 5                 | <0.001           | <0.001           | 5.02                                         | <15.0           |
|                  |            |              | SB12 (4'-6')<br>SB12 (6'-8')    | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light gray/Fine<br>Light red/Fine  | 5.7<br>5.3   | 10<br>30          | <0.001<br><0.001 | <0.001<br><0.001 | <5.00<br><5.00                               | <15.0<br><15.0  |
| SB13             | 32.084048° | -103.225345° | SB13 (0'-2')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 6.8          | 0                 | <0.001           | <0.001           | <5.00                                        | <15.0           |
|                  |            |              | SB13 (2'-4')<br>SB13 (4'-6')    | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 7.6<br>5.5   | 5                 | <0.001<br><0.001 | <0.001<br><0.001 | <5.00<br>5.15                                | <15.0<br><15.0  |
|                  | 32.084166° | -103.225467° | SB13 (6'-8')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 7.6          | 45                | < 0.001          | <0.001           | 8.48                                         | <15.0           |
| SB14             | 32.084166  | -103.225467  | SB14 (0'-2')<br>SB14 (2'-4')    | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 9.1<br>7.0   | 0                 | <0.001<br><0.001 | <0.001<br><0.001 | 6.12<br>5.38                                 | <15.0<br><15.0  |
|                  |            |              | SB14 (4'-6')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 8.7          | 25                | <0.001           | <0.001           | 5.83                                         | <15.0           |
|                  |            |              | SB14 (4'-6')<br>SB14 (6'-8')    | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 8.7<br>7.8   | 25<br>20          | <0.001<br><0.001 | <0.001<br><0.001 | 5.83<br>5.47                                 | <15.0<br><15.0  |
| SB15             | 32.082708° | -103.226382° | SB15 (0'-2')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 7.3          | 130               | < 0.001          | <0.001           | 1840                                         | <15.0           |
|                  |            |              | SB15 (2'-4')<br>SB15 (4'-6')    | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 7.8<br>9.4   | 90<br>105         | <0.001<br><0.001 | <0.001<br><0.001 | 869<br>1090                                  | <15.0<br><15.0  |
|                  |            |              | SB15 (6'-8')<br>SB15 (8'-10')   | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines  Caliche Rock                                                     | Light red/Fine                     | 11.0<br>12.7 | 45<br>10          | <0.001           | <0.001           | 127<br>15.1                                  | <15.0<br><15.0  |
|                  |            |              | SB15 (8-10)<br>SB15 (10'-12')   | ,,                       | PR                                                                                                                               | PR                                 | 12.7<br>PR   | PR PR             | N/A              | N/A              | N/A                                          | N/A             |
| SB16             | 32.082892° | -103.226083° | SB16 (0'-2')<br>SB16 (2'-4')    | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 36.0<br>46.9 | 5<br>540          | <0.001<br><0.001 | <0.001           | 2130<br><5.00                                | <15.0<br><15.0  |
|                  |            |              | SB16 (4'-6')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 17.0         | 680               | < 0.001          | <0.001           | 5910                                         | <15.0           |
| ·                |            |              | SB16 (6'-8')<br>SB16 (8'-10')   | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 46.3<br>27.9 | 480<br>180        | <0.001<br><0.001 | <0.001<br><0.001 | 5740<br>1300                                 | <15.0<br><15.0  |
|                  |            |              | SB16 (10'-12')                  | 12/13/2016               | PR                                                                                                                               | PR                                 | PR           | PR                | N/A              | N/A              | N/A                                          | N/A             |
| SB17             | 32.083077° | -103.225809° | SB17 (0'-2')<br>SB17 (2'-4')    | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 11.9<br>9.9  | 250<br>570        | <0.001<br><0.001 | <0.001<br><0.001 | 1960<br>3180                                 | <15.0<br><15.0  |
|                  |            |              | SB17 (4'-6')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 11.1         | 625               | < 0.001          | <0.001           | 6420                                         | <15.0           |
|                  |            |              | SB17 (6'-8')<br>SB17 (8'-10')   | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 13.5<br>10.4 | 310<br>760        | <0.001<br><0.001 | <0.001<br><0.001 | 4000<br>6640                                 | <15.0<br><15.0  |
|                  |            |              | SB17 (10'-12')                  | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 7.8          | 100               | < 0.001          | <0.001           | 913                                          | <15.0           |
| SB18             | 32.083262° | -103.225537° | SB17 (12'-14')<br>SB18 (0'-2')  | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 8.2<br>51.3  | 30<br>230         | <0.001<br><0.001 | <0.001<br><0.001 | 11.8<br>1790                                 | <15.0<br>60     |
| 2010             | 52.003202  | 103.22333/   | SB18 (2'-4')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 10.5         | 635               | < 0.001          | <0.001           | 4170                                         | <15.0           |
|                  |            |              | SB18 (2'-4')<br>SB18 (4'-6')    | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 10.5<br>8.7  | 635<br>740        | <0.001<br><0.001 | <0.001<br><0.001 | 4200<br>4770                                 | <15.0<br><15.0  |
|                  |            |              | SB18 (6'-8')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 9.5          | 550               | < 0.001          | <0.001           | 4120                                         | <15.0           |
|                  |            |              | SB18 (8'-10')<br>SB18 (10'-12') | 12/13/2016<br>12/13/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light gray/Fine<br>Light gray/Fine | 9.9<br>8.9   | 600<br>15         | <0.001<br><0.001 | <0.001<br><0.001 | 6350<br>315                                  | <15.0<br><15.0  |
|                  |            |              | SB18 (12'-14')                  | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light gray/Fine                    | 7.5          | 30                | < 0.001          | <0.001           | 21.5                                         | <15.0           |
| SB19             | 32.083446° | -103.225265° | SB19 (0'-2')<br>SB19 (2'-4')    | 12/13/2016<br>12/13/2016 | NR<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                             | NR<br>Red/Fine                     | NR<br>6.5    | NR<br>535         | N/A<br><0.001    | N/A<br><0.001    | N/A<br>317                                   | N/A<br><15.0    |
|                  |            |              | SB19 (4'-6')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 6.5          | 495               | < 0.001          | <0.001           | 4430                                         | <15.0           |
|                  |            |              | SB19 (6'-8')                    | 12/13/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 7.6          | 415               | <0.001           | <0.001           | 1750                                         | <15.0           |
|                  |            |              | SB19 (8'-10')<br>SB19 (10'-12') |                          | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light gray/Fine<br>Light red/Fine  | 6.5<br>6.5   | 45<br>20          | <0.001<br><0.001 | <0.001<br><0.001 | 143<br>16.6                                  | <15.0<br><15.0  |
| SB20             | 32.083581° | -103.225142° | SB20 (0'-2')                    | 12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 29.5         | 415<br>800        | <0.001<br><0.001 | <0.001<br><0.001 | 4600                                         | 38.1            |
|                  |            |              | SB20 (2'-4')<br>SB20 (4'-6')    | 12/14/2016<br>12/14/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine   | 2.6<br>3.3   | 800<br>600        | <0.001           | <0.001           | 5030<br>4000                                 | <15.0<br>68.8   |
|                  |            |              | SB20 (6'-8')                    | 12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 2.7          | 680               | < 0.001          | <0.001           | 4670                                         | <15.0           |
|                  |            |              | SB20 (8'-10')<br>SB20 (10'-12') | 12/14/2016<br>12/14/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines  Caliche Rock                                                     | Light red/Fine<br>Light gray/Fine  | 3.3<br>4.5   | 120<br>65         | <0.001<br><0.001 | <0.001<br><0.001 | 159<br>18.8                                  | <15.0<br><15.0  |
|                  | 32.083691° | -103.224979° | SB21 (0'-2')                    | 12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                     | 142.0        | 260               | <0.001           | <0.001           | 539                                          | <15.0           |

|                |            |              |                                                 |                                        | Field Data                                                                                                                                                                                         |                                     |                |                                | Benzene mg/kg              | Labo<br>Total BTEX mg/kg   | ratory Results Chlorides mg/kg                          | Total TPH mg/l          |
|----------------|------------|--------------|-------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|--------------------------------|----------------------------|----------------------------|---------------------------------------------------------|-------------------------|
| Soil Boring ID | Latitude   | Longitude    | Sample ID                                       | Date Collected                         | Soil Type                                                                                                                                                                                          | Soil Color/Size                     | PID<br>(PPM)   | Chlorides<br>(field screening) | 10 mg/kg                   |                            | tion Limits  Horizontal: 600 mg/kg  Vertical: 250 mg/kg | 5000 mg/kg              |
|                |            |              | SB21 (2'-4')<br>SB21 (4'-6')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 8.1<br>7.3     | 560<br>100                     | <0.001<br><0.001           | <0.001<br><0.001           | 4210<br>646                                             | <15.0<br><15.0          |
|                |            |              | SB21 (6'-8')<br>SB21 (6'-8')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 5.8            | 25<br>40                       | <0.001<br><0.001           | <0.001<br><0.001           | <5.00<br><5.00                                          | <15.0<br><15.0          |
|                |            |              | SB21 (8'-10')<br>SB21 (10'-11')                 | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light gray/Fine<br>Light red/Fine   | 4.9            | 40<br>15                       | <0.001                     | <0.001<br><0.001<br><0.001 | <5.00<br>6.5                                            | <15.0<br><15.0          |
|                |            |              | SB21 (10'-11')                                  | 12/14/2016                             | PR                                                                                                                                                                                                 | PR                                  | PR<br>480.0    | PR                             | N/A                        | N/A                        | N/A                                                     | N/A                     |
| B22            | 32.083806° | -103.224809° | SB22 (0'-2')<br>SB22 (2'-4')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 25.4           | 710<br>615                     | <0.001<br><0.001           | <0.001<br><0.001           | 4160<br>6570                                            | 818<br><15.0            |
|                |            |              | SB22 (4'-6')<br>SB22 (6'-8')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light brown/Fine<br>Dark red/Fine   | 10.0<br>8.3    | 70<br>55                       | <0.001<br><0.001           | <0.001<br><0.001           | 45<br>14.6                                              | <15.0<br><15.0          |
| 5B23           | 32.083921° | -103.224638° | SB22 (8'-10')<br>SB23 (0'-2')                   | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 12.6<br>17.2   | 55<br>155                      | <0.001<br><0.001           | <0.001<br><0.001           | 31.8<br>278                                             | <15.0<br><15.0          |
|                |            |              | SB23 (2'-4')<br>SB23 (4'-6')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 6.9<br>7.0     | 185<br>510                     | <0.001<br><0.001           | <0.001<br><0.001           | 56.2<br>907                                             | <15.0<br><15.0          |
|                |            |              | SB23 (6'-8')<br>SB23 (8'-10')                   | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 6.0<br>5.3     | 140<br>220                     | <0.001<br><0.001           | <0.001<br><0.001           | 390<br>206                                              | <15.0<br><15.0          |
| SB24           | 32.084065° | -103.224523° | SB24 (0'-2')<br>SB24 (2'-4')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 58.0<br>331.0  | 5<br>10                        | <0.001<br><0.001           | <0.001<br><0.001           | 6.9<br>7.5                                              | <15.0<br><15.0          |
|                |            |              | SB24 (4'-6')<br>SB24 (6'-8')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 28.0<br>19.8   | 35<br>60                       | <0.001<br><0.001           | <0.001<br><0.001           | 5.45<br>7.97                                            | <15.0<br><15.0          |
| 5B25           | 32.084010° | -103.224815° | SB24 (8'-10')<br>SB25 (0'-2')                   | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                                                                                     | Light red/Fine<br>Light red/Fine    | 24.5           | 35<br>15                       | <0.001<br><0.001           | <0.001<br><0.001<br><0.001 | 19.8<br>20.3                                            | <15.0<br><15.0          |
| BZ5            | 32.084010  | -105.224615  | SB25 (2'-4')                                    | 12/14/2016                             | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                      | 14.7           | 5                              | < 0.001                    | < 0.001                    | 8.91                                                    | <15.0                   |
|                |            |              | SB25 (4'-6')<br>SB25 (6'-8')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 14.7<br>11.9   | 20<br>50                       | <0.001<br><0.001           | <0.001<br><0.001           | <5.00<br><5.00                                          | <15.0<br><15.0          |
| SB26           | 32.083941° | -103.224964° | SB25 (8'-10')<br>SB26 (0'-2')                   | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 12.4<br>9.4    | 45<br>325                      | <0.001<br><0.001           | <0.001<br><0.001           | 6.06<br>1470                                            | <15.0<br><15.0          |
|                |            |              | SB26 (0'-2')<br>SB26 (2'-4')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 9.4<br>11.6    | 325<br>365                     | <0.001<br><0.001           | <0.001<br><0.001           | 1630<br>1940                                            | <15.0<br><15.0          |
|                |            | -            | SB26 (4'-6')<br>SB26 (6'-8')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light brown/Fine<br>Red/Fine        | 11.8<br>12.7   | 40<br>50                       | <0.001<br><0.001           | <0.001<br><0.001           | 7.46<br>7.44                                            | <15.0<br><15.0          |
|                |            |              | SB26 (8'-10')<br>SB26 (10'-12')                 | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines PR                                                                                                                                  | Red/Fine<br>PR                      | 10.4<br>PR     | 40<br>PR                       | <0.001<br>N/A              | <0.001<br>N/A              | <5.00<br>N/A                                            | <15.0<br>N/A            |
| SB27           | 32.083810° | -103.225101° | SB27 (0'-2')<br>SB27 (2'-4')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Red/Fine<br>Light red/Fine          | 5.6<br>7.0     | 415<br>480                     | <0.001<br><0.001           | <0.001<br><0.001           | 1210<br>836                                             | <15.0<br><15.0          |
|                |            |              | SB27 (4'-6')<br>SB27 (6'-8')                    | 12/14/2016                             | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Red/Fine<br>Red/Fine                | 6.5<br>11.1    | 80                             | <0.001<br><0.001<br><0.001 | <0.001                     | 14.8<br>5.03                                            | <15.0<br><15.0          |
| 5B28           | 32.083698° | -103.225317° | SB27 (8'-10')<br>SB28 (0'-2')                   | 12/14/2016<br>12/14/2016<br>12/14/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines       | Red/Fine<br>Light red/Fine          | 5.8<br>5.3     | 25<br>435                      | <0.001<br><0.001<br><0.001 | <0.001<br><0.001<br><0.001 | 12.1<br>2120                                            | <15.0<br><15.0<br><15.0 |
| 5B28           | 32.083698  | -103.225317  | SB28 (2'-4')                                    | 12/14/2016                             | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                                                                                     | Light red/Fine                      | 7.3            | 630                            | < 0.001                    | < 0.001                    | 3610                                                    | <15.0                   |
|                |            |              | SB28 (4'-6')<br>SB28 (6'-8')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 5.5<br>9.4     | 755<br>205                     | <0.001<br><0.001           | <0.001<br><0.001           | 6290<br>645                                             | <15.0<br><15.0          |
| SB29           | 32.083494° | -103.225346° | SB28 (8'-10')<br>SB29 (0'-2')                   | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 8.2<br>5.3     | 90<br>95                       | <0.001<br><0.001           | <0.001<br><0.001           | <5.00<br>28.4                                           | <15.0<br><15.0          |
|                |            |              | SB29 (2'-4')<br>SB29 (4'-6')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 6.7<br>9.7     | 625<br>735                     | <0.001<br><0.001           | <0.001<br><0.001           | 5930<br>5800                                            | <15.0<br><15.0          |
|                |            |              | SB29 (6'-8')<br>SB29 (8'-10')                   | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines  Caliche Rock                                                                                                                       | Light red/Fine<br>Light gray/Fine   | 7.1<br>7.0     | 355<br>120                     | <0.001<br><0.001           | <0.001<br><0.001           | 1520<br>216                                             | <15.0<br><15.0          |
| B30            | 32.083315° | -103.225606° | SB30 (0'-2')<br>SB30 (0'-2')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 6.2<br>6.2     | 195<br>195                     | <0.001<br><0.001           | <0.001<br><0.001           | 266<br>526                                              | <15.0<br><15.0          |
|                |            |              | SB30 (2'-4')<br>SB30 (4'-6')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 6.1<br>7.2     | 745<br>520                     | <0.001<br><0.001           | <0.001<br><0.001           | 4060<br>3120                                            | <15.0<br><15.0          |
|                |            |              | SB30 (6'-8')<br>SB30 (8'-10')                   | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                                                                                     | Red/Fine<br>Red/Fine                | 7.0            | 725<br>500                     | <0.001<br><0.001           | <0.001<br><0.001<br><0.001 | 5050<br>3200                                            | <15.0<br><15.0          |
|                |            |              | SB30 (10'-12')                                  | 12/14/2016                             | SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines                                                                      | Red/Fine                            | 5.6            | 335                            | <0.001<br><0.001<br><0.001 | <0.001<br><0.001<br><0.001 | 4890<br>124                                             | <15.0                   |
| SB31           | 32.083136° | -103.225866° | SB30 (12'-14')<br>SB31 (0'-2')                  | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Red/Fine<br>Light red/Fine          | 5.0<br>4.7     | 130<br>50                      | <0.001                     | < 0.001                    | 5.59                                                    | <15.0<br><15.0          |
|                |            |              | SB31 (2'-4')<br>SB31 (4'-6')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 6.6<br>5.7     | 30<br>75                       | <0.001<br><0.001           | <0.001<br><0.001           | 8.34<br><5.00                                           | <15.0<br><15.0          |
|                |            |              | SB31 (6'-8')<br>SB31 (8'-10')                   | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>PR                                                                                                                               | Light red/Fine<br>PR                | 6.1<br>PR      | 35<br>PR                       | <0.001<br>N/A              | <0.001<br>N/A              | <5.00<br>N/A                                            | <15.0<br>N/A            |
| SB32           | 32.082957° | -103.226126° | SB32 (0'-2')<br>SB32 (2'-4')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 3.5<br>4.3     | 5                              | <0.001<br><0.001           | <0.001<br><0.001           | 5.43<br><5.00                                           | <15.0<br><15.0          |
|                |            |              | SB32 (4'-6')<br>SB32 (6'-8')                    | 12/14/2016<br>12/14/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 4.2            | 165<br>50                      | <0.001<br><0.001           | <0.001<br><0.001           | <5.00<br><5.00                                          | <15.0<br><15.0          |
| B33            | 32.083817° | -103.224360° | SB32 (8'-10')<br>SB33 (0'-2')                   | 12/14/2016<br>12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 4.0<br>1.6     | 55<br>30                       | <0.001<br><0.001           | <0.001<br><0.001           | 12.8<br>8.08                                            | <15.0<br><15.0          |
|                |            |              | SB33 (2'-4')<br>SB33 (4'-6')                    | 12/15/2016<br>12/15/2016               | Caliche Rock  SP - Poorly - graded sands, gravelly sands, little or no fines                                                                                                                       | Light gray/Fine<br>Light brown/Fine | 1.2            | 5<br>15                        | <0.001<br><0.001           | <0.001<br><0.001           | <5.00<br><5.00                                          | <15.0<br><15.0          |
|                |            |              | SB33 (6'-8')<br>SB33 (8'-10')                   | 12/15/2016                             | Caliche Rock                                                                                                                                                                                       | Light gray/Fine                     | 1.3<br>PR      | 40<br>PR                       | <0.001<br>N/A              | <0.001<br>N/A              | 9.18<br>N/A                                             | <15.0<br>N/A            |
| B34            | 32.083744° | -103.224545° | SB34 (0'-2')                                    | 12/15/2016                             | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                                                                                     | Light red/Fine                      | 404.0<br>404.0 | 370                            | <0.001                     | <0.001                     | 3690                                                    | <15.0                   |
|                |            |              | SB34 (0'-2')<br>SB34(2'-4')                     | 12/15/2016<br>12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 11.6           | 370<br>950                     | <0.001<br><0.001           | <0.001<br><0.001           | 3110<br>4550                                            | <15.0<br><15.0          |
|                |            |              | SB34 (4'-6')<br>SB34 (6'-8')                    | 12/15/2016<br>12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 4.0<br>4.5     | 775<br>885                     | <0.001<br><0.001           | <0.001<br><0.001           | 4800<br>4800                                            | <15.0<br><15.0          |
|                |            |              | SB34 (8'-10')<br>SB34 (10'-12')                 | 12/15/2016<br>12/15/2016               | Caliche Rock SP - Poorly - graded sands, gravelly sands, little or no fines                                                                                                                        | Light gray/Fine<br>Red/Fine         | 2.9            | 895<br>375                     | <0.001<br><0.001           | <0.001<br><0.001           | 3760<br>594                                             | <15.0<br><15.0          |
| B35            | 32.083558° | -103.224843° | SB34 (12'-14')<br>SB35 (0'-2')                  | 12/15/2016<br>12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Red/Fine<br>Light red/Fine          | 2.5<br>3.8     | 185<br>75                      | <0.001<br><0.001           | <0.001<br><0.001           | 10.6<br>8.23                                            | <15.0<br><15.0          |
|                |            |              | SB35(2'-4')<br>SB35 (4'-6')                     | 12/15/2016<br>12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | red/Fine<br>Light red/Fine          | 4.4<br>3.6     | 775<br>115                     | <0.001<br><0.001           | <0.001<br><0.001           | 4790<br>74.6                                            | <15.0<br><15.0          |
|                | -          |              | SB35 (6'-8')<br>SB35 (8'-10')                   | 12/15/2016<br>12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 4.5<br>6.4     | 840<br>1060                    | <0.001<br><0.001           | <0.001<br><0.001           | 5330<br>7670                                            | <15.0<br><15.0          |
|                |            |              | SB35 (10'-10.6')<br>SB35 (10.6'-12')            | 12/15/2016<br>12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines PR                                                                                                                                  | Light red/Fine<br>PR                | 6.3<br>PR      | 1205<br>PR                     | <0.001<br>N/A              | <0.001<br>N/A              | 4490<br>N/A                                             | <15.0<br>N/A            |
| 6B36           | 32.083372° | -103.225140° | SB36 (0'-2')<br>SB36 (2'-4')                    | 12/15/2016<br>12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 4.1            | 20<br>595                      | <0.001<br><0.001           | <0.001<br><0.001           | 97.3<br>2470                                            | <15.0<br><15.0          |
|                |            |              | SB36 (4'-6')<br>SB36 (6'-8')                    | 12/15/2016<br>12/15/2016<br>12/15/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines  Calirhe Rock                                                                                                                       | Light red/Fine<br>Light gray/Fine   | 3.3            | 320<br>780                     | <0.001<br><0.001<br><0.001 | <0.001<br><0.001<br><0.001 | 3450<br>2360                                            | <15.0<br><15.0          |
|                |            |              | SB36 (8'-10')<br>SB36 (10'-12')                 | 12/15/2016<br>12/15/2016<br>12/15/2016 | Caliche Rock Caliche Rock Caliche Rock                                                                                                                                                             | Light gray/Fine                     | 3.6<br>3.6     | 45<br>45                       | <0.001<br><0.001<br><0.001 | <0.001<br><0.001<br><0.001 | 9.91<br><5.00                                           | <15.0<br><15.0          |
| B37            | 32.083186° | -103.225438° | SB37 (0'-2')                                    | 12/15/2016                             | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                                                                                     | Light gray/Fine Light red/Fine      | 3.8            | 170                            | < 0.001                    | < 0.001                    | 443                                                     | <15.0                   |
|                |            |              | SB37 (2'-4')<br>SB37 (2'-4')                    | 12/15/2016<br>12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 3.3            | 640<br>640                     | <0.001<br><0.001           | <0.001<br><0.001           | 2730<br>3030                                            | <15.0<br><15.0          |
|                |            |              | SB37 (4'-6')<br>SB37 (6'-8')                    | 12/15/2016<br>12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>Caliche Rock                                                                                                                     | Light red/Fine<br>Light gray/Fine   | 4.0            | 680<br>1070                    | <0.001<br><0.001           | <0.001<br><0.001           | 4950<br>4590                                            | <15.0<br><15.0          |
|                |            |              | SB37 (8'-10')<br>SB37 (10'-12')                 | 12/15/2016<br>12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 4.6<br>2.1     | 220<br>25                      | <0.001<br><0.001           | <0.001<br><0.001           | 504<br>9.86                                             | <15.0<br><15.0          |
| B38            | 32.083000° | -103.225735° | SB38 (0'-2')<br>SB38 (2'-4')                    | 12/15/2016<br>12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 3.7<br>3.0     | 575<br>540                     | <0.001<br><0.001           | <0.001<br><0.001           | 2880<br>2570                                            | <15.0<br><15.0          |
| -              |            | -            | SB38 (4'-6')<br>SB38 (6'-8')                    | 12/15/2016<br>12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines  Caliche Rock                                                                                                                       | Light red/Fine<br>Light gray/Fine   | 3.2<br>2.7     | 655<br>250                     | <0.001<br><0.001           | <0.001<br><0.001           | 4950<br>915                                             | <15.0<br><15.0          |
|                |            |              | SB38 (8'-10')<br>SB38 (10'-12')                 | 12/15/2016<br>12/15/2016               | Caliche Rock PR                                                                                                                                                                                    | Light gray/Fine PR                  | 2.7<br>PR      | 70<br>PR                       | <0.001<br>N/A              | <0.001<br>N/A              | 15.8<br>N/A                                             | <15.0<br>N/A            |
| iB39           | 32.082814° | -103.226032° | SB39 (0'-2')<br>SB39 (2'-4')                    | 12/15/2016<br>12/15/2016<br>12/15/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>Light red/Fine    | 5.0            | 900                            | <0.001<br><0.001           | <0.001<br><0.001           | 2770<br>516                                             | <15.0<br><15.0          |
|                |            |              | SB39 (4'-6')                                    | 12/15/2016                             | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                                                                                     | Light red/Fine                      | 5.1<br>5.0     | 785<br>500<br>975              | <0.001<br><0.001<br><0.001 | <0.001<br><0.001<br><0.001 | 4090                                                    | <15.0                   |
|                |            |              | SB39 (6'-8')<br>SB39 (8'-10')<br>SB39 (10'-12') | 12/15/2016<br>12/15/2016<br>12/15/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines  Caliche Rock                                                                                                                       | Light red/Fine<br>Light gray/Fine   | 4.4            | 625                            | <0.001                     | < 0.001                    | 8790<br>4640<br>3180                                    | <15.0<br><15.0          |
|                |            |              |                                                 |                                        | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                                                                                     | Light red/Fine                      | 3.2            | 520                            | < 0.001                    | < 0.001                    |                                                         | <15.0                   |

|                |                          |              |                               |                          | Spill 2                                                                                                                          |                                  |            |                   |                  |                  |                                              |                 |
|----------------|--------------------------|--------------|-------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------|-------------------|------------------|------------------|----------------------------------------------|-----------------|
|                |                          |              |                               |                          | Field Data                                                                                                                       |                                  |            |                   |                  |                  | tory Results                                 |                 |
|                |                          |              |                               |                          |                                                                                                                                  |                                  |            |                   | Benzene mg/kg    | Total BTEX mg/kg | Chlorides mg/kg                              | Total TPH mg/kg |
| Soil Boring ID | Latitude                 | Longitude    | Sample ID                     | Date Collected           | Soil Type                                                                                                                        | Soil Color/Size                  | PID        | Chlorides         |                  | Acti             |                                              |                 |
|                |                          |              |                               |                          | "                                                                                                                                |                                  | (PPM)      | (field screening) | 10 mg/kg         | 50 mg/kg         | Horizontal: 600 mg/kg<br>Vertical: 250 mg/kg | 5000 mg/kg      |
|                |                          |              | SB40 (2'-4')                  | 12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 4.3        | 35                | < 0.001          | < 0.001          | 12.2                                         | <15.0           |
|                |                          |              | SB40 (4'-6')                  | 12/15/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 5.5        | 35                | <0.001           | <0.001           | 5.42                                         | <15.0           |
|                |                          |              | SB40 (6'-7')                  | 12/15/2016               | Caliche Rock Caliche Rock                                                                                                        | Light gray/Fine                  | 4.2        | 100               | <0.001           | <0.001           | 12.3                                         | <15.0<br><15.0  |
|                |                          |              | SB40 (6'-7')<br>SB40 (7'-8')  | 12/15/2016<br>12/15/2016 | PR                                                                                                                               | Light gray/Fine<br>PR            | 4.2<br>PR  | PR PR             | <0.001<br>N/A    | <0.001<br>N/A    | 12.7<br>N/A                                  | <15.0<br>N/A    |
| SB41           | 32.082671°               | -103.225939° | SB41 (0'-2')                  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 12.2       | 0                 | <0.001           | <0.001           | 5.71                                         | <15.0           |
| 5541           | 32.002071                | 103.223333   | SB41 (2'-4')                  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 6.2        | 0                 | < 0.001          | <0.001           | 7.46                                         | <15.0           |
|                |                          |              | SB41 (4'-6')                  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 7.8        | 5                 | < 0.001          | < 0.001          | 7.04                                         | <15.0           |
|                |                          |              | SB41 (6'-8')                  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 15.8       | 10                | < 0.001          | < 0.001          | <5.00                                        | <15.0           |
| SB42           | 32.082864°               | -103.225604° | SB42 (0'-2')                  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 7.0        | 0                 | < 0.001          | <0.001           | 11.4                                         | <15.0           |
|                |                          |              | SB42 (2'-4')                  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 5.4        | 0                 | < 0.001          | < 0.001          | 6.32                                         | <15.0           |
|                |                          |              | SB42 (4'-6')                  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 5.1        | 5                 | <0.001           | < 0.001          | 5.12                                         | <15.0           |
|                |                          |              | SB42 (6'-8')                  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 4.5        | 95                | <0.001           | <0.001           | 6.11                                         | <15.0           |
| SB43           | 32.083057°               | -103.225269° | SB43 (0'-2')                  | 12/20/2016<br>12/20/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 5.0<br>5.2 | 5                 | <0.001<br><0.001 | <0.001<br><0.001 | 5.98<br>5.37                                 | <15.0<br>165    |
|                |                          |              | SB43 (2'-4')<br>SB43 (4'-6')  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines    | Light red/Fine<br>Light red/Fine | 5.2        | 5<br>25           | <0.001           | <0.001           | <5.00                                        | <15.0           |
|                |                          |              | SB43 (4'-6')                  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 6.6        | 130               | <0.001           | <0.001           | 7.11                                         | <15.0           |
| SB44           | 32.083250°               | -103.224935° | SB44 (0'-2')                  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 3.0        | 5                 | <0.001           | <0.001           | 6.27                                         | <15.0           |
| 3544           |                          |              | SB44 (2'-4')                  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 2.9        | 15                | < 0.001          | <0.001           | 5.57                                         | <15.0           |
|                |                          |              | SB44 (4'-6')                  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 1.8        | 50                | < 0.001          | <0.001           | 5.62                                         | <15.0           |
|                |                          |              | SB44 (6'-8')                  | 12/20/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 2.9        | 30                | < 0.001          | < 0.001          | 6.49                                         | <15.0           |
| SB45           | 32.083414°               | -103.224696° | SB45 (0'-2')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 2.5        | 0                 | < 0.001          | < 0.001          | 6.96                                         | <15.0           |
|                |                          |              | SB45 (2'-4')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 3.2        | 0                 | < 0.001          | < 0.001          | 5.9                                          | <15.0           |
|                |                          |              | SB45 (4'-6')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 2.8        | 5                 | < 0.001          | < 0.001          | 5.28                                         | <15.0           |
|                |                          |              | SB45 (6'-8')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 2.3        | 10                | <0.001           | < 0.001          | <5.00                                        | <15.0           |
| SB46           | 32.083574°               | -103.224391° | SB46 (0'-2')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 2.8        | 0                 | <0.001           | <0.001           | <5.00                                        | <15.0           |
|                |                          |              | SB46 (0'-2')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 2.8        | 0                 | <0.001           | <0.001           | 5.4<br><5.00                                 | <15.0<br><15.0  |
|                |                          |              | SB46 (2'-4')<br>SB46 (4'-6')  | 12/21/2016<br>12/21/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines<br>SP - Poorly - graded sands, gravelly sands, little or no fines | Light red/Fine<br>Light red/Fine | 3.1<br>2.7 | 5                 | <0.001           | <0.001           | <5.00                                        | <15.0           |
|                |                          |              | SB46 (4'-6')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 2.5        | 10                | <0.001           | <0.001           | <5.00                                        | <15.0           |
| SB47           | 32.084402°               | -103.224775° | SB47 (0'-2')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 4.7        | 0                 | < 0.001          | <0.001           | <5.00                                        | <15.0           |
|                |                          |              | SB47 (2'-4')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 5.2        | 0                 | < 0.001          | <0.001           | <5.00                                        | <15.0           |
|                |                          |              | SB47 (4'-6')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 2.6        | 5                 | < 0.001          | < 0.001          | <5.00                                        | <15.0           |
|                |                          |              | SB47 (6'-8')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 2.3        | 10                | < 0.001          | < 0.001          | <5.00                                        | <15.0           |
|                |                          |              | SB47 (8'-10')                 | 12/21/2016               | PR                                                                                                                               | PR                               | PR         | PR                | N/A              | N/A              | N/A                                          | N/A             |
| SB48           | 32.083391°               | -103.225705° | SB48 (0'-2')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 5.1        | 5                 | <0.001           | < 0.001          | <5.00                                        | <15.0           |
|                |                          |              | SB48 (2'-4')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 8.7        | 15                | <0.001           | <0.001           | <5.00                                        | <15.0           |
|                |                          |              | SB48 (4'-6')                  | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 6.5<br>6.9 | 15<br>20          | <0.001<br><0.001 | <0.001<br><0.001 | <5.00<br><5.00                               | <15.0<br><15.0  |
|                |                          |              | SB48 (6'-8')<br>SB48 (8'-10') | 12/21/2016<br>12/21/2016 | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine<br>PR             | PR         | PR                | <0.001<br>N/A    | <0.001<br>N/A    | <5.00<br>N/A                                 | ×15.0<br>N/A    |
| BG1            | 32.083537°               | -103.225916° | BG (0'-2')                    | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 6.9        | 0                 | <0.001           | <0.001           | 7.02                                         | <15.0           |
| 601            | 32.063337                | -103.223916  | BG (0 -2 )<br>BG (2'-4')      | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 6.1        | 0                 | <0.001           | <0.001           | 5.69                                         | <15.0           |
|                |                          |              | BG (4'-6')                    | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 4.7        | 0                 | < 0.001          | <0.001           | <5.00                                        | <15.0           |
|                |                          |              | BG (6'-8')                    | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 3.9        | 25                | < 0.001          | < 0.001          | 6.99                                         | <15.0           |
|                |                          |              | BG (8'-10')                   | 12/21/2016               | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 3.9        | 20                | < 0.001          | <0.001           | 6.15                                         | <15.0           |
| SS-02          | 32.082988°               | -103.225653° | SS-02 (21')                   | 3/8/2017                 | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | N/A        | N/A               | N/A              | N/A              | 13.1                                         | N/A             |
| TSS1           | 32.083656°               | -103.224558° | TSS-01 (4')                   | 4/22/2017                | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 6.9        | -                 | N/A              | N/A              | 12.7                                         | N/A             |
| TSS2           | 32.083453°               | -103.224893° | TSS-02 (4')                   | 4/22/2017                | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 6.0        | -                 | N/A              | N/A              | 21.9                                         | N/A             |
| TSS3           | 32.083242°               | -103.225184° | TSS-03 (4')                   | 4/22/2017                | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 4.5        | -                 | N/A              | N/A              | 11                                           | N/A             |
| TSS4           | 32.083080°               | -103.225468° | TSS-04 (4')                   | 4/22/2017                | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 3.7        | -                 | N/A              | N/A              | 9.03                                         | N/A             |
| TSS5           | 32.082855°<br>32.082696° | -103.225810° | TSS-05 (4')                   | 4/22/2017                | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 3.6        | -                 | N/A              | N/A              | <4.09                                        | N/A             |
| TSS6           | 52.U8209b°               | -103.226111° | TSS-06 (4')                   | 4/22/2017                | SP - Poorly - graded sands, gravelly sands, little or no fines                                                                   | Light red/Fine                   | 2.0        | -                 | N/A              | N/A              | <5.00                                        | N/A             |

Table 2: Stockpile Soil Analytical Data
Produced Water Pipeline Release
Nearby Red Hills SWD
Lea County, New Mexico
New Mexico - Case No. 1RP 4498

## **KJ Environmental**

## LOCATION: OWL BOBCAT/REDHILLS PIPELINE RELEASE Spill Area 2

| DATE      | Sample<br>Pt. | DEPTH | SOIL | WATER | CF   | AgNO <sub>3</sub> | CL- | SOIL LITHOLOGY  | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |
|-----------|---------------|-------|------|-------|------|-------------------|-----|-----------------|-----------------------------------|-----------------------|----------------|
|           | TSS1          | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 41.2                              | -                     | N              |
|           | TSS1          | 2'    | -    | -     | -    | -                 | -   | sandy sand damp | 49.6                              | -                     | N              |
|           | TSS1          | 3'    | -    | -     | -    | -                 | -   | sandy sand damp | 77.2                              | -                     | N              |
|           | TSS1          | 4'    | 19   | 44    | 2.32 | 0.05              | 116 | sandy sand damp |                                   | 12.7                  | N              |
|           | TSS2          | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 78.4                              | -                     | N              |
|           | TSS2          | 2'    | -    | -     | -    | -                 | -   | sandy sand damp | 85.6                              | -                     | N              |
|           | TSS2          | 3'    | -    | -     | -    | -                 | -   | sandy sand damp | 73.2                              | -                     | N              |
|           | TSS2          | 4'    | 18   | 45    | 2.50 | 0.05              | 125 | sandy sand damp |                                   | 21.9                  | N              |
|           | TSS3          | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 70.8                              | -                     | N              |
|           | TSS3          | 2'    | -    | -     | -    | -                 | -   | sandy sand damp | 79.2                              | -                     | N              |
|           | TSS3          | 3'    | -    | -     | -    | -                 | -   | sandy sand damp | 88.4                              | -                     | N              |
| 26-Apr-17 | TSS3          | 4'    | 15   | 48    | 3.20 | 0.03              | 96  | sandy sand damp |                                   | 11                    | N              |
|           | TSS4          | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 57.6                              | -                     | N              |
|           | TSS4          | 2'    | -    | -     | -    | -                 | -   | sandy sand damp | 59.2                              | -                     | N              |
|           | TSS4          | 3'    | -    | -     | -    | -                 | -   | sandy sand damp | 54.4                              | -                     | N              |
|           | TSS4          | 4'    | 24   | 47    | 1.96 | 0.03              | 59  | sandy sand damp |                                   | 9.03                  | N              |
|           | TSS5          | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 55.6                              | -                     | N              |
|           | TSS5          | 2'    | -    | -     | -    | -                 | -   | sandy sand damp | 60.4                              | -                     | N              |
|           | TSS5          | 3'    | -    | -     | -    | -                 | -   | sandy sand damp | 61.2                              | -                     | N              |
|           | TSS5          | 4'    | 20   | 45    | 2.25 | 0.03              | 67  | sandy sand damp |                                   | 4.9                   | N              |

| DATE    | Sample<br>Pt. | DEPTH | SOIL | WATER | CF   | AgNO <sub>3</sub> | CL- | SOIL LITHOLOGY  | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |
|---------|---------------|-------|------|-------|------|-------------------|-----|-----------------|-----------------------------------|-----------------------|----------------|
|         | TSS6          | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 44.8                              | -                     | N              |
|         | TSS6          | 2'    | -    | -     | -    | -                 | •   | sandy sand damp | 46.4                              | -                     | N              |
|         | TSS6          | 3'    | -    | -     | -    | -                 | 1   | sandy sand damp | 38.8                              | -                     | N              |
|         | TSS6          | 4'    | 21   | 49    | 2.33 | 0.03              | 70  | sandy sand damp |                                   | 5                     | N              |
|         | ASP1          | 1'    | 18   | 45    | 2.50 | 0.16              | 400 | sandy sand damp |                                   | -                     | N              |
|         | ASP2          | 1'    | 21   | 43    | 2.05 | 0.20              | 409 | sandy sand damp |                                   | -                     | N              |
|         | ASP3          | 1'    | 22   | 44    | 2.00 | 0.19              | 380 | sandy sand damp |                                   | -                     | N              |
|         | ASP4          | 1'    | 22   | 49    | 2.23 | 0.31              | 690 | sandy sand damp |                                   | -                     | N              |
|         | ASP5          | 1'    | 19   | 45    | 2.37 | 0.24              | 568 | sandy sand damp |                                   | -                     | N              |
|         | ASP6          | 1'    | 21   | 45    | 2.14 | 0.17              | 364 | sandy sand damp |                                   | -                     | N              |
|         | ASP7          | 1'    | 20   | 48    | 2.40 | 0.16              | 384 | sandy sand damp |                                   | -                     | N              |
|         | ASP8          | 1'    | 21   | 45    | 2.14 | 0.27              | 578 | sandy sand damp |                                   | -                     | N              |
|         | ASP9          | 1'    | 21   | 45    | 2.14 | 0.34              | 728 | sandy sand damp |                                   | -                     | N              |
|         | ASP10         | 1'    | 23   | 48    | 2.09 | 0.26              | 542 | sandy sand damp |                                   | 548                   | N              |
|         | ASP11         | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 400.0                             | -                     | N              |
|         | ASP12         | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 292.8                             | -                     | N              |
|         | ASP13         | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 432.0                             | -                     | N              |
|         | ASP14         | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 370.4                             | -                     | N              |
|         | ASP15         | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 334.4                             | -                     | N              |
|         | ASP16         | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 332.0                             | -                     | N              |
|         | ASP17         | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 393.2                             | -                     | N              |
|         | ASP18         | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 338.8                             | -                     | N              |
|         | ASP19         | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 644.0                             | -                     | N              |
| 24 Mass | ASP20         | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 334.0                             | 316                   | N              |
| 31-May  | ASP21         | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 412.0                             | -                     | N              |
|         | ASP22         | 1'    | -    | -     | -    | -                 | -   | sandy sand damp | 321.6                             | -                     | N              |

## **KJ Environmental**

## LOCATION: OWL BOBCAT/REDHILLS PIPELINE RELEASE Spill Area 2

| DATE | Sample<br>Pt. | DEPTH | SOIL | WATER | CF | AgNO <sub>3</sub> | CL- | SOIL LITHOLOGY  | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |
|------|---------------|-------|------|-------|----|-------------------|-----|-----------------|-----------------------------------|-----------------------|----------------|
|      | ASP23         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 548.0                             | -                     | N              |
|      | ASP24         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 389.2                             | -                     | N              |
|      | ASP25         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 96.0                              | -                     | N              |
|      | ASP26         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 279.6                             | -                     | N              |
|      | ASP27         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 424.0                             | -                     | N              |
|      | ASP28         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 484.0                             | -                     | N              |
|      | ASP29         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 372.8                             | -                     | N              |
|      | ASP30         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 572.0                             | 607                   | N              |
|      | ASP31         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 195.2                             | -                     | N              |
|      | ASP32         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 440.0                             | -                     | N              |
|      | ASP33         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 393.6                             | -                     | N              |
|      | ASP34         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 356.8                             | -                     | N              |
|      | ASP35         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 314.8                             | -                     | N              |
|      | ASP36         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 412.0                             | -                     | N              |
|      | ASP37         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 387.2                             | -                     | N              |
|      | ASP38         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 294.0                             | -                     | N              |
|      | ASP39         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 397.6                             | -                     | N              |
|      | ASP40         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 223.6                             | 200                   | N              |
|      | ASP41         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 118.0                             | 180                   | N              |
|      | ASP42         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 131.6                             | 183                   | N              |
|      | ASP43         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 266.0                             | 380                   | N              |
|      | ASP44         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 106.4                             | 176                   | N              |
|      | ASP45         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 293.2                             | 388                   | N              |
|      | ASP46         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 142.0                             | 202                   | N              |
|      | ASP47         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 98.0                              | 163                   | N              |
|      | ASP48         | 1'    | -    | -     | -  | -                 | -   | sandy sand damp | 229.2                             | 322                   | N              |

## **KJ Environmental**

## LOCATION: OWL BOBCAT/REDHILLS PIPELINE RELEASE Spill Area 2

| DATE  | Sample<br>Pt. | DEPTH | SOIL | WATER | CF   | AgNO <sub>3</sub> | CL-  | SOIL LITHOLOGY  | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |
|-------|---------------|-------|------|-------|------|-------------------|------|-----------------|-----------------------------------|-----------------------|----------------|
|       | ASP49         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 180.8                             | 195                   | N              |
| 1-Jun | ASP50         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 130.8                             | 192                   | N              |
|       | ASP51         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 113.6                             | -                     | N              |
|       | ASP52         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 250.4                             | -                     | N              |
|       | ASP53         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 280.4                             | -                     | N              |
|       | ASP54         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 201.6                             | -                     | N              |
|       | ASP55         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 209.2                             | -                     | N              |
|       | ASP56         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 124.4                             | -                     | N              |
|       | ASP57         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 117.6                             | -                     | N              |
|       | ASP58         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 169.2                             | -                     | N              |
|       | ASP59         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 197.6                             | -                     | N              |
|       | ASP60         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 160.0                             | -                     | N              |
|       | ASP61         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 448.0                             | -                     | N              |
|       | ASP62         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 143.2                             | -                     | N              |
|       | BSP1          | 1'    | 19   | 49    | 2.58 | 0.07              | 180  | sandy sand damp | 260.0                             | -                     | N              |
|       | BSP2          | 1'    | 15   | 49    | 3.27 | 0.28              | 914  | sandy sand damp | 329.0                             | -                     | Υ              |
|       | BSP3          | 1'    | 15   | 46    | 3.07 | 0.17              | 521  | sandy sand damp | 254.0                             | -                     | N              |
|       | BSP4          | 1'    | 16   | 42    | 2.63 | 0.19              | 499  | sandy sand damp | 138.0                             | -                     | N              |
|       | BSP5          | 1'    | 15   | 51    | 3.40 | 0.27              | 918  | sandy sand damp | 249.0                             | -                     | Υ              |
| 6-Jun | BSP6          | 1'    | 18   | 51    | 2.83 | 0.53              | 1501 | sandy sand damp | 137.0                             | -                     | Υ              |
| 0-3un | BSP7          | 1'    | 16   | 50    | 3.13 | 0.38              | 1187 | sandy sand damp | 291.0                             | -                     | Υ              |
|       | BSP8          | 1'    | 15   | 50    | 3.33 | 0.26              | 866  | sandy sand damp | 580.0                             | -                     | Υ              |
|       | BSP9          | 1'    | 20   | 54    | 2.70 | 0.29              | 783  | sandy sand damp | 428.0                             | -                     | Υ              |
|       | BSP10         | 1'    | 19   | 49    | 2.58 | 0.27              | 696  | sandy sand damp | 291.0                             | 296                   | N              |
|       | BSP11         | 1'    | 16   | 50    | 3.13 | 0.31              | 968  | sandy sand damp | 104.0                             | -                     | Υ              |
|       | BSP12         | 1'    | 23   | 44    | 1.91 | 0.43              | 822  | sandy sand damp | 296.8                             | -                     | Υ              |

| DATE     | Sample<br>Pt. | DEPTH | SOIL | WATER | CF   | AgNO <sub>3</sub> | CL-  | SOIL LITHOLOGY  | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |
|----------|---------------|-------|------|-------|------|-------------------|------|-----------------|-----------------------------------|-----------------------|----------------|
|          | BSP13         | 1'    | 22   | 44    | 2.00 | 0.77              | 1540 | sandy sand damp | 277.6                             | -                     | Υ              |
|          | BSP14         | 1'    | 18   | 44    | 2.44 | 0.62              | 1515 | sandy sand damp | 283.2                             | -                     | Υ              |
|          | BSP15         | 1'    | 18   | 42    | 2.33 | 0.51              | 1190 | sandy sand damp | 452.0                             | -                     | Υ              |
|          | BSP16         | 1'    | 19   | 43    | 2.26 | 0.57              | 1290 | sandy sand damp | 208.4                             | -                     | Υ              |
|          | BSP17         | 1'    | 19   | 50    | 2.63 | 0.34              | 894  | sandy sand damp | 220.8                             | -                     | Υ              |
|          | BSP18         | 1'    | 25   | 37    | 1.48 | 0.17              | 252  | sandy sand damp | 135.6                             | -                     | N              |
|          | BSP19         | 1'    | 17   | 43    | 2.53 | 0.48              | 1214 | sandy sand damp | 157.2                             | -                     | Υ              |
|          | BSP20         | 1'    | 18   | 47    | 2.61 | 0.2               | 522  | sandy sand damp | 354.8                             | 127                   | N              |
|          | BSP21         | 1'    | 15   | 45    | 3.00 | 0.15              | 450  | sandy sand damp | 243.6                             | -                     | N              |
|          | BSP22         | 1'    | 17   | 51    | 3.00 | 0.15              | 450  | sandy sand damp | 334.0                             | -                     | N              |
|          | BSP23         | 1'    | 19   | 45    | 2.37 | 0.09              | 213  | sandy sand damp | 456.0                             | -                     | N              |
|          | BSP24         | 1'    | 21   | 43    | 2.05 | 0.1               | 205  | sandy sand damp | 386.4                             | -                     | N              |
|          | BSP25         | 1'    | 23   | 42    | 1.83 | 0.18              | 329  | sandy sand damp | 1376.0                            | -                     | N              |
| 17-May   | BSP26         | 1'    | 24   | 47    | 1.96 | 0.28              | 548  | sandy sand damp | 524.0                             | -                     | N              |
| 17-iviay | BSP27         | 1'    | 24   | 46    | 1.92 | 0.51              | 977  | sandy sand damp | 1016.0                            | -                     | Υ              |
|          | BSP28         | 1'    | 18   | 47    | 2.61 | 0.18              | 470  | sandy sand damp | 296.0                             | -                     | N              |
|          | BSP29         | 1'    | 21   | 45    | 2.14 | 0.19              | 407  | sandy sand damp | 584.0                             | -                     | N              |
|          | BSP30         | 1'    | 19   | 44    | 2.32 | 0.4               | 926  | sandy sand damp | 257.6                             | 266                   | Υ              |
|          | BSP31         | 1'    | 18   | 45    | 2.50 | 0.46              | 1150 | sandy sand damp | 276.8                             | -                     | Υ              |
|          | BSP32         | 1'    | 19   | 48    | 2.53 | 0.65              | 1642 | sandy sand damp |                                   | -                     | Υ              |
|          | BSP33         | 1'    | 19   | 46    | 2.42 | 0.36              | 871  | sandy sand damp |                                   | -                     | Υ              |
|          | BSP34         | 1'    | 19   | 48    | 2.53 | 0.34              | 859  | sandy sand damp |                                   | -                     | Υ              |
|          | BSP35         | 1'    | 22   | 46    | 2.09 | 0.75              | 1568 | sandy sand damp |                                   | -                     | Υ              |
|          | BSP36         | 1'    | 22   | 47    | 2.14 | 0.5               | 1068 | sandy sand damp |                                   | -                     | Υ              |
|          | BSP37         | 1'    | 19   | 43    | 2.26 | 0.84              | 1900 | sandy sand damp |                                   | -                     | Υ              |
|          | BSP38         | 1'    | 22   | 42    | 1.91 | 0.81              | 1546 | sandy sand damp |                                   | -                     | Υ              |

| DATE  | Sample<br>Pt. | DEPTH | SOIL | WATER | CF   | AgNO <sub>3</sub> | CL-  | SOIL LITHOLOGY  | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |
|-------|---------------|-------|------|-------|------|-------------------|------|-----------------|-----------------------------------|-----------------------|----------------|
|       | BSP39         | 1'    | 18   | 41    | 2.28 | 0.28              | 638  | sandy sand damp |                                   | -                     | N              |
|       | BSP40         | 1'    | 24   | 44    | 1.83 | 0.75              | 1375 | sandy sand damp |                                   | -                     | Υ              |
|       | BSP41         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 260.0                             | -                     | N              |
|       | BSP42         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 329.6                             | -                     | N              |
|       | BSP43         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 254.0                             | -                     | N              |
|       | BSP44         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 138.0                             | -                     | N              |
|       | BSP45         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 249.6                             | -                     | N              |
|       | BSP46         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 137.6                             | -                     | N              |
|       | BSP47         | 1'    | -    | •     | -    | -                 | -    | sandy sand damp | 291.2                             | -                     | N              |
|       | BSP48         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 580.0                             | -                     | N              |
|       | BSP49         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 428.0                             | -                     | N              |
|       | BSP50         | 1'    | -    | •     | -    | -                 | -    | sandy sand damp | 260.4                             | -                     | N              |
|       | BSP51         | 1'    | -    | •     | -    | -                 | 1    | sandy sand damp | 104.8                             | -                     | N              |
|       | BSP52         | 1'    | -    | •     | -    | -                 | 1    | sandy sand damp | 296.8                             | -                     | N              |
| 5-Jun | BSP53         | 1'    | -    | ı     | -    | -                 | 1    | sandy sand damp | 277.6                             | -                     | N              |
|       | BSP54         | 1'    | -    | •     | -    | -                 | -    | sandy sand damp | 283.2                             | -                     | N              |
|       | BSP55         | 1'    | -    | •     | -    | -                 | 1    | sandy sand damp | 452.0                             | -                     | N              |
|       | BSP56         | 1'    | -    | ı     | -    | -                 | 1    | sandy sand damp | 208.4                             | -                     | N              |
|       | BSP57         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 220.8                             | -                     | N              |
|       | BSP58         | 1'    | -    | •     | -    | -                 | -    | sandy sand damp | 135.6                             | -                     | N              |
|       | BSP59         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 157.2                             | -                     | N              |
|       | BSP60         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 354.8                             | -                     | N              |
|       | BSP61         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 243.6                             | -                     | N              |
|       | BSP62         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 334.0                             | -                     | N              |
|       | BSP63         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 456.0                             | -                     | N              |
|       | BSP64         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 386.4                             | -                     | N              |

| DATE   | Sample<br>Pt. | DEPTH | SOIL | WATER | CF   | AgNO <sub>3</sub> | CL-  | SOIL LITHOLOGY  | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |
|--------|---------------|-------|------|-------|------|-------------------|------|-----------------|-----------------------------------|-----------------------|----------------|
|        | BSP65         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 1376.0                            | -                     | Υ              |
|        | BSP66         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 524.0                             | -                     | N              |
|        | BSP67         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 1016.0                            | -                     | Υ              |
|        | BSP68         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 296.0                             | -                     | Υ              |
|        | BSP69         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 584.0                             | -                     | Υ              |
|        | BSP70         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 257.6                             | -                     | Υ              |
|        | BSP71         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 276.8                             | -                     | Υ              |
|        | CSP1          | 1'    | 19   | 46    | 2.42 | 0.16              | 387  | sandy sand damp |                                   | -                     | N              |
|        | CSP2          | 1'    | 17   | 46    | 2.71 | 0.15              | 406  | sandy sand damp |                                   | -                     | N              |
|        | CSP3          | 1'    | 15   | 44    | 2.93 | 0.12              | 352  | sandy sand damp |                                   | -                     | N              |
|        | CSP4          | 1'    | 12   | 48    | 4.00 | 0.2               | 800  | sandy sand damp |                                   | -                     | N              |
|        | CSP5          | 1'    | 19   | 45    | 2.37 | 0.17              | 403  | sandy sand damp |                                   | -                     | N              |
|        | CSP6          | 1'    | 14   | 43    | 3.07 | 0.3               | 921  | sandy sand damp |                                   | -                     | N              |
|        | CSP7          | 1'    | 18   | 49    | 2.72 | 0.52              | 1415 | sandy sand damp |                                   | -                     | Υ              |
|        | CSP8          | 1'    | 17   | 48    | 2.82 | 0.3               | 847  | sandy sand damp |                                   | -                     | N              |
|        | CSP9          | 1'    | 19   | 44    | 2.32 | 0.24              | 556  | sandy sand damp |                                   | -                     | N              |
| 27-Apr | CSP10         | 1'    | 22   | 47    | 2.14 | 0.46              | 982  | sandy sand damp |                                   | -                     | N              |
| 21-Api | CSP11         | 1'    | 22   | 43    | 1.95 | 0.64              | 1251 | sandy sand damp |                                   | -                     | Υ              |
|        | CSP12         | 1'    | 17   | 43    | 2.53 | 0.39              | 986  | sandy sand damp |                                   | -                     | N              |
|        | CSP13         | 1'    | 15   | 46    | 3.07 | 0.56              | 1717 | sandy sand damp |                                   | -                     | Υ              |
|        | CSP14         | 1'    | 19   | 46    | 2.42 | 0.27              | 653  | sandy sand damp |                                   | -                     | N              |
|        | CSP15         | 1'    | 21   | 46    | 2.19 | 0.43              | 942  | sandy sand damp |                                   | -                     | N              |
|        | CSP16         | 1'    | 24   | 41    | 1.71 | 0.44              | 751  | sandy sand damp |                                   | -                     | N              |
|        | CSP17         | 1'    | 19   | 47    | 2.47 | 0.26              | 643  | sandy sand damp |                                   | -                     | N              |
|        | CSP18         | 1'    | 18   | 46    | 2.56 | 0.3               | 766  | sandy sand damp |                                   | -                     | N              |
|        | CSP19         | 1'    | 28   | 40    | 1.43 | 0.59              | 843  | sandy sand damp |                                   | -                     | N              |

| DATE       | Sample<br>Pt. | DEPTH | SOIL | WATER | CF   | AgNO <sub>3</sub> | CL-  | SOIL LITHOLOGY  | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |
|------------|---------------|-------|------|-------|------|-------------------|------|-----------------|-----------------------------------|-----------------------|----------------|
|            | CSP20         | 1'    | 17   | 43    | 2.53 | 0.3               | 759  | sandy sand damp |                                   | -                     | N              |
|            | CSP21         | 1'    | 14   | 41    | 2.93 | 0.18              | 527  | sandy sand damp |                                   | -                     | N              |
|            | CSP22         | 1'    | 16   | 40    | 2.50 | 0.38              | 950  | sandy sand damp |                                   | -                     | N              |
|            | CSP23         | 1'    | 15   | 46    | 3.07 | 0.15              | 460  | sandy sand damp |                                   | -                     | N              |
|            | CSP24         | 1'    | 15   | 41    | 2.73 | 0.23              | 628  | sandy sand damp |                                   | -                     | N              |
|            | CSP25         | 1'    | 16   | 41    | 2.56 | 0.28              | 717  | sandy sand damp |                                   | -                     | N              |
|            | CSP26         | 1'    | 15   | 47    | 3.13 | 0.32              | 1002 | sandy sand damp |                                   | -                     | Υ              |
|            | CSP27         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 496.0                             | -                     | N              |
|            | CSP28         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 516.0                             | -                     | N              |
|            | CSP29         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 664.0                             | -                     | N              |
|            | CSP30         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 320.8                             | -                     | N              |
|            | CSP31         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 456.0                             | -                     | N              |
|            | CSP32         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 548.0                             | -                     | N              |
|            | CSP33         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 391.2                             | -                     | N              |
|            | CSP34         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 512.0                             | -                     | N              |
|            | CSP35         | 1'    | -    | -     | -    | -                 | •    | sandy sand damp | 576.0                             | -                     | N              |
|            | CSP36         | 1'    | -    | -     | -    | -                 | •    | sandy sand damp | 307.6                             | -                     | N              |
|            | CSP37         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 159.2                             | -                     | N              |
|            | CSP38         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 129.2                             | -                     | N              |
|            | CSP39         | 1'    | -    | -     | -    | -                 | •    | sandy sand damp | 266.4                             | -                     | N              |
|            | CSP40         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 236.0                             | -                     | N              |
| 17-May     | CSP41         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 147.2                             | -                     | N              |
| i i -iviay | CSP42         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 226.8                             | -                     | N              |
|            | CSP43         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 179.6                             | -                     | N              |
|            | CSP44         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 242.8                             | -                     | N              |
|            | CSP45         | 1'    | -    | -     | -    | -                 | -    | sandy sand damp | 396.4                             | -                     | N              |

Spill Area 2

| DATE   | Sample<br>Pt. | Pt. DEPTH SOIL WATER CI |    | CF | AgNO <sub>3</sub> | CL-  | SOIL LITHOLOGY | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |   |
|--------|---------------|-------------------------|----|----|-------------------|------|----------------|-----------------------------------|-----------------------|----------------|---|
|        | CSP46         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 272.8                 | -              | N |
|        | CSP47         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 780.0                 | -              | Y |
|        | CSP48         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 354.8                 | -              | N |
|        | CSP49         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 696.0                 | -              | N |
|        | CSP50         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 500.0                 | -              | N |
|        | CSP51         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 432.0                 | -              | N |
|        | CSP52         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 500.0                 | -              | N |
|        | CSP53         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 904.0                 | -              | Υ |
|        | CSP54         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 984.0                 | -              | Υ |
|        | CSP55         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 828.0                 | -              | Υ |
|        | CSP56         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 792.0                 | -              | Υ |
|        | CSP57         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 592.0                 | -              | N |
|        | CSP58         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 472.0                 | -              | N |
|        | CSP59         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 600.0                 | -              | N |
|        | CSP60         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 916.0                 | -              | Υ |
|        | CSP61         | 1'                      | -  | -  | -                 | -    | •              | sandy sand damp                   | 816.0                 | -              | Υ |
|        | CSP62         | 1'                      | -  | -  | -                 | -    | -              | sandy sand damp                   | 1044.0                | -              | Υ |
|        | DSP1          | 1'                      | 20 | 45 | 2.25              | 0.45 | 1012           | sandy sand damp                   |                       | -              | Υ |
|        | DSP2          | 1'                      | 19 | 49 | 2.58              | 0.37 | 954            | sandy sand damp                   |                       | -              | N |
|        | DSP3          | 1'                      | 17 | 48 | 2.82              | 0.52 | 1468           | sandy sand damp                   |                       | -              | Υ |
|        | DSP4          | 1'                      | 20 | 46 | 2.30              | 0.5  | 1150           | sandy sand damp                   |                       | -              | Υ |
| 27-Apr | DSP5          | 1'                      | 17 | 46 | 2.71              | 0.52 | 1407           | sandy sand damp                   |                       | -              | Υ |
| ∠1-Aþi | DSP6          | 1'                      | 18 | 55 | 3.06              | 0.32 | 977            | sandy sand damp                   |                       | -              | N |
|        | DSP7          | 1'                      | 16 | 49 | 3.06              | 0.53 | 1623           | sandy sand damp                   |                       | -              | Υ |
|        | DSP8          | 1'                      | 19 | 49 | 2.58              | 0.17 | 438            | sandy sand damp                   | dy sand damp          |                | N |
|        | DSP9          | 1'                      | 22 | 48 | 2.18              | 0.26 | 567            | sandy sand damp                   |                       | -              | N |

| DATE | Sample<br>Pt. | DEPTH | SOIL | WATER | CF   | AgNO <sub>3</sub> | CL-  | SOIL LITHOLOGY  | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |
|------|---------------|-------|------|-------|------|-------------------|------|-----------------|-----------------------------------|-----------------------|----------------|
|      | DSP10         | 1'    | 16   | 50    | 3.13 | 0.24              | 750  | sandy sand damp |                                   | 163                   | N              |
|      | DSP11         | 1'    | 17   | 49    | 2.88 | 0.25              | 720  | sandy sand damp |                                   | -                     | N              |
|      | DSP12         | 1'    | 16   | 49    | 3.06 | 0.1               | 306  | sandy sand damp |                                   | -                     | N              |
|      | DSP13         | 1'    | 16   | 44    | 2.75 | 0.13              | 357  | sandy sand damp |                                   | -                     | N              |
|      | DSP14         | 1'    | 16   | 49    | 3.06 | 0.11              | 337  | sandy sand damp |                                   | -                     | N              |
|      | DSP15         | 1'    | 19   | 45    | 2.37 | 0.4               | 947  | sandy sand damp |                                   | -                     | N              |
|      | DSP16         | 1'    | 16   | 48    | 3.00 | 0.18              | 540  | sandy sand damp |                                   | -                     | N              |
|      | DSP17         | 1'    | 17   | 52    | 3.06 | 0.07              | 214  | sandy sand damp |                                   | -                     | N              |
|      | DSP18         | 1'    | 15   | 50    | 3.33 | 0.08              | 267  | sandy sand damp |                                   | -                     | N              |
|      | DSP19         | 1'    | 16   | 48    | 3.00 | 0.17              | 510  | sandy sand damp |                                   | -                     | N              |
|      | DSP20         | 1'    | 16   | 48    | 3.00 | 0.12              | 360  | sandy sand damp |                                   | 169                   | N              |
|      | DSP21         | 1'    | 22   | 48    | 2.18 | 0.12              | 262  | sandy sand damp |                                   | -                     | N              |
|      | DSP22         | 1'    | 14   | 49    | 3.50 | 0.07              | 245  | sandy sand damp |                                   | -                     | N              |
|      | DSP23         | 1'    | 19   | 47    | 2.47 | 0.1               | 247  | sandy sand damp |                                   | -                     | N              |
|      | DSP24         | 1'    | 19   | 44    | 2.32 | 0.07              | 162  | sandy sand damp |                                   | -                     | N              |
|      | DSP25         | 1'    | 22   | 45    | 2.05 | 0.13              | 266  | sandy sand damp |                                   | -                     | N              |
|      | DSP26         | 1'    | 17   | 49    | 2.88 | 0.17              | 490  | sandy sand damp |                                   | -                     | N              |
|      | DSP27         | 1'    | 16   | 48    | 3.00 | 0.34              | 1020 | sandy sand damp |                                   | -                     | Υ              |
|      | DSP28         | 1'    | 18   | 48    | 2.67 | 0.36              | 960  | sandy sand damp |                                   | -                     | N              |
|      | DSP29         | 1'    | 19   | 46    | 2.42 | 0.14              | 339  | sandy sand damp |                                   | -                     | N              |
|      | DSP30         | 1'    | 19   | 50    | 2.63 | 0.16              | 421  | sandy sand damp |                                   | 346                   | N              |
|      | DSP31         | 1'    | 26   | 42    | 1.62 | 0.57              | 920  | sandy sand damp |                                   | -                     | N              |
|      | DSP32         | 1'    | 15   | 54    | 3.60 | 0.38              | 1368 | sandy sand damp |                                   | -                     | Υ              |
|      | DSP33         | 1'    | 15   | 45    | 3.00 | 0.16              | 480  | sandy sand damp |                                   | _                     | N              |
|      | DSP34         | 1'    | 15   | 47    | 3.13 | 0.11              | 345  | sandy sand damp |                                   | -                     | N              |
|      | DSP35         | 1'    | 15   | 54    | 3.60 | 0.18              | 648  | sandy sand damp |                                   | -                     | N              |

| DATE   | Sample<br>Pt. | DEPTH | SOIL | WATER | CF   | AgNO <sub>3</sub> | CL-  | SOIL LITHOLOGY  | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |
|--------|---------------|-------|------|-------|------|-------------------|------|-----------------|-----------------------------------|-----------------------|----------------|
|        | DSP36         | 1'    | 14   | 47    | 3.36 | 0.46              | 1544 | sandy sand damp |                                   | -                     | Υ              |
| 28-Apr | DSP37         | 1'    | 22   | 49    | 2.23 | 0.21              | 468  | sandy sand damp |                                   | -                     | N              |
| 20-Api | DSP38         | 1'    | 23   | 47    | 2.04 | 0.13              | 266  | sandy sand damp |                                   | -                     | N              |
|        | DSP39         | 1'    | 16   | 47    | 2.94 | 0.15              | 440  | sandy sand damp |                                   | -                     | N              |
|        | DSP40         | 1'    | 14   | 49    | 3.50 | 0.11              | 385  | sandy sand damp |                                   | 284                   | N              |
|        | DSP41         | 1'    | 16   | 46    | 2.88 | 0.11              | 316  | sandy sand damp |                                   | -                     | N              |
|        | DSP42         | 1'    | 16   | 51    | 3.19 | 0.1               | 319  | sandy sand damp |                                   | -                     | N              |
|        | DSP43         | 1'    | 15   | 48    | 3.20 | 0.07              | 224  | sandy sand damp |                                   | -                     | N              |
|        | DSP44         | 1'    | 19   | 43    | 2.26 | 0.12              | 271  | sandy sand damp |                                   | -                     | N              |
|        | DSP45         | 1'    | 21   | 48    | 2.29 | 0.08              | 183  | sandy sand damp |                                   | -                     | N              |
|        | DSP46         | 1'    | 17   | 45    | 2.65 | 0.11              | 291  | sandy sand damp |                                   | -                     | N              |
|        | DSP47         | 1'    | 20   | 47    | 2.35 | 0.1               | 235  | sandy sand damp |                                   | -                     | N              |
|        | DSP48         | 1'    | 21   | 39    | 1.86 | 0.26              | 483  | sandy sand damp |                                   | -                     | N              |
|        | DSP49         | 1'    | 23   | 42    | 1.83 | 0.15              | 274  | sandy sand damp |                                   | -                     | N              |
|        | DSP50         | 1'    | 17   | 46    | 2.71 | 0.16              | 433  | sandy sand damp |                                   | 232                   | N              |
|        | DSP51         | 1'    | 17   | 49    | 2.88 | 0.13              | 375  | sandy sand damp |                                   | -                     | N              |
|        | DSP52         | 1'    | 17   | 45    | 2.65 | 0.1               | 265  | sandy sand damp |                                   | -                     | N              |
|        | DSP53         | 1'    | 14   | 46    | 3.29 | 0.08              | 263  | sandy sand damp |                                   | -                     | N              |
|        | DSP54         | 1'    | 19   | 42    | 2.21 | 0.07              | 155  | sandy sand damp |                                   | -                     | N              |
|        | DSP55         | 1'    | 16   | 45    | 2.81 | 0.07              | 197  | sandy sand damp |                                   | 381                   | N              |
|        | DSP56         | 1'    | 15   | 50    | 3.33 | 0.06              | 200  | sandy sand damp |                                   | 154                   | N              |
|        | DSP57         | 1'    | 13   | 48    | 3.69 | 0.07              | 258  | sandy sand damp |                                   | 155                   | N              |
|        | DSP58         | 1'    | 16   | 45    | 2.81 | 0.09              | 253  | sandy sand damp |                                   | 178                   | N              |
|        | DSP59         | 1'    | 14   | 47    | 3.36 | 0.09              | 302  | sandy sand damp |                                   | 145                   | N              |
|        | DSP60         | 1'    | 15   | 49    | 3.27 | 0.07              | 229  | sandy sand damp |                                   | 151                   | N              |
|        | DSP61         | 1'    | 19   | 47    | 2.47 | 0.03              | 74   | sandy sand damp |                                   | 156                   | N              |

| DATE     | Sample<br>Pt. | DEPTH | SOIL | WATER | CF   | AgNO <sub>3</sub> | CL- | SOIL LITHOLOGY  | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |
|----------|---------------|-------|------|-------|------|-------------------|-----|-----------------|-----------------------------------|-----------------------|----------------|
|          | DSP62         | 1'    | 16   | 48    | 3.00 | 0.1               | 300 | sandy sand damp |                                   | 157                   | N              |
|          | DSP63         | 1'    | 17   | 47    | 2.76 | 0.08              | 221 | sandy sand damp |                                   | 139                   | N              |
|          | DSP64         | 1'    | 17   | 49    | 2.88 | 0.1               | 288 | sandy sand damp |                                   | 99.5                  | N              |
|          | ESP1          | 1'    | *    | *     | *    | *                 | *   | sandy sand damp | *                                 | -                     | N              |
| 16-May   | ESP2          | 1'    | *    | *     | *    | *                 | *   | sandy sand damp | *                                 | -                     | N              |
| 10-iviay | ESP3          | 1'    | *    | *     | *    | *                 | *   | sandy sand damp | *                                 | -                     | N              |
|          | ESP4          | 1'    | *    | *     | *    | *                 | *   | sandy sand damp | *                                 | -                     | N              |
|          | ESP5          | 1'    | *    | *     | *    | *                 | *   | sandy sand damp | *                                 | -                     | N              |
|          | ESP6          | 1'    | *    | *     | *    | *                 | *   | sandy sand damp | *                                 | -                     | N              |
|          | ESP7          | 1'    | *    | *     | *    | *                 | *   | sandy sand damp | *                                 | -                     | N              |
|          | ESP8          | 1'    | *    | *     | *    | *                 | *   | sandy sand damp | *                                 | -                     | N              |
|          | ESP9          | 1'    | *    | *     | *    | *                 | *   | sandy sand damp | *                                 | -                     | N              |
|          | ESP10         | 1'    | *    | *     | *    | *                 | *   | sandy sand damp | *                                 | 1400                  | Υ              |
|          | FSP1          | 1'    | 19   | 43    | 2.26 | 0.18              | 407 | sandy sand damp |                                   | -                     | N              |
|          | FSP2          | 1'    | 15   | 45    | 3.00 | 0.23              | 690 | sandy sand damp |                                   | -                     | N              |
|          | FSP3          | 1'    | 18   | 50    | 2.78 | 0.26              | 722 | sandy sand damp |                                   | -                     | N              |
|          | FSP4          | 1'    | 17   | 48    | 2.82 | 0.33              | 931 | sandy sand damp |                                   | -                     | N              |
|          | FSP5          | 1'    | 18   | 45    | 2.50 | 0.38              | 950 | sandy sand damp |                                   | -                     | N              |
|          | FSP6          | 1'    | 18   | 44    | 2.44 | 0.38              | 929 | sandy sand damp |                                   | -                     | N              |
|          | FSP7          | 1'    | 18   | 49    | 2.72 | 0.3               | 816 | sandy sand damp |                                   | -                     | N              |
|          | FSP8          | 1'    | 16   | 44    | 2.75 | 0.21              | 577 | sandy sand damp |                                   | -                     | N              |
|          | FSP9          | 1'    | 15   | 46    | 3.07 | 0.16              | 491 | sandy sand damp |                                   | -                     | N              |
|          | FSP10         | 1'    | 24   | 42    | 1.75 | 0.22              | 385 | sandy sand damp |                                   | -                     | N              |
|          | FSP11         | 1'    | 20   | 45    | 2.25 | 0.18              | 405 | sandy sand damp |                                   | -                     | N              |
|          | FSP12         | 1'    | 21   | 46    | 2.19 | 0.38              | 832 | sandy sand damp |                                   | -                     | N              |
|          | FSP13         | 1'    | 17   | 46    | 2.71 | 0.35              | 947 | sandy sand damp |                                   | -                     | N              |

| DATE    | Sample<br>Pt. | DEPTH | SOIL | WATER | CF   | AgNO <sub>3</sub> | CL-  | SOIL LITHOLOGY  | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |
|---------|---------------|-------|------|-------|------|-------------------|------|-----------------|-----------------------------------|-----------------------|----------------|
| 3-May   | FSP14         | 1'    | 19   | 45    | 2.37 | 0.17              | 403  | sandy sand damp |                                   | -                     | N              |
|         | FSP15         | 1'    | 21   | 43    | 2.05 | 0.47              | 962  | sandy sand damp |                                   | -                     | N              |
|         | FSP16         | 1'    | 23   | 43    | 1.87 | 0.11              | 206  | sandy sand damp |                                   | -                     | N              |
|         | FSP17         | 1'    | 20   | 44    | 2.20 | 0.15              | 330  | sandy sand damp |                                   | -                     | N              |
|         | FSP18         | 1'    | 17   | 47    | 2.76 | 0.25              | 691  | sandy sand damp |                                   | -                     | N              |
|         | FSP19         | 1'    | 19   | 46    | 2.42 | 0.09              | 218  | sandy sand damp |                                   | -                     | N              |
|         | FSP20         | 1'    | 16   | 48    | 3.00 | 0.19              | 570  | sandy sand damp |                                   | -                     | N              |
|         | FSP21         | 1'    | 19   | 41    | 2.16 | 0.18              | 388  | sandy sand damp |                                   | -                     | N              |
|         | FSP22         | 1'    | 16   | 49    | 3.06 | 0.25              | 765  | sandy sand damp |                                   | -                     | N              |
|         | FSP23         | 1'    | 17   | 48    | 2.82 | 0.33              | 931  | sandy sand damp |                                   | -                     | N              |
|         | FSP24         | 1'    | 15   | 45    | 3.00 | 0.22              | 660  | sandy sand damp |                                   | -                     | N              |
|         | FSP25         | 1'    | 21   | 51    | 2.43 | 0.08              | 194  | sandy sand damp |                                   | -                     | N              |
|         | FSP26         | 1'    | 19   | 46    | 2.42 | 0.21              | 508  | sandy sand damp |                                   | -                     | N              |
|         | FSP27         | 1'    | 15   | 47    | 3.13 | 0.12              | 376  | sandy sand damp |                                   | -                     | N              |
|         | FSP28         | 1'    | 20   | 43    | 2.15 | 0.2               | 430  | sandy sand damp |                                   | -                     | N              |
|         | FSP29         | 1'    | 15   | 49    | 3.27 | 0.25              | 816  | sandy sand damp |                                   | -                     | N              |
|         | FSP30         | 1'    | 14   | 50    | 3.57 | 0.23              | 821  | sandy sand damp |                                   | -                     | N              |
|         | FSP31         | 1'    | 19   | 47    | 2.47 | 0.39              | 964  | sandy sand damp |                                   | -                     | N              |
|         | FSP32         | 1'    | 22   | 49    | 2.23 | 0.15              | 334  | sandy sand damp |                                   | -                     | N              |
|         | FSP33         | 1'    | 21   | 48    | 2.29 | 0.21              | 480  | sandy sand damp |                                   | -                     | N              |
| 4-May   | FSP34         | 1'    | 15   | 47    | 3.13 | 0.24              | 752  | sandy sand damp |                                   | -                     | N              |
| 4-iviay | FSP35         | 1'    | 15   | 47    | 3.13 | 0.37              | 1159 | sandy sand damp |                                   | -                     | Υ              |
|         | FSP36         | 1'    | 17   | 48    | 2.82 | 0.4               | 1129 | sandy sand damp |                                   | -                     | Υ              |
|         | FSP37         | 1'    | 16   | 47    | 2.94 | 0.23              | 675  | sandy sand damp |                                   | -                     | N              |
|         | FSP38         | 1'    | 18   | 45    | 2.50 | 0.08              | 200  | sandy sand damp |                                   | -                     | N              |
|         | FSP39         | 1'    | 22   | 47    | 2.14 | 0.67              | 1431 | sandy sand damp |                                   | -                     | Υ              |

| DATE     | Sample<br>Pt. | DEPTH | SOIL | WATER | CF   | AgNO <sub>3</sub> | CL-  | SOIL LITHOLOGY  | FIELD<br>SCREENING<br>HORIBA D-73 | LAB<br>RESULTS<br>CL- | BLENDED<br>Y/N |
|----------|---------------|-------|------|-------|------|-------------------|------|-----------------|-----------------------------------|-----------------------|----------------|
|          | FSP40         | 1'    | 15   | 49    | 3.27 | 0.07              | 229  | sandy sand damp |                                   | -                     | N              |
|          | FSP41         | 1'    | 19   | 48    | 2.53 | 0.28              | 707  | sandy sand damp |                                   | -                     | N              |
|          | MB1           | 1'    | 18   | 44    | 2.44 | 0.04              | 98   | sandy sand damp |                                   | -                     | N              |
|          | MB2           | 1'    | 23   | 44    | 1.91 | 0.07              | 134  | sandy sand damp |                                   | -                     | N              |
| 8-May    | MB3           | 1'    | 22   | 49    | 2.23 | 0.01              | 22   | sandy sand damp |                                   | -                     | N              |
| 0-iviay  | MB4           | 1'    | 15   | 46    | 3.07 | 0.02              | 61   | sandy sand damp |                                   | -                     | N              |
|          | MB5           | 1'    | 15   | 51    | 3.40 | 0.05              | 170  | sandy sand damp |                                   | -                     | N              |
|          | MB6           | 1'    | 19   | 41    | 2.16 | 0.05              | 108  | sandy sand damp |                                   | •                     | N              |
|          | MB7           | 1'    | 18   | 41    | 2.28 | 0.07              | 159  | sandy sand damp |                                   | -                     | N              |
|          | MB8           | 1'    | 20   | 42    | 2.10 | 0.08              | 168  | sandy sand damp |                                   | -                     | Ν              |
|          | MB9           | 1'    | 18   | 45    | 2.50 | 0.03              | 75   | sandy sand damp |                                   | •                     | N              |
|          | MB10          | 1'    | 16   | 46    | 2.88 | 0.38              | 1092 | sandy sand damp |                                   | 64.7                  | Υ              |
| 10-May   | MB11          | 1'    | 17   | 46    | 2.71 | 0.16              | 433  | sandy sand damp |                                   | -                     | N              |
| 10-iviay | MB12          | 1'    | 20   | 52    | 2.60 | 0.06              | 156  | sandy sand damp |                                   | -                     | N              |
|          | DMB2          | 1'    | 20   | 42    | 2.10 | 0.4               | 840  | sandy sand damp |                                   | -                     | N              |
|          | DMB3          | 1'    | 21   | 42    | 2.00 | 0.28              | 560  | sandy sand damp |                                   | -                     | N              |
| 6-Jun    | DMB4          | 1'    | 17   | 46    | 2.71 | 0.56              | 1515 | sandy sand damp |                                   | -                     | Υ              |
|          | DMB5          | 1'    | 17   | 50    | 2.94 | 0.27              | 794  | sandy sand damp |                                   | -                     | N              |

<sup>\*</sup> Blending Area E was consolidated into Blending Area B

#### Notes:

- 1. TSS samples are delineation samples for the southern extent of impact.
- 2. Remaining samples are stockpiles samples from Bledning Areas. Refer to Figure for locations.



## **Site Photographs**



Photo 1: View of the excavation area.



**Photo 3:** Additional view of the excavation areas being constructed.



Photo 2: View of sampling area with plastic sheeting.



Photo 4: View of completed excavation area.



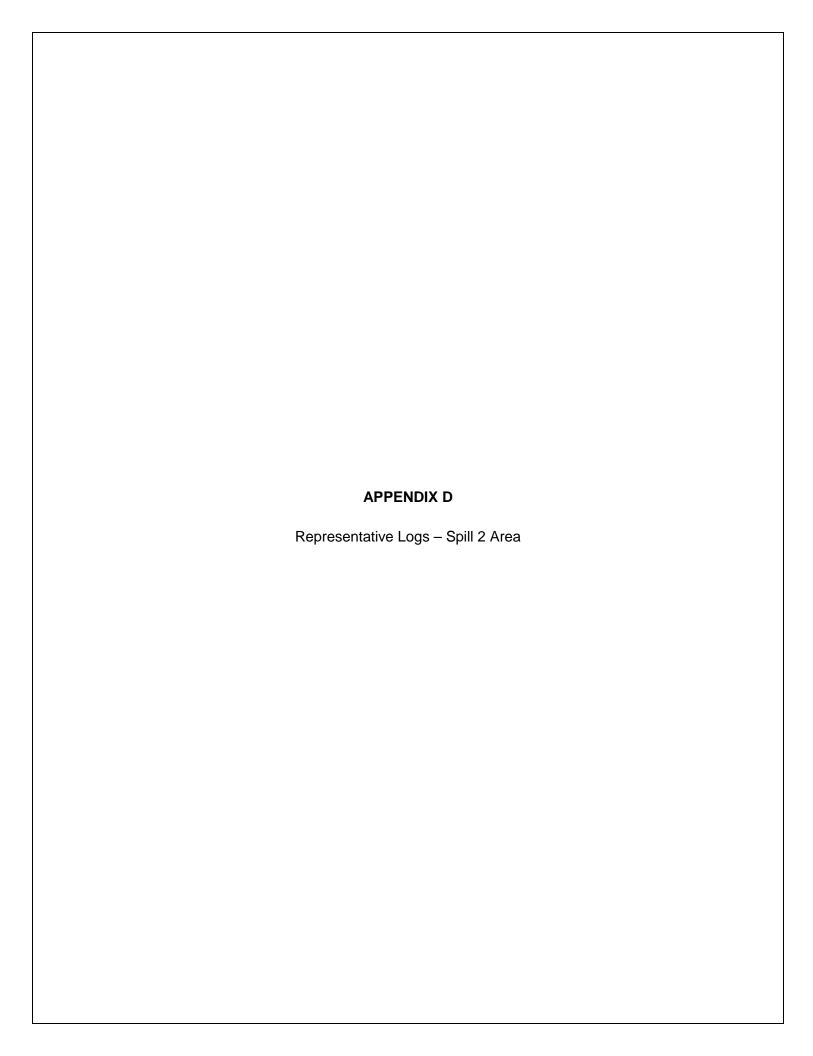
## **Site Photographs**



**Photo 5:** View of the soil stockpiles and blending areas.



Photo 7: View of the BLM reseeding.




**Photo 6:** View of the soil stockpiles and blending areas.



Photo 4: View watering of the reseeded area.







## RECORD OF SUBSURFACE EXPLORATION

## **KJ** Environmental & Civil Engineering

500 Moseley Road • Cross Roads, Tx 76227 940-387-0805 • FAX 940-387-0830

| Client Name:     | Oilfield Water Log   | istics (OWL)              |             | Well/Boring #     | (2) SB 1-48 | Date Drilled:         | Dec. 5-21, 2016 |
|------------------|----------------------|---------------------------|-------------|-------------------|-------------|-----------------------|-----------------|
| Client Address:  | 8214 Westchester I   | Drive, Suite 850, Dallas  | , TX        | Depth of Boring:  | 10          | Diameter of Boring:   | N/A             |
| Project Name:    | Produced Water Pipel | ine Releases Nearby Red H | ills SWD    | Depth of Well:    | N/A         | Diameter of Screen:   | N/A             |
| Project Address: | Section 2, T26S, R   | 36E, Lea County, NM (     | Spill 2)    | Length of Screen: | N/A         | Diameter of Casing:   | N/A             |
| Driller:         | Ed Cohagan           |                           |             | Length of Casing: | N/A         | N/A <b>Slot Size:</b> |                 |
| Drilling Method: | Geoprobe/CME Rig     | Sampling Method:          | Split Spoon | Logged By:        | James F.    | Well Material:        | N/A             |

| Color, Grain Size, Texture, Structure, Consistency, Moisture   Color (feed)   Color (feed)   Color (pm)   Color (   | Driller:                       | Ed Cohagan                              |                                    |             |          | f Casing: | N/A      | Slot Size: |           | N/A         |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|------------------------------------|-------------|----------|-----------|----------|------------|-----------|-------------|---------|
| Depth   Core   Caption   Remarks   Color, Grain Size, Texture, Sturdure, Consistency, Moisture)   Core   (pm)   Core   (gasphical representation of the studies of the st   | <b>Drilling Method:</b>        | Geoprobe/CME Rig                        | Sampling Method:                   | Split Spoon | Logged I |           | James F. |            |           |             |         |
| 1-   0.0-2.0     2.0-4.0     3-1     4.0-6.0     4.0-6.0     5-1     4.0-6.0     5-1     4.0-6.0     5-1     5-1     5-1       5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     5-1     | (Color, Grain                  | Description / I<br>Size, Texture, Struc | Remarks<br>ture, Consistency, Mois | sture)      |          | Interval  |          | Core       | (graphica | al represer | ntation |
| Part      | Surface Type: Topso            | oil, Light Red fine SA                  | ND, (SP), poorly graded            | d, dry      |          |           |          |            | В         | Bentonite   |         |
| 2.04-0   -3-   -4   -4.0-6.0   -5-   -6-   -6.0-8.0   -7-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-    |                                |                                         |                                    |             | -1-      | 0.0-2.0   |          |            |           |             |         |
| 2.04-0   -3-   -4   -4.0-6.0   -5-   -6-   -6.0-8.0   -7-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-   -6-    |                                |                                         |                                    |             | 2        |           |          |            |           |             |         |
| A-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                         |                                    |             |          | 2.0-4.0   |          |            |           |             |         |
| Second   S   |                                |                                         |                                    |             | -3-      |           |          |            |           |             |         |
| Depth of average probe refusal   2-6   -6   -6   -7   -7   -7   -7   -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                         |                                    |             | -4-      | 4.0-6.0   |          |            |           |             |         |
| Depth of average probe refusal   -6   -6   -8.0   -7.   -7.   -8.   -8.   -10.0   -10.0   -11.0   -12.0   -11.0   -12.0   -13.0   -15.0   -16.0   -15.0   -16.0   -17.   -18.0   -18.0   -18.0   -19.0   -18.0   -19.0   -18.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19.0   -19   | Red/light red SAND             | (SP), noorly graded                     | dry                                |             | -5-      |           |          |            |           |             |         |
| Depth of average probe refusal   2-7   -8   8.0-10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | , ( ), []                               | , )                                |             | -6-      |           |          |            |           |             |         |
| Depth of average probe refusal   29-   100-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0-12-0   110-0   |                                |                                         |                                    |             |          | 6.0-8.0   |          |            |           |             |         |
| Depth of average borings  -10 -1112131415161718- NOTE: This boring log shows an approximate average of all borings in Spill Area 2 No water was encountered throughout installation of all borings  No water was encountered throughout installation of all borings  -20 -2122232424252626282828282828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                         |                                    |             |          | 0.0.10.0  |          |            |           |             |         |
| Depth of average borings  -10 -11121313141516151618171818- NOTE: This boring log shows an approximate average of all borings in Spill Area 2 No water was encountered throughout installation of all borings  No water was encountered throughout installation of all borings  -20 -212223242424-0-26-0 -252626262628282828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Caliene Rock, Light            | Gray, dry                               |                                    |             |          | 8.0-10.0  |          |            |           |             |         |
| Depth of deepest boring  Depth of deepest boring  -14 -12 -13 -14 -14 -15 -16 -16 -17 -18 -19 -19 -20 -21 -21 -22 -21 -22 -23 -24 -24 -24 -24 -24 -26 -25 -26 -26 -27 -28 -28 -28 -28 -29 -29 -29 -20 -21 -22 -28 -28 -28 -28 -28 -28 -28 -28 -28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Donth of average he            | win oo                                  |                                    |             |          |           |          |            |           |             |         |
| Depth of deepest boring  Depth of deepest boring  14- 14- 15- 16- 16- 18- 18- 20- 21- 22- 22- 22- 22- 22- 24- 24- 24- 24- 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Depth of average 60.           | rings                                   |                                    |             | -10-     | 10.0-12.0 |          |            |           |             |         |
| Depth of deepest boring  -131414151616181920212222232424242424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                         |                                    |             | -11-     |           |          |            |           |             |         |
| Depth of deepest boring  -14-   14.0-16.0   -15-   -16-   16.0-18.0   -17-   -18-     -18-   18.0-20.0   -19-   -20-     -21-   -22-     -22-   22.0-22.0   -23-   -24-     -24-   24.0-26.0   -25-   -26-     -26-   26.0-28.0   -27-   -28-     -28-   -29-   -29-     -29-     -29-     -20-   -20-   -21-   -22-   -23-   -24-   24.0-26.0   -25-   -26-   -28-   -28-   -29-   -29-   -29-   -29-   -29-   -29-   -29-   -29-   -29-   -29-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   -20-   - |                                |                                         |                                    |             | -12-     | 12.0-14.0 |          |            |           |             |         |
| NOTE: This boring log shows an approximate average of all borings in Spill Area 2 No water was encountered throughout installation of all borings  -20212222232424242526262627282829-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                         |                                    |             | -13-     |           |          |            |           |             |         |
| NOTE: This boring log shows an approximate average of all borings in Spill Area 2  No water was encountered throughout installation of all borings  -1920212222242426262626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depth of deepest bor           | ring                                    |                                    |             | -14-     | 14.0-16.0 |          |            |           |             |         |
| NOTE: This boring log shows an approximate average of all borings in Spill Area 2  No water was encountered throughout installation of all borings  -1920212222222424242626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                                         |                                    |             | -15-     |           |          |            |           |             |         |
| NOTE: This boring log shows an approximate average of all borings in Spill Area 2 No water was encountered throughout installation of all borings  -20212223242424252626262728282829-  There have cloud not be used spanning to the profiled value of all points in spill and the profiled with the profiled value of all points in 18.0-20.0 -20212222232424242425262626262728282829-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                         |                                    |             | -16-     | 16.0-18.0 |          |            |           |             |         |
| NOTE: This boring log shows an approximate average of all borings in Spill Area 2 No water was encountered throughout installation of all borings  -1920212223242425262627282829-  There logs should not be used smoothly from the original beauty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                                         |                                    |             | -17-     |           |          |            |           |             |         |
| NOTE: This boring log shows an approximate average of all borings in Spill Area 2  No water was encountered throughout installation of all borings  -192021222324242426262627282829-  There logs showld not be used smarthly a form the priority at least the used smarthly a form the priority at least the used smarthly a form the priority.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                         |                                    |             | -18-     | 18 0-20 0 |          |            |           |             |         |
| No water was encountered throughout installation of all borings  -202122232424252626262728282829-  These logs should not be used sequential a form the original venut.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NOTE: This boring Spill Area 2 | log shows an approxi                    | mate average of all boring         | ngs in      | -19-     | 10.0 20.0 |          |            |           |             |         |
| -212223242426262728282829-  These loss should not be used separately a form the axis single sport.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                         | ghout installation of all b        | oorings     | -20-     | 20.0-22.0 |          |            |           |             |         |
| -23242526272828282829-  There load chould not be used sensystely from the oxidinal venout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                         |                                    |             | -21-     |           |          |            |           |             |         |
| -2324252627282829-  There loss should not be used separately from the oxising all report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                         |                                    |             | -22-     | 22.0-24.0 |          |            |           |             |         |
| -25262627282829-  There loss should not be used separately from the oxisinal report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                         |                                    |             | -23-     |           |          |            |           |             |         |
| -252627282829-  There loss should not be used separately from the oxiginal venort.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                         |                                    |             | -24-     | 24.0-26.0 |          |            |           |             |         |
| -27282829- There loss should not be used sensystely from the oxisinal venort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                         |                                    |             | -25-     | 20.0      |          |            |           |             |         |
| These loss should not be used sensystely from the oxisinal versust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                         |                                    |             | -26-     | 26.0-28.0 |          |            |           |             |         |
| There loss should not be used sengrately from the oxisinal verout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                         |                                    |             | -27-     |           |          |            |           |             |         |
| There lose chould not be used congrately from the oxiginal verout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                         |                                    |             | -28-     | 28.0-30.0 |          |            |           |             |         |
| These logs should not be used separately from the original report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                         |                                    |             | -29-     |           |          |            |           |             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | These logs should n            | ot be used separately                   | from the original repor            | t.          | -30-     |           |          |            |           |             |         |



#### RECORD OF SUBSURFACE EXPLORATION

KJ Environmental & Civil Engineering
500 Moseley Road • Cross Roads, Tx 76227
940-387-0805 • FAX 940-387-0830

| Client Name:            | Oilfield Water Log                                    | istics (OWL)     |             | Well/Boring #         | 002      | Date Drilled:       | 3/8/2017 |
|-------------------------|-------------------------------------------------------|------------------|-------------|-----------------------|----------|---------------------|----------|
| Client Address:         | Spill Area 2                                          |                  |             | Depth of Boring:      | 24'8''   | Diameter of Boring: | 2''      |
| Project Name:           | Produced Water Pipeline Releases Nearby Red Hills SWD |                  |             | Depth of Well:        | N/A      | Diameter of Screen: | N/A      |
| Project Address:        | Section 36, T25S, R36E, Lea County, NM (Spill 1)      |                  |             | Length of Screen:     | N/A      | Diameter of Casing: | N/A      |
| Driller:                | Enviro-Drill                                          |                  |             | Length of Casing: N/A |          | Slot Size:          | N/A      |
| <b>Drilling Method:</b> | Geoprobe/CME Rig                                      | Sampling Method: | Split Spoon | Logged By:            | James F. | Well Material:      | N/A      |

| Driller:                                     | Enviro-Drill           | ,                          |             |          | f Casing: | N/A      | Slot Size: |           |             | I/A     |  |
|----------------------------------------------|------------------------|----------------------------|-------------|----------|-----------|----------|------------|-----------|-------------|---------|--|
| <b>Drilling Method:</b>                      | Geoprobe/CME Rig       | Sampling Method:           | Split Spoon | Logged I |           | James F. | Well Mater |           | N/A         |         |  |
|                                              |                        |                            |             |          | Sample    |          | Sample     |           | Completi    |         |  |
| (0.1 0 :                                     | Description / I        | Remarks                    | 4           | Depth    | Interval  | PID      | Core       | (graphica | al represei | ntation |  |
|                                              |                        | ture, Consistency, Mois    |             | (feet)   | (feet)    | (ppm)    | Zone       |           | not to sca  | le)     |  |
| Surface Type: Topso                          | oil, Light Red fine SA | ND, (SP), poorly graded    | l, dry      | 1        |           | -        |            | E         | Bentonite   |         |  |
|                                              |                        |                            |             | -1-      |           |          |            |           |             |         |  |
|                                              |                        |                            |             |          |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -2-      |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -3-      |           |          |            |           |             |         |  |
|                                              |                        |                            |             |          |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -4-      |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -5-      |           |          |            |           |             |         |  |
| Red/light red SAND                           | , (SP), poorly graded  | , dry                      |             | -3-      |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -6-      |           |          |            |           |             |         |  |
|                                              |                        |                            |             |          |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -7-      |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -8-      |           |          |            |           |             |         |  |
|                                              |                        |                            |             |          |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -9-      |           |          |            |           |             |         |  |
|                                              |                        |                            |             | 10       |           |          |            |           |             |         |  |
| Red/light red SAND                           | , (SP), poorly graded  | , dry                      |             | -10-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -11-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             |          |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -12-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -13-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -13-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -14-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             |          |           |          |            |           |             |         |  |
| Red/light red SAND                           | , (SP), poorly graded  | , dry                      |             | -15-     |           |          |            |           |             |         |  |
|                                              |                        | •                          |             | -16-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             | 10       |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -17-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             | 10       |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -18-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -19-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             |          |           |          |            |           |             |         |  |
| Red/light red SAND                           | , (SP), poorly graded  | , dry                      |             | -20-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -21-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             |          |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -22-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             | 22       |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -23-     |           |          |            |           |             |         |  |
| Dough of D : 24                              | ,0,,                   |                            |             | -24-     |           |          |            |           |             |         |  |
| Depth of Boring: 24<br>One sample (\$\$5002) |                        | om of boring for Chloric   | des.        |          |           |          |            |           |             |         |  |
| Red/light red SAND                           | , (SP), poorly graded  | , dry                      |             | -25-     |           |          |            |           |             |         |  |
|                                              |                        | •                          |             | -26-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             | 20-      |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -27-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             | 20       |           |          |            |           |             |         |  |
| NOTE: No water wa                            | s encountered throug   | hout installation of the b | oring.      | -28-     |           |          |            |           |             |         |  |
|                                              |                        |                            |             | -29-     |           |          |            |           |             |         |  |
|                                              |                        |                            | ,           |          |           |          |            |           |             |         |  |
| These logs should n                          | ot be used separately  | from the original repor    | t.          | -30-     |           | 4        |            |           |             |         |  |
|                                              |                        |                            |             |          |           |          |            |           |             |         |  |





### KJE Environmental & Civil Engineering, Aubrey, TX

Project Name: OWL Bobcat/Red Hills



Project Id: Contact:

**Project Location:** 

James Fox

Jal, NM

Date Received in Lab: Thu Apr-27-17 07:04 pm

**Report Date:** 03-MAY-17

**Project Manager:** Holly Taylor

|                                   | Lab Id:    | 551956-0  | 01                | 551956-0  | 02    | 551956-0        | 03    | 551956-0    | 04   | 551956-0  | 05    | 551956-00   | 06    |
|-----------------------------------|------------|-----------|-------------------|-----------|-------|-----------------|-------|-------------|------|-----------|-------|-------------|-------|
| Analysis Requested                | Field Id:  | ASP 10    | )                 | TSS 1     |       | TSS 2           |       | TSS 3       |      | TSS 4     |       | TSS 5       |       |
| Anaiysis Kequesieu                | Depth:     |           |                   | 4 ft      |       | 4 ft            |       | 4 ft        |      | 4 ft      |       | 4 ft        |       |
|                                   | Matrix:    | SOIL      | SOIL              |           |       | SOIL            |       | SOIL        |      | SOIL      |       | SOIL        |       |
|                                   | Sampled:   | Apr-22-17 | -22-17 14:00 Apr- |           | 4:15  | Apr-27-17 14:20 |       | Apr-27-17 1 | 4:25 | Apr-27-17 | 4:30  | Apr-27-17 1 | 4:35  |
| Inorganic Anions by EPA 300/300.1 | Extracted: | May-01-17 | 11:00             | May-01-17 | 11:00 | May-01-17       | 1:00  | May-01-17   | 1:00 | May-01-17 | 11:00 | May-01-17 1 | 11:00 |
|                                   | Analyzed:  | May-01-17 | ay-01-17 12:21 M  |           | 13:29 | May-01-17       | 13:37 | May-01-17   | 3:45 | May-01-17 | 13:52 | May-01-17 1 | 14:15 |
|                                   | Units/RL:  | mg/kg     | RL                | mg/kg     | RL    | mg/kg           | RL    | mg/kg       | RL   | mg/kg     | RL    | mg/kg       | RL    |
| Chloride                          |            | 548       | 4.94              | 12.7      | 4.93  | 21.9            | 4.94  | 11.0        | 4.94 | 9.03      | 4.99  | <4.90       | 4.90  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%



### KJE Environmental & Civil Engineering, Aubrey, TX

**Project Name: OWL Bobcat/Red Hills** 



Project Id: Contact:

**Project Location:** 

James Fox

Jal, NM

**Date Received in Lab:** Thu Apr-27-17 07:04 pm

**Report Date:** 03-MAY-17 **Project Manager:** Holly Taylor

|                                   | Lab Id:    | 551956-007      |  |  |  |
|-----------------------------------|------------|-----------------|--|--|--|
| Analysis Requested                | Field Id:  | TSS 6           |  |  |  |
|                                   | Depth:     | 4 ft            |  |  |  |
|                                   | Matrix:    | SOIL            |  |  |  |
|                                   | Sampled:   | Apr-27-17 14:40 |  |  |  |
| Inorganic Anions by EPA 300/300.1 | Extracted: | May-01-17 11:00 |  |  |  |
|                                   | Analyzed:  | May-01-17 14:23 |  |  |  |
|                                   | Units/RL:  | mg/kg RL        |  |  |  |
| Chloride                          |            | < 5.00 5.00     |  |  |  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

# **Analytical Report 551956**

# for

# **KJE Environmental & Civil Engineering**

Project Manager: James Fox OWL Bobcat/Red Hills

03-MAY-17

Collected By: Client





#### 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)

Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)





03-MAY-17

Project Manager: **James Fox KJE Enviromental & Civil Engineering**500 Mosley Rd
Aubrey, TX 76227

Reference: XENCO Report No(s): 551956

**OWL Bobcat/Red Hills** Project Address: Jal, NM

#### James Fox:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 551956. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 551956 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

thely Taylor

**Holly Taylor** 

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America



# **Sample Cross Reference 551956**



### KJE Environmental & Civil Engineering, Aubrey, TX

OWL Bobcat/Red Hills

| Sample Id | Matrix | <b>Date Collected</b> | Sample Depth | Lab Sample Id |
|-----------|--------|-----------------------|--------------|---------------|
| ASP 10    | S      | 04-22-17 14:00        | N/A          | 551956-001    |
| TSS 1     | S      | 04-27-17 14:15        | - 4 ft       | 551956-002    |
| TSS 2     | S      | 04-27-17 14:20        | - 4 ft       | 551956-003    |
| TSS 3     | S      | 04-27-17 14:25        | - 4 ft       | 551956-004    |
| TSS 4     | S      | 04-27-17 14:30        | - 4 ft       | 551956-005    |
| TSS 5     | S      | 04-27-17 14:35        | - 4 ft       | 551956-006    |
| TSS 6     | S      | 04-27-17 14:40        | - 4 ft       | 551956-007    |



#### **CASE NARRATIVE**

Client Name: KJE Environmental & Civil Engineering

Project Name: OWL Bobcat/Red Hills

Project ID: Report Date: 03-MAY-17 Work Order Number(s): 551956 Date Received: 04/27/2017

| Sample receipt non conformances and comments:            |
|----------------------------------------------------------|
| Sample receipt non conformances and comments per sample: |
| None                                                     |





#### KJE Environmental & Civil Engineering, Aubrey, TX

OWL Bobcat/Red Hills

Sample Id: ASP 10 Matrix: Soil Date Received:04.27.17 19.04

Lab Sample Id: 551956-001 Date Collected: 04.22.17 14.00

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 05.01.17 11.00 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 548    | 4.94 | mg/kg | 05.01.17 12.21 |      | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

OWL Bobcat/Red Hills

Sample Id: TSS 1 Matrix: Soil Date Received:04.27.17 19.04

Lab Sample Id: 551956-002 Date Collected: 04.27.17 14.15 Sample Depth: 4 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 05.01.17 11.00 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | <b>Analysis Date</b> | Flag | Dil |
|-----------|------------|--------|------|-------|----------------------|------|-----|
| Chloride  | 16887-00-6 | 12.7   | 4.93 | mg/kg | 05.01.17 13.29       |      | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

OWL Bobcat/Red Hills

Sample Id: TSS 2 Matrix: Soil Date Received:04.27.17 19.04

Lab Sample Id: 551956-003 Date Collected: 04.27.17 14.20 Sample Depth: 4 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

NGO ...

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 05.01.17 11.00 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 21.9   | 4.94 | mg/kg | 05.01.17 13.37 |      | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

OWL Bobcat/Red Hills

Sample Id: TSS 3 Matrix: Soil Date Received:04.27.17 19.04

Lab Sample Id: 551956-004 Date Collected: 04.27.17 14.25 Sample Depth: 4 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 05.01.17 11.00 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | <b>Analysis Date</b> | Flag | Dil |
|-----------|------------|--------|------|-------|----------------------|------|-----|
| Chloride  | 16887-00-6 | 11.0   | 4.94 | mg/kg | 05.01.17 13.45       |      | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

OWL Bobcat/Red Hills

Sample Id: TSS 4 Matrix: Soil Date Received:04.27.17 19.04

Lab Sample Id: 551956-005 Date Collected: 04.27.17 14.30 Sample Depth: 4 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 05.01.17 11.00 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 9.03   | 4.99 | mg/kg | 05.01.17 13.52 |      | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

OWL Bobcat/Red Hills

Sample Id: TSS 5 Matrix: Soil Date Received:04.27.17 19.04

Lab Sample Id: 551956-006 Date Collected: 04.27.17 14.35 Sample Depth: 4 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 05.01.17 11.00 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | <4.90  | 4.90 | mg/kg | 05.01.17 14.15 | U    | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

OWL Bobcat/Red Hills

Sample Id: TSS 6 Matrix: Soil Date Received:04.27.17 19.04

Lab Sample Id: 551956-007 Date Collected: 04.27.17 14.40 Sample Depth: 4 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 05.01.17 11.00 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | <b>Analysis Date</b> | Flag | Dil |
|-----------|------------|--------|------|-------|----------------------|------|-----|
| Chloride  | 16887-00-6 | < 5.00 | 5.00 | mg/kg | 05.01.17 14.23       | U    | 1   |



## **Flagging Criteria**



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- \*\* Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

**DL** Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- \* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

Hone Fax
(281) 240-4200 (281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335
1211 W Florida Ave, Midland, TX 79701 (432) 563-1800 (432) 563-1713
2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282 (602) 437-0330



#### **QC Summary** 551956

#### **KJE Environmental & Civil Engineering**

OWL Bobcat/Red Hills

E300P

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method:

Seq Number: 3016246 Matrix: Solid Date Prep: 05.01.17 LCS Sample Id: 723865-1-BKS LCSD Sample Id: 723865-1-BSD MB Sample Id: 723865-1-BLK

%RPD LCS RPD MB Spike LCS Limits Analysis **LCSD** LCSD Units Flag **Parameter** Result Result Limit Date Amount %Rec %Rec Result

Chloride 250 259 104 258 103 90-110 20 05.01.17 12:06 < 5.00 0 mg/kg

E300P Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method:

Seq Number: 3016246 Matrix: Soil Date Prep: 05.01.17

MS Sample Id: 551956-001 S MSD Sample Id: 551956-001 SD Parent Sample Id: 551956-001

RPD Parent Spike MS MS Limits %RPD Units **MSD** MSD Analysis Flag **Parameter** Result Amount Result %Rec Limit Date Result %Rec

Chloride 548 247 798 101 798 101 90-110 0 20 mg/kg 05.01.17 12:29

Prep Method: E300P Analytical Method: Inorganic Anions by EPA 300/300.1

Seq Number: 3016246 Matrix: Soil Date Prep: 05.01.17

551997-004 S MS Sample Id: MSD Sample Id: 551997-004 SD Parent Sample Id: 551997-004

MS RPD %RPD Parent Spike MS MSD **MSD** Limits Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec Chloride 20 05.01.17 15:01 <4.91 246 253 103 251 102 90-110 1

mg/kg



# CHAIN OF CUSTODY

Page \_\_\_ Of \_\_\_

Setting the Standard since 1990

Stafford, Texas (281-240-4200) San Antonio, Texas (210-509-3334)

Phoenix, Arizona (480-355-0900)

Dallas Texas (214-902-0300)

Midland, Texas (432-704-5251)

|                                                                                                               | www.xenco.com   |             |                                       |            |            |        |                     | Xenco | Quote       | e.                                                          |        |        | Xenco J       | lob# I | 55        | 1956       |           |             |         |     |                         |                                                      |
|---------------------------------------------------------------------------------------------------------------|-----------------|-------------|---------------------------------------|------------|------------|--------|---------------------|-------|-------------|-------------------------------------------------------------|--------|--------|---------------|--------|-----------|------------|-----------|-------------|---------|-----|-------------------------|------------------------------------------------------|
| Client / Reporting Information                                                                                |                 |             |                                       | See I      |            |        |                     |       |             | N.                                                          |        |        |               | 3.7    | Ana       | lytical Ir | formation | on          | -       |     |                         | ix Codes                                             |
| Company Name / Branch: KSE                                                                                    |                 | Project Loc | ne/Number:                            | WI         | Bod        | 19     | +/                  | Red   | 16,1        | s                                                           |        |        |               |        |           |            |           |             |         |     | W = V                   |                                                      |
| 500 Moseley Road, Loss Roads, TX,                                                                             | 76227           | Project Loc | Ja                                    | 1,/        | m          |        |                     |       |             |                                                             |        |        |               |        |           | +          | +         | -           |         | +   | GW=                     | oil/Sed/Solid<br>Ground Water<br>Drinking Water      |
| Email: Tanner & Wenviron Mil. Lo Phone No:<br>James & Kolenviron municipal, Com<br>Project Contact: James Fox |                 | Invoice To: |                                       |            |            |        |                     |       |             |                                                             |        |        |               |        |           |            |           |             |         |     | P = P<br>SW =<br>SL = S | roduct<br>Surface water<br>Sludge<br>Ocean/Sea Water |
| Samplers's Name                                                                                               |                 | PO Number   | O Number:                             |            |            |        |                     |       | 0)          |                                                             |        |        |               |        |           |            | WI = 1    | Wipe        |         |     |                         |                                                      |
|                                                                                                               |                 | Collectio   | ollection Number of preserved bottles |            |            |        |                     | 900   | 4:7         |                                                             |        |        |               |        |           |            |           | Waste Water |         |     |                         |                                                      |
| No. Field ID / Point of Collection                                                                            | Sample<br>Depth | Date        | Time                                  | Matrix     | # of       |        | NaOH/Zn<br>Acetate  |       |             | NaOH<br>SOHOO                                               |        |        | 10            |        |           |            |           |             |         |     | A=A                     | ur                                                   |
| 1 ASP 10                                                                                                      |                 | 4/22        |                                       | G          | Domes      | Ī      | ŽŠ                  | 호     | Ÿ :         | 2 2                                                         | ×      | 2      | X             |        |           | +          | +         |             |         |     | Field Con               | nments                                               |
| 2 7551                                                                                                        | 441             | 4/27        | 1415                                  | G          |            |        |                     |       |             | +                                                           | +      | H      | 1             |        | $\vdash$  | +          | +         |             | +       | +   |                         |                                                      |
| 3 TS> Z                                                                                                       |                 |             | 1420                                  | G          |            |        |                     |       |             | +                                                           | +      | +      | +             |        |           | +          | +         |             | -       | +   |                         |                                                      |
| 4 1553                                                                                                        |                 |             | 1425                                  |            |            |        |                     |       |             |                                                             | +      | +      | +             |        | $\vdash$  | +          | +         |             | +       | +   |                         |                                                      |
| 5 595 4                                                                                                       |                 |             | 1430                                  |            |            |        |                     |       |             | +                                                           |        | +      | +             |        |           | -          | +         |             | -       | +   |                         |                                                      |
| 6 7555                                                                                                        |                 |             | 1435                                  |            |            |        |                     |       | 1           | +                                                           | +      |        | +             |        |           | +          | +         |             | -       | -   |                         |                                                      |
| 7 155 b                                                                                                       | V               | 1           | 1440                                  |            |            |        |                     |       | 1           | 1                                                           | 1      |        | 1             |        | $\forall$ | +          | +         | $\vdash$    | -       | +   |                         |                                                      |
| 8                                                                                                             |                 |             |                                       |            |            |        |                     |       |             |                                                             |        |        | 4             |        |           |            | 1         |             |         | +   |                         |                                                      |
| 9                                                                                                             |                 |             |                                       |            |            |        | - 1                 |       |             | 1                                                           |        |        |               |        |           |            |           |             |         | -   |                         |                                                      |
| 10                                                                                                            |                 |             |                                       |            |            |        |                     |       |             | 1                                                           | 1      |        |               |        |           | -          |           |             |         | -   |                         |                                                      |
|                                                                                                               | T- 15 1         | I           | THE STATE OF                          |            | Data Deliv | erable | Informa             | ation | 1           |                                                             | 1 -12  | 55.4   |               |        | 3 8 3     | V - 4      | Notes     | :           | F (1)   | 200 |                         | (#15 z 1, 14 3 z                                     |
| Same Day TAT 5 Day TAT                                                                                        |                 |             | Lev                                   | rel II Sto | QC         |        |                     |       | Level       | IV (F                                                       | ull Da | ta Pkg | /raw o        | data)  |           |            |           |             |         |     |                         |                                                      |
| Next Day EMERGENCY 7 Day TAT                                                                                  |                 |             | Lev                                   | rel III St | QC+ F      | orms   | . 19                |       | TRRE        |                                                             |        |        |               |        |           |            |           |             |         |     |                         |                                                      |
| 2 Day EMERGENCY Contract TAT                                                                                  |                 |             | Lev                                   | rel 3 (CL  | P Forms    | s)     |                     |       | UST         | RG -                                                        | 111    |        |               |        |           | +          |           |             |         |     |                         |                                                      |
| 3 Day EMERGENCY                                                                                               |                 |             | TR                                    | RP Che     | klist      |        |                     |       |             |                                                             |        |        | _             |        |           | -          |           |             |         |     |                         |                                                      |
| TAT Starts Day received by Lab, if received by 5:0                                                            | 00 pm           |             |                                       |            |            |        |                     |       |             |                                                             |        |        |               |        |           |            | D-EX/I    | IDC. T      |         |     |                         |                                                      |
| Relinquished by Sampler:                                                                                      | Y MUST BE       | DOCUMENT    | ED BELOW E                            | ACH TIM    | SAMPL      | ES CHA | ANGE P              | OSSE  | SSION.      | INCLL                                                       | DING   | COURI  | ER DEI        | IVERY  |           | 1.         | D-CX/I    | UPS, I      |         |     |                         |                                                      |
| 1 Janner Grans                                                                                                | 4/              | 27          | . 7 .1                                | Ly.        |            |        |                     |       | Relina      | uishe                                                       | d By:  |        |               |        | Date 1    | ime:       |           | Rece        | ived By |     |                         |                                                      |
| Relinquished by:                                                                                              | Date Time       | 19:04       | Received                              | By:        | 10         | 12     | 110                 | 27    | 2<br>Relinq | uishe                                                       | d By:  |        |               | -11    | Date 1    | ime:       |           | 2<br>Rece   | ived By | ,   | T 1/11                  |                                                      |
| Relinquished by:                                                                                              |                 |             | 3                                     |            |            |        |                     |       | 4           |                                                             |        |        |               |        | - and     |            |           | 4           | treu by |     | Temp: 4.4               | IR ID:R-9                                            |
| 5                                                                                                             | Date Time       |             | Received By: Custody Seal #           |            |            |        | Preserved where app |       |             | applicable On Ige CF:(0-6: 0.0°C) (6-23: Corrected Temp: 4. |        |        | 6-23: +0.1°C) |        |           |            |           |             |         |     |                         |                                                      |

Notice: Notice: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for an will be enforced unless previously negotiated under a fully executed client contract.

Notice: Noti

Final 1.000

Page 16 of 17



# XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In



Client: KJE Environmental & Civil Engineering

Date/ Time Received: 04/27/2017 07:04:00 PM

Work Order #: 551956

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used: R9

|                                                                                                  | Sample Receipt Checklist              | Comments                |
|--------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|
| #1 *Temperature of cooler(s)?                                                                    |                                       | 4.4                     |
| #2 *Shipping container in good condition                                                         | ?                                     | Yes                     |
| #3 *Samples received on ice?                                                                     |                                       | Yes                     |
| #4 *Custody Seal present on shipping co                                                          | ntainer/ cooler?                      | N/A                     |
| #5 *Custody Seals intact on shipping cor                                                         | tainer/ cooler?                       | N/A                     |
| #6 Custody Seals intact on sample bottle                                                         | s?                                    | N/A                     |
| #7 *Custody Seals Signed and dated?                                                              |                                       | N/A                     |
| #8 *Chain of Custody present?                                                                    |                                       | Yes                     |
| #9 Sample instructions complete on Cha                                                           | in of Custody?                        | Yes                     |
| #10 Any missing/extra samples?                                                                   |                                       | No                      |
| #11 Chain of Custody signed when relind                                                          | uished/ received?                     | Yes                     |
| #12 Chain of Custody agrees with sampl                                                           | e label(s)?                           | Yes                     |
| #13 Container label(s) legible and intact?                                                       | •                                     | Yes                     |
| #14 Sample matrix/ properties agree with                                                         | Chain of Custody?                     | Yes                     |
| #15 Samples in proper container/ bottle?                                                         |                                       | Yes                     |
| #16 Samples properly preserved?                                                                  |                                       | Yes                     |
| #17 Sample container(s) intact?                                                                  |                                       | Yes                     |
| #18 Sufficient sample amount for indicate                                                        | ed test(s)?                           | Yes                     |
| #19 All samples received within hold time                                                        | ?                                     | Yes                     |
| #20 Subcontract of sample(s)?                                                                    |                                       | N/A                     |
| #21 VOC samples have zero headspace                                                              |                                       | N/A                     |
| #22 <2 for all samples preserved with HN<br>samples for the analysis of HEM or HEM-<br>analysts. | •                                     | N/A                     |
| #23 <sup>^</sup> >10 for all samples preserved with N                                            | laAsO2+NaOH, ZnAc+NaOH?               | N/A                     |
| * Must be completed for after-hours de<br>Analyst:                                               | livery of samples prior to placing in | n the refrigerator      |
| Checklist completed by:                                                                          | Jessica Kramer                        | Date: <u>04/28/2017</u> |
| Checklist reviewed by:                                                                           | thely Taylor Holly Taylor             | Date: 04/28/2017        |



KJE Environmental & Civil Engineering, Aubrey, TX

**Project Name: Bobcat/Red Hills Pipeline Release** 



Project Id: Contact:

**Project Location:** 

James Fox

Jal, NM

Date Received in Lab: Thu Jun-01-17 03:00 pm

**Report Date:** 07-JUN-17

Project Manager: Holly Taylor

|                                   | Lab Id:    | 554471-0    | 01              | 554471-0        | 02              | 554471-0    | 03    | 554471-0    | 04    | 554471-0    | 05   | 554471-0        | 06   |
|-----------------------------------|------------|-------------|-----------------|-----------------|-----------------|-------------|-------|-------------|-------|-------------|------|-----------------|------|
| Analysis Requested                | Field Id:  | ASP20       | ASP20           |                 | ASP30           |             | ASP40 |             | ASP41 |             |      | ASP43           |      |
| Anatysis Requestea                | Depth:     | 1 ft        |                 | 1 ft            |                 | 1 ft        |       | 1 ft        |       | 1 ft        |      | 1 ft            |      |
|                                   | Matrix:    | SOIL        | SOIL            |                 | SOIL            |             | SOIL  |             |       | SOIL        |      | SOIL            |      |
|                                   | Sampled:   | May-31-17   | May-31-17 10:00 |                 | May-31-17 12:00 |             | 14:00 | Jun-01-17 0 | 9:00  | Jun-01-17 0 | 9:05 | Jun-01-17 09:10 |      |
| Inorganic Anions by EPA 300/300.1 | Extracted: | Jun-06-17 1 | 5:15            | Jun-06-17 15:15 |                 | Jun-06-17 1 | 5:15  | Jun-06-17 1 | 5:15  | Jun-06-17 1 | 5:15 | Jun-06-17 1     | 5:15 |
|                                   | Analyzed:  | Jun-06-17 1 | Jun-06-17 15:53 |                 | 6:16            | Jun-06-17 1 | 6:24  | Jun-06-17 1 | 6:31  | Jun-06-17 1 | 6:39 | Jun-06-17 1     | 7:02 |
|                                   | Units/RL:  | mg/kg       | RL              | mg/kg           | RL              | mg/kg       | RL    | mg/kg       | RL    | mg/kg       | RL   | mg/kg           | RL   |
| Chloride                          |            | 316         | 4.94            | 607             | 4.96            | 200         | 4.90  | 180         | 4.88  | 183         | 4.94 | 380             | 4.96 |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent beest judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%



### KJE Environmental & Civil Engineering, Aubrey, TX

**Project Name: Bobcat/Red Hills Pipeline Release** 



Project Id: Contact:

James Fox

**Project Location:** Jal, NM

Date Received in Lab: Thu Jun-01-17 03:00 pm

**Report Date:** 07-JUN-17

**Project Manager:** Holly Taylor

|                                   | Lab Id:    | 554471-0    | 007             | 554471-0    | 08              | 554471-0    | 09             | 554471-0    | 10    | 554471-0    | 11   | 554471-0    | 012  |  |  |
|-----------------------------------|------------|-------------|-----------------|-------------|-----------------|-------------|----------------|-------------|-------|-------------|------|-------------|------|--|--|
| Analysis Requested                | Field Id:  | ASP44       | ļ               | ASP45       | ASP45           |             | ASP46          |             | ASP47 |             | ,    | ASP49       | )    |  |  |
| Anatysis Requestea                | Depth:     | 1 ft        | 1 ft            |             | 1 ft            |             | 1 ft 1 ft 1 ft |             | 1 ft  |             | 1 ft |             | 1 ft |  |  |
|                                   | Matrix:    | SOIL        | SOIL            |             | SOIL            |             | SOIL           |             |       | SOIL        |      | SOIL        |      |  |  |
|                                   | Sampled:   | Jun-01-17 ( | Jun-01-17 09:15 |             | Jun-01-17 10:00 |             | 0:15           | Jun-01-17 1 | 0:30  | Jun-01-17 1 | 2:00 | Jun-01-17 1 | 3:00 |  |  |
| Inorganic Anions by EPA 300/300.1 | Extracted: | Jun-06-17   | 15:15           | Jun-06-17 1 | 5:15            | Jun-06-17 1 | 5:15           | Jun-06-17 1 | 5:15  | Jun-06-17 1 | 5:15 | Jun-06-17 1 | 5:15 |  |  |
|                                   | Analyzed:  | Jun-06-17   | Jun-06-17 17:09 |             | 7:17            | Jun-06-17 1 | 7:24           | Jun-06-17 1 | 7:32  | Jun-06-17 1 | 7:40 | Jun-06-17 1 | 8:02 |  |  |
|                                   | Units/RL:  | mg/kg       | RL              | mg/kg       | RL              | mg/kg       | RL             | mg/kg       | RL    | mg/kg       | RL   | mg/kg       | RL   |  |  |
| Chloride                          |            | 176         | 4.95            | 388         | 5.00            | 202         | 4.90           | 163         | 4.88  | 322         | 4.99 | 195         | 4.94 |  |  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent beest judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%



### KJE Environmental & Civil Engineering, Aubrey, TX





Project Id: Contact:

**Project Location:** 

James Fox

Jal, NM

Date Received in Lab: Thu Jun-01-17 03:00 pm

**Report Date:** 07-JUN-17 **Project Manager:** Holly Taylor

|                                   | Lab Id:    | 554471-013      |  |  |  |
|-----------------------------------|------------|-----------------|--|--|--|
| Analysis Paguested                | Field Id:  | ASP50           |  |  |  |
| Analysis Requested                | Depth:     | 1 ft            |  |  |  |
|                                   | Matrix:    | SOIL            |  |  |  |
|                                   | Sampled:   | Jun-01-17 14:00 |  |  |  |
| Inorganic Anions by EPA 300/300.1 | Extracted: | Jun-06-17 15:15 |  |  |  |
|                                   | Analyzed:  | Jun-06-17 18:10 |  |  |  |
|                                   | Units/RL:  | mg/kg RL        |  |  |  |
| Chloride                          |            | 192 4.98        |  |  |  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent beest judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

# **Analytical Report 554471**

# for KJE Environmental & Civil Engineering

Project Manager: James Fox Bobcat/Red Hills Pipeline Release

07-JUN-17

Collected By: Client





#### 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)

Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)





07-JUN-17

Project Manager: **James Fox KJE Enviromental & Civil Engineering**500 Mosley Rd
Aubrey, TX 76227

Reference: XENCO Report No(s): 554471

**Bobcat/Red Hills Pipeline Release** 

Project Address: Jal, NM

#### James Fox:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 554471. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 554471 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

thely Taylor

**Holly Taylor** 

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America



# **Sample Cross Reference 554471**



### KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

| Sample Id | Matrix | <b>Date Collected</b> | Sample Depth | Lab Sample Id |
|-----------|--------|-----------------------|--------------|---------------|
| ASP20     | S      | 05-31-17 10:00        | - 1 ft       | 554471-001    |
| ASP30     | S      | 05-31-17 12:00        | - 1 ft       | 554471-002    |
| ASP40     | S      | 05-31-17 14:00        | - 1 ft       | 554471-003    |
| ASP41     | S      | 06-01-17 09:00        | - 1 ft       | 554471-004    |
| ASP42     | S      | 06-01-17 09:05        | - 1 ft       | 554471-005    |
| ASP43     | S      | 06-01-17 09:10        | - 1 ft       | 554471-006    |
| ASP44     | S      | 06-01-17 09:15        | - 1 ft       | 554471-007    |
| ASP45     | S      | 06-01-17 10:00        | - 1 ft       | 554471-008    |
| ASP46     | S      | 06-01-17 10:15        | - 1 ft       | 554471-009    |
| ASP47     | S      | 06-01-17 10:30        | - 1 ft       | 554471-010    |
| ASP48     | S      | 06-01-17 12:00        | - 1 ft       | 554471-011    |
| ASP49     | S      | 06-01-17 13:00        | - 1 ft       | 554471-012    |
| ASP50     | S      | 06-01-17 14:00        | - 1 ft       | 554471-013    |



#### **CASE NARRATIVE**

Client Name: KJE Environmental & Civil Engineering

Project Name: Bobcat/Red Hills Pipeline Release

Project ID: Report Date: 07-JUN-17 Work Order Number(s): 554471 Date Received: 06/01/2017

| Sample receipt non conformances and comments:            |
|----------------------------------------------------------|
| Sample receipt non conformances and comments per sample: |
| None                                                     |





#### KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: ASP20 Matrix: Soil Date Received:06.01.17 15.00

Lab Sample Id: 554471-001 Date Collected: 05.31.17 10.00 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Tech: MGO

% Moisture:

Basis:

Analyst: MGO

Date Prep: 06.06.17 15.15

Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 316    | 4.94 | mg/kg | 06.06.17 15.53 |      | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: ASP30 Matrix: Soil Date Received:06.01.17 15.00

Lab Sample Id: 554471-002 Date Collected: 05.31.17 12.00 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.06.17 15.15

Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 607    | 4.96 | mg/kg | 06.06.17 16.16 |      | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: ASP40 Matrix: Soil Date Received:06.01.17 15.00

Lab Sample Id: 554471-003 Date Collected: 05.31.17 14.00 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Tech: MGO %

% Moisture:

Analyst: MGO Date Prep: 06.06.17 15.15 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 200    | 4.90 | mg/kg | 06.06.17 16.24 |      | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: ASP41 Matrix: Soil Date Received:06.01.17 15.00

Lab Sample Id: 554471-004 Date Collected: 06.01.17 09.00 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Tech: MGO

% Moisture:

Analyst: MGO Date Prep: 06.06.17 15.15

Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 180    | 4.88 | mg/kg | 06.06.17 16.31 |      | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: ASP42 Matrix: Soil Date Received:06.01.17 15.00

Lab Sample Id: 554471-005 Date Collected: 06.01.17 09.05 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.06.17 15.15 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | <b>Analysis Date</b> | Flag | Dil |
|-----------|------------|--------|------|-------|----------------------|------|-----|
| Chloride  | 16887-00-6 | 183    | 4.94 | mg/kg | 06.06.17 16.39       |      | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: ASP43 Matrix: Soil Date Received:06.01.17 15.00

Lab Sample Id: 554471-006 Date Collected: 06.01.17 09.10 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Pre

Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.06.17 15.15

Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 380    | 4.96 | mg/kg | 06.06.17 17.02 |      | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: ASP44 Matrix: Soil Date Received:06.01.17 15.00

Lab Sample Id: 554471-007 Date Collected: 06.01.17 09.15 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.06.17 15.15 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 176    | 4.95 | mg/kg | 06.06.17 17.09 |      | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: Matrix: Soil Date Received:06.01.17 15.00 ASP45

Date Prep:

Lab Sample Id: 554471-008 Date Collected: 06.01.17 10.00 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

MGO % Moisture:

Tech: MGO Analyst: 06.06.17 15.15 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | <b>Analysis Date</b> | Flag | Dil |
|-----------|------------|--------|------|-------|----------------------|------|-----|
| Chloride  | 16887-00-6 | 388    | 5.00 | mg/kg | 06.06.17 17.17       |      | 1   |





Wet Weight

#### KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: ASP46 Matrix: Soil Date Received:06.01.17 15.00

Lab Sample Id: 554471-009 Date Collected: 06.01.17 10.15 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.06.17 15.15 Basis:

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 202    | 4.90 | mg/kg | 06.06.17 17.24 |      | 1   |





#### KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: ASP47 Matrix: Soil Date Received:06.01.17 15.00

Lab Sample Id: 554471-010 Date Collected: 06.01.17 10.30 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1

PA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.06.17 15.15 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 163    | 4.88 | mg/kg | 06.06.17 17.32 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: ASP48 Matrix: Soil Date Received:06.01.17 15.00

Lab Sample Id: 554471-011 Date Collected: 06.01.17 12.00 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.06.17 15.15 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 322    | 4.99 | mg/kg | 06.06.17 17.40 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: ASP49 Matrix: Soil Date Received:06.01.17 15.00

Lab Sample Id: 554471-012 Date Collected: 06.01.17 13.00 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

MGO % Moisture:

Analyst: MGO Date Prep: 06.06.17 15.15

Basis: Wet Weight

Seq Number: 3019052

Tech:

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 195    | 4.94 | mg/kg | 06.06.17 18.02 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

06.06.17 15.15

Sample Id: Matrix: Soil Date Received:06.01.17 15.00 ASP50

Lab Sample Id: 554471-013 Date Collected: 06.01.17 14.00 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Tech: MGO % Moisture:

Analyst:

MGO Date Prep: Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 192    | 4.98 | mg/kg | 06.06.17 18.10 |      | 1   |



# **Flagging Criteria**



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- \*\* Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

**DL** Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- \* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

Phone Fax
4147 Greenbriar Dr, Stafford, TX 77477 (281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335
1211 W Florida Ave, Midland, TX 79701 (432) 563-1800 (432) 563-1713
2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282 (602) 437-0330

Final 1.000



# QC Summary 554471

#### **KJE Environmental & Civil Engineering**

Bobcat/Red Hills Pipeline Release

E300P

E300P

E300P

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method:

Seq Number: 3019052 Matrix: Solid Date Prep: 06.06.17 MB Sample Id: 725682-1-BLK LCS Sample Id: 725682-1-BKS LCSD Sample Id: 725682-1-BSD

Spike LCS RPD MB LCS Limits %RPD **LCSD** LCSD Units Analysis Flag **Parameter** Result Result Limit Date Amount %Rec %Rec Result

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method:

Seq Number: 3019052 Matrix: Soil Date Prep: 06.06.17

Parent Sample Id: 554471-001 MS Sample Id: 554471-001 S MSD Sample Id: 554471-001 SD

RPD Parent Spike MS MS Limits %RPD Units **MSD** MSD Analysis Flag **Parameter** Amount %Rec Result Result Limit Date Result %Rec

Chloride 316 247 572 104 563 100 90-110 2 20 mg/kg 06.06.17 16:01

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method:

Seq Number: 3019052 Matrix: Soil Date Prep: 06.06.17

Parent Sample Id: 554471-011 MS Sample Id: 554471-011 SD MSD Sample Id: 554471-011 SD

MS RPD %RPD Parent Spike MSMSD **MSD** Limits Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec Chloride 322 20 06.06.17 17:47 250 565 97 565 97 90-110 0 mg/kg



# CHAIN OF CUSTODY

Stafford, Texas (281-240-4200) Setting the Standard since 1990

| Client / Reporting Information                         | INCO.COM Xenco Quote #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Xanco Job # STATE Matrix Cordes |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Client / Reporting Information                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analytical Information          |
| Company Name / Branch: KSE                             | Project Name/Number: BobCat / Redhills PipBline Robust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |
| 500 Mose les, cross Roads, Tx                          | Project Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| tanner (@ 15) environmental. Won                       | invoice to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |
| annel Evens 940-368-                                   | Con Single Singl |                                 |
|                                                        | ro number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |
| No. Field ID / Point of Collection                     | Collection Number of preserved battles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |
|                                                        | CI aOH/Zn cetate NO3 2SO4 aOH aHSO4 EOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
|                                                        | 15/31 10 00 Hills 24 Hills 24 ME NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| 2 ASC30                                                | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
| 3 ASP40                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| 4 45PHI                                                | -):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 0                                                      | 0405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| 6 ASPY3                                                | 0910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| 7 ASPYY                                                | 5100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| 8 ASP45                                                | 1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| 9 ASP46                                                | 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| 10 A6 (47                                              | T V 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |
| lime (Business days)                                   | Data Daliverable Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notes:                          |
| Same Day TAT S Day TAT                                 | Level II Std QC Level IV (Full Data Pkg /raw data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| Next Day EMERGENCY 7 Day TAT                           | Level III Std QC+ Forms TRRP Level IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| 2 Day EMERGENCY Contract TAT                           | Level 3 (CLP Forms) UST / RG -411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| 3 Day EMERGENCY                                        | TRRP Checklist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |
| TAT Starts Day received by Lab, if received by 5:00 pm | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Temp:                           |
|                                                        | BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |
| annu Evars                                             | Date Time:    Regelved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Received B                      |
|                                                        | Date Time: Received By) Relinquished By: Date Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Received I Corr                 |
| 5 Da                                                   | Date Time: Received By: Custody Seal # Preserved where applicable On Ige Cooler Temp. Thermu. Custody Seal # Preserved where applicable On Ige Cooler Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | applicable On Ige Cooler Temp.  |

Page 23 of 25

Final 1.000



# CHAIN OF CUSTODY

Dallas Texas (214-902-0300) Stafford, Texas (281-240-4200)

San Antonio, Texas (210-509-3334)

Phoenix, Arizona (480-355-0900)

| Client / Reporting Information                                       |                          |                                                                                                | 7                                  | Analytical Information     | の人生なります。              | Matrix Codes                                                                         |
|----------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------|------------------------------------|----------------------------|-----------------------|--------------------------------------------------------------------------------------|
| Company Address:                                                     | Projec                   | Project NamerNumber: 308 Cat / Redhills PipBling Releas                                        | r Release                          |                            | W                     | W = Water                                                                            |
| les Road, cross                                                      |                          | Jal N                                                                                          |                                    |                            | D G W                 | S = Soil/Sed/Solid<br>GW =Ground Water<br>DW = Drinking Water                        |
| MARICO KJEANGOMENTAL                                                 | 940-366-3 335 PO Number: | G                                                                                              |                                    |                            | וס א ס ≽              | P = Product<br>SW = Surface water<br>SL = Sludge<br>OW =Ocean/Sea Water<br>WI = Wipe |
| Field ID / Point of Collection                                       | Collection               | Shon Number of preserved buildes                                                               | acholities                         |                            | <b>N S</b> O          | O = Oil<br>WW= Waste Water<br>A = Air                                                |
|                                                                      |                          | TE OH/Zn clate                                                                                 | NE.                                |                            |                       |                                                                                      |
| 1 ASPHE                                                              |                          | 17.00 \ 1 E NAC H                                                                              | ME<br>NO                           |                            | Field                 | Field Comments                                                                       |
| 2 ASPU9                                                              | -                        | 1300 1                                                                                         | - *                                |                            |                       |                                                                                      |
| 3 A S P S 0                                                          |                          | 00174                                                                                          |                                    |                            |                       |                                                                                      |
| CO 2                                                                 |                          |                                                                                                |                                    |                            |                       |                                                                                      |
| 0                                                                    |                          |                                                                                                |                                    |                            |                       |                                                                                      |
| ω -                                                                  |                          |                                                                                                |                                    |                            |                       |                                                                                      |
| G.                                                                   |                          |                                                                                                |                                    |                            |                       |                                                                                      |
| 10                                                                   |                          | 4                                                                                              |                                    |                            |                       |                                                                                      |
| Turnaround Time (Business days)                                      | 1000                     | Data Deliverable Information                                                                   |                                    |                            |                       |                                                                                      |
| Same Day TAT S Day TAT                                               |                          |                                                                                                | Level IV (Full Data Pkg /raw data) |                            |                       |                                                                                      |
| Next Day EMERGENCY                                                   |                          | Level III Std QC+ Forms TRRP Level IV                                                          | evel IV                            |                            |                       |                                                                                      |
| 2 Day EMERGENCY Contract TAT                                         | AT                       | Level 3 (CLP Forms)                                                                            | 6                                  |                            |                       |                                                                                      |
| 3 Day EMERGENCY                                                      |                          |                                                                                                |                                    |                            |                       |                                                                                      |
| TAT Starts Day received by Lab, if received by 5:00 pm               | / 5:00 pm                |                                                                                                |                                    |                            |                       | 5                                                                                    |
| Relinquished by Sampler:                                             | STODY MUST BE DOCUME     | SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER | CLUDING COURIER DELIVERY           | HED-EX / UPS: Track        | CE/O & O              | IH ID:H-8                                                                            |
| une fronts                                                           | 6 / 1                    | Received By: (2 / / / ) Relinquished By:                                                       |                                    | Date Time: Received        |                       |                                                                                      |
| 3                                                                    | Date Time;               | Received By: Relinquished By:                                                                  | shed By:                           | Date Time: Receive         | Con                   | _<br>ئ                                                                               |
| A Preserved where applicable Onlice Cooler Temp. Themo. Corr. Factor | Date Time:               | Received By: 4 Custody Seal #                                                                  | Seal # Pres                        | Preserved where applicable | Onlice Cooler Temp. T | Thermo. Corr. Factor                                                                 |



# XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In



Client: KJE Environmental & Civil Engineering

Date/ Time Received: 06/01/2017 03:00:00 PM

Work Order #: 554471

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used: R8

| Sample Receipt Checklist                                   |     | Comments |
|------------------------------------------------------------|-----|----------|
| #1 *Temperature of cooler(s)?                              | 2.1 |          |
| #2 *Shipping container in good condition?                  | Yes |          |
| #3 *Samples received on ice?                               | Yes |          |
| #4 *Custody Seal present on shipping container/ cooler?    | N/A |          |
| #5 *Custody Seals intact on shipping container/ cooler?    | N/A |          |
| #6 Custody Seals intact on sample bottles?                 | N/A |          |
| #7 *Custody Seals Signed and dated?                        | N/A |          |
| #8 *Chain of Custody present?                              | Yes |          |
| #9 Sample instructions complete on Chain of Custody?       | Yes |          |
| #10 Any missing/extra samples?                             | No  |          |
| #11 Chain of Custody signed when relinquished/ received?   | Yes |          |
| #12 Chain of Custody agrees with sample label(s)?          | Yes |          |
| #13 Container label(s) legible and intact?                 | Yes |          |
| #14 Sample matrix/ properties agree with Chain of Custody? | Yes |          |
| #15 Samples in proper container/ bottle?                   | Yes |          |
| #16 Samples properly preserved?                            | Yes |          |
| #17 Sample container(s) intact?                            | Yes |          |
| #18 Sufficient sample amount for indicated test(s)?        | Yes |          |
| #19 All samples received within hold time?                 | Yes |          |
| #20 Subcontract of sample(s)?                              | N/A |          |
| #21 VOC samples have zero headspace?                       | N/A |          |
|                                                            |     |          |

| Must be comp | leted for after-hours de | livery of samples prior to plac | cing in the refrigerator |
|--------------|--------------------------|---------------------------------|--------------------------|
| Analyst:     |                          | PH Device/Lot#:                 |                          |
|              |                          |                                 |                          |
| Cr           | necklist completed by:   | Jessica Kramer  Jessica Kramer  | Date: <u>06/02/2017</u>  |
| C            | hecklist reviewed by:    | Hely Taylor Holly Taylor        | Date: <u>06/05/2017</u>  |



# **Certificate of Analysis Summary 554912**

KJE Environmental & Civil Engineering, Aubrey, TX

Project Name: Bobcat/Red Hills Pipeline Release



Project Id: Contact:

**Project Location:** 

James Fox

Jal, NM

Date Received in Lab: Thu Jun-08-17 02:45 pm

**Report Date:** 12-JUN-17 **Project Manager:** Holly Taylor

|                                   | Lab Id:    | 554912-0    | 01              | 554912-0    | 02              | 554912-0    | 03   |  |  |  |
|-----------------------------------|------------|-------------|-----------------|-------------|-----------------|-------------|------|--|--|--|
| Analysis Requested                | Field Id:  | B10         |                 | B20         |                 | B30         |      |  |  |  |
| Anaiysis Kequesieu                | Depth:     | 1 ft        |                 | 1 ft        |                 | 1 ft        |      |  |  |  |
|                                   | Matrix:    | SOIL        |                 | SOIL        |                 | SOIL        |      |  |  |  |
|                                   | Sampled:   | Jun-08-17 1 | 3:00            | Jun-08-17 1 | 3:00            | Jun-08-17 1 | 3:00 |  |  |  |
| Inorganic Anions by EPA 300/300.1 | Extracted: | Jun-09-17 1 | Jun-09-17 14:42 |             | Jun-09-17 14:42 |             | 4:42 |  |  |  |
|                                   | Analyzed:  | Jun-09-17 1 | Jun-09-17 19:56 |             | 0:03            | Jun-09-17 2 | 0:26 |  |  |  |
|                                   | Units/RL:  | mg/kg       | RL              | mg/kg       | RL              | mg/kg       | RL   |  |  |  |
| Chloride                          |            | 296         | 4.93            | 127         | 4.89            | 266         | 4.96 |  |  |  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Holly Taylor Project Manager

# **Analytical Report 554912**

# for KJE Environmental & Civil Engineering

Project Manager: James Fox Bobcat/Red Hills Pipeline Release

12-JUN-17

Collected By: Client





#### 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)

Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)





12-JUN-17

Project Manager: James Fox KJE Environmental & Civil Engineering 500 Mosley Rd Aubrey, TX 76227

Reference: XENCO Report No(s): 554912

**Bobcat/Red Hills Pipeline Release** 

Project Address: Jal, NM

#### James Fox:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 554912. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 554912 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

thely Taylor

**Holly Taylor** 

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America



# **Sample Cross Reference 554912**



# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

| Sample Id | Matrix | <b>Date Collected</b> | Sample Depth | Lab Sample Id |
|-----------|--------|-----------------------|--------------|---------------|
| B10       | S      | 06-08-17 13:00        | - 1 ft       | 554912-001    |
| B20       | S      | 06-08-17 13:00        | - 1 ft       | 554912-002    |
| B30       | S      | 06-08-17 13:00        | - 1 ft       | 554912-003    |



#### **CASE NARRATIVE**

Client Name: KJE Environmental & Civil Engineering Project Name: Bobcat/Red Hills Pipeline Release

Project ID: Report Date: 12-JUN-17 Work Order Number(s): 554912 Date Received: 06/08/2017

| Sample receipt non conformances and comments:            |
|----------------------------------------------------------|
| Sample receipt non conformances and comments per sample: |
| None                                                     |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: B10 Matrix: Soil Date Received:06.08.17 14.45

Lab Sample Id: 554912-001 Date Collected: 06.08.17 13.00 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.09.17 14.42 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 296    | 4.93 | mg/kg | 06.09.17 19.56 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: **B20** Matrix: Soil Date Received:06.08.17 14.45

Lab Sample Id: 554912-002 Date Collected: 06.08.17 13.00 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 06.09.17 14.42 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 127    | 4.89 | mg/kg | 06.09.17 20.03 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: Matrix: Soil Date Received:06.08.17 14.45 **B30** 

Lab Sample Id: 554912-003 Date Collected: 06.08.17 13.00 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

MGO Analyst: 06.09.17 14.42 Date Prep:

Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 266    | 4.96 | mg/kg | 06.09.17 20.26 |      | 1   |



# **Flagging Criteria**



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- \*\* Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

**DL** Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- \* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4147 Greenbriar Dr, Stafford, TX 77477 (281) 240-4200 (281) 240-4280 9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139 5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335 1211 W Florida Ave, Midland, TX 79701 (432) 563-1800 (432) 563-1713 2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282 (602) 437-0330



# QC Summary 554912

#### **KJE Environmental & Civil Engineering**

Bobcat/Red Hills Pipeline Release

E300P

Analytical Method:Inorganic Anions by EPA 300/300.1Prep Method:Seq Number:3019449Matrix: SolidDate Prep:

 Seq Number:
 3019449
 Matrix:
 Solid
 Date Prep:
 06.09.17

 MB Sample Id:
 725871-1-BLK
 LCS Sample Id:
 725871-1-BKS
 LCSD Sample Id:
 725871-1-BSD

%RPD Spike LCS RPD MB LCS LCSD Limits LCSD Units Analysis Flag **Parameter** Result Result Limit Date Amount %Rec %Rec Result

Chloride <5.00 250 258 103 256 102 90-110 1 20 mg/kg 06.09.17 17:39

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Seq Number: 3019449 Matrix: Soil Date Prep: 06.09.17

Parent Sample Id: 554810-031 MS Sample Id: 554810-031 S MSD Sample Id: 554810-031 SD

RPD Parent Spike MS MS Limits %RPD Units **MSD** MSD Analysis Flag **Parameter** Result Amount Result %Rec Limit Date Result %Rec

Chloride 38.7 248 298 105 297 104 90-110 0 20 mg/kg 06.09.17 19:41

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Seq Number: 3019449 Matrix: Soil Date Prep: 06.12.17

Parent Sample Id: 554810-018 MS Sample Id: 554810-018 S MSD Sample Id: 554810-018 SD

MS RPD %RPD Parent Spike MSMSD **MSD** Limits Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec

Chloride 28.9 244 277 102 271 99 90-110 2 20 mg/kg 06.12.17 13:32



# CHAIN OF CUSTODY

Setting the Standard since 1990

Dallas Texas (214-902-0300) Stafford, Texas (281-240-4200) Midland, Texas (432-704-5251) San Antonio, Texas (210-509-3334) Phoenix, Arizona (480-355-0900)

| Beporting Information  Beanch: K) Epul Domond.  Scale Red Could by Could  Scale Red D/Point of Collection  BLO BLO BLO BLO BLO BLO BLO BLO BLO BL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Society Red, Crock Reads, TX  Department Name Project Information  Froject Information  Froje | Second Information  Project In | Separating Information  Beginning Information  Broked Months Information  Broked Infor | Regarding information  | Relinquished by: | Relinquished by: | 4                | Relinquish                          | IAIO                   | 3 Day          | ] [                 | 3000                    | Next D                   | Same            | 1                          | 10 | 9 | ω | 7 | 6 | CI | 4 | ω        | 2     | -        | No.                    | oampiers's Name |       | Ja was      | Email:   | Company Address: | Company Name / Branch: | Client                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|-------------------------------------|------------------------|----------------|---------------------|-------------------------|--------------------------|-----------------|----------------------------|----|---|---|---|---|----|---|----------|-------|----------|------------------------|-----------------|-------|-------------|----------|------------------|------------------------|---------------------------|--|
| Project Name Number:  COUL Road S, TX  Project Location:  Authorized Service Service Name Number:  Will J Scade T - O W Will J Scade T | Project Information Project Name/Number:  Project Location:    Depth   Date   Trens   Marity   E of   Depth   Date   Depth    | Project Name/Number:   | Project Homashimate:   | Project Homeonems Book and Medith Hills figs (i.e., Deblacation Book and Homeonems Book a | ed by:           | ed by:           | C. Pox           | ed by Sampler:                      | tarts pay received by  | EMERGENCY      | - menderice         | EMERCENCY               | Day EMERGENCY            | Day TAT         | urmaround Time (Business d |    |   |   |   |   |    |   | 630      | \$ 20 | 1310     | Field ID / Point       |                 | 9     | Sakjenvidna | word how | La Cal           | anch:                  | t / Reporting Information |  |
| Project Information  Project Information  Project Information  Project Information:    Project Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Project Information  Project Location:  Date Immediate Collection  Project Location:  Date Immediate Collection  Number of preserved bottles  Number of preserved | Project Name/Number:    Project Name/Number:   Project Name/Number   Project Name/Number:   | Project Information Projec | Project Moundations Projec |                  | 7                |                  | SAMPLE CUSTO                        | Lab, if received by 5: |                | Contract IAI        |                         | 7 Day TAT                | 5 Day TAT       | ys)                        |    |   |   |   |   |    |   |          |       |          | of Collection          | FOX             |       | outer com   | 1        | 0.               | samouted               |                           |  |
| Project Information  Name/Number:  A NW  Location:  A NW  To:  II'' Scause - owe  Base Matrix bottles \( \frac{1}{2} \)  Bottles \( \frac{1}{2} \)  Bottles \( \frac{1}{2} \)  Data Deliverable Into  Deta Deliverable Into  Deta Deliverable Into  TRRP Checklist  NTED BELOW EACH TIME SAMPLES CHANG  Received By:  Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Project Information  Name/Number:  In Level II Sid OC Forms  ITRIP Checklist  Number of preserved bottles  Acetived By:  Project Information  Number of preserved bottles  Acetived By:  Number of preserved bottles  Acetive III Sid OC Forms  Number of preserved bottles  Number of preserved bottles  Number of preserved bottles  Acetive III Sid OC Forms  Number of preserved bottles  Number of preserved bottles  Number of preserved bottles  Number of preserved bottles  Acetive III Sid OC Forms  Number of preserved bottles  Number of pres | Analytical Date Time: Date Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analytical information  Analytical information  FED-EX / UPS: Traci  Pate Time:  Receive:  Pate Time:  Receive:  Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Rece | Analytical Information  Analytical Information  Fig. 1  Fig. 1  Fig. 2  Fig. 2  Fig. 3  Fig. 4  Fig. 5  Fig. 6  Fig. 6  Fig. 6  Fig. 6  Fig. 6  Fig. 6  Fig. 7  Fig. 7 | Date Time:       | Date Time:       | 68 14            | DY MUST BE DOCUM                    | 00 pm                  |                |                     |                         |                          |                 |                            |    |   |   |   |   |    |   | 1 1      | ()    |          | 1700                   |                 |       |             |          |                  | Project                |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TRRP Level IV (Full Data Pkg /raw    Data Pkg /raw   Custody Seal #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analytical Date Time: Date Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analytical information  Analytical information  FED-EX / UPS: Traci  Pate Time:  Receive:  Pate Time:  Receive:  Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Receive: Rece | Analytical Information  Analytical Information  Fig. 1  Fig. 1  Fig. 2  Fig. 2  Fig. 3  Fig. 4  Fig. 5  Fig. 6  Fig. 6  Fig. 6  Fig. 6  Fig. 6  Fig. 6  Fig. 7  Fig. 7 | Received By:     | Received By      | 145 Received By: | ENTED BELOW EACH TIME SAMPLES CHANG |                        | TRRP Checklist | Level 3 (CLP Forms) | Level III Sid UC+ Forms | Level III Std OC. Target | Level II Std QC | Data Deliverable Info      |    |   |   |   |   |    |   | <b>+</b> |       | 1300 8 1 | Time Mairix bottles II |                 | nber: |             |          |                  |                        | Project Information       |  |

will be enforced unless previously negotiated under a fully executed client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be involced at \$5 per sample. These terms

Page 11 of 12

Final 1.000



# XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In



Client: KJE Environmental & Civil Engineering

Date/ Time Received: 06/08/2017 02:45:00 PM

Checklist reviewed by:

Work Order #: 554912

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used: r8

|                                            | Sample Receipt Checklist              | Comments         |
|--------------------------------------------|---------------------------------------|------------------|
| #1 *Temperature of cooler(s)?              |                                       | 4.4              |
| #2 *Shipping container in good condition?  | ?                                     | Yes              |
| #3 *Samples received on ice?               |                                       | Yes              |
| #4 *Custody Seal present on shipping col   | ntainer/ cooler?                      | N/A              |
| #5 *Custody Seals intact on shipping con   | tainer/ cooler?                       | N/A              |
| #6 Custody Seals intact on sample bottle   | s?                                    | N/A              |
| #7 *Custody Seals Signed and dated?        |                                       | N/A              |
| #8 *Chain of Custody present?              |                                       | Yes              |
| #9 Sample instructions complete on Chai    | n of Custody?                         | Yes              |
| #10 Any missing/extra samples?             |                                       | No               |
| #11 Chain of Custody signed when relinq    | uished/ received?                     | Yes              |
| #12 Chain of Custody agrees with sample    | e label(s)?                           | Yes              |
| #13 Container label(s) legible and intact? |                                       | Yes              |
| #14 Sample matrix/ properties agree with   | Chain of Custody?                     | Yes              |
| #15 Samples in proper container/ bottle?   |                                       | Yes              |
| #16 Samples properly preserved?            |                                       | Yes              |
| #17 Sample container(s) intact?            |                                       | Yes              |
| #18 Sufficient sample amount for indicate  | ed test(s)?                           | Yes              |
| #19 All samples received within hold time  | ?                                     | Yes              |
| #20 Subcontract of sample(s)?              |                                       | N/A              |
| #21 VOC samples have zero headspace?       | ?                                     | N/A              |
| * Must be completed for after-hours de     | livery of samples prior to placing in | the refrigerator |
| Analyst:                                   | PH Device/Lot#:                       |                  |
| Checklist completed by:                    | Marithza Anaya                        | Date: 06/08/2017 |

Date: 06/08/2017



# **Certificate of Analysis Summary 552683**

### KJE Environmental & Civil Engineering, Aubrey, TX

Project Name: Bobcat/Red Hills Pipeline Release



Project Id: Contact:

James Fox

**Project Location:** Jal, NM

Date Received in Lab: Mon May-08-17 03:00 pm

**Report Date:** 18-MAY-17

Project Manager: Holly Taylor

|                                   | Lab Id:    | 552683-0  | 01    | 552683-0    | 02    | 552683-0    | 03    | 552683-0    | 04    | 552683-0  | 05    | 552683-0    | 06    |
|-----------------------------------|------------|-----------|-------|-------------|-------|-------------|-------|-------------|-------|-----------|-------|-------------|-------|
| Analysis Requested                | Field Id:  | D64       |       | D63         |       | D62         |       | D61         |       | D60       |       | D59         |       |
| Anaiysis Kequesieu                | Depth:     | 1 N/A     |       | 1 N/A       |       | 1 N/A       |       | 1 N/A       |       | 1 N/A     |       | 1 N/A       |       |
|                                   | Matrix:    | SOIL      |       | SOIL        |       | SOIL        |       | SOIL        |       | SOIL      |       | SOIL        |       |
|                                   | Sampled:   | May-04-17 | 13:00 | May-04-17   | 3:05  | May-04-17   | 13:10 | May-04-17   | 13:15 | May-04-17 | 13:20 | May-04-17   | 13:25 |
| Inorganic Anions by EPA 300/300.1 | Extracted: | May-17-17 | 08:00 | May-17-17 ( | 08:00 | May-17-17 ( | 08:00 | May-17-17 ( | 08:00 | May-17-17 | 08:00 | May-17-17 ( | 08:00 |
|                                   | Analyzed:  | May-17-17 | 12:52 | May-17-17 1 | 3:15  | May-17-17   | 13:22 | May-17-17   | 13:30 | May-17-17 | 13:37 | May-17-17   | 14:00 |
| Units/RL                          |            | mg/kg     | RL    | mg/kg       | RL    | mg/kg       | RL    | mg/kg       | RL    | mg/kg     | RL    | mg/kg       | RL    |
| Chloride                          |            | 99.5      | 5.00  | 139         | 5.00  | 157         | 5.00  | 156         | 5.00  | 151       | 5.00  | 145         | 5.00  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Holly Taylor Project Manager



# **Certificate of Analysis Summary 552683**

### KJE Environmental & Civil Engineering, Aubrey, TX

Project Name: Bobcat/Red Hills Pipeline Release



Project Id: Contact:

James Fox

**Project Location:** Jal, NM

Date Received in Lab: Mon May-08-17 03:00 pm

**Report Date:** 18-MAY-17

Project Manager: Holly Taylor

|                                   | Lab Id:    | 552683-0  | 007   | 552683-0    | 08    | 552683-0    | 09    | 552683-0  | 010   |  |  |
|-----------------------------------|------------|-----------|-------|-------------|-------|-------------|-------|-----------|-------|--|--|
| Analysis Requested                | Field Id:  | D58       |       | D57         |       | D56         |       | D55       |       |  |  |
| Anaiysis Requesieu                | Depth:     | 1 N/A     |       | 1 N/A       |       | 1 N/A       |       | 1 N/A     |       |  |  |
|                                   | Matrix:    | SOIL      |       | SOIL        |       | SOIL        |       | SOIL      |       |  |  |
|                                   | Sampled:   | May-04-17 | 13:30 | May-04-17   | 13:35 | May-04-17   | 13:40 | May-04-17 | 13:45 |  |  |
| Inorganic Anions by EPA 300/300.1 | Extracted: | May-17-17 | 08:00 | May-17-17 ( | 08:00 | May-17-17 ( | 08:00 | May-17-17 | 08:00 |  |  |
|                                   | Analyzed:  | May-17-17 | 14:08 | May-17-17   | 14:15 | May-17-17   | 14:23 | May-17-17 | 14:31 |  |  |
|                                   | Units/RL:  | mg/kg     | RL    | mg/kg       | RL    | mg/kg       | RL    | mg/kg     | RL    |  |  |
| Chloride                          |            | 178       | 5.00  | 155         | 5.00  | 154         | 5.00  | 381       | 5.00  |  |  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Holly Taylor Project Manager

# **Analytical Report 552683**

# for KJE Enviromental & Civil Engineering

Project Manager: James Fox Bobcat/Red Hills Pipeline Release

18-MAY-17

Collected By: Client





#### 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)

Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)





18-MAY-17

Project Manager: **James Fox KJE Enviromental & Civil Engineering**500 Mosley Rd
Aubrey, TX 76227

Reference: XENCO Report No(s): 552683

**Bobcat/Red Hills Pipeline Release** 

Project Address: Jal, NM

#### James Fox:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 552683. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 552683 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

thely Taylor

**Holly Taylor** 

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America



# **Sample Cross Reference 552683**



# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

| Sample Id | Matrix | <b>Date Collected</b> | Sample Depth | Lab Sample Id |
|-----------|--------|-----------------------|--------------|---------------|
| D64       | S      | 05-04-17 13:00        | - 1 N/A      | 552683-001    |
| D63       | S      | 05-04-17 13:05        | - 1 N/A      | 552683-002    |
| D62       | S      | 05-04-17 13:10        | - 1 N/A      | 552683-003    |
| D61       | S      | 05-04-17 13:15        | - 1 N/A      | 552683-004    |
| D60       | S      | 05-04-17 13:20        | - 1 N/A      | 552683-005    |
| D59       | S      | 05-04-17 13:25        | - 1 N/A      | 552683-006    |
| D58       | S      | 05-04-17 13:30        | - 1 N/A      | 552683-007    |
| D57       | S      | 05-04-17 13:35        | - 1 N/A      | 552683-008    |
| D56       | S      | 05-04-17 13:40        | - 1 N/A      | 552683-009    |
| D55       | S      | 05-04-17 13:45        | - 1 N/A      | 552683-010    |



#### **CASE NARRATIVE**

Client Name: KJE Environmental & Civil Engineering

Project Name: Bobcat/Red Hills Pipeline Release

Project ID: Report Date: 18-MAY-17 Work Order Number(s): 552683 Date Received: 05/08/2017

| Sample receipt non conformances and comments:            |
|----------------------------------------------------------|
| Sample receipt non conformances and comments per sample: |
| None                                                     |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: D64 Matrix: Soil Date Received:05.08.17 15.00

Lab Sample Id: 552683-001 Date Collected: 05.04.17 13.00 Sample Depth: 1 N/A

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Tech: MGO

% Moisture:

Analyst: MGO Date Prep: 05.17.17 08.00

Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 99.5   | 5.00 | mg/kg | 05.17.17 12.52 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: D63 Matrix: Soil Date Received:05.08.17 15.00

Lab Sample Id: 552683-002 Date Collected: 05.04.17 13.05 Sample Depth: 1 N/A

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep M

Prep Method: E300P

% Moisture:

Analyst: MGO Date Prep: 05.17.17 08.00 Basis: Wet Weight

Seq Number: 3017517

MGO

Tech:

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 139    | 5.00 | mg/kg | 05.17.17 13.15 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

05.17.17 08.00

Sample Id: D62 Matrix: Soil Date Received:05.08.17 15.00

Date Prep:

Lab Sample Id: 552683-003 Date Collected: 05.04.17 13.10 Sample Depth: 1 N/A

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Wet Weight

Basis:

Tech: MGO % Moisture:

Seq Number: 3017517

Analyst:

MGO

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 157    | 5.00 | mg/kg | 05.17.17 13.22 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: Date Received:05.08.17 15.00

Lab Sample Id: 552683-004 Date Collected: 05.04.17 13.15 Sample Depth: 1 N/A

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 05.17.17 08.00 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 156    | 5.00 | mg/kg | 05.17.17 13.30 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: D60 Matrix: Soil Date Received:05.08.17 15.00

Lab Sample Id: 552683-005 Date Collected: 05.04.17 13.20 Sample Depth: 1 N/A

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

MGO % Moisture:

Analyst: MGO Date Prep: 05.17.17 08.00 Basis: Wet Weight

Seq Number: 3017517

Tech:

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 151    | 5.00 | mg/kg | 05.17.17 13.37 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: D59 Matrix: Soil Date Received:05.08.17 15.00

Lab Sample Id: 552683-006 Date Collected: 05.04.17 13.25 Sample Depth: 1 N/A

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

% Moisture:

Analyst: MGO Date Prep: 05.17.17 08.00 Basis: Wet Weight

Seq Number: 3017517

MGO

Tech:

| Parameter | Cas Number | Result | RL   | Units | <b>Analysis Date</b> | Flag | Dil |
|-----------|------------|--------|------|-------|----------------------|------|-----|
| Chloride  | 16887-00-6 | 145    | 5.00 | mg/kg | 05.17.17 14.00       |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: D58 Matrix: Soil Date Received:05.08.17 15.00

Lab Sample Id: 552683-007 Date Collected: 05.04.17 13.30 Sample Depth: 1 N/A

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Tech: MGO

% Moisture:

Analyst: MGO Date Prep: 05.17.17 08.00

Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 178    | 5.00 | mg/kg | 05.17.17 14.08 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: D57 Matrix: Soil Date Received:05.08.17 15.00

Lab Sample Id: 552683-008 Date Collected: 05.04.17 13.35 Sample Depth: 1 N/A

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 05.17.17 08.00 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 155    | 5.00 | mg/kg | 05.17.17 14.15 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: D56 Matrix: Soil Date Received:05.08.17 15.00

Lab Sample Id: 552683-009 Date Collected: 05.04.17 13.40 Sample Depth: 1 N/A

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 05.17.17 08.00 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 154    | 5.00 | mg/kg | 05.17.17 14.23 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: D55 Matrix: Soil Date Received:05.08.17 15.00

Lab Sample Id: 552683-010 Date Collected: 05.04.17 13.45 Sample Depth: 1 N/A

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 05.17.17 08.00 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | <b>Analysis Date</b> | Flag | Dil |
|-----------|------------|--------|------|-------|----------------------|------|-----|
| Chloride  | 16887-00-6 | 381    | 5.00 | mg/kg | 05.17.17 14.31       |      | 1   |



# **Flagging Criteria**



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- \*\* Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

**DL** Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- \* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

Hone Fax
(281) 240-4200 (281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335
1211 W Florida Ave, Midland, TX 79701 (432) 563-1800 (432) 563-1713
2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282 (602) 437-0330



#### **QC Summary** 552683

#### **KJE Environmental & Civil Engineering**

Bobcat/Red Hills Pipeline Release

E300P

E300P

E300P

Prep Method:

Prep Method:

Analytical Method: Inorganic Anions by EPA 300/300.1

Seq Number: 3017517 Matrix: Solid Date Prep: 05.17.17

LCS Sample Id: 724743-1-BKS LCSD Sample Id: 724743-1-BSD MB Sample Id: 724743-1-BLK

Spike LCS RPD MB LCS Limits %RPD LCSD LCSD Units Analysis Flag **Parameter** Result Result Limit Date Amount %Rec %Rec Result

Chloride 250 249 100 90-110 20 05.17.17 12:37 < 5.00 267 107 mg/kg

Analytical Method: Inorganic Anions by EPA 300/300.1

Seq Number: 3017517 Matrix: Soil Date Prep: 05.17.17

MS Sample Id: MSD Sample Id: 552656-001 SD Parent Sample Id: 552656-001 552656-001 S

Parent Spike MS MS Limits %RPD RPD Units **MSD** MSD Analysis Flag **Parameter** Result Amount Result %Rec Limit Date Result %Rec X

Chloride 6.24 250 285 112 327 128 90-110 14 20 mg/kg 05.17.17 14:46

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: Seq Number: 3017517 Matrix: Soil Date Prep: 05.17.17

MS Sample Id: 552683-001 S MSD Sample Id: 552683-001 SD Parent Sample Id: 552683-001

MS RPD %RPD Parent Spike MS MSD **MSD** Limits Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec

Chloride 20 05.17.17 12:59 99.5 250 362 105 363 105 90-110 0 mg/kg



# CHAIN OF CUSTODY

Dallas Texas (214-902-0300) Stafford, Texas (281-240-4200)

Midland, Texas (432-704-5251) San Antonio, Texas (210-509-3334)

Phoenix, Arizona (480-355-0900)

|                                                        | 9                    | www.xenco.com                                                                                           | Xenco                             | Quote #                    | Xenco Job # 552          | 2483                                                          |
|--------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------|--------------------------|---------------------------------------------------------------|
| Client / Reporting Information                         | 1577                 |                                                                                                         |                                   | Analytical Information     | ation                    | Matrix Codes                                                  |
| company Name / Branch: KJE                             | Project Na           | Project Name/Number: Robert / Post / 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/                               | Di. 1' D. 1                       |                            |                          | W = Water                                                     |
| company Address: 500 Moscley Rd, COSS Roads, TX        |                      | Jal, NM                                                                                                 | Therese Central                   |                            |                          | S = Soil/Sed/Solid<br>GW =Ground Water<br>DW = Drinking Water |
| James a Julian Kjenviron muntalicom                    | Invoid               | oilwater logistics (owt)                                                                                | ()                                |                            |                          | P = Product<br>SW = Surface water<br>SL = Sludge              |
| roject Contact: Jaws Fox - 940 - 387 - 0805            | PO Numb              |                                                                                                         |                                   |                            |                          | OW =Ocean/Sea Water WI = Wipe                                 |
| Samplers's Name                                        | TO Number:           | 67.                                                                                                     | ·d                                | ~                          |                          | 0 = 01                                                        |
|                                                        | Collection           |                                                                                                         | Number of preserved bottles       |                            |                          | WW= Waste Water A = Air                                       |
| INO. FISH ID / FUIR OF CORECTION                       | Sample<br>Depth Date | Time Watrix bottles HCI                                                                                 | aOH aHSO4 EOH ONE                 |                            |                          | 1                                                             |
| 1 Db4                                                  | 10                   | S                                                                                                       | h                                 |                            |                          | neid Comments                                                 |
| 2 D63                                                  |                      | 1305                                                                                                    | - 4                               |                            |                          |                                                               |
| 3 063                                                  |                      | 1310                                                                                                    |                                   |                            |                          |                                                               |
| 4 061                                                  |                      | 1315                                                                                                    |                                   |                            |                          |                                                               |
| 5 060                                                  |                      | 1320                                                                                                    |                                   |                            |                          |                                                               |
| 6 D 59                                                 |                      | 13 25                                                                                                   |                                   |                            |                          |                                                               |
| 7 058                                                  |                      | 1330                                                                                                    |                                   |                            |                          |                                                               |
| 8 057                                                  |                      | 1335                                                                                                    |                                   |                            |                          |                                                               |
| 9 056                                                  |                      | 13 40                                                                                                   |                                   |                            |                          |                                                               |
| 10 0 55                                                | 4                    | 1345 4                                                                                                  | <del>-</del>                      |                            |                          |                                                               |
| Turnaround Time (Business days)                        |                      | Data Deliverable Information                                                                            |                                   |                            | Notes:                   |                                                               |
| Same Day TAT S 5 Day TAT                               |                      | Level II Std QC                                                                                         | Level IV (Full Data Pkg /raw      | data)                      |                          |                                                               |
| Next Day EMERGENCY 7 Day TAT                           |                      | Level III Std QC+ Forms                                                                                 | TRRP Level IV                     |                            |                          |                                                               |
| 2 Day EMERGENCY Contract TAT                           |                      | Level 3 (CLP Forms)                                                                                     | UST / RG -411                     |                            |                          |                                                               |
| 3 Day EMERGENCY                                        |                      | TRRP Checklist                                                                                          |                                   |                            |                          |                                                               |
| TAT Starts Day received by Lab, if received by 5:00 pm | pm                   |                                                                                                         |                                   |                            | FED-EX / UPS: Tracking # |                                                               |
|                                                        | MUST BE DOCUMEN      | SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY | POSSESSION, INCLUDING COURIER DEL |                            |                          |                                                               |
| James Fox                                              | 5/8 1500             | Received By:                                                                                            | Relinquished By:                  | Date Time:                 | Received By:             | 5                                                             |
| 5                                                      | Date Time:           |                                                                                                         | Relinquished By:                  | Date Time:                 | Received By: Ter         | Temp:                                                         |
| diameter of                                            | Date Time:           | Received By:                                                                                            | Custody Seal #                    | Preserved where applicable | On Ice                   | Corrected Temp: 11 4                                          |



# XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In



Client: KJE Environmental & Civil Engineering

Date/ Time Received: 05/08/2017 03:00:00 PM

Work Order #: 552683

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used :

|                                                      | Sample Receipt Checklist              |                   | Comments |
|------------------------------------------------------|---------------------------------------|-------------------|----------|
| #1 *Temperature of cooler(s)?                        |                                       | 11.4              |          |
| #2 *Shipping container in good condition             | ?                                     | Yes               |          |
| #3 *Samples received on ice?                         |                                       | Yes               |          |
| #4 *Custody Seal present on shipping co              | ntainer/ cooler?                      | N/A               |          |
| #5 *Custody Seals intact on shipping con             | tainer/ cooler?                       | N/A               |          |
| #6 Custody Seals intact on sample bottle             | s?                                    | N/A               |          |
| #7 *Custody Seals Signed and dated?                  |                                       | N/A               |          |
| #8 *Chain of Custody present?                        |                                       | Yes               |          |
| #9 Sample instructions complete on Chair             | in of Custody?                        | Yes               |          |
| #10 Any missing/extra samples?                       |                                       | No                |          |
| #11 Chain of Custody signed when relind              | uished/ received?                     | Yes               |          |
| #12 Chain of Custody agrees with sample              | e label(s)?                           | Yes               |          |
| #13 Container label(s) legible and intact?           |                                       | Yes               | R9       |
| #14 Sample matrix/ properties agree with             | Chain of Custody?                     | Yes               |          |
| #15 Samples in proper container/ bottle?             |                                       | Yes               |          |
| #16 Samples properly preserved?                      |                                       | Yes               |          |
| #17 Sample container(s) intact?                      |                                       | Yes               |          |
| #18 Sufficient sample amount for indicate            | ed test(s)?                           | Yes               |          |
| #19 All samples received within hold time            | ?                                     | Yes               |          |
| #20 Subcontract of sample(s)?                        |                                       | N/A               |          |
| #21 VOC samples have zero headspace                  | ?                                     | N/A               |          |
| #22 <2 for all samples preserved with HN             |                                       | N/A               |          |
| samples for the analysis of HEM or HEM-<br>analysts. | SGT which are verified by the         |                   |          |
| #23 >10 for all samples preserved with N             | aAsO2+NaOH, ZnAc+NaOH?                | N/A               |          |
|                                                      |                                       |                   |          |
|                                                      |                                       |                   |          |
| * Must be completed for after-hours de               | livery of samples prior to placing in | the refrige       | erator   |
| •                                                    |                                       |                   |          |
| Analyst:                                             | PH Device/Lot#:                       |                   |          |
|                                                      |                                       |                   |          |
|                                                      | harai Ra Lagur                        |                   |          |
| Checklist completed by:                              | Manga                                 | Date: 05/0        | 9/2017   |
|                                                      | Marithza Anaya                        |                   |          |
| Charlist was issued by                               | 460 To 0                              |                   |          |
| Checklist reviewed by:                               | or of jugar                           | Date: <u>05/0</u> | 9/2017   |
|                                                      | Holly Taylor                          |                   |          |



# Certificate of Analysis Summary 553327

### KJE Environmental & Civil Engineering, Aubrey, TX

Project Name: Bobcat/Red Hills Pipeline Release



**Project Id: Contact:** 

**Project Location:** 

James Fox

Jal, NM

Date Received in Lab: Wed May-17-17 08:19 am

Report Date: 19-MAY-17

Project Manager: Holly Taylor

|                                   | Lab Id:    | 553327-0  | 001   | 553327-0  | 002   | 553327-0  | 03    | 553327-0  | 04    | 553327-0  | 005   | 553327-0    | 06    |
|-----------------------------------|------------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-------------|-------|
| Analysis Requested                | Field Id:  | MB 10     | )     | E 10      |       | D 10      |       | D 20      |       | D 30      |       | D 40        |       |
| Anaiysis Requesieu                | Depth:     | 1 ft      |       | 1 ft        |       |
|                                   | Matrix:    | SOIL      | SOIL  |           |       | SOIL      |       | SOIL      |       | SOIL      |       | SOIL        |       |
|                                   | Sampled:   | May-16-17 | 15:00 | May-16-17 | 15:05 | May-16-17 | 15:10 | May-16-17 | 15:15 | May-16-17 | 15:20 | May-16-17   | 15:25 |
| Inorganic Anions by EPA 300/300.1 | Extracted: | May-18-17 | 19:50 | May-18-17 | 19:50 | May-19-17 | 1:47  | May-19-17 | 11:47 | May-19-17 | 11:47 | May-19-17 1 | 11:47 |
| SUB: TX104704215                  | Analyzed:  | May-18-17 | 21:05 | May-18-17 | 21:14 | May-19-17 | 2:53  | May-19-17 | 13:02 | May-19-17 | 13:11 | May-19-17 1 | 14:13 |
|                                   | Units/RL:  | mg/kg     | RL    | mg/kg       | RL    |
| Chloride                          |            | 64.7      | 9.98  | 1400      | 9.88  | 163       | 9.77  | 169       | 9.75  | 346       | 9.71  | 284         | 9.60  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Holly Taylor Project Manager



# Certificate of Analysis Summary 553327

### KJE Environmental & Civil Engineering, Aubrey, TX

Project Name: Bobcat/Red Hills Pipeline Release



**Project Id: Contact:** 

**Project Location:** 

James Fox

Jal, NM

Date Received in Lab: Wed May-17-17 08:19 am

Report Date: 19-MAY-17

Project Manager: Holly Taylor

|                                   | Lab Id:    | 553327-007      |  |  |  |
|-----------------------------------|------------|-----------------|--|--|--|
| Analysis Requested                | Field Id:  | D 50            |  |  |  |
| Anaiysis Kequesieu                | Depth:     | 1 ft            |  |  |  |
|                                   | Matrix:    | SOIL            |  |  |  |
|                                   | Sampled:   | May-16-17 15:30 |  |  |  |
| Inorganic Anions by EPA 300/300.1 | Extracted: | May-19-17 11:47 |  |  |  |
| SUB: TX104704215                  | Analyzed:  | May-19-17 14:23 |  |  |  |
|                                   | Units/RL:  | mg/kg RL        |  |  |  |
| Chloride                          |            | 232 9.62        |  |  |  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Holly Taylor Project Manager

# **Analytical Report 553327**

# for KJE Environmental & Civil Engineering

Project Manager: James Fox Bobcat/Red Hills Pipeline Release

19-MAY-17

Collected By: Client





#### 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)

Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)





19-MAY-17

Project Manager: James Fox KJE Environmental & Civil Engineering 500 Mosley Rd Aubrey, TX 76227

Reference: XENCO Report No(s): 553327

**Bobcat/Red Hills Pipeline Release** 

Project Address: Jal, NM

#### **James Fox:**

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 553327. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 553327 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

thely Taylor

**Holly Taylor** 

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America



# **Sample Cross Reference 553327**



# $KJE\ Environmental\ \&\ Civil\ Engineering,\ Aubrey,\ TX$

Bobcat/Red Hills Pipeline Release

| Sample Id | Matrix | <b>Date Collected</b> | Sample Depth | Lab Sample Id |
|-----------|--------|-----------------------|--------------|---------------|
| MB 10     | S      | 05-16-17 15:00        | - 1 ft       | 553327-001    |
| E 10      | S      | 05-16-17 15:05        | - 1 ft       | 553327-002    |
| D 10      | S      | 05-16-17 15:10        | - 1 ft       | 553327-003    |
| D 20      | S      | 05-16-17 15:15        | - 1 ft       | 553327-004    |
| D 30      | S      | 05-16-17 15:20        | - 1 ft       | 553327-005    |
| D 40      | S      | 05-16-17 15:25        | - 1 ft       | 553327-006    |
| D 50      | S      | 05-16-17 15:30        | - 1 ft       | 553327-007    |



#### **CASE NARRATIVE**

Client Name: KJE Environmental & Civil Engineering

Project Name: Bobcat/Red Hills Pipeline Release

Project ID: Report Date: 19-MAY-17 Work Order Number(s): 553327 Date Received: 05/17/2017

| Sample receipt non conformances and comments:            |  |
|----------------------------------------------------------|--|
| Sample receipt non conformances and comments per sample: |  |
| None                                                     |  |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: MB 10 Matrix: Soil Date Received:05.17.17 08.19

Lab Sample Id: 553327-001 Date Collected: 05.16.17 15.00 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P % Moisture:

Tech: DHE

Analyst:

DHE

Date Prep: 05.18.17 19.50 Basis: Wet Weight

Seq Number: 3017719 SUB: TX104704215

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 64.7
 9.98
 mg/kg
 05.18.17 21.05
 1





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: E 10 Matrix: Soil Date Received:05.17.17 08.19

Lab Sample Id: 553327-002 Date Collected: 05.16.17 15.05 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: DHE % Moisture:

Analyst: DHE Date Prep: 05.18.17 19.50 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | <b>Analysis Date</b> | Flag | Dil |
|-----------|------------|--------|------|-------|----------------------|------|-----|
| Chloride  | 16887-00-6 | 1400   | 9.88 | mg/kg | 05.18.17 21.14       |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: **D 10** Matrix: Soil Date Received:05.17.17 08.19

Lab Sample Id: 553327-003 Date Collected: 05.16.17 15.10 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: DHE % Moisture:

Analyst: DHE Date Prep: 05.19.17 11.47 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |  |
|-----------|------------|--------|------|-------|----------------|------|-----|--|
| Chloride  | 16887-00-6 | 163    | 9.77 | mg/kg | 05.19.17 12.53 |      | 1   |  |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: D 20 Matrix: Soil Date Received:05.17.17 08.19

Lab Sample Id: 553327-004 Date Collected: 05.16.17 15.15 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: DHE % Moisture:

Analyst: DHE Date Prep: 05.19.17 11.47 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |
|-----------|------------|--------|------|-------|----------------|------|-----|
| Chloride  | 16887-00-6 | 169    | 9.75 | mg/kg | 05.19.17 13.02 |      | 1   |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: D 30 Matrix: Soil Date Received:05.17.17 08.19

Lab Sample Id: 553327-005 Date Collected: 05.16.17 15.20 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: DHE % Moisture:

Analyst: DHE Date Prep: 05.19.17 11.47 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |  |
|-----------|------------|--------|------|-------|----------------|------|-----|--|
| Chloride  | 16887-00-6 | 346    | 9.71 | mg/kg | 05.19.17 13.11 |      | 1   |  |



DHE

Tech:

# **Certificate of Analytical Results 553327**



# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: **D 40** Matrix: Soil Date Received:05.17.17 08.19

Lab Sample Id: 553327-006 Date Collected: 05.16.17 15.25 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

% Moisture:

Analyst: DHE Date Prep: 05.19.17 11.47 Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | Analysis Date  | Flag | Dil |  |
|-----------|------------|--------|------|-------|----------------|------|-----|--|
| Chloride  | 16887-00-6 | 284    | 9.60 | mg/kg | 05.19.17 14.13 |      | 1   |  |





# KJE Environmental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id: D 50 Matrix: Soil Date Received:05.17.17 08.19

Lab Sample Id: 553327-007 Date Collected: 05.16.17 15.30 Sample Depth: 1 ft

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Tech: DHE

% Moisture:

Analyst: DHE Date Prep: 05.19.17 11.47

Basis: Wet Weight

| Parameter | Cas Number | Result | RL   | Units | <b>Analysis Date</b> | Flag | Dil |
|-----------|------------|--------|------|-------|----------------------|------|-----|
| Chloride  | 16887-00-6 | 232    | 9.62 | mg/kg | 05.19.17 14.23       |      | 1   |



# **Flagging Criteria**



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- \*\* Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

**DL** Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- \* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

 Phone
 Fax

 4147 Greenbriar Dr, Stafford, TX 77477
 (281) 240-4200
 (281) 240-4280

 9701 Harry Hines Blvd , Dallas, TX 75220
 (214) 902 0300
 (214) 351-9139

 5332 Blackberry Drive, San Antonio TX 78238
 (210) 509-3334
 (210) 509-3335

 1211 W Florida Ave, Midland, TX 79701
 (432) 563-1800
 (432) 563-1713

 2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282
 (602) 437-0330

Final 1.000



#### **QC Summary** 553327

#### **KJE Environmental & Civil Engineering**

Bobcat/Red Hills Pipeline Release

LCSD

LCSD

LCSD

%Rec

100

Analytical Method: Inorganic Anions by EPA 300/300.1

MB

E300P Prep Method:

Seq Number: 3017719 Matrix: Solid Date Prep: 05.18.17

LCS

LCS

LCS Sample Id: 724873-1-BKS MB Sample Id: 724873-1-BLK

Spike

LCSD Sample Id: 724873-1-BSD RPD

Units

**Parameter** Result Result Limit Date Amount %Rec %Rec Result

Chloride 9.92 99 80-120 20 05.18.17 20:00 <1.00 10.0 9.99 100 mg/kg

Analytical Method: Inorganic Anions by EPA 300/300.1

E300P Prep Method:

Units

mg/kg

Seq Number: 3017764 Matrix: Solid

Date Prep:

20

05.19.17

MB Sample Id:

724904-1-BLK

LCS Sample Id: 724904-1-BKS LCSD Sample Id:

724904-1-BSD

**Parameter** 

Chloride

MB

LCS LCS

%Rec

101

Result

10.1

LCSD

Result

10.0

%RPD RPD Limit

1

%RPD

Analysis

05.19.17 11:57

Analysis

Flag

Flag Date

Analytical Method: Inorganic Anions by EPA 300/300.1

3017719 Matrix: Soil

Spike

100

Amount

Spike

10.0

Amount

Prep Method:

E300P

Seq Number:

771

Result

<1.00

Date Prep:

05.18.17

Parent Sample Id: 553187-001 MS Sample Id: 553187-001 S

89

MSD Sample Id: 553187-001 SD

mg/kg

**Parameter** 

MS MS

MSD **MSD**  Limits %RPD

Limits

Limits

80-120

RPD Units Limit

Analysis Flag

Chloride

Parent Result

Result %Rec 860

Result 857 %Rec 86 80-120

20 0

Date 05.18.17 20:28

Analytical Method: Inorganic Anions by EPA 300/300.1

3017764

Matrix: Soil

SW9056P

Seq Number: MS Sample Id: 553317-001 S Parent Sample Id: 553317-001

106

Prep Method: Date Prep: MSD Sample Id:

05.19.17

553317-001 SD

**Parameter** 

Parent Spike Result Amount

19600

MS MS

%Rec

Result

19300

MSD Result

MSD Limits %Rec

RPD %RPD Limit Units

Analysis Flag Date

Chloride

19500

0 80-120

20 1

mg/kg

05.19.17 14:42 X



# CHAIN OF CUSTODY

Dallas Texas (214-902-0300) Stafford, Texas (281-240-4200) Setting the Standard since 1990 Midland, Texas (432-704-5251) San Antonio, Texas (210-509-3334)

Phoenix, Arizona (480-355-0900)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 Turn                               | WWW.XEIICO.COM                                                                           |                            | 80002                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|
| Client / Reporting Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Drains Informa                        |                                                                                          | Analytical Information     | on Matrix Codes                                          |
| company Name / Branch: KJ Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project Name/Number R Port 1 Port 11  | P. 1-                                                                                    |                            | W = Water                                                |
| sds,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project Location:  Jal, NM            | recorns Theme Kellase                                                                    |                            | S = Soil/Sed/Soild GW = Ground Water DW = Drinking Water |
| inall: Phone No: Phone Phone No: Phone | Invoice                               | DWL - pilfield Water Lopistics                                                           |                            | P = Pounting water SW = Surface water                    |
| roject Contact: James Fox 940-368-3535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PO Nu                                 |                                                                                          |                            | OW=Ocean/Sea Water WI = Wipe                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                          |                            | O = OII                                                  |
| No. Field ID / Point of Collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Collection                            | OH/Zn Number of preserved bottles                                                        | N 107 10                   | WW= Waste Water<br>A = Air                               |
| 1 MB 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1) 5/11 1500 S                        | HO NE AC HIN H2 NA                                   |                            | Field Comments                                           |
| 2 E 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1808                                  | - >                                                                                      |                            |                                                          |
| 3 D 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1510                                  |                                                                                          |                            |                                                          |
| 4 D 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1) 1515                               |                                                                                          |                            |                                                          |
| 5 D 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | () 1520                               |                                                                                          |                            |                                                          |
| 6 040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | () 1828                               |                                                                                          |                            |                                                          |
| 7 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <                                     | <                                                                                        |                            |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                          |                            |                                                          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                                                          |                            |                                                          |
| Turnaround Time ( Business days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date                                  | Deliverable late                                                                         |                            |                                                          |
| Same Day TAT S Day TAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level II Std QC                       | d QC Level IV /Full Data Dkg /raus d                                                     | Notes:                     |                                                          |
| Next Day EMERGENCY 7 Day TAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Level III Std QC+ Forms               |                                                                                          | acan)                      |                                                          |
| 2 Day EMERGENCY Contract TAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Level 3 (CLP Forms)                   |                                                                                          |                            |                                                          |
| 3 Day EMERGENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRRP Checklist                        |                                                                                          |                            |                                                          |
| TAT Starts Day received by Lab, if received by 5:00 pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                                          |                            | 770                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MUST BE DOCUMENTED BELOW EACH TIME SA | SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE DOSSESSION WAS TRAINED. |                            | FED-EX / UPS: Tracking #                                 |
| Sampler: PX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date Time: Received By:               | Relinquished By:                                                                         | Date Time:                 | Received By:                                             |
| ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Relinquished By:                                                                         | Date Time:                 | Received By:                                             |
| Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date Time: Received By:               | Custody Seal #                                                                           | Preserved where applicable | 4 On Ire Cooler Tamp                                     |



### **XENCO Laboratories**



# **Inter Office Report- Sample Receipt Checklist**

Sent To: Houston IOS #: 1043851

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used :

| Sent By:     | Jessica Kramer     | Date Sent:     | 05/17/2017 | 11:30 | AM |
|--------------|--------------------|----------------|------------|-------|----|
| Received By: | Maria Paula Guerra | Date Received: | 05/18/2017 | 09:30 | ΑM |

| Received By: Maria Paula Guerra                          | <b>Date Received:</b> 05/18/2017   | 09:30 AM                  |          |
|----------------------------------------------------------|------------------------------------|---------------------------|----------|
|                                                          | Sample Receipt Chec                | klist                     | Comments |
| #1 *Temperature of cooler(s)?                            |                                    | 2.6                       |          |
| #2 *Shipping container in good condition                 | on?                                | Yes                       |          |
| #3 *Samples received with appropriate                    | temperature?                       | Yes                       |          |
| #4 *Custody Seals intact on shipping c                   | ontainer/ cooler?                  | N/A                       |          |
| #5 *Custody Seals Signed and dated for                   | or Containers/coolers              | N/A                       |          |
| #6 *IOS present?                                         |                                    | Yes                       |          |
| #7 Any missing/extra samples?                            |                                    | No                        |          |
| #8 IOS agrees with sample label(s)/ma                    | trix?                              | Yes                       |          |
| #9 Sample matrix/ properties agree wit                   | h IOS?                             | Yes                       |          |
| #10 Samples in proper container/ bottle                  | <b>∍</b> ?                         | Yes                       |          |
| #11 Samples properly preserved?                          |                                    | Yes                       |          |
| #12 Sample container(s) intact?                          |                                    | N/A                       |          |
| #13 Sufficient sample amount for indic                   | ated test(s)?                      | Yes                       |          |
| #14 All samples received within hold til                 | me?                                | Yes                       |          |
| * Must be completed for after-hours d<br>NonConformance: | elivery of samples prior to pl     | acing in the refrigerator |          |
| Corrective Action Taken:                                 |                                    |                           |          |
|                                                          | Nonconformance Doc                 | umentation                |          |
| Contact:                                                 | Contacted by :                     | Date:                     |          |
| Checklist reviewed by:                                   | unfaula Guerra  Maria Paula Guerra | Date: <u>05/18/2017</u>   |          |



# XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In



Client: KJE Environmental & Civil Engineering

Date/ Time Received: 05/17/2017 08:19:00 AM

Work Order #: 553327

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used: R8

|                                                                                           | Sample Receipt Checklist   |                   | Comments |
|-------------------------------------------------------------------------------------------|----------------------------|-------------------|----------|
| #1 *Temperature of cooler(s)?                                                             |                            | 3.1               |          |
| #2 *Shipping container in good condition'                                                 | ?                          | Yes               |          |
| #3 *Samples received on ice?                                                              |                            | Yes               |          |
| #4 *Custody Seal present on shipping co                                                   | ntainer/ cooler?           | N/A               |          |
| #5 *Custody Seals intact on shipping con                                                  | tainer/ cooler?            | N/A               |          |
| #6 Custody Seals intact on sample bottle                                                  | s?                         | N/A               |          |
| #7 *Custody Seals Signed and dated?                                                       |                            | N/A               |          |
| #8 *Chain of Custody present?                                                             |                            | Yes               |          |
| #9 Sample instructions complete on Chair                                                  | in of Custody?             | Yes               |          |
| #10 Any missing/extra samples?                                                            |                            | No                |          |
| #11 Chain of Custody signed when relinq                                                   | uished/ received?          | Yes               |          |
| #12 Chain of Custody agrees with sample                                                   | e label(s)?                | Yes               |          |
| #13 Container label(s) legible and intact?                                                |                            | Yes               |          |
| #14 Sample matrix/ properties agree with                                                  | Chain of Custody?          | Yes               |          |
| #15 Samples in proper container/ bottle?                                                  |                            | Yes               |          |
| #16 Samples properly preserved?                                                           |                            | Yes               |          |
| #17 Sample container(s) intact?                                                           |                            | Yes               |          |
| #18 Sufficient sample amount for indicate                                                 | ed test(s)?                | Yes               |          |
| #19 All samples received within hold time                                                 | ?                          | Yes               |          |
| #20 Subcontract of sample(s)?                                                             |                            | Yes               | Houston  |
| #21 VOC samples have zero headspace                                                       | ?                          | N/A               |          |
| #22 <2 for all samples preserved with HN samples for the analysis of HEM or HEM-analysts. | •                          | N/A               |          |
| #23 >10 for all samples preserved with N                                                  | aAsO2+NaOH, ZnAc+NaOH?     | N/A               |          |
| * Must be completed for after-hours de                                                    |                            | the refrige       | erator   |
| Analyst:                                                                                  | PH Device/Lot#:            |                   |          |
|                                                                                           |                            |                   |          |
| Checklist completed by:                                                                   | Jessica Kramer             | Date: <u>05/1</u> | 17/2017  |
| Checklist reviewed by:                                                                    | thely Taylor  Holly Taylor | Date: <u>05/1</u> | 17/2017  |



# **Certificate of Analysis Summary 548179**

KJE Environmental & Civil Engineering, Aubrey, TX

Project Name: OWL102816D



Project Id: Contact:

James Fox

**Project Location:** Owl Bobcat/Redhills Pipeline

**Date Received in Lab:** Wed Mar-08-17 04:40 pm

**Report Date:** 15-MAR-17 **Project Manager:** Holly Taylor

|                                    | Lab Id:    | 548179-0  | 0.1     | 548179-00   | 2    |  |  |
|------------------------------------|------------|-----------|---------|-------------|------|--|--|
|                                    |            |           | 01      |             | JZ   |  |  |
| Analysis Requested                 | Field Id:  | SS001     |         | SS002       |      |  |  |
| Tanady sas and question            | Depth:     | 21 ft     |         | 296 In      |      |  |  |
|                                    | Matrix:    | SOIL      |         | SOIL        |      |  |  |
|                                    | Sampled:   | Mar-08-17 | 12:15   | Mar-08-17 0 | 8:45 |  |  |
| BTEX by SW 8260B                   | Extracted: | Mar-14-17 | 12:45   |             |      |  |  |
| SUB: TX104704215                   | Analyzed:  | Mar-14-17 | 15:24   |             |      |  |  |
|                                    | Units/RL:  | mg/kg     | RL      |             |      |  |  |
| Benzene                            |            | < 0.00109 | 0.00109 |             |      |  |  |
| Toluene                            |            | < 0.00109 | 0.00109 |             |      |  |  |
| Ethylbenzene                       |            | < 0.00109 | 0.00109 |             |      |  |  |
| m,p-Xylenes                        |            | < 0.00218 | 0.00218 |             |      |  |  |
| o-Xylene                           |            | < 0.00109 | 0.00109 |             |      |  |  |
| Total Xylenes                      |            | < 0.00109 | 0.00109 |             |      |  |  |
| Total BTEX                         |            | < 0.00109 | 0.00109 |             |      |  |  |
| Inorganic Anions by EPA 300/300.1  | Extracted: | Mar-10-17 | 14:20   | Mar-10-17 1 | 4:20 |  |  |
|                                    | Analyzed:  | Mar-10-17 | 14:53   | Mar-10-17 1 | 5:29 |  |  |
|                                    | Units/RL:  | mg/kg     | RL      | mg/kg       | RL   |  |  |
| Chloride                           |            | 93.5      | 5.00    | 13.1        | 4.91 |  |  |
| Percent Moisture                   | Extracted: |           |         |             |      |  |  |
|                                    | Analyzed:  | Mar-10-17 | 11:48   |             |      |  |  |
|                                    | Units/RL:  | %         | RL      |             |      |  |  |
| Percent Moisture                   |            | 7.90      | 1.00    |             |      |  |  |
| TPH by Texas1005                   | Extracted: | Mar-09-17 | 14:00   |             |      |  |  |
|                                    | Analyzed:  | Mar-10-17 | 08:22   |             |      |  |  |
|                                    | Units/RL:  | mg/kg     | RL      |             |      |  |  |
| C6-C12 Gasoline Range Hydrocarbons | 1          | <25.4     | 25.4    |             |      |  |  |
| C12-C28 Diesel Range Hydrocarbons  |            | <25.4     | 25.4    |             |      |  |  |
| C28-C35 Oil Range Hydrocarbons     |            | <25.4     | 25.4    |             |      |  |  |
| Total TPH 1005                     |            | <25.4     | 25.4    |             |      |  |  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Holly Taylor Project Manager

# **Analytical Report 548179**

# for KJE Environmental & Civil Engineering

Project Manager: James Fox OWL102816D

15-MAR-17

Collected By: Client





#### 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)

Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)





15-MAR-17

Project Manager: James Fox KJE Environmental & Civil Engineering

500 Mosley Rd Aubrey, TX 76227

Reference: XENCO Report No(s): 548179

OWL102816D

Project Address: Owl Bobcat/Redhills Pipeline

#### James Fox:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 548179. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 548179 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

thely Taylor

**Holly Taylor** 

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America



# **Sample Cross Reference 548179**



# KJE Environmental & Civil Engineering, Aubrey, TX

OWL102816D

| Sample Id | Matrix | <b>Date Collected</b> | Sample Depth | Lab Sample Id |
|-----------|--------|-----------------------|--------------|---------------|
| SS001     | S      | 03-08-17 12:15        | - 21 ft      | 548179-001    |
| SS002     | S      | 03-08-17 08:45        | - 296 In     | 548179-002    |



# **CASE NARRATIVE**

Client Name: KJE Environmental & Civil Engineering

Project Name: OWL102816D

Project ID: Report Date: 15-MAR-17 Work Order Number(s): 548179 Date Received: 03/08/2017

| Sample receipt non conformances and comments:            |
|----------------------------------------------------------|
| Sample receipt non conformances and comments per sample: |
| None                                                     |





# KJE Environmental & Civil Engineering, Aubrey, TX

OWL102816D

Sample Id: SS001 Matrix: Soil Date Received:03.08.17 16.40

Lab Sample Id: 548179-001 Date Collected: 03.08.17 12.15 Sample Depth: 21 ft

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Prep Method: TX1005P

% Moisture:

Analyst: MGO Date Prep: 03.10.17 14.20 Basis: Wet Weight

Seq Number: 3012195

MGO

Tech:

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 93.5
 5.00
 mg/kg
 03.10.17 14.53
 1

Analytical Method: TPH by Texas1005

Tech: ARM % Moisture: 7.9

Analyst: ARM Date Prep: 03.09.17 14.00 Basis: Dry Weight

Seq Number: 3012071

| Parameter                          | Cas Number | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|------------------------------------|------------|------------|---------------|-------|--------|----------------|------|-----|
| C6-C12 Gasoline Range Hydrocarbons | PHC612     | <25.4      | 25.4          |       | mg/kg  | 03.10.17 08.22 | U    | 1   |
| C12-C28 Diesel Range Hydrocarbons  | PHCG1228   | <25.4      | 25.4          |       | mg/kg  | 03.10.17 08.22 | U    | 1   |
| C28-C35 Oil Range Hydrocarbons     | PHCG2835   | <25.4      | 25.4          |       | mg/kg  | 03.10.17 08.22 | U    | 1   |
| Total TPH 1005                     | PHC635     | <25.4      | 25.4          |       | mg/kg  | 03.10.17 08.22 | U    | 1   |
| Surrogate                          |            | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| 1-Chlorooctane                     |            | 111-85-3   | 105           | %     | 70-135 | 03.10.17 08.22 |      |     |
| o-Terphenyl                        |            | 84-15-1    | 107           | %     | 70-130 | 03.10.17 08.22 |      |     |





# KJE Environmental & Civil Engineering, Aubrey, TX

OWL102816D

Sample Id: SS001 Matrix: Soil Date Received:03.08.17 16.40

Lab Sample Id: 548179-001 Date Collected: 03.08.17 12.15 Sample Depth: 21 ft

Analytical Method: BTEX by SW 8260B Prep Method: SW5035

Tech: JTR % Moisture: 7.9

Analyst: JTR Date Prep: 03.14.17 12.45 Basis: Dry Weight

Seq Number: 3012380 SUB: TX104704215

| Parameter             | Cas Number  | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|-----------------------|-------------|------------|---------------|-------|--------|----------------|------|-----|
| Benzene               | 71-43-2     | < 0.00109  | 0.00109       |       | mg/kg  | 03.14.17 15.24 | U    | 1   |
| Toluene               | 108-88-3    | < 0.00109  | 0.00109       |       | mg/kg  | 03.14.17 15.24 | U    | 1   |
| Ethylbenzene          | 100-41-4    | < 0.00109  | 0.00109       |       | mg/kg  | 03.14.17 15.24 | U    | 1   |
| m,p-Xylenes           | 179601-23-1 | < 0.00218  | 0.00218       |       | mg/kg  | 03.14.17 15.24 | U    | 1   |
| o-Xylene              | 95-47-6     | < 0.00109  | 0.00109       |       | mg/kg  | 03.14.17 15.24 | U    | 1   |
| Total Xylenes         | 1330-20-7   | < 0.00109  | 0.00109       |       | mg/kg  | 03.14.17 15.24 | U    | 1   |
| Total BTEX            |             | < 0.00109  | 0.00109       |       | mg/kg  | 03.14.17 15.24 | U    | 1   |
| Surrogate             |             | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| Dibromofluoromethane  |             | 1868-53-7  | 107           | %     | 74-126 | 03.14.17 15.24 |      |     |
| 1,2-Dichloroethane-D4 |             | 17060-07-0 | 106           | %     | 80-120 | 03.14.17 15.24 |      |     |
| Toluene-D8            |             | 2037-26-5  | 94            | %     | 73-132 | 03.14.17 15.24 |      |     |





# KJE Environmental & Civil Engineering, Aubrey, TX

OWL102816D

Sample Id: SS002 Matrix: Soil Date Received:03.08.17 16.40

Lab Sample Id: 548179-002 Date Collected: 03.08.17 08.45 Sample Depth: 296 In

Analytical Method: Inorganic Anions by EPA 300/300.1 Prep Method: E300P

Tech: MGO % Moisture:

Analyst: MGO Date Prep: 03.10.17 14.20 Basis: Wet Weight

Seq Number: 3012195

| Parameter | Cas Number | Result | RL   | Units | <b>Analysis Date</b> | Flag | Dil |
|-----------|------------|--------|------|-------|----------------------|------|-----|
| Chloride  | 16887-00-6 | 13.1   | 4.91 | mg/kg | 03.10.17 15.29       |      | 1   |



# Flagging Criteria



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- \*\* Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

**DL** Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- \* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4147 Greenbriar Dr, Stafford, TX 77477 (281) 240-4200 (281) 240-4280 9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139 5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335 1211 W Florida Ave, Midland, TX 79701 (432) 563-1800 (432) 563-1713 2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282 (602) 437-0330



Seq Number:

#### **QC Summary** 548179

#### **KJE Environmental & Civil Engineering**

OWL102816D

Analytical Method: Inorganic Anions by EPA 300/300.1

E300P Prep Method:

E300P

Flag

3012195 Seq Number: Matrix: Solid Date Prep: 03.10.17 LCS Sample Id: 721309-1-BKS LCSD Sample Id: 721309-1-BSD MB Sample Id: 721309-1-BLK

LCS %RPD RPD MB Spike LCS Limits LCSD LCSD Units Analysis **Parameter** Result Limit Date Result Amount %Rec Result %Rec

Chloride 90-110 20 03.10.17 14:38 <4.98 249 243 98 251 101 3 mg/kg

Analytical Method: Inorganic Anions by EPA 300/300.1

E300P Prep Method: 3012195 Matrix: Soil Date Prep: 03.10.17

547991-007 S MSD Sample Id: 547991-007 SD Parent Sample Id: 547991-007 MS Sample Id:

Parent MS MS Limits %RPD RPD Units Spike **MSD** MSD Analysis Flag **Parameter** Result Amount Result %Rec Limit Date Result %Rec

Chloride 21.8 247 272 101 274 102 90-110 1 20 mg/kg 03.10.17 16:43

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: Seq Number: 3012195 Matrix: Soil Date Prep: 03.10.17

MS Sample Id: 548179-001 S MSD Sample Id: 548179-001 SD Parent Sample Id: 548179-001

MS RPD Parent Spike MS MSD **MSD** Limits %RPD Units **Analysis** Flag **Parameter** Result Limit %Rec Date Result Amount Result %Rec 20 03.10.17 15:00 Chloride 93.5 250 341 99 340 99 90-110 0 mg/kg

**Analytical Method: Percent Moisture** 

Seq Number: 3012308 Matrix: Solid

MB Sample Id: 3012308-1-BLK

MB Units Analysis Flag **Parameter** Result Date

03.10.17 11:48 Percent Moisture < 1.00 %

**Analytical Method: Percent Moisture** 

Seq Number: 3012308 Matrix: Soil

MD Sample Id: 548179-001 D Parent Sample Id: 548179-001

Parent MD %RPD **RPD** Units Analysis Flag Parameter Result Date Result Limit

7.76 03.10.17 11:48 Percent Moisture 7.90 2 20 %



## QC Summary 548179

#### **KJE Environmental & Civil Engineering**

OWL102816D

Analytical Method:TPH by Texas1005Prep Method:TX1005PSeq Number:3012071Matrix: SolidDate Prep: 03.09.17

MB Sample Id: 721306-1-BLK LCS Sample Id: 721306-1-BKS LCSD Sample Id: 721306-1-BSD

%RPD MB Spike LCS LCS Limits **RPD** LCSD LCSD Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec C6-C12 Gasoline Range Hydrocarbons 70-135 03.10.17 00:05 <25.0 1000 1000 100 1010 101 35 mg/kg C12-C28 Diesel Range Hydrocarbons <25.0 70-135 35 03.10.17 00:05 1000 1030 103 1040 104 mg/kg

MB MB LCS LCS LCSD LCSD Limits Units Analysis **Surrogate** Flag %Rec %Rec Flag %Rec Flag Date 1-Chlorooctane 105 124 126 70-135 % 03.10.17 00:05 o-Terphenyl 111 127 126 70-130 % 03.10.17 00:05

Analytical Method: TPH by Texas1005 Prep Method: TX1005P

 Seq Number:
 3012071
 Matrix:
 Soil
 Date Prep:
 03.09.17

 Parent Sample Id:
 548133-005
 MS Sample Id:
 548133-005 SD
 MSD Sample Id:
 548133-005 SD

MS MS %RPD RPD Units Parent Spike Limits Analysis **MSD** MSD **Parameter** Result Amount Result %Rec Result %Rec Limit Date C6-C12 Gasoline Range Hydrocarbons <25.0 999 862 851 70-135 35 03.10.17 01:44 86 85 1 mg/kg C12-C28 Diesel Range Hydrocarbons 03.10.17 01:44 <25.0 999 860 86 862 70-135 0 35 86 mg/kg

MS MS **MSD MSD** Limits Units Analysis Surrogate %Rec Flag Flag Date %Rec 1-Chlorooctane 109 101 70-135 03.10.17 01:44 % o-Terphenyl 106 97 70-130 % 03.10.17 01:44

Analytical Method:BTEX by SW 8260BPrep Method:SW 5035Seq Number:3012380Matrix:SolidDate Prep:03.14.17

MB Sample Id: 721516-1-BLK LCS Sample Id: 721516-1-BSD LCSD Sample Id: 721516-1-BSD

%RPD RPD LCS LCS Limits Units MB Spike Analysis LCSD LCSD **Parameter** Result Amount Result %Rec %Rec Limit Date Result 03.14.17 08:32 Benzene < 0.00100 0.100 0.0918 92 0.0926 93 62-132 25 1 mg/kg 85 5 25 03.14.17 08:32 Toluene < 0.00100 0.100 0.0851 0.0895 90 66-124 mg/kg Ethylbenzene 0.0905 91 0.0922 92 71-134 2 25 03.14.17 08:32 < 0.00100 0.100 mg/kg 03.14.17 08:32 m,p-Xylenes 0.200 91 0.193 97 69-128 6 25 < 0.00200 0.182 mg/kg 03.14.17 08:32 o-Xylene < 0.00100 0.100 0.0871 87 0.0914 91 72-131 5 25 mg/kg

MB LCS LCS LCSD Units Analysis MB LCSD Limits **Surrogate** %Rec Flag Date %Rec Flag %Rec Flag Dibromofluoromethane 102 96 99 74-126 % 03.14.17 08:32 1,2-Dichloroethane-D4 119 89 80-120 03.14.17 08:32 86 % 03.14.17 08:32 73-132 Toluene-D8 95 96 103 %

Flag

Flag



# QC Summary 548179

# **KJE Environmental & Civil Engineering**

OWL102816D

Analytical Method:BTEX by SW 8260BPrep Method:SW 5035Seq Number:3012380Matrix:SoilDate Prep:03.14.17

Parent Sample Id: 548079-001 MS Sample Id: 548079-001 S

| Parameter    | Parent<br>Result | Spike<br>Amount | MS<br>Result | MS<br>%Rec | Limits | Units | Analysis<br>Date | Flag |
|--------------|------------------|-----------------|--------------|------------|--------|-------|------------------|------|
| Benzene      | < 0.000759       | 0.0759          | 0.0773       | 102        | 62-132 | mg/kg | 03.14.17 12:28   |      |
| Toluene      | < 0.000759       | 0.0759          | 0.0683       | 90         | 66-124 | mg/kg | 03.14.17 12:28   |      |
| Ethylbenzene | < 0.000759       | 0.0759          | 0.0717       | 94         | 71-134 | mg/kg | 03.14.17 12:28   |      |
| m,p-Xylenes  | < 0.00152        | 0.152           | 0.151        | 99         | 69-128 | mg/kg | 03.14.17 12:28   |      |
| o-Xylene     | < 0.000759       | 0.0759          | 0.0703       | 93         | 72-131 | mg/kg | 03.14.17 12:28   |      |

| Surrogate             | MS MS<br>%Rec Flag | Limits | Units | Analysis<br>Date |
|-----------------------|--------------------|--------|-------|------------------|
| Dibromofluoromethane  | 96                 | 74-126 | %     | 03.14.17 12:28   |
| 1,2-Dichloroethane-D4 | 93                 | 80-120 | %     | 03.14.17 12:28   |
| Toluene-D8            | 90                 | 73-132 | %     | 03.14.17 12:28   |



# CHAIN OF CUSTODY

Odessa, Texas (432-563-1800)

Stafford, Texas (281-240-4200) Setting the Standard since 1990

| Service Center - San Antonio, Texas (210-509-3334)                                        |                                 |                          | WWW                      | www.xenco.com                           | ,               |                                    |              | Xenco Quote # | #          | Xenco Quote # Xe           | nco Job#                 | ampa, none | milpul, reside (crosscore)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------|---------------------------------|--------------------------|--------------------------|-----------------------------------------|-----------------|------------------------------------|--------------|---------------|------------|----------------------------|--------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                           |                                 |                          |                          | 100000000000000000000000000000000000000 | 1-              |                                    |              |               |            |                            |                          | 240        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                           |                                 |                          |                          |                                         |                 |                                    |              |               | Analyti    | Analytical Information     |                          |            | Matrix Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Client / Reporting Information                                                            |                                 | Proje                    | Project Information      | tion                                    |                 |                                    |              |               |            |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ompany Name / Branch:<br>√JE, Enviromental & Civil Engineering                            | Project Name/Number:<br>OWL1028 | ne/Number:<br>OWL102816D | 6D                       |                                         |                 |                                    |              |               |            |                            |                          |            | C - CAII/CAA/CAIIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ompany Address:  00 Moselv Road, Cross Roads, Texas 76227                                 | Project Location:               | L Boh                    | ad/Re                    | Bokend / Redhills                       | Pipeline        | 5,                                 |              |               |            |                            |                          |            | GW =Ground Water DW = Drinking Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mall: james@kjenviromental.com  Phone No: (940)387-0805  (Xenx.OK) environmental.com      | 5 Invoice To:                   |                          |                          |                                         |                 |                                    |              |               |            |                            |                          |            | SW = Surface water SL = Sludge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| roject Contact:                                                                           | 3                               |                          | Cilifeid Mater Fodiatics |                                         | _               |                                    |              | 5)            |            |                            |                          |            | W = Wipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| amplers's Name                                                                            | TO HUMOU                        |                          |                          |                                         |                 |                                    |              | 503           |            |                            |                          |            | O = Oil  WW= Waste Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                           | Collection                      | 1                        |                          | 7                                       | lumber of p     | Number of preserved bottles        | ittles       | 3260 (        | RIDES      |                            |                          |            | A = Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| No. Field ID / Point of Collection Sar                                                    | Sample<br>Depth Date            | Time                     | Matrix bo                | HCI NaOH/Zn                             | Acetate<br>HNO3 | NaOH<br>NaHSO4                     | MEOH<br>NONE | BTEX 8        | CHLOF      |                            |                          |            | Field Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 SS001 21'                                                                               | 1' 3/8                          | 1215                     |                          | × 9                                     |                 |                                    |              |               | ×          |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                                                                         | 3/8,43                          | 248                      | 5                        | 1                                       |                 |                                    | ×            | -             | ×          |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ω                                                                                         |                                 |                          |                          |                                         |                 |                                    |              |               |            |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                                                                         |                                 |                          |                          |                                         |                 |                                    |              |               |            | H                          |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| o.                                                                                        |                                 |                          |                          |                                         |                 |                                    |              |               |            |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                                                                                         |                                 |                          |                          |                                         |                 |                                    |              |               |            |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                                                                         |                                 |                          |                          |                                         |                 |                                    |              |               |            |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                                                                         |                                 |                          |                          |                                         |                 |                                    |              |               |            |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                                                                                         |                                 |                          |                          |                                         |                 |                                    |              |               |            |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                                                                        |                                 |                          |                          |                                         |                 |                                    |              |               |            |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Turnaround Time ( Business days)                                                          |                                 |                          | Data                     | Data Deliverable Information            | formation       |                                    |              |               |            | Notes:                     |                          |            | THE STATE OF THE S |
| Same Day TAT S Day TAT                                                                    |                                 | Lev                      | Level II Std QC          | .,                                      |                 | Level IV (Full Data Pkg /raw data) | II Data Pkg  | raw data)     |            |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Next Day EMERGENCY                                                                        |                                 | Lev                      | Level III Std QC+ Forms  | C+ Forms                                |                 | TRRP Level IV                      | 2            |               |            |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 Day EMERGENCY Contract TAT                                                              |                                 | Lev                      | Level 3 (CLP Forms)      | orms)                                   |                 | UST / RG -411                      | =            |               |            |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 Day EMERGENCY                                                                           |                                 | TRF                      | TRRP Checklist           | st                                      |                 |                                    |              |               |            |                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ed by Lab, if re                                                                          | 3                               | ,                        |                          |                                         |                 |                                    |              |               |            | FED-EX / UP                | FED-EX / UPS: Tracking # |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished by Sampler:  Date Time:  Sample:  Received:  3/8/17 1040 Received:           | Date Time: NOTE                 | Received By:             | By: CH IME SA            | Helinguished By:                        | GE POSSES       | Relinquished By:                   | By:          | R DELIVERY    | Date Time: |                            | Received By:             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           | Date Time:                      | Reseived By:             | By:                      |                                         |                 | Relinquished By:                   | Ву:          |               | Date Time: |                            | Received By:             |            | D 10.8-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Relinquished by:  Date Time: Received By: Custody Seal # Preserved where applicable On be | Date Time:                      | Received By:             | Ву:                      |                                         | 0               | Custody Seal #                     | #            | Pres          | erved wher | Preserved where applicable | On ice                   |            | Temp: In IS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



# XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In



Client: KJE Enviromental & Civil Engineering

Date/ Time Received: 03/08/2017 04:40:00 PM

Work Order #: 548179

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used: R8

|                                                                                                  | Sample Receipt Checklist             |                  | Comments |
|--------------------------------------------------------------------------------------------------|--------------------------------------|------------------|----------|
| #1 *Temperature of cooler(s)?                                                                    |                                      | 5.2              |          |
| #2 *Shipping container in good condition                                                         | ?                                    | Yes              |          |
| #3 *Samples received on ice?                                                                     |                                      | Yes              |          |
| #4 *Custody Seal present on shipping co                                                          | ntainer/ cooler?                     | N/A              |          |
| #5 *Custody Seals intact on shipping con                                                         | tainer/ cooler?                      | N/A              |          |
| #6 Custody Seals intact on sample bottle                                                         | s?                                   | N/A              |          |
| #7 *Custody Seals Signed and dated?                                                              |                                      | N/A              |          |
| #8 *Chain of Custody present?                                                                    |                                      | Yes              |          |
| #9 Sample instructions complete on Cha                                                           | in of Custody?                       | Yes              |          |
| #10 Any missing/extra samples?                                                                   |                                      | No               |          |
| #11 Chain of Custody signed when relind                                                          | uished/ received?                    | Yes              |          |
| #12 Chain of Custody agrees with sample                                                          | e label(s)?                          | Yes              |          |
| #13 Container label(s) legible and intact?                                                       | •                                    | Yes              |          |
| #14 Sample matrix/ properties agree with                                                         | Chain of Custody?                    | Yes              |          |
| #15 Samples in proper container/ bottle?                                                         |                                      | Yes              |          |
| #16 Samples properly preserved?                                                                  |                                      | Yes              |          |
| #17 Sample container(s) intact?                                                                  |                                      | Yes              |          |
| #18 Sufficient sample amount for indicate                                                        | ed test(s)?                          | Yes              |          |
| #19 All samples received within hold time                                                        | <del>?</del> ?                       | Yes              |          |
| #20 Subcontract of sample(s)?                                                                    |                                      | Yes              | Houston  |
| #21 VOC samples have zero headspace                                                              | ?                                    | N/A              |          |
| #22 <2 for all samples preserved with HN<br>samples for the analysis of HEM or HEM-<br>analysts. | ·                                    | N/A              |          |
| #23 >10 for all samples preserved with N                                                         | aAsO2+NaOH, ZnAc+NaOH?               | N/A              |          |
| * Must be completed for after-hours de<br>Analyst:                                               | livery of samples prior to placing i | n the refrig     | erator   |
| Checklist completed by:                                                                          | Jessica Kramer  Jessica Kramer       | Date: <u>03/</u> | 09/2017  |
| Checklist reviewed by:                                                                           | Hely Taylor Holly Taylor             | Date: <u>03/</u> | 09/2017  |



## Kevin J. Ware

109 South Oakland Street Denton, Texas 76201

Phone: 940-387-0805 Fax: 940-387-0830 Cell: 469-487-6083

kevin@kjenvironmental.com

#### **EDUCATION**

## M.S., Environmental Engineering

Oklahoma State University, Stillwater, Oklahoma

#### **B.S.**, Environmental Science

University of Oklahoma, Norman, Oklahoma

#### **WORK EXPERIENCE**

#### KJ Environmental Mgt., Inc.

Denton, Texas

#### **President** – (December 2005 to Present)

- Environmental compliance audits of large scale industrial and manufacturing plants
  - o Air, water, waste, EPA reporting, etc....
- Hazardous Waste Management
  - o Hazardous waste audits & management plans for thirty different industries
  - o Designing process modifications for industrial clients to reduce waste (P2)
- Hazardous waste remediation
  - o Soil & groundwater cleanup (Chlorinated solvents -lumber treating operation, Broken Bow, OK)
  - Soil & surface water cleanup
     (Lead contamination natural gas pipeline, Madill, OK)
- Air permitting
  - o Major source air permit applications for several large industries
- Phase I and Phase II Environmental Site Assessments
- Wetland delineation studies
- Storm water pollution prevention management (construction and industrial facilities)
- Expert witness

#### GaiaTech, Inc.

Irving, Texas

## Senior Environmental Consultant – (August 2005 to December 2005)

- Performed Environmental Compliance, safety and engineering audits for various largescale industrial/commercial clients
  - o air, water, hazardous waste, safety, etc.
- Designed waste minimization system to lower operating costs for businesses
  - o i.e., wastewater recycling project

## Isbell Engineering Group, Inc.

Sanger, Texas

## Senior Environmental Engineer – (July 2003 to August 2005)

- Completed environmental compliance and safety audits for industrial clients
- Performed Phase I Environmental Site Assessments Due Diligence
- Reviewed engineering designs for a fire suppression system at a FEMA facility
- Directed environmental investigations for waste dump sites
- Designed utility (water/sanitary sewer) lines for subdivisions and other developments
- Assisted in the development of civil engineering construction plans for small medical offices/facilities
- Assisted in the review of City Engineering plans for small municipalities
- Assisted in the design and construction management of a 200,000 gal/day municipal-related wastewater treatment plant

## **Science Applications International (SAIC)**

Midwest City, Oklahoma

Environmental Engineer – (May 2003 to July 2003)

- Created Site Health & Safety Plan for Air Force Remediation Project (Tinker AFB)
- Field Safety Manager for groundwater monitoring project (Tinker AFB)

#### Marshall Environmental Management, Inc.

Oklahoma City, Oklahoma

Environmental Specialist – (November 1999 to May 2003)

- Facility-wide noise survey (FAA Facility- Will Rogers Airport, Oklahoma)
- Industrial Hygiene Studies Tinker, AFB
- Lead-based paint analysis & remediation design of base housing (Vance AFB, OK)
- Project Supervisor for cleanup and disposal of hazardous material spills
  - o Emergency Response situations

## **Department of Environmental Quality (Oklahoma)**

Oklahoma City, Oklahoma

*Environmental Specialist* – (July 1999 to November 1999)

- Trained and informed businesses of pollution prevention techniques
- Explained the applicability of environmental regulations to specific industrial sectors and regulated entities

#### **CERTIFICATIONS AND LICENSES**

- Engineer-In-Training (EIT)
- Qualified Environmental Professional (Institute of Professional Practice)
- Registered Professional Environmental Specialist (Oklahoma)

#### **OTHER**

• Routine Guest Lecturer for Southwest Oklahoma State Aviation Safety Classes at Tinker AFB, Midwest City, OK

# **James Lawrence Fox**

## PROJECT MANAGER

#### **WORK HISTORY**

**Project Manager**KJ Environmental Management, Inc.

2014 – Present

I am currently working as a Project Manager at KJ Environmental in Cross Roads, Texas. I have over three years of experience in the environmental field. I provide regulatory compliance services for various industries including oil and gas storage and trucking facilities, sand and gravel mining facilities, and manufacturing facilities. My areas of expertise include project management, wetland determination and delineation, construction and industrial storm water pollution prevention plans (SWPPP), management of PST tank pulls, oil pollution prevention compliance (SPCC), asbestos sampling and assessments, Phase I Environmental Site Assessments, Limited Phase II Environmental Site Assessments, and Naturally Occurring Radioactive Material (NORM) surveys. I have also served as the Project Manager for oil & gas production and commercial saltwater disposal clients in handling multiple produced water spill investigations and remediation activities completed under the jurisdiction of the Railroad Commission of Texas. I currently work as a Project Manager to complete projects for a variety of industries, while ensuring the delivery of the highest quality work product, customer service, and professionalism.

# Environmental Scientist Trinity River Authority of Texas (TRA)

2013 - 2014

At TRA, I conducted surface water sampling throughout the Trinity River Basin. Under the Planning and Environmental Services Special Studies and Assessments Manager, I handled a variety of tasks related to field data collection, field gear and sampling equipment preparation/maintenance, and data quality assurance/analysis. I worked within an interdisciplinary scientific team in both field and office settings. The job was physically demanding in harsh, outdoor environments. Main field studies included biological surveys, water quality sampling, geomorphological and hydrological surveys.

## <u>Field Technician</u> <u>Texas Forest Service (TFS)</u>

2009-2013

At TFS, I conducted various types of tree surveys for exotic invasive trees and insects throughout east Texas. I became very experienced in identifying woody plants and herbaceous species of Texas. I was certified for Wildland firefighting and assisted the U.S. Forest Service in prescribed burnings. I specifically aided in research and control of the southern pine beetle (*Dendroctonus frontalis*), Ips bark beetle (*Ips grandicollis, calligraphus and avulsus*), Nantucket pine tip moth (*Rhyacionia frustrana*) for the Texas Forest Service.

## Military Service

## **United States Marine Corps**

2004-2010

I served in Fallujah, Iraq with the 14th Marines in 2006 - 2007. During that time, I was awarded medals of combat action, Marine Corps Reserve select, Global war on terrorism, Iraq campaign medal, Sea service deployment, national defense service, Navy unit commendation, and armed forces reserve. My occupational specialty was an Automotive Maintenance Technician for the High Mobility Multipurpose Wheeled Vehicle (HMMWV), and the Medium Tactical Vehicle Replacement (MTVR). During my time in Fallujah, I assisted in planning and security of hundreds of convoys for multiple platoons of infantry Marines. I also routinely drove the lead patrol vehicle with an Improvised Explosive Devise (IED) / Mine sweeper attachment on a 7-ton vehicle.

#### **EDUCATION**

University of Stephen F. Austin Bachelor of Science in Forestry with a focus in Wildlife Management 2009-2013

Activites and Societies: Ducks Unlimited Wildlife Society

#### ADDITIONAL INFORMATION

#### **Professional Education & Certifications:**

HAZWOPER 40 HR Certification Certified Asbestos Inspector (Certificate No. 15039) Certified NORM Surveyor USACE Wetland Delineation 40 HR Training Course Red Card certified for Wildland firefighting SPCC/FRP Compliance Workshop, EPA Region 6

#### **Affiliations:**

Planning and Zoning Committee member for the City of Sanger, Texas Parks and Recreation Committee member for the City of Sanger, Texas Society of Texas Environmental Professionals

## **CONTACT INFORMATION**

Email: <u>jfox3549@yahoo.com</u> Phone: (940) 368 - 3535

gregg@kjenvironmental.com

## **PROFESSIONAL EXPERIENCE:**

#### **KJE Environmental & Civil Engineering**

2016 - Present

KJ Environmental Management, Inc. (KJE) is a dedicated, full-service environmental and civil engineering consulting firm located on the north side of the Dallas-Fort Worth metroplex. KJE is comprised of a team of professionals who strive to provide creative and cost effective solutions for today's multi-faceted environmental and civil engineering issues.

**Senior Project Manager** – Primary projects include Phase II Environmental Site Assessments, SPCC Plans, Stormwater Pollution Prevention Plans, and Oil and Gas Permitting.

#### Sage Environmental Consulting, L.P., Richardson, TX

2011 - 2016

Sage Environmental Consulting provides environmental project management and consulting services nationwide. Role was to manage soil and groundwater investigation projects and remediation, Due Diligence projects, Spill Prevention, Control, and Countermeasure (SPCC) Plans, and Storm Water Pollution Prevention Plans (SWPPP).

## **Senior Project Manager**

- Developed and managed a fugitive gas emissions program for all New Source Performance Standard (NSPS) OOOO and Subpart W regulated equipment. The client was a Major Global Oil Company and project sites consisted of their Onshore USA Assets.
- Implemented best practices using Optical Gas Imaging (OGI) and FLIR GF320 Infrared
   Cameras to inspect all onshore equipment to identify any fugitive gas emission leak sources.
- Developed a Master Fugitive Emissions Program Plan and provided to all the assets, which included procedures, training, and methods for maintaining the program. Managed implementation by client supervisors at various locations throughout Texas and Louisiana.

#### **Due Diligence Manager**

- Managed teams of personnel who conducted due diligence site inspections for over 1,200 oil and gas wells and 67 tank batteries in less than two weeks across four separate regions of Texas.
- Reviewed Texas Commission on Environmental Quality (TCEQ) and Railroad Commission of Texas (RRCT) records, and aerial and site photographs for details and/or evidence of site contamination.
- Calculated estimated remediation costs for 49 separate tank batteries and well locations.

#### Senior Project Manager

 Proposed, Conducted, and Managed surface and subsurface spill investigations and remediation, and completed over 1,000 SWPPP and SPCC Plans.

#### **Senior Project Manager**

 Scheduled, Managed, and Performed Optical Gas Imaging (OGI) inspections utilizing FLIR (Forward Looking Infrared Radiometer) GF320 infrared cameras on offshore oil platforms in The Gulf of Mexico near Texas and Louisiana coasts. Terracon Consultants, Inc., Enercon Services, Inc., Cirrus Associates, LLC., Fugro Consultants, Inc., Geoscience Consultants International, and Mas-Tek Engineering, Inc., Dallas/Fort Worth, TX

2009 - 2011

**Civil Engineer / Professional Geoscientist / Project Manager: (Independent Consultant)**Primary projects included The North Tarrant Expressway in Fort Worth; the LBJ Freeway Managed Lanes in Dallas; and The Trinity River Levee and Floodplain investigation for The US Army Corp of Engineers.

- Conducted logging of drill holes and core holes to determine site specific lithology.
- Installed piezometers, developed monitor wells, and performed slug tests to determine the aquifer transmissivity and storativity for multiple monitoring wells.
- Conducted field soil tests, performed packer tests, installed piezometers, and recorded data from downhole pressure transducers.
- Assisted with CPT (Cone Penetrometer Testing) operator performing seismic survey tests, pore pressure dissipation tests, and dilatometer tests.
- Performed various other engineering projects on a contract basis. SPCC Plans, SWPPP, and Phase I or Phase II Environmental Site Assessments (ESAs) were additional responsibilities.

## Talon/LPE, Inc., Carrollton, TX

2008 - 2009

## Senior Engineer / Project Manager

- Managed, supervised, and conducted all project activities, including well/boring logging, development and sampling of groundwater monitoring wells; soil sample collection; waste classification and disposal; hydrogeologic characterizations; and preparing groundwater monitoring and corrective action plans.
- Designing, installed, and monitored the effectiveness of remediation systems. Performed these
  projects, as well as Phase I and II ESAs, for major oil, communication, utility, real estate,
  municipal, retail, and financial clients.
- Performed site visits and prepared SWPPP/SPCC Plans to maintain clients' regulatory compliance.

## Terra-Solve, Inc., Carrollton, TX

1996 - 2008

#### **Project Manager / Civil Engineer**

- Managed, supervised, and conducted over 550 projects in 16 states. Coordinated field investigation activities, including scheduling and procurement of subcontract labor and necessary materials.
- Conducted well and boring logging at numerous sites in Texas, New Mexico, Oklahoma, and Arkansas. For these projects the lithologic units were described using the Unified Soil Classification System (USCS), conducted field screening for various geotechnical and analytical parameters, and prepared soil samples for shipping to testing laboratories in various states.
- Conducted Dual-Phase Extraction and aquifer tests, analyzed the recorded data and completed
  the required analytical reports. Performed these projects, as well as Phase I and II
  Environmental Site Assessments (ESAs), for major oil, communication, utility, real estate,
  municipal, retail, and financial clients.
- Designed remediation systems, supervised system installations, and monitored the effectiveness of various types of remediation systems.
- Performed site visits and prepared SWPPP/SPCC Plans to maintain clients' regulatory compliance.
- Provided construction management and engineering/construction inspection services over a five year period for a local municipality and Habitat For Humanity which included asphalt and concrete roadway construction, railroad crossings, utility installations, bridge construction, and sanitary sewer lift station construction.

#### page 3

## **EDUCATION, PROFESSIONAL REGISTRATIONS & TRAINING:**

Education: B.S. Petroleum Engineering, Texas Tech University, Lubbock, TX

#### **Professional Registrations:**

- Licensed Professional Engineer (P.E.), (License No. 88441), Texas
- Licensed Professional Engineering Firm, (License No. 17779), Texas
- Licensed Professional Engineer (P.E.), (License No. 21593), New Mexico
- Licensed Professional Geoscientist (P.G.), (License No. 6264), Texas
- Licensed Professional Geoscientist (P.G.), (License No. 1051), Louisiana
- UST Remediation Consultant (License No. 60), Oklahoma
- Corrective Action Project Manager (CAPM No. 799), TCEQ
- Transportation Worker Identification Credential (TWIC), Transportation Safety Administration (TSA)

## **Certifications and Continuing Education:**

- Occupational Safety and Health Administration (OSHA) Training for Hazardous Waste Operations, Supervisor Level, (40 Hour Course and Annual Refreshers)
- Basic Plus Safety and Annual Refreshers
- Wastewater and Stormwater Permitting and Compliance Seminars, TCEQ
- Produced Water Production Conference, Society of Petroleum Engineers
- Air Permitting Basics and Advanced Air Permitting, Sage Environmental Consulting
- Helicopter Underwater Egress Training (HUET), Falck Safety Training
- Oil and Gas Essentials, Sage Environmental Consulting
- Environmental Chemistry, Oklahoma State University
- Management of Solid and Hazardous Waste (RCRA), Oklahoma State University
- Pollution Prevention (P2) Plan and Waste Management Workshop, TCEQ
- Project Manager Professional Training (PMP), D and L Training

# Dena Marie Vandenberg, REM, LEED AP ENVIRONMENTAL PROFESSIONAL

#### **WORK HISTORY**

## **Chief Operating Officer / Director of Environmental Services**

## KJ Environmental Management, Inc.

June 2011 – Present (5 years, 2 months)

I am currently working as the Chief Operating Officer / Director of Environmental Services at KJ Environmental in Cross Roads, Texas. I have over eleven years of experience as an environmental professional in consulting. I lead a team of Engineers and Scientists to complete projects for a variety of industries, while ensuring the delivery of the highest quality work product, customer service, and professionalism.

#### **Project Manager**

#### KJ Environmental Management, Inc.

April 2010 – June 2011 (1 year 3 months)

When I began working at KJ Environmental in Denton, Texas as a Project Manager, I provided regulatory compliance services for various industries including oil and gas storage and trucking facilities, sand and cement handling facilities, manufacturing facilities, and municipal agencies. My areas of expertise included project management, construction and industrial storm water pollution prevention plans (SWPPP), NPDES/TPDES permit applications, management of PST tank pulls, oil pollution prevention compliance (SPCC), Permit-By-Rule (PBR) Applications, New Source Review (NSR) Applications, Barnett Shale Phase I & Phase II Special Emissions Inventories, Saltwater Disposal Well Permitting, Underground Injection Control Permitting, TCEQ Public Water System compliance, drinking water, storm water, ground water, and waste sampling, asbestos sampling, mold assessments, radon testing, lead-based paint sampling, lead in drinking water sampling, Phase I Environmental Site Assessments, Limited Phase II Environmental Site Assessments, noise monitoring, and brownfield redevelopment. I have also served as the Environmental Professional on record for oil & gas production and commercial saltwater disposal clients in handling multiple produced water spill investigations and remediation activities completed under the jurisdiction of the Railroad Commission of Texas.

#### **Environmental Scientist**

#### **Terracon**

Privately Held; 1001-5000 employees; Civil Engineering industry April 2006 – February 2010 (3 years 11 months)

At Terracon, I conducted hundreds of Phase I ESAs for various types of properties from vacant land to industrial/manufacturing facilities and gas stations. I also did regulatory compliance consulting for oil & gas clients, industrial/manufacturing facilities, and municipalities. I completed SWPPs and SPCCs, conducted storm water sampling, and operated a public water system on behalf of a municipality. I became a licensed Asbestos Inspector, Mold Assessment Technician, and LEED Accredited Professional.

#### **Environmental Geologist**

#### **Cirrus Associates**

March 2006 – March 2006 (1 month)

At Cirrus Associates, I acted as a contract employee on a VCP project for a client in Odessa, Texas. I conducted sampling of groundwater monitoring wells using low-flow sampling techniques.

#### **Environmental Scientist**

## Delta Environmental

August 2004 – December 2005 (1 year 5 months)

At Delta Environmental, I worked conducted public drinking water sampling under a mulitmillion dollar TCEQ contract. I collected over 3,000 drinking water samples with a 99.8% laboratory acceptance rate. I was recognized as one of the top 5 samplers in the state for productivity and was trusted with the responsibility of training other samplers associated with the project. In addition, I conducted several ESAs to obtain more experience, when time would allow.

#### **EDUCATION**

#### **University of North Texas**

Bachelor of Science in Geography with a focus in Earth Science, Geology Minor

1999 - 2004

Activities and Societies:

Vice Chairman of the Planning & Zoning Commission for the Town of Providence Village, Texas Delta Zeta Sorority

#### ADDITIONAL INFORMATION

#### **Professional Education & Certifications:**

National Registry of Environmental Professionals (NREP) Registered Environmental Manager (REM)

OSHA 29 CFR 1910.120 HAZWOPER 40 HR Certification

EPA Accredited Asbestos Inspector

TDSHS License Asbestos Inspector (License No. 602837)

TDSHS Licensed Mold Assessment Technician (License No. MAT1011)

TCEQ Class C Water Distribution Operator (License No. WD0007445)

Leadership in Energy and Environmental Design (LEED) Accredited Professional

Texas Commission on Environmental Quality (TCEQ) Certified Water Sampler under the Safe Drinking Water Act and State Regulations (ID No. 2005-006)

ORIS-Enviromod University- AERMOD Modeling For Permits Certification

Certified NORM Surveyor

## **Affiliations:**

The North Texas Association of Environmental Professionals Society of Texas Environmental Professionals Association of American Geographers U.S. Green Building Council

#### **CONTACT INFORMATION**

Email: denavandenberg@yahoo.com

Phone: (214) 364-7627



District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

## State of New Mexico Energy Minerals and Natural Resources

Revised August 8, 2011 mit 1 Copy to appropriate District Office in

Form C-141

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

|                                                              |                                                  |                                | Rele                                                   | ase Notifi                                                                 | catio                               |                                                  | orrective A                                                    | ction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |                                                                                                                                               |  |
|--------------------------------------------------------------|--------------------------------------------------|--------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name of C                                                    | Name of Company – Oilfield Water Logistics (OWL) |                                |                                                        |                                                                            |                                     | OPERA'                                           | Ir. Phillip Sande                                              | orc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             | al Report  Final Repo                                                                                                                         |  |
| Address                                                      | ompuny                                           | onneid wat                     | ter Eogisti                                            | C3 (O W L)                                                                 |                                     |                                                  | No. – 210-906-3                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                               |  |
| Facility Na                                                  | me – One i                                       | mile east of                   | OWL Red                                                | Hills SWD                                                                  |                                     |                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | east of Red                                 | d Hills SWD Facility                                                                                                                          |  |
| Surface Ov                                                   | vner                                             |                                |                                                        | Mineral (                                                                  | Owner                               |                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API No                                      | . – 30-025-09806                                                                                                                              |  |
|                                                              |                                                  |                                |                                                        | LOC                                                                        | ATIO                                | V OF RE                                          | LEASE                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                               |  |
| Unit Letter                                                  | Section                                          | Township                       | Range                                                  | Feet from the                                                              | North                               | orth/South Line   Feet from the   East/West Line |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | West Line                                   | County                                                                                                                                        |  |
|                                                              |                                                  |                                | Latitud                                                | e 32.095190                                                                | •                                   | Longitude                                        | -103.201991                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                           |                                                                                                                                               |  |
| -                                                            |                                                  |                                |                                                        |                                                                            | TURE                                | OF REL                                           |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                               |  |
| Type of Rele                                                 | ase - Produ                                      | ced Salt Wate<br>Ball Valve on | er and Crud                                            | e Oil                                                                      |                                     |                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | Recovered – In progress                                                                                                                       |  |
|                                                              |                                                  |                                | pipetine                                               |                                                                            |                                     | N/A                                              | lour of Occurrence                                             | ce –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             | Hour of Discovery –<br>t 8:11 a.m.                                                                                                            |  |
| Was Immedi                                                   | ate Notice (                                     |                                | Yes 🛛                                                  | No Not R                                                                   | equired                             | If YES, To<br>Unknown t<br>11/2/16               |                                                                | ed Phill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ip Sanders                                  | with OWL at 8:11 a.m. on                                                                                                                      |  |
| By Whom? I                                                   | Jnknown tru                                      | ack driver con                 | ntacted Phil                                           | lip Sanders with                                                           | OWL                                 |                                                  | our - 11/2/16 at 8                                             | 8:11 a.n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.                                          |                                                                                                                                               |  |
| Was a Water                                                  | course Reac                                      |                                | Yes 🛛                                                  | No                                                                         |                                     | If YES, Volume Impacting the Watercourse.        |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                               |  |
| restarted on Describe Are                                    | a Affected a                                     | 6 inch diamet<br>proximately 9 | 9:30 p.m T                                             | sion pipeline sh<br>The 2" Ball Valv                                       | utdown, are was cle                 | and when pip<br>osed this mor                    | eline operation w                                              | as restar<br>dditiona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rted spill be<br>l spill.                   | ntally left open after pressure egan to occur. Pipeline was                                                                                   |  |
| and prevent i                                                | urther sprea                                     | ding of the flu                | uids. Vacuu                                            | m truck onsite n                                                           | emoving                             | as much fluid                                    | ds as possible.                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                               |  |
| public health<br>should their o<br>or the environ            | or the environment. In ad                        | onment. The ave failed to a    | acceptance<br>acceptance<br>dequately in<br>CD accepta | or file certain re<br>of a C-141 reponsestigate and re                     | elease no<br>ort by the<br>emediate | vifications an<br>NMOCD ma<br>contamination      | d perform correct<br>trked as "Final Re<br>on that pose a thre | tive action of the control of the co | ons for rele<br>oes not relie<br>ound water | ant to NMOCD rules and<br>ases which may endanger<br>eve the operator of liability<br>surface water, human health<br>ampliance with any other |  |
| Signature:                                                   | This                                             | 45                             | 2                                                      | _                                                                          |                                     |                                                  | OIL CONS                                                       | SERV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATION                                       | DIVISION                                                                                                                                      |  |
| Printed Name                                                 | PHZ                                              | us si                          | ANDER-                                                 | s                                                                          | A                                   | approved by I                                    | Environmental Sp                                               | ecialist:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                                                                                                               |  |
|                                                              |                                                  | 076                            |                                                        |                                                                            | A                                   | approval Date                                    | : 11/7/2016                                                    | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | expiration D                                | 1/7/2016                                                                                                                                      |  |
| E-mail Address: psanders @ oilfield we ter Logistics. com Co |                                                  |                                |                                                        | onditions of Approval:  Please see attached directive  Attached   1RP 4498 |                                     |                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                               |  |

#### Operator/Responsible Party,

The OCD has received the form C-141 you provided on 11/2/2016 regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number RP 4498 has been assigned. **Please refer to this case number in all future correspondence.** 

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District1 office in Hobbs on or before 12/7/2016. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

- Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C<sub>6</sub> thru C<sub>36</sub>), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.
- Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C<sub>6</sub> thru C<sub>36</sub>), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.
- Nominal detection limits for field and laboratory analyses must be provided.
- Composite sampling is not generally allowed.
- Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

- •Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.
- If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.
- Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

#### Jim Griswold

OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us



December 2, 2016

New Mexico Energy Minerals and Natural Resources Department (NM EMNRD) Oil Conservation Division (OCD) Ms. Kristen Lynch 1220 South Saint Francis Drive Santa Fe. New Mexico 87505

Re: Work Plan for the Characterization of Impacts Due to Two Pipeline Releases Oilfield Water Logistics Produced Water Pipeline Nearby OWL Red Hills SWD Section 2, T26S, R36E, Lea County, New Mexico – Case No. 1RP 4497 and Section 36, T25S, R36E, Lea County, New Mexico – Case No. 1RP 4498

Dear Ms. Lynch:

KJE understands that the goals of the characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact 4) The characterization of any other adverse impacts that may have occurred (ex. Impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.).

KJE is pleased to provide the attached Work Plan for the characterization of Impacts due to two pipeline releases associated with Oilfield Water Logistics' (OWL's) Red Hills SWD Facility, located in Lea County, New Mexico.

If we can be of further assistance, please do not hesitate to contact us at 940-387-0805. We look forward to receiving comments in order to proceed with the project and closure.

Sanatrandenting

Kevin J. Ware, QEP / REM

Principal

Gregg Bessire, P.E., P.G.

Gregg Beasine

Dena M. Vandenberg, REM, LEED AP Senior Project Manager **Director of Environmental Services** 



December 2, 2016

New Mexico, Energy Minerals and Natural Resources (EMNRD)
Oil Conservation Division (OCD)
Ms. Kristen Lynch
1220 South Saint Francis Drive
Santa Fe, New Mexico 87505

Re: Work Plan for the Characterization of Impacts Due to Two Pipeline Releases Oilfield Water Logistics Produced Water Pipeline Nearby OWL Red Hills SWD Section 2, T26S, R36E, Lea County, New Mexico – Case No. 1RP 4497 and Section 36, T25S, R36E, Lea County, New Mexico – Case No. 1RP 4498

Dear Ms. Lynch:

KJE proposes to perform the following environmental consulting services for OWL for the delineation portion of the project.

#### **Environmental Investigation**

The proposed scope of work will consist of performing an Environmental Investigation to evaluate the presence/absence of environmental contaminants in the soil at the two above-referenced produced water release locations. In addition, OCD has requested that KJE attempt to delineate any on-site soil contamination for future remediation efforts.

KJE understands that the goals of this workplan and characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact 4) The characterization of any other adverse impacts that may have occurred (ex. Impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.).

The Investigation will consist of the following activities:

• KJE will contact New Mexico 811 to request that they communicate with underground utility companies in the site area for location of their pipelines beneath the site and the site area.

- Multiple soil borings will be installed to a maximum depth to reach chloride and other constituent delineation levels as noted below (horizontal and vertical delineation), by Geoprobe. A site map (Figure A1) is attached showing the general locations and areal extent of both release locations. The proposed soil boring locations are illustrated on attached Figure A2, but the quantity of borings and boring locations may be field adjusted due to onsite conditions. The drilling contractor will be using a five (5) foot split-spoon continuous sampling device to allow for sampling of soil at two and one half (2.5) foot intervals for laboratory analysis. The actual number of borings and number of samples collected for analysis will be determined in the field based on assessment of release areas and Geoprobe access points available.
- Note that the OWL pipeline and the City of Jal Municipal Water Supply pipeline should both be excavated near proposed soil boring locations prior to installing soil borings nearby either of the pipelines.
- Horizontal delineation of soil impacts will be attempted in each of the four cardinal compass directions. Adsorbed soil contamination will be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes (BTEX) by either Method 8260 or 8021, total petroleum hydrocarbons (TPH) by Method 8015 extended range (GRO+DRO+MRO; C6 thru C36), and for chloride by Method 300. KJE understands that delineation to 10 ppm Benzene, 50 ppm BTEX, 5,000 ppm TPH, and 600 ppm chlorides horizontally is required. Soil sampling will be both within the impacted area and beyond as field determined.
- Vertical delineation of soil impacts will also be attempted. Adsorbed soil contamination will be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes (BTEX) by either Method 8260 or 8021, total petroleum hydrocarbons (TPH) by Method 8015 extended range (GRO+DRO+MRO; C6 thru C36), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified if required by OCD. Vertical characterization samples should be taken at depth intervals no greater than five (5) feet apart. Lithologic description of encountered soils will also be provided. KJE understands that delineation to 10 ppm Benzene, 50 ppm BTEX, 5,000 ppm TPH, and 250 ppm chlorides vertically is required. At least ten (10) vertical feet of soils with contaminant concentrations at or below these values will be demonstrated as existing above the water table.
- In addition to the horizontal and vertical delineation borings, KJE will install one (1) soil boring upgradient of each release area to a depth of ten (10) feet and collect background samples at two and one half (2.5) foot intervals for laboratory analysis.

- Discrete, grab soil samples will be collected from each of the two and one half (2.5) foot intervals for laboratory analysis. A clean, decontaminated sampling trowel will be used to sample from each depth interval selected. For each soil boring, soil samples will be field screened using a calibrated Photo-ionization Detector (PID) (Model RAE MINIRAE 3000 Lite 0-15K ppm) for the highest reading for each boring. The sample with the highest PID reading and the sample collected at the bottom of each boring will be submitted for laboratory analysis.
- A statistically significant set of split samples will be submitted for confirmatory laboratory analysis, including the laterally farthest from the release sites and vertically deepest set of soil samples collected. In addition we will ensure that there are at least two samples submitted for laboratory analysis from each boring (highest contamination from PID and deepest depth investigated).
- Each soil sample will be handled with nitrile-gloved hands. The samples will be placed in clean, dedicated, laboratory-supplied, 4-ounce glass containers, and labeled with pertinent sampling information. The soil samples will be then placed in a cooling chest with adequate ice, providing a 4°C environment for sufficient preservation until delivery to Xenco Laboratory (a third-party, NELAP Certified, independent, and licensed environmental laboratory in Midland, Texas). The sample collection and handling activities will be conducted in accordance with USEPA Standard Operating Procedures and strict chain-of-custody protocols. The drilling equipment, sampling equipment, and tools will be decontaminated before and between each sampling location. All personnel used dedicated nitrile gloves that will be changed frequently during the drilling activities.
- For this investigation, groundwater is not anticipated to be encountered during environmental drilling. According to records obtained from the New Mexico Office of the State Engineer's office Hydrology Bureau records, the minimum depth to water for water wells located in the same Township and Range as where the releases occurred is 200 feet.
- If groundwater is encountered in any of the soil borings, the boring will be left open for twenty-four (24) hours to determine if substantial water accumulates for sample collection and lab analysis. After 24 hours KJE will attempt to collect a groundwater sample using a new disposable bailer and submit the samples for laboratory analysis of BTEX, TPH, and Chloride if possible.

## Report of Findings

KJE will prepare and provide an electronic copy of the final report describing the findings, conclusions, and recommendations from the Environmental Investigation. KJE will present the laboratory analytical results in a tabular format and compare these levels to the OCD specified delineation levels. Accurately scaled and well-drafted site maps will be provided showing the location of all borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Digital photographic documentation of the release locations and field work will also be included.

If we can be of further assistance, please do not hesitate to contact us at 940-387-0805. We look forward to receiving comments in order to proceed with the project and closure.

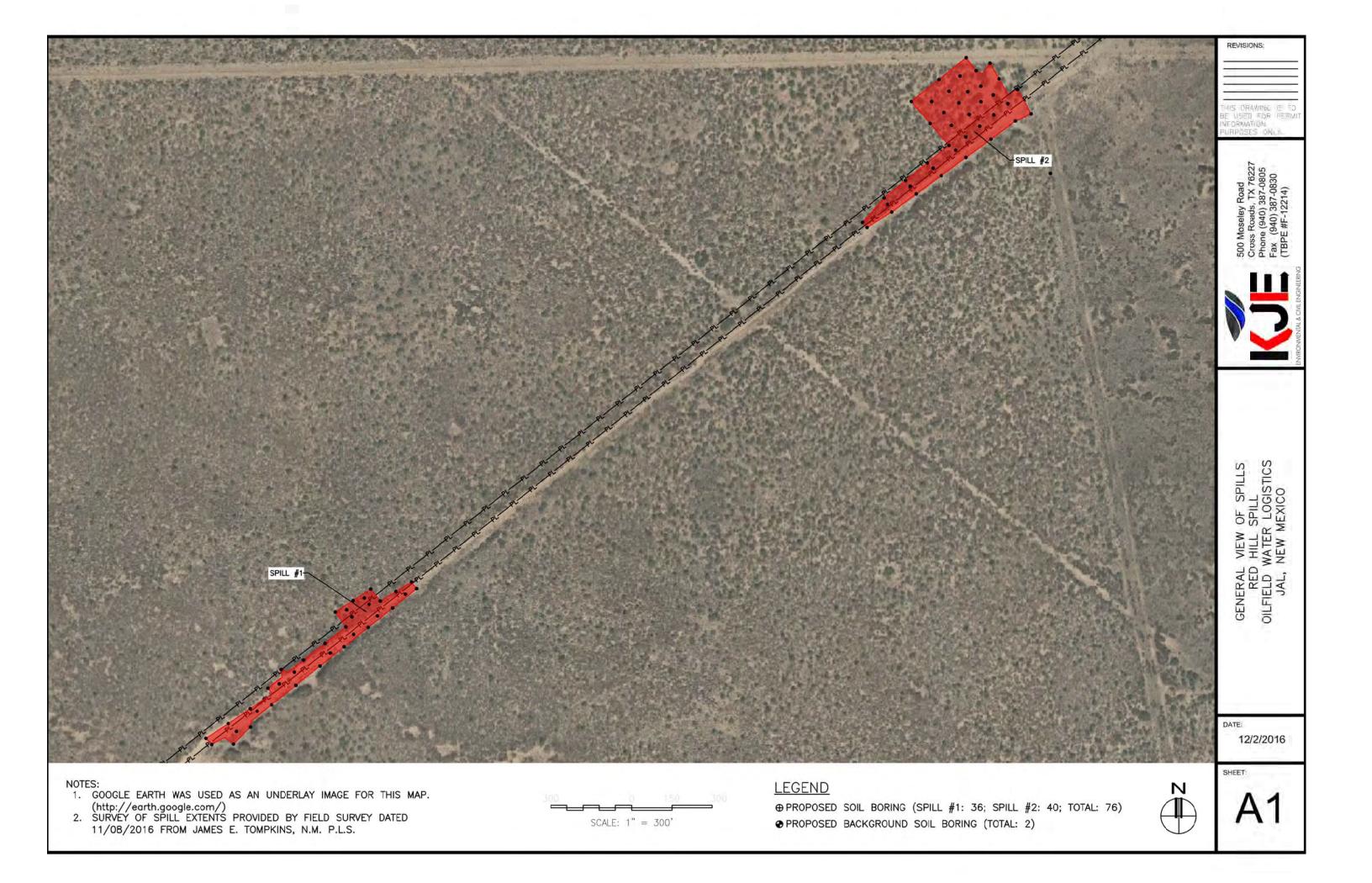
Sincerely,

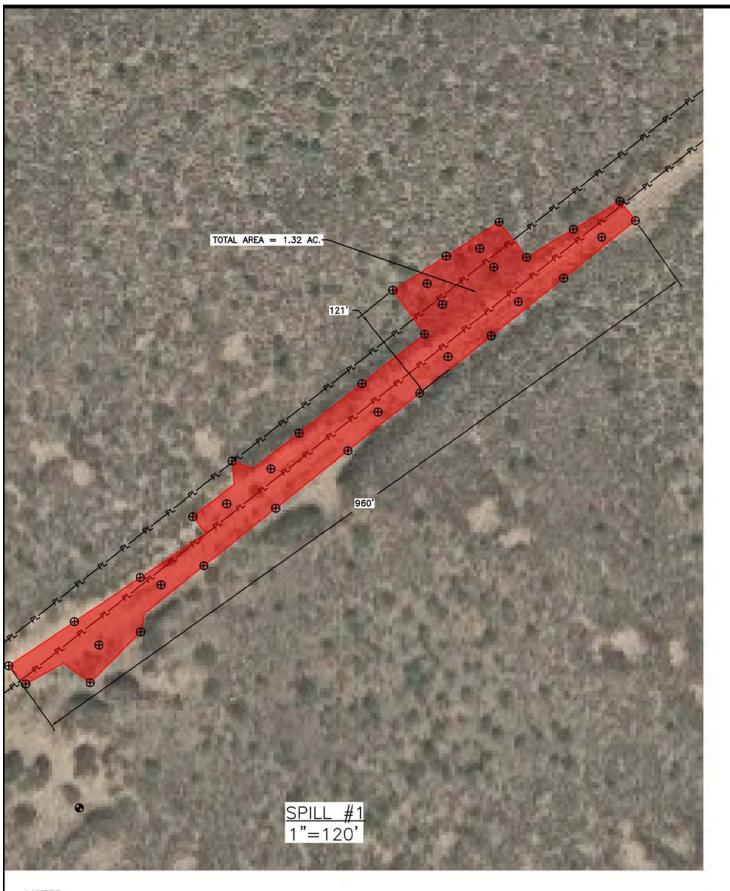
Kevin J. Ware, QEP / REM

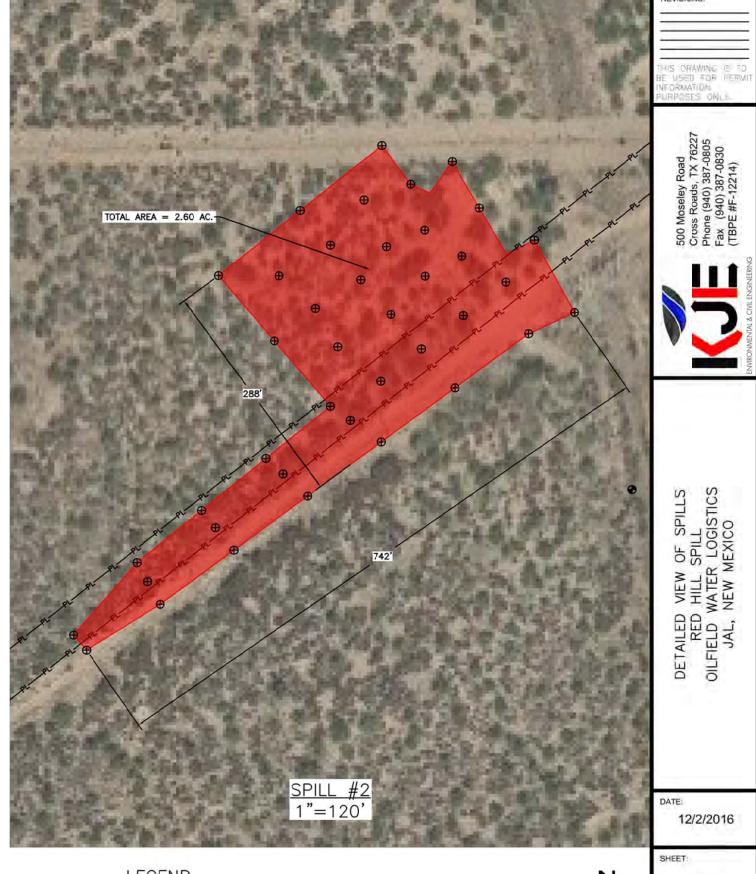
Principal

Gregg Bessire, P.E., P.G.

Gregg Beasine


Senior Project Manager

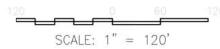

Dena M. Vandenberg, REM / LEED AP Director of


**Director of Environmental Services** 

Attachments: Figure A1 – General View of Releases

Figure A2 – Detailed View of Releases








NOTES:

1. GOOGLE EARTH WAS USED AS AN UNDERLAY IMAGE FOR THIS MAP. (http://earth.google.com/)

2. SURVEY OF SPILL EXTENTS PROVIDED BY FIELD SURVEY DATED 11/08/2016 FROM JAMES E. TOMPKINS, N.M. P.L.S.



# **LEGEND**

⊕ PROPOSED SOIL BORING (SPILL #1: 36; SPILL #2: 40; TOTAL: 76)

PROPOSED BACKGROUND SOIL BORING (TOTAL: 2)



## Spill Delineation Report & Remediation Plan

February 16, 2017

Oilfield Water Logistics (OWL) Produced Water Pipeline Releases
Nearby OWL Red Hills SWD
Section 2, T26S, R36E, Lea County, New Mexico – Case No. 1RP 4497 and
Section 36, T25S, R36E, Lea County, New Mexico – Case No. 1RP 4498

## **Prepared For:**

Mr. Phillip Sanders Oilfield Water Logistics 8214 Westchester Drive, Suite 850 Dallas, Texas 75225

New Mexico Energy Minerals and Natural Resources Department (EMNRD)
Oil Conservation Division (OCD)
Mr. Tomáš Oberding
1220 South Saint Francis Drive
Santa Fe, New Mexico 87505

## Prepared By:



500 Moseley Road Cross Roads, Texas 76227 (940) 387-0805 Phone (940) 387-0830 Fax

# **Table of Contents**

| 1.0 | Introduction                                 |
|-----|----------------------------------------------|
| 2.0 | Subsurface Investigation Activities          |
| 3.0 | Soil Sample Collection / Handling Procedures |
| 4.0 | Summary of Analytical Results                |

- 5.0 Risk Assessment
- 6.0 Photographic Exhibit
- 7.0 Conclusions / Recommendations
- 8.0 Qualifications of Environmental Professionals
- 9.0 Signature of Environmental Professional

## Appendix A

Fig A1 - General View of Spills

Fig A2 – Detailed View of Spills Showing Soil Boring Locations Installed for Delineation

Fig A3 – Proposed Soil Boring / Temporary Monitoring Well (SB/TMW-1) Location

## Appendix B

Photographic Exhibit

#### Appendix C

Representative Soil Boring Logs

Table 1 - Soil Boring Lithology and Field Screening Values Recorded

## Appendix D

Table 2 – Soil Borings Installed – Soil Sample Analytical Results

#### Appendix E

Environmental Professionals' Credentials

## Appendix F

Workplan to Install One Soil Boring (SB) / Temporary Monitoring Well



#### 1.0 Introduction

Oilfield Water Logistics (OWL) notified KJE of two spill occurrences over a relatively short time frame. KJE was notified of the first spill occurrence by Mr. Phillip Sanders, Safety Director with Oilfield Water Logistics, on October 28, 2016. Mr. Sanders notified the Oil Conservation Division (OCD) which is part of The New Mexico Energy, Minerals, and Natural Resources Department (EMNRD) of the spill at 2:00 p.m. on October 28. KJE was notified of the second spill occurrence on November 2, 2016. Mr. Sanders notified OCD of this spill occurrence at 8:11 a.m. on November 2, 2016. It was determined that 1,659 barrels of produced water was released during the first spill event, and it was determined that 418 barrels of produced water was released during the second spill event. KJE submitted Form C-141 Spill reports to OCD on November 2, 2016 for their review. The general view of both spills is illustrated in Appendix A on Figure A1.

KJE was retained by Oilfield Water Logistics (OWL) to complete delineations of the two produced water spill sites located approximately five miles miles southwest of Jal in Lea County, New Mexico. The delineation workplan was submitted by KJE and administratively approved by Mr. Tomas Oberding on November 30, 2016. This workplan was prepared at the request of OCD to collect soil samples for analysis to delineate the vertical and horizontal extent of the produced water affected soils.

#### 2.0 Subsurface Investigation Activities

From December 5, 2016, through December 21, 2016, forty-seven (47) soil borings were advanced within Spill Area 1, and forty-eight (48) soil borings were advanced within Spill Area 2 utilizing either a geoprobe or hollow stem auger rig. Additionally one background sample boring was advanced outside of the affected soil areas nearby each spill area. Detailed views of each spill area are exhibited on Figure A2 in Appendix A. Field screening for chloride concentrations and soil conductivity was conducted using a calibrated Hanna HI993310 soil conductivity meter. Field screening for Volatile Organic Compounds (VOCs) was conducted using a calibrated Photoionization Detector (PID) (Model RAE MINIRAE Lite 0-5K ppm) to screen for the highest readings from each of the borings. Photo documentation of field activities is included in Appendix B. Soil Boring depths sampled and analyzed ranged from ground surface (0') to twenty-six feet (26'). The soil boring lithology and field screening data table (Table 1) is included in Appendix C for review. Due to the uniformity in lithology, representative boring logs are also provided in Appendix C.

#### 3.0 Soil Sample Collection/Handling Procedures

Soil sampling procedures/activities included the collection of soil cores utilizing a geoprobe or hollow stem auger rig. A clean, decontaminated sampling trowel was used to sample from each



core section. Soil samples were placed in laboratory provided 4-ounce glass jars labeled with pertinent sampling information. To prevent contamination of the sample containers, each container remained laboratory-sealed until sample collection. The OCD requested we collect a statistically significant set of split samples and submit to the lab for confirmatory laboratory analysis. One set of samples for every twenty (20) samples collected were split for laboratory analysis, and these results are included on Table 2 in Appendix D for review. KJE personnel used dedicated nitrile gloves that were changed frequently during the sampling activities.

The soil samples were then placed in a cooling chest with adequate ice, providing a 4°C environment for sufficient preservation until delivery to Xenco Laboratory (a third-party, independent, and licensed environmental laboratory in Midland, Texas). The sample collection and handling activities were conducted in accordance with USEPA Standard Operating Procedures and strict chain-of-custody protocols. The drilling equipment, sampling equipment, and tools were decontaminated before and between each sampling location.

Chain-of-Custody forms were completed in the field at the time of sample collection. When custody of the samples changed, signatures of personnel handling the sample exchange were noted on the form along with the date and time. A copy of the form was retained prior to sample delivery, and stored in the project files. A signed and completed copy of the chain-of-custody form was returned from Xenco Laboratory with the laboratory report, and is included in Appendix D of this report.

The soil samples were analyzed for Benzene, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) by EPA Method 8260, and TPH (Total Petroleum Hydrocarbons) by EPA Method 8015 modified with extended range, and Chlorides by EPA Method 300. These analytical methods are the EPA, OCD, and industry-approved standards used to determine the potential for soil contamination.

## **4.0 Summary of Analytical Results**

#### Soil Action Limits

The OCD required delineation of Benzene, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes), TPH (Total Petroleum Hydrocarbons), and Chlorides for the spill areas. Published values for BTEX and TPH were obtained from the OCD document "Guidelines for Remediation of Leaks, Spills, and Releases, 1993". Horizontal and vertical delineation values were determined to be 10 ppm Benzene, 50 ppm BTEX, and 5,000 ppm TPH since no groundwater or surface water is present in the site area. Verbal directives issued by OCD representatives Ms. Kristen Lynch and Mr. Tomáš Oberding were that horizontal delineation for chlorides is 600 ppm and vertical delineation is 250 ppm. Figure A2 in Appendix A illustrates areas which are fully delineated and areas with one or more constituent exceedance. Analytical results are



included on Table 2 in Appendix D for review. Laboratory reports are also included in Appendix D. Based on the laboratory analytical results, delineation of affected soils has been completed for the majority of both spill areas.

#### Soil Delineation - Analytical Results

For Spill Area 1, Benzene concentrations in soil samples ranged from BDL (Below Detection Limits) to 7.57 mg/kg (ppm) while BTEX concentrations ranged from BDL to 304 mg/kg (ppm). The TPH results ranged from BDL to 10,900 mg/kg (ppm) and Chloride concentrations ranged from BDL to 11,900 mg/kg (ppm).

For Spill Area 2, Benzene and BTEX concentrations were all BDL. The TPH results ranged from BDL to 818 mg/kg (ppm), and Chloride concentrations ranged from BDL to 8,790 mg/kg (ppm). The affected soil depths in Spill Area 1 range from verified depths of 0 to 26 feet, and the average depth of hydrocarbon and chloride affected soils is estimated to be 6.40 feet. The estimated area of affected soils is 1.21 acres (52,708 square feet), and the estimated area of contaminated soil contour line is illustrated on Figure A2 in Appendix A. Therefore, the estimated volume of affected soils in Spill Area 1 is 12,494 cubic yards.

The affected soil depths in Spill Area 2 range from verified depths of 0 to greater than 14 feet, and the average depth of hydrocarbon and chloride affected soils is estimated to be 5.64 feet. The estimated area of affected soils is 2.38 acres (103,673 square feet), and the estimated area of contaminated soil contour line is illustrated on Figure A2 in Appendix A. Therefore, the estimated volume of affected soils in Spill Area 2 is 21,656 cubic yards.

#### Groundwater

Groundwater was not encountered in any of the soil borings which were installed. According to records available from the New Mexico Office of the State Engineers database, a water well which is located approximately 4.75 miles southwest of the spill areas recorded the shallowest depth to water in the site vicinity at 214 feet.

KJE recommends the installation of a groundwater monitoring well to evaluate the depth to groundwater and presence of impacts. It is not anticipated that groundwater will be encountered during drilling; however, if groundwater is encountered, it will be sampled in accordance with the attached workplan (Appendix F).



## 5.0 Risk Screening

Analytical results from soil boring SB4 in Spill Area 1 are included on the table below and are compared to the OCD Action Limits, Pit and Recycling Containment Closures, and the New Mexico Environmental Department (NMED) Soil Screening Levels issued December 2014 and July 2015. These soil samples exhibited the highest Benzene, BTEX, and TPH concentrations. All Chloride levels for the analyzed samples are less than the OCD requirements for Pit Closures and Recycling Containment Closures as illustrated in the table below and in Table 2 in Appendix D. All constituents except for TPH levels are less than one or more OCD or NMED regulatory guidelines. The TPH soil screening levels are based solely on human health considerations related to direct soil exposure, not ecological risk considerations, protection of surface or groundwater, or potential soil vapor impacts from soil vapor. Since there is no noticeable impact to wildlife, no surface water in the site area, groundwater depth is believed to be greater than 100 feet, and there are no buildings on site, these TPH considerations should not be a factor.

|                                                                                |              |             | SPILL AREA          | 1        |       |                          |        |
|--------------------------------------------------------------------------------|--------------|-------------|---------------------|----------|-------|--------------------------|--------|
| Sample ID                                                                      | Benzene      | Toluene     | Ethylbenzene        | Xylenes  | BTEX  | Chlorides                | TPH    |
| SB4 (0'-2')                                                                    | <0.099       | 6.03        | 0.766               | 52.8     | 59.6  | 3,000                    | 4,150  |
| SB4 (2'-4')                                                                    | <0.200       | 2.15        | 0.715               | 153      | 155   | 1,590                    | 10,900 |
| SB4 (4'-6')                                                                    | 0.731        | 6.72        | <0.198              | 105      | 112   | 1,330                    | 7,510  |
| SB4 (6'-8')                                                                    | 7.51         | 97.9        | 8.20                | 190      | 304   | 1,780                    | 10,400 |
| SB4 (8'-10')                                                                   | 0.51         | 12.9        | 5.74                | 29.5     | 48.7  | 5,970                    | 2,740  |
| SB4 (10'-12')                                                                  | 6.27         | 99.2        | 30.9                | 156      | 292   | 3,670                    | 8,540  |
| SB4 (14'-16')                                                                  | 1.38         | 42.5        | 17.0                | 79.3     | 140   | 2,460                    | 4,460  |
| Split                                                                          | 0.247        | 13.8        | 9.63                | 49.3     | 73    | 2,050                    | 3,910  |
| SB4 (16'-18')                                                                  | <0.001       | <0.001      | <0.001              | 0.00352  | 0.003 | 2430                     | 22.2   |
| OCD Action Limits<br>1993 Guideline                                            | 10           |             |                     |          | 50    | Horiz. – 600<br>Vert 250 | 5,000  |
| OCD Rule 19.15.17.13<br>Pit Closures                                           | 10           | -           |                     | -        | 50    | 20,000                   | 1,000  |
| OCD Rule 19.15.34.14 Recycling Containment Closures                            | 10           | -           | 1                   | -        | 50    | 20,000                   | 1,000  |
| NMED Soil Screening<br>Levels, December 2014<br>and July 2015<br>Const. Worker | 142          | 14,000      | 1,770               | 798      |       |                          | 5,000  |
| Action Limits and Closure Re                                                   | quirements A | Assumes Dep | oth To Water is > 1 | 100 feet |       |                          |        |

## 6.0 Photographs

Photographic documentation of the drilling and sampling activities is included in Appendix B.



## 7.0 Conclusions/Recommendations

KJE has concluded that the majority of each spill area has been delineated, and that there would be no beneficial outcome of installing five to ten additional soil borings in the spill areas. KJE feels that we would only replicate analytical results from other nearby soil borings.

According to the records acquired from the New Mexico Office of the State Engineers database, it appears that there is at least 185 feet between the zones of affected soils and groundwater. KJE feels that the chance of groundwater contamination from the affected soils is highly unlikely.

Based on the following reasoning, KJE requests that the affected soils be allowed to remain in place if groundwater is determined to be at a depth unlikely to be impacted by the releases:

- the majority of the impacted soils are located adjacent to, or below one of three operating pipelines (OWL produced water, City of Jal drinking water, and nearby ranch drinking water). Excavation in these areas could adversely affect the structural integrity of one or all of these pipelines.
- adverse environmental impacts are minimal,
  - o land owner has approved the soil to remain in place
  - little vegetation was present in the area due to the sandy soils, and the right of way (ROW) is being used as the route for 24-hour OWL pipeline inspectors
  - o there is no noticeable impact to wildlife
  - o there are no residences in the site area
  - there are no buildings in the site area for vapor intrusion consideration
  - o there is no ongoing air quality impact
  - o construction worker exposure would be primarily chlorides
- the large total volume (34,150 cubic yards) of impacted soil in both spill areas would make remediation efforts economically infeasible.

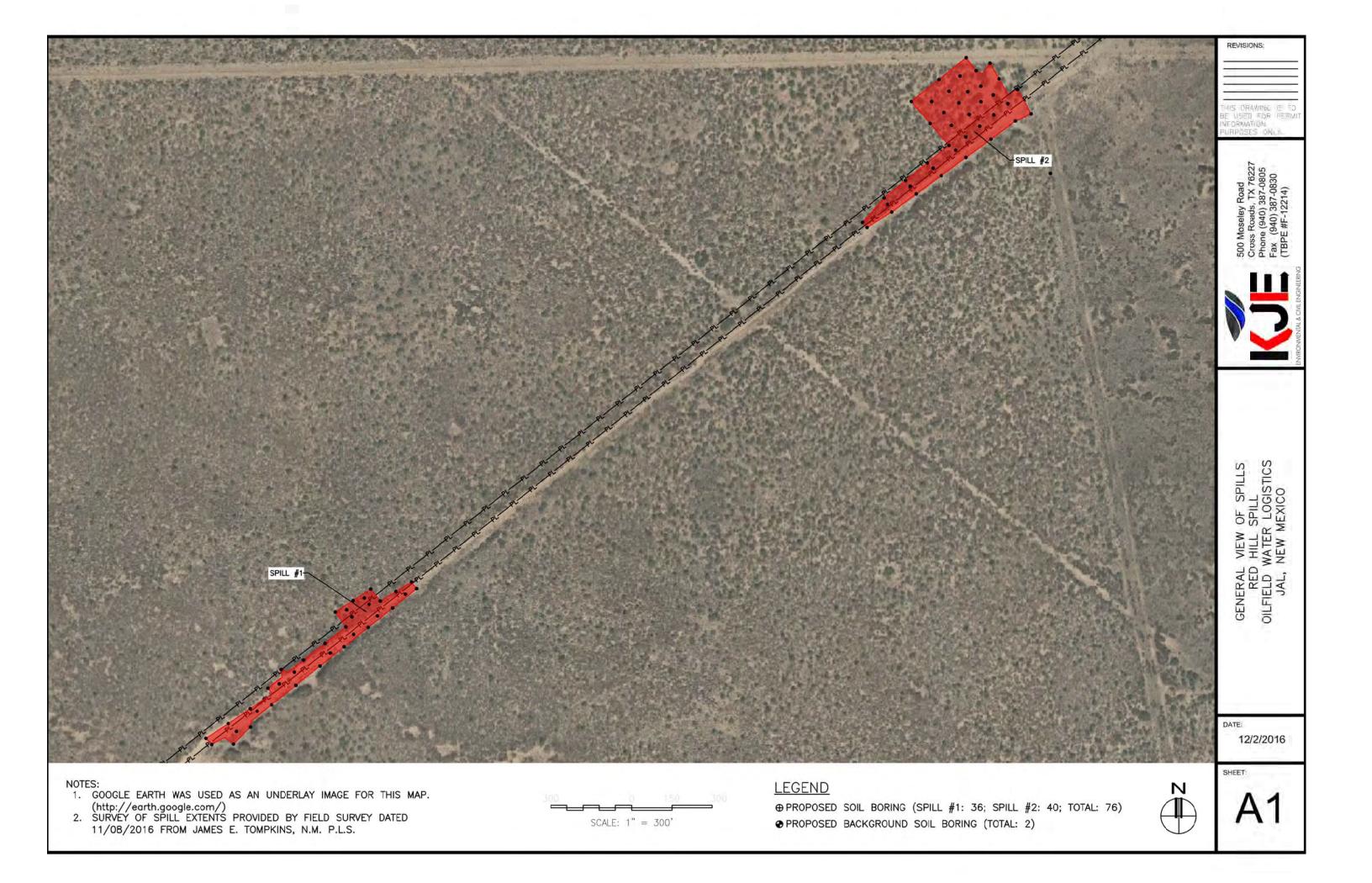
A small area of TPH affected soils was identified within Spill Area 1 with analytical results above the OCD action levels for TPH. KJE proposes that quarterly soil sampling be completed in this area for soil monitoring, and soil samples will be submitted to the laboratory for TPH sample analysis. These areas with TPH exceedances in soil will be monitored quarterly and resampled until the levels decrease to below the action limits.

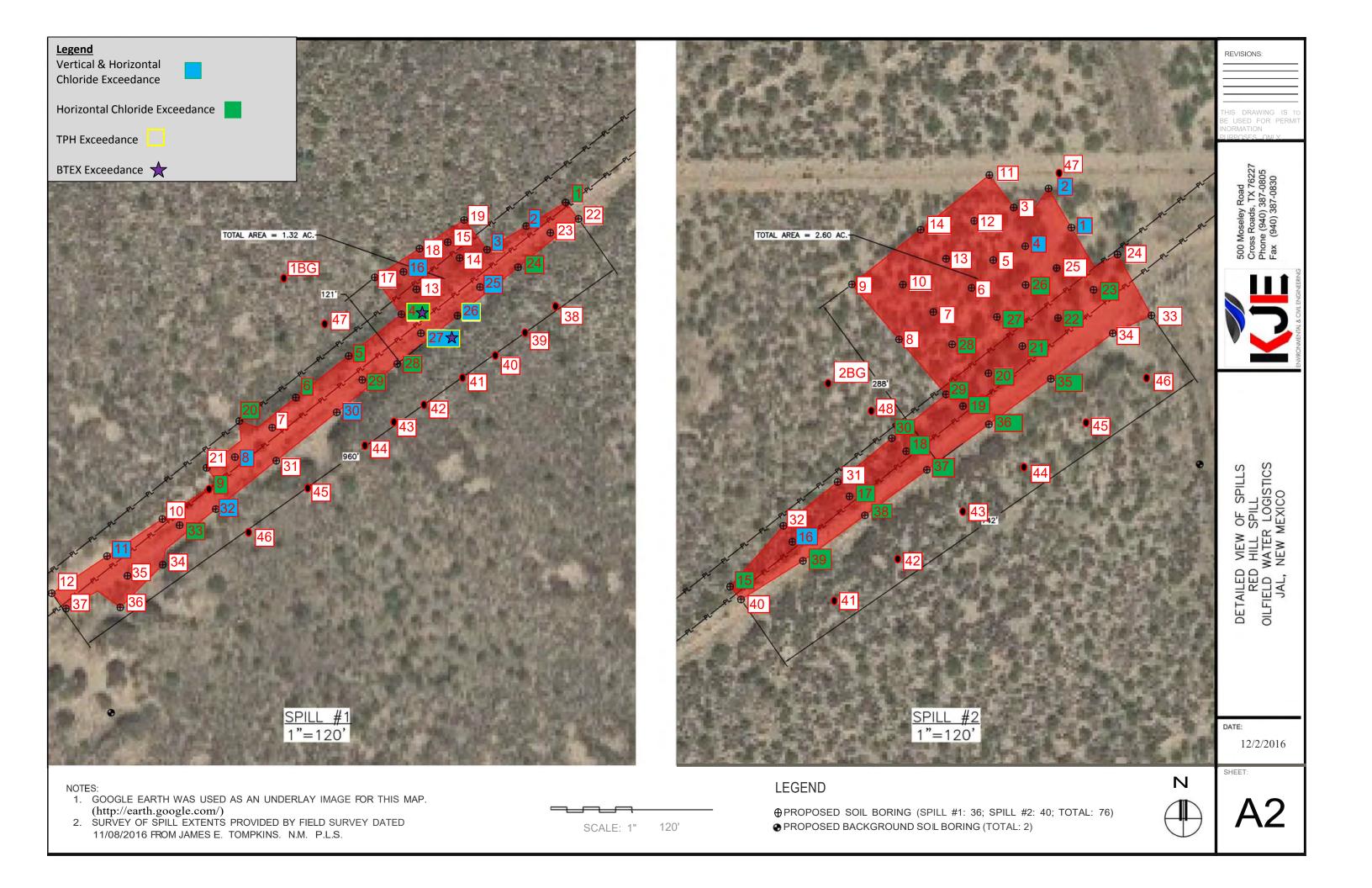
In order to confirm that shallow groundwater is not present in the site area, KJE is proposing to install one soil boring to a depth of 100 feet and allow it to remain open for 24 hours to determine if groundwater is present. If no groundwater is present after this time period, then the soil boring will be properly plugged as required. If groundwater is present, then the soil boring will be converted to a 2-inch monitoring well. The well would then be gauged, purged, and sampled for analysis of Volatile Organic Compounds (VOCs) Method 8260 full list, (TPH) by

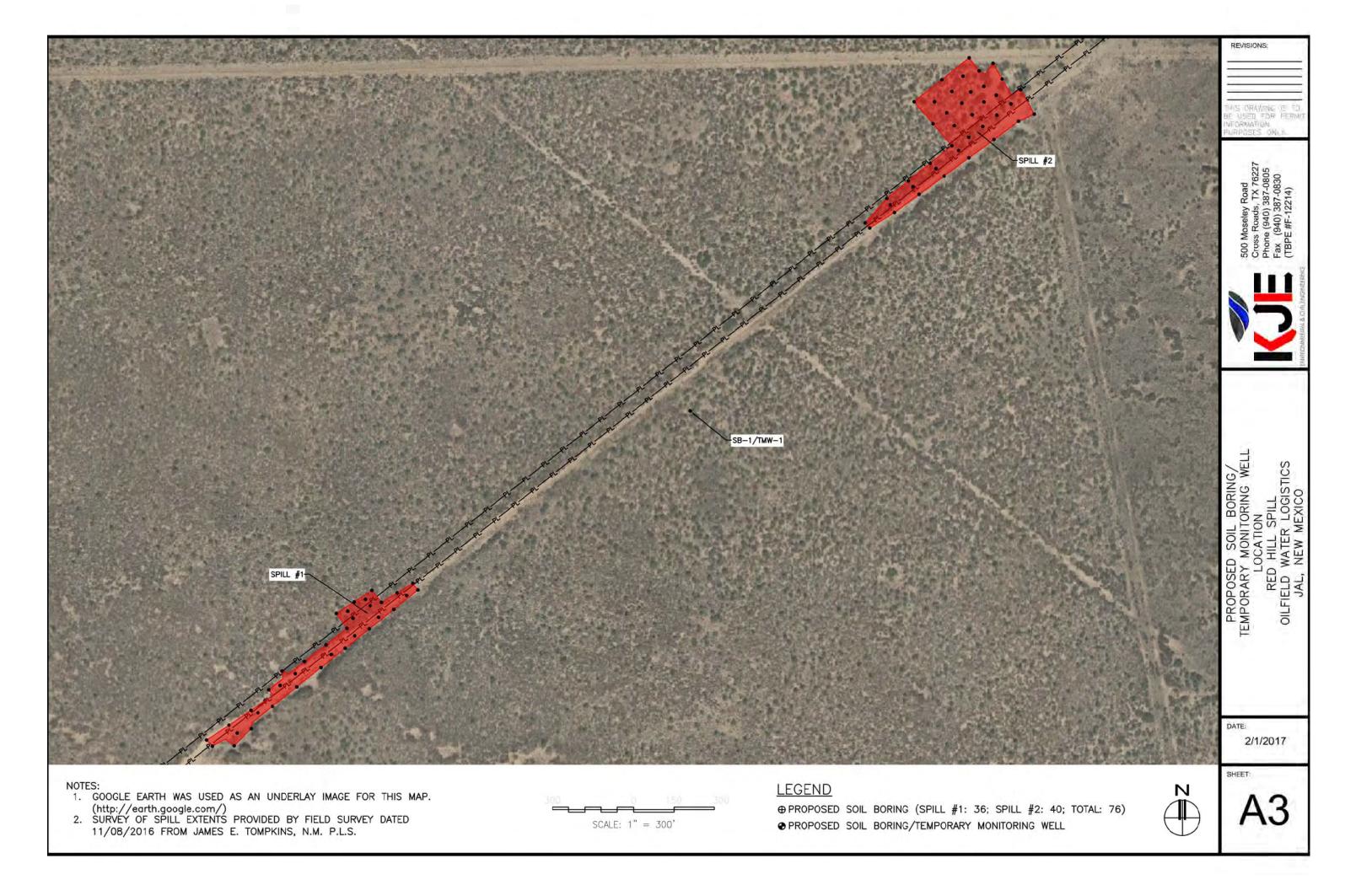


Method 8015 extended range (GRO+DRO+MRO; C6 thru C36), Total Dissolved Solids (TDS) by Method 2540, pH by Method 9040, major anions and cations including chloride and sulfate by Method 9056, dissolved iron and manganese by Method 6010. The proposed location of the soil boring is shown on Figure A3 in Appendix A. The proposal and associated workplan is included in Appendix F for your review. If groundwater analytical results confirm that groundwater is impacted, a separate workplan will be submitted to conduct quarterly sampling for one year to monitor the affected groundwater.

If we can be of further assistance, please do not hesitate to contact us at 940-387-0805. Thank you for the opportunity to provide professional environmental consulting services. It has been a pleasure working with you.


## **8.0 Qualifications of Environmental Professional**


This is to certify that the Environmental Investigation that was completed at the two produced water spill sites located approximately five miles southwest of Jal in Lea County, New Mexico were conducted using EPA, OCD, and industry-approved standards/protocols. This field work was conducted from December 5 through December 21, 2016 for OWL, and all field activities were completed under the supervision of Ms. Dena M. Vandenberg, REM, LEED AP. Mr. Ware's, Ms. Vandenberg's, Mr. Bessire's, and Mr. Fox's credentials are included in Appendix E for review.


#### 9.0 Signature of Environmental Professional

| Sanatrandenling                                             |           |
|-------------------------------------------------------------|-----------|
| 0                                                           | 2/16/2017 |
| Dena M. Vandenberg, REM, LEED AP Environmental Professional | Date      |
| Kow Mara                                                    | 2/16/2017 |
| Kevin J. Ware, QEP, REM Principal                           | Date      |









## Spill Delineation Report & Remediation Plan

February 16, 2017

Oilfield Water Logistics (OWL) Produced Water Pipeline Releases
Nearby OWL Red Hills SWD
Section 2, T26S, R36E, Lea County, New Mexico – Case No. 1RP 4497 and
Section 36, T25S, R36E, Lea County, New Mexico – Case No. 1RP 4498

## **Prepared For:**

Mr. Phillip Sanders Oilfield Water Logistics 8214 Westchester Drive, Suite 850 Dallas, Texas 75225

New Mexico Energy Minerals and Natural Resources Department (EMNRD)
Oil Conservation Division (OCD)
Mr. Tomáš Oberding
1220 South Saint Francis Drive
Santa Fe, New Mexico 87505

## Prepared By:



500 Moseley Road Cross Roads, Texas 76227 (940) 387-0805 Phone (940) 387-0830 Fax

# **Table of Contents**

| 1.0 | Introduction                                 |
|-----|----------------------------------------------|
| 2.0 | Subsurface Investigation Activities          |
| 3.0 | Soil Sample Collection / Handling Procedures |
| 4.0 | Summary of Analytical Results                |

- 5.0 Risk Assessment
- 6.0 Photographic Exhibit
- 7.0 Conclusions / Recommendations
- 8.0 Qualifications of Environmental Professionals
- 9.0 Signature of Environmental Professional

## Appendix A

Fig A1 - General View of Spills

Fig A2 – Detailed View of Spills Showing Soil Boring Locations Installed for Delineation

Fig A3 – Proposed Soil Boring / Temporary Monitoring Well (SB/TMW-1) Location

## Appendix B

Photographic Exhibit

#### Appendix C

Representative Soil Boring Logs

Table 1 - Soil Boring Lithology and Field Screening Values Recorded

## Appendix D

Table 2 – Soil Borings Installed – Soil Sample Analytical Results

#### Appendix E

Environmental Professionals' Credentials

## Appendix F

Workplan to Install One Soil Boring (SB) / Temporary Monitoring Well



#### 1.0 Introduction

Oilfield Water Logistics (OWL) notified KJE of two spill occurrences over a relatively short time frame. KJE was notified of the first spill occurrence by Mr. Phillip Sanders, Safety Director with Oilfield Water Logistics, on October 28, 2016. Mr. Sanders notified the Oil Conservation Division (OCD) which is part of The New Mexico Energy, Minerals, and Natural Resources Department (EMNRD) of the spill at 2:00 p.m. on October 28. KJE was notified of the second spill occurrence on November 2, 2016. Mr. Sanders notified OCD of this spill occurrence at 8:11 a.m. on November 2, 2016. It was determined that 1,659 barrels of produced water was released during the first spill event, and it was determined that 418 barrels of produced water was released during the second spill event. KJE submitted Form C-141 Spill reports to OCD on November 2, 2016 for their review. The general view of both spills is illustrated in Appendix A on Figure A1.

KJE was retained by Oilfield Water Logistics (OWL) to complete delineations of the two produced water spill sites located approximately five miles miles southwest of Jal in Lea County, New Mexico. The delineation workplan was submitted by KJE and administratively approved by Mr. Tomas Oberding on November 30, 2016. This workplan was prepared at the request of OCD to collect soil samples for analysis to delineate the vertical and horizontal extent of the produced water affected soils.

#### 2.0 Subsurface Investigation Activities

From December 5, 2016, through December 21, 2016, forty-seven (47) soil borings were advanced within Spill Area 1, and forty-eight (48) soil borings were advanced within Spill Area 2 utilizing either a geoprobe or hollow stem auger rig. Additionally one background sample boring was advanced outside of the affected soil areas nearby each spill area. Detailed views of each spill area are exhibited on Figure A2 in Appendix A. Field screening for chloride concentrations and soil conductivity was conducted using a calibrated Hanna HI993310 soil conductivity meter. Field screening for Volatile Organic Compounds (VOCs) was conducted using a calibrated Photoionization Detector (PID) (Model RAE MINIRAE Lite 0-5K ppm) to screen for the highest readings from each of the borings. Photo documentation of field activities is included in Appendix B. Soil Boring depths sampled and analyzed ranged from ground surface (0') to twenty-six feet (26'). The soil boring lithology and field screening data table (Table 1) is included in Appendix C for review. Due to the uniformity in lithology, representative boring logs are also provided in Appendix C.

#### 3.0 Soil Sample Collection/Handling Procedures

Soil sampling procedures/activities included the collection of soil cores utilizing a geoprobe or hollow stem auger rig. A clean, decontaminated sampling trowel was used to sample from each



core section. Soil samples were placed in laboratory provided 4-ounce glass jars labeled with pertinent sampling information. To prevent contamination of the sample containers, each container remained laboratory-sealed until sample collection. The OCD requested we collect a statistically significant set of split samples and submit to the lab for confirmatory laboratory analysis. One set of samples for every twenty (20) samples collected were split for laboratory analysis, and these results are included on Table 2 in Appendix D for review. KJE personnel used dedicated nitrile gloves that were changed frequently during the sampling activities.

The soil samples were then placed in a cooling chest with adequate ice, providing a 4°C environment for sufficient preservation until delivery to Xenco Laboratory (a third-party, independent, and licensed environmental laboratory in Midland, Texas). The sample collection and handling activities were conducted in accordance with USEPA Standard Operating Procedures and strict chain-of-custody protocols. The drilling equipment, sampling equipment, and tools were decontaminated before and between each sampling location.

Chain-of-Custody forms were completed in the field at the time of sample collection. When custody of the samples changed, signatures of personnel handling the sample exchange were noted on the form along with the date and time. A copy of the form was retained prior to sample delivery, and stored in the project files. A signed and completed copy of the chain-of-custody form was returned from Xenco Laboratory with the laboratory report, and is included in Appendix D of this report.

The soil samples were analyzed for Benzene, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) by EPA Method 8260, and TPH (Total Petroleum Hydrocarbons) by EPA Method 8015 modified with extended range, and Chlorides by EPA Method 300. These analytical methods are the EPA, OCD, and industry-approved standards used to determine the potential for soil contamination.

### **4.0 Summary of Analytical Results**

#### Soil Action Limits

The OCD required delineation of Benzene, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes), TPH (Total Petroleum Hydrocarbons), and Chlorides for the spill areas. Published values for BTEX and TPH were obtained from the OCD document "Guidelines for Remediation of Leaks, Spills, and Releases, 1993". Horizontal and vertical delineation values were determined to be 10 ppm Benzene, 50 ppm BTEX, and 5,000 ppm TPH since no groundwater or surface water is present in the site area. Verbal directives issued by OCD representatives Ms. Kristen Lynch and Mr. Tomáš Oberding were that horizontal delineation for chlorides is 600 ppm and vertical delineation is 250 ppm. Figure A2 in Appendix A illustrates areas which are fully delineated and areas with one or more constituent exceedance. Analytical results are



included on Table 2 in Appendix D for review. Laboratory reports are also included in Appendix D. Based on the laboratory analytical results, delineation of affected soils has been completed for the majority of both spill areas.

#### Soil Delineation - Analytical Results

For Spill Area 1, Benzene concentrations in soil samples ranged from BDL (Below Detection Limits) to 7.57 mg/kg (ppm) while BTEX concentrations ranged from BDL to 304 mg/kg (ppm). The TPH results ranged from BDL to 10,900 mg/kg (ppm) and Chloride concentrations ranged from BDL to 11,900 mg/kg (ppm).

For Spill Area 2, Benzene and BTEX concentrations were all BDL. The TPH results ranged from BDL to 818 mg/kg (ppm), and Chloride concentrations ranged from BDL to 8,790 mg/kg (ppm). The affected soil depths in Spill Area 1 range from verified depths of 0 to 26 feet, and the average depth of hydrocarbon and chloride affected soils is estimated to be 6.40 feet. The estimated area of affected soils is 1.21 acres (52,708 square feet), and the estimated area of contaminated soil contour line is illustrated on Figure A2 in Appendix A. Therefore, the estimated volume of affected soils in Spill Area 1 is 12,494 cubic yards.

The affected soil depths in Spill Area 2 range from verified depths of 0 to greater than 14 feet, and the average depth of hydrocarbon and chloride affected soils is estimated to be 5.64 feet. The estimated area of affected soils is 2.38 acres (103,673 square feet), and the estimated area of contaminated soil contour line is illustrated on Figure A2 in Appendix A. Therefore, the estimated volume of affected soils in Spill Area 2 is 21,656 cubic yards.

#### Groundwater

Groundwater was not encountered in any of the soil borings which were installed. According to records available from the New Mexico Office of the State Engineers database, a water well which is located approximately 4.75 miles southwest of the spill areas recorded the shallowest depth to water in the site vicinity at 214 feet.

KJE recommends the installation of a groundwater monitoring well to evaluate the depth to groundwater and presence of impacts. It is not anticipated that groundwater will be encountered during drilling; however, if groundwater is encountered, it will be sampled in accordance with the attached workplan (Appendix F).



#### 5.0 Risk Screening

Analytical results from soil boring SB4 in Spill Area 1 are included on the table below and are compared to the OCD Action Limits, Pit and Recycling Containment Closures, and the New Mexico Environmental Department (NMED) Soil Screening Levels issued December 2014 and July 2015. These soil samples exhibited the highest Benzene, BTEX, and TPH concentrations. All Chloride levels for the analyzed samples are less than the OCD requirements for Pit Closures and Recycling Containment Closures as illustrated in the table below and in Table 2 in Appendix D. All constituents except for TPH levels are less than one or more OCD or NMED regulatory guidelines. The TPH soil screening levels are based solely on human health considerations related to direct soil exposure, not ecological risk considerations, protection of surface or groundwater, or potential soil vapor impacts from soil vapor. Since there is no noticeable impact to wildlife, no surface water in the site area, groundwater depth is believed to be greater than 100 feet, and there are no buildings on site, these TPH considerations should not be a factor.

| SPILL AREA 1                                                                   |         |         |              |         |       |                          |        |
|--------------------------------------------------------------------------------|---------|---------|--------------|---------|-------|--------------------------|--------|
| Sample ID                                                                      | Benzene | Toluene | Ethylbenzene | Xylenes | BTEX  | Chlorides                | TPH    |
| SB4 (0'-2')                                                                    | <0.099  | 6.03    | 0.766        | 52.8    | 59.6  | 3,000                    | 4,150  |
| SB4 (2'-4')                                                                    | <0.200  | 2.15    | 0.715        | 153     | 155   | 1,590                    | 10,900 |
| SB4 (4'-6')                                                                    | 0.731   | 6.72    | <0.198       | 105     | 112   | 1,330                    | 7,510  |
| SB4 (6'-8')                                                                    | 7.51    | 97.9    | 8.20         | 190     | 304   | 1,780                    | 10,400 |
| SB4 (8'-10')                                                                   | 0.51    | 12.9    | 5.74         | 29.5    | 48.7  | 5,970                    | 2,740  |
| SB4 (10'-12')                                                                  | 6.27    | 99.2    | 30.9         | 156     | 292   | 3,670                    | 8,540  |
| SB4 (14'-16')                                                                  | 1.38    | 42.5    | 17.0         | 79.3    | 140   | 2,460                    | 4,460  |
| Split                                                                          | 0.247   | 13.8    | 9.63         | 49.3    | 73    | 2,050                    | 3,910  |
| SB4 (16'-18')                                                                  | <0.001  | <0.001  | <0.001       | 0.00352 | 0.003 | 2430                     | 22.2   |
| OCD Action Limits<br>1993 Guideline                                            | 10      |         |              |         | 50    | Horiz. – 600<br>Vert 250 | 5,000  |
| OCD Rule 19.15.17.13<br>Pit Closures                                           | 10      | -       |              | -       | 50    | 20,000                   | 1,000  |
| OCD Rule 19.15.34.14 Recycling Containment Closures                            | 10      | -       |              | -       | 50    | 20,000                   | 1,000  |
| NMED Soil Screening<br>Levels, December 2014<br>and July 2015<br>Const. Worker | 142     | 14,000  | 1,770        | 798     |       |                          | 5,000  |
| Action Limits and Closure Requirements Assumes Depth To Water is > 100 feet    |         |         |              |         |       |                          |        |

#### 6.0 Photographs

Photographic documentation of the drilling and sampling activities is included in Appendix B.



# 7.0 Conclusions/Recommendations

KJE has concluded that the majority of each spill area has been delineated, and that there would be no beneficial outcome of installing five to ten additional soil borings in the spill areas. KJE feels that we would only replicate analytical results from other nearby soil borings.

According to the records acquired from the New Mexico Office of the State Engineers database, it appears that there is at least 185 feet between the zones of affected soils and groundwater. KJE feels that the chance of groundwater contamination from the affected soils is highly unlikely.

Based on the following reasoning, KJE requests that the affected soils be allowed to remain in place if groundwater is determined to be at a depth unlikely to be impacted by the releases:

- the majority of the impacted soils are located adjacent to, or below one of three operating pipelines (OWL produced water, City of Jal drinking water, and nearby ranch drinking water). Excavation in these areas could adversely affect the structural integrity of one or all of these pipelines.
- adverse environmental impacts are minimal,
  - o land owner has approved the soil to remain in place
  - little vegetation was present in the area due to the sandy soils, and the right of way (ROW) is being used as the route for 24-hour OWL pipeline inspectors
  - o there is no noticeable impact to wildlife
  - o there are no residences in the site area
  - there are no buildings in the site area for vapor intrusion consideration
  - o there is no ongoing air quality impact
  - o construction worker exposure would be primarily chlorides
- the large total volume (34,150 cubic yards) of impacted soil in both spill areas would make remediation efforts economically infeasible.

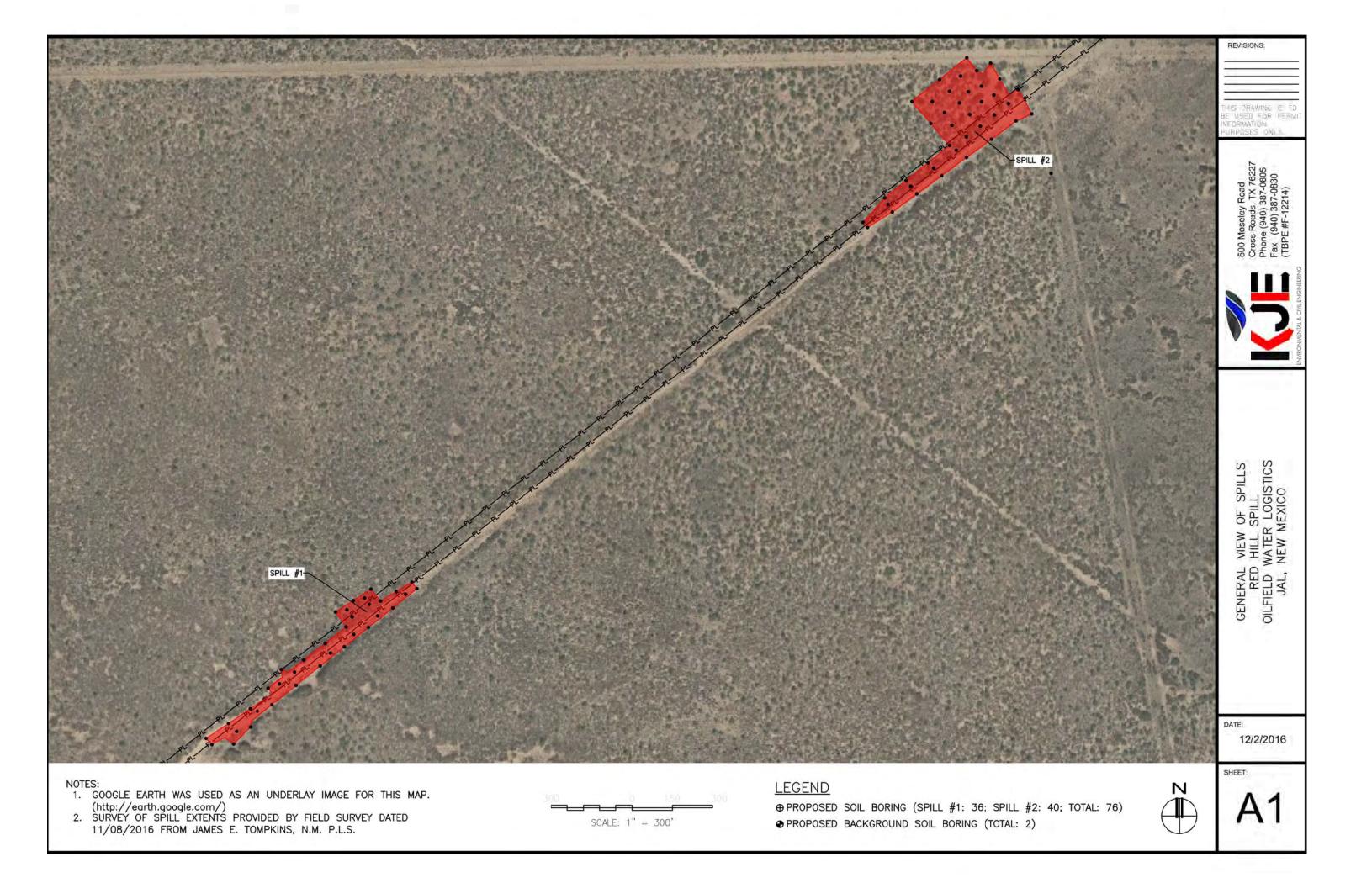
A small area of TPH affected soils was identified within Spill Area 1 with analytical results above the OCD action levels for TPH. KJE proposes that quarterly soil sampling be completed in this area for soil monitoring, and soil samples will be submitted to the laboratory for TPH sample analysis. These areas with TPH exceedances in soil will be monitored quarterly and resampled until the levels decrease to below the action limits.

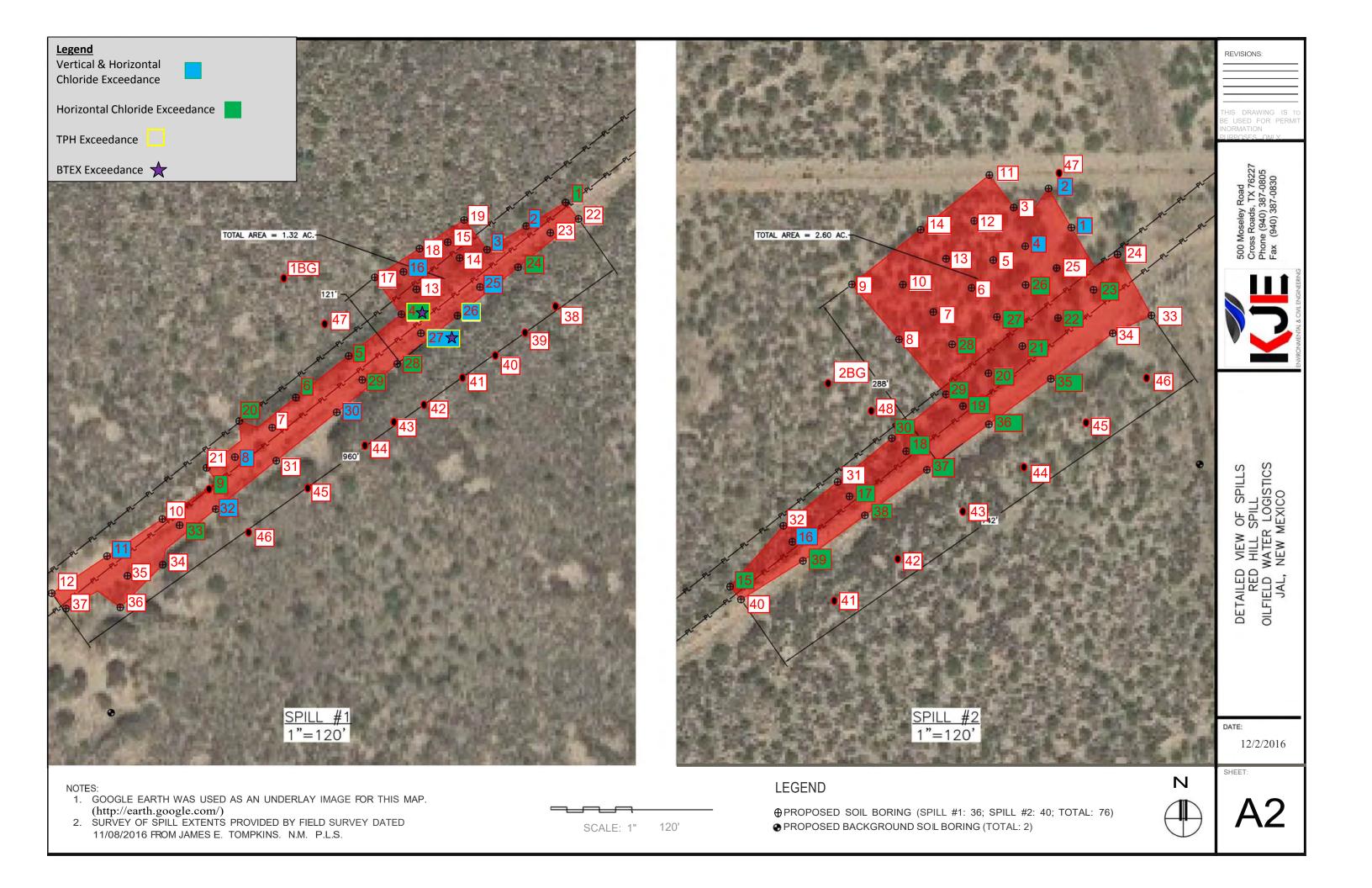
In order to confirm that shallow groundwater is not present in the site area, KJE is proposing to install one soil boring to a depth of 100 feet and allow it to remain open for 24 hours to determine if groundwater is present. If no groundwater is present after this time period, then the soil boring will be properly plugged as required. If groundwater is present, then the soil boring will be converted to a 2-inch monitoring well. The well would then be gauged, purged, and sampled for analysis of Volatile Organic Compounds (VOCs) Method 8260 full list, (TPH) by

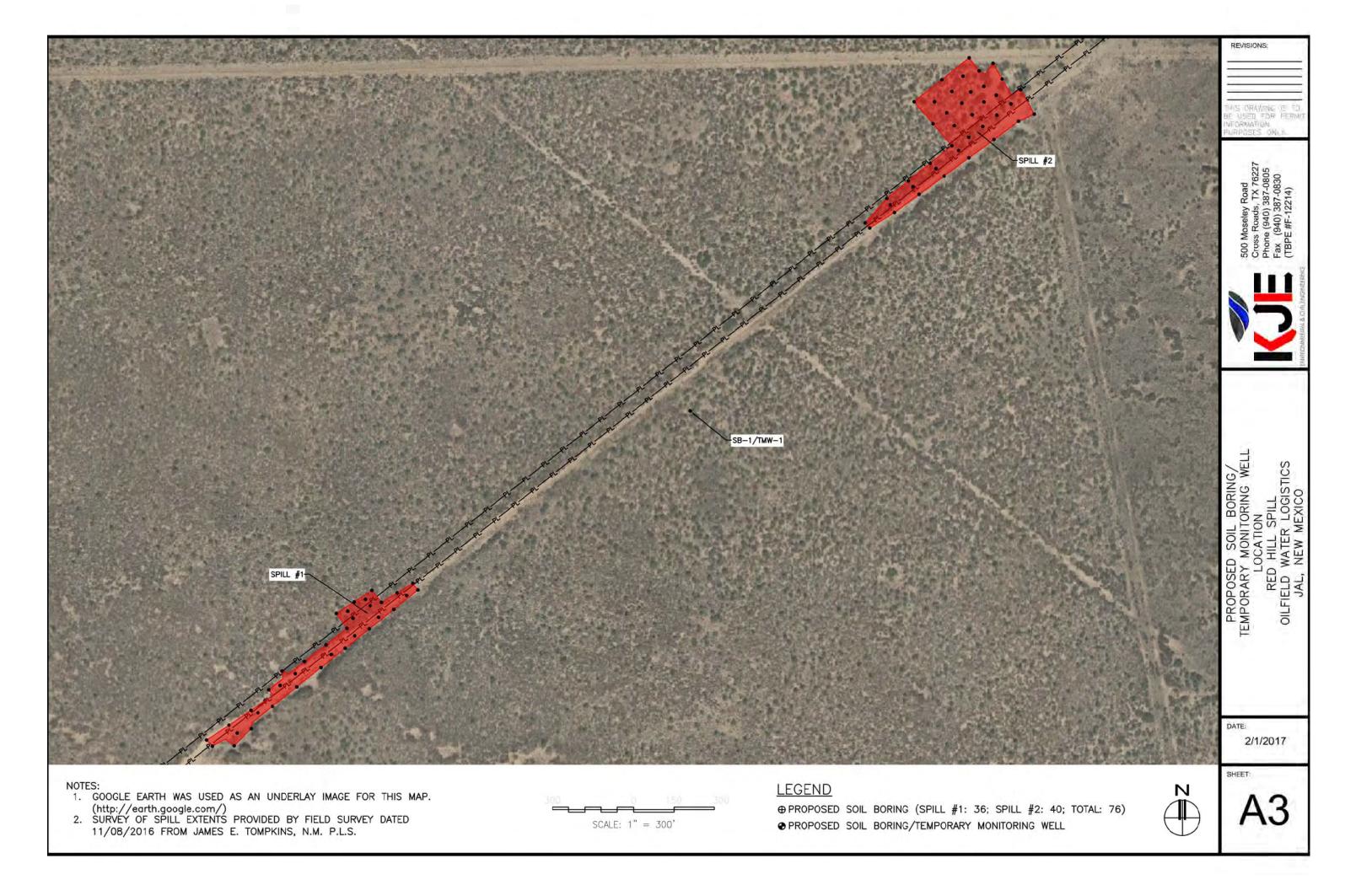


Method 8015 extended range (GRO+DRO+MRO; C6 thru C36), Total Dissolved Solids (TDS) by Method 2540, pH by Method 9040, major anions and cations including chloride and sulfate by Method 9056, dissolved iron and manganese by Method 6010. The proposed location of the soil boring is shown on Figure A3 in Appendix A. The proposal and associated workplan is included in Appendix F for your review. If groundwater analytical results confirm that groundwater is impacted, a separate workplan will be submitted to conduct quarterly sampling for one year to monitor the affected groundwater.

If we can be of further assistance, please do not hesitate to contact us at 940-387-0805. Thank you for the opportunity to provide professional environmental consulting services. It has been a pleasure working with you.


### 8.0 Qualifications of Environmental Professional


This is to certify that the Environmental Investigation that was completed at the two produced water spill sites located approximately five miles southwest of Jal in Lea County, New Mexico were conducted using EPA, OCD, and industry-approved standards/protocols. This field work was conducted from December 5 through December 21, 2016 for OWL, and all field activities were completed under the supervision of Ms. Dena M. Vandenberg, REM, LEED AP. Mr. Ware's, Ms. Vandenberg's, Mr. Bessire's, and Mr. Fox's credentials are included in Appendix E for review.


#### 9.0 Signature of Environmental Professional

| Sanatrandenling                                             |           |
|-------------------------------------------------------------|-----------|
| 0                                                           | 2/16/2017 |
| Dena M. Vandenberg, REM, LEED AP Environmental Professional | Date      |
| Kow More                                                    | 2/16/2017 |
| Kevin J. Ware, QEP, REM Principal                           | Date      |











April 14, 2017

Tomáš 'Doc' Oberding, PhD Hydrologist, Adv-District 1 Oil Conservation Division, EMNRD

Phone: (505) 476-3403

E-Mail: tomas.oberding@state.nm.us

RE: Addendum to Remediation Plan – Oilfield Water Logistics (OWL) Produced Water Pipeline Release (Spill Delineation Report & Remediation Plan - Case Nos. 1RP 4497 & 1RP 4498)

KJ Environmental Management, Inc. (KJE) is pleased to submit the following Addendum to the Spill Delineation Report & Remediation Plan - Case Nos. 4497 & 4498, to summarize the plan of action discussed on our conference call on April 12, 2017.

Per your verbal authorization over our conference call on April 12, 2017, OWL has begun excavation of the soil in the areas where chlorides exceed 600 ppm up to a depth of four (4) feet. The affected soil is being placed on poly liner, and OWL is laying 20 mil poly sheeting in the 4-foot deep excavation to block the wicking-up of Chlorides. Trench anchors will be used to secure the poly sheeting.

No excavation will be completed of the soil located above, beneath, between, and extending ten (10) feet horizontally from the extents of the pipelines, in order to maintain structural stability of the pipelines in the spill areas.

OWL will blend the affected soil with clean native soil by either skid steer or pug mill, and KJE will collect one sample for every 20 cubic yards of blended soil to demonstrate the effectiveness of the remediation. Each sample will be field-screened with a Horiba D-73 Portable Multiparameter Chloride Meter, for chloride content. Every 10<sup>th</sup> sample will be submitted for laboratory analysis. KJE will submit to NMOCD field meter readings for the first ten (10) soil samples sent for laboratory analysis, to confirm the accuracy of the meter. After that time, NMOCD will evaluate the meter readings and the laboratory analytical results to determine the appropriateness for lessening the required frequency of sampling.

The field screening and laboratory sampling will be completed to ensure compliance with landfarm standards per Title 19, Chapter 15, Part 36.15, for landfarms where groundwater is 100 feet or more below the lowest elevation at which the operator will place oilfield waste, which states that Chloride levels may not exceed 1,000 mg/kg.

OWL will return the blended soil to the poly-lined excavation. Any additional blended soil will be used for berm construction at OWL's nearby SWD facilities.

Disturbed areas outside of the easement will be reseeded with BLM mix to reestablish growth; however, due to vegetative growth restrictions imposed by the pipeline owners, the pipeline easement will not be seeded.

Should you have any questions regarding this Amendment, please do not hesitate to contact us at your first convenience.

Sincerely,

Dena M. Vandenberg, REM, LEED AP Director of Environmental Services

#### **Heather Leven**

From: Oberding, Tomas, EMNRD <Tomas.Oberding@state.nm.us>

Sent: Tuesday, April 18, 2017 4:31 PM

**To:** Dena Vandenberg

Cc: 'Kevin Ware'; 'Prefontaine, Aaron'; Phillip Sanders; 'Nevin Bannister';

james@kjenvironmental.com

**Subject:** RE: Addendum to Remediation Plan- Case Nos. 4497 & 4498

Aloha all,

Thank you for the addendum.

Based upon the discussion and the documentation provided, the OCD approved the remediation plan.

Please keep us informed and let me know if you have further questions.

Mahalo

-Doc

Tomáš 'Doc' Oberding PhD Hydrologist, Adv-District 1 Oil Conservation Division, EMNRD (505) 476-3403

E-Mail: tomas.oberding@state.nm.us

一期一会

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

From: Dena Vandenberg [mailto:dena@kjenvironmental.com]

Sent: Monday, April 17, 2017 3:53 PM

To: Oberding, Tomas, EMNRD < Tomas. Oberding@state.nm.us>

**Cc:** 'Kevin Ware' <kevin@kjenvironmental.com>; 'Prefontaine, Aaron' <Aaron.Prefontaine@yorkrsg.com>; Phillip Sanders cpsanders@oilfieldwaterlogistics.com>; 'Nevin Bannister' <nbannister@oilfieldwaterlogistics.com>; james@kjenvironmental.com

Subject: Addendum to Remediation Plan- Case Nos. 4497 & 4498

Good afternoon, Doc!

Attached is the Addendum to the Remediation Plan for OWL (Case Nos. 4497 & 4498). Please let me know if you have any questions. Thank you!



DENA M. VANDENBERG, REM, LEED AP

Director of Environmental Services
500 Moseley Road Cross Roads, Texas 76227

M (214)364-7627 O (940)387-0805 F (940)387-0830



Cross Roads, Texas 76227 Phone: 940-387-0805 Fax: 940-387-0830

Ms. Amber Groves New Mexico State Land Office 2827 North Dal Paso, Suite 117 Hobbs, New Mexico 88260

Re: OWL SWD Operating, LLC October 28, 2016 Spill Jal, New Mexico 1RP 4497

At the SLO's request, in an effort to "achieve native plant cover and diversity levels equal to or exceeding the natural potential levels in undisturbed soils adjacent to the project area", OWL will comply with the following Revegetation and Noxious Weed Plan.

#### Revegetation and Noxious Weed Plan

OWL, or their contractor, will broadcast apply BLM mix No. 2, for sandy soil, on the remediation area outside of the road right-of-way. The mix will be modified to replace the Lovegrass and will include Sand Dropseed, Plains Bristlegrass, and Sideoats Grama. The seed mix will be applied at the rate specified by the supplier (8 lbs of seed/acre; consisting of 2 lbs Sand Dropseed, 2 lbs Sideoats Grama, and 4 lbs Plains Bristlegrass). A certification of purity from Curtis & Curtis, Inc. is being submitted concurrently with this Plan for your review. OWL will complete a one-time watering with a water truck to help establish growth, if a sufficient rainfall event is not forecast within 72 hours after application. The site will be monitored on a monthly basis to visually assess the establishment of growth and the absence of noxious weeds. The seed mix will contain no primary or secondary noxious weeds; however, if noxious weeds are observed during the monitoring events, the weeds will be mechanically removed. Pictures will be taken for documentation of the monitoring. If no growth is present after one year, the site will be reseeded and monitored until revegetation is achieved. A final report will be submitted once revegetation is complete, which will document the seeding and monitoring efforts and will include pictures of the seeding process, monitoring efforts, and revegetated area.

If we can be of further assistance, please do not hesitate to contact us at 940-387-0805. We look forward to proceeding with the remediation efforts and site closure.

Regards,

Dena M. Vandenberg, REM, LEED AP Director of Environmental Services

Kevin J. Ware, QEP, REM

Principal

# Curtis & Curtis, Inc.

4500 N. Prince St.
PHONE (575) 762-4759 / FAX (575) 763-4213
seed@curtisseed.com
www.curtisseed.com

**CLOVIS, NEW MEXICO 88101** 

GRASS SEED SPECIALISTS

YARD AND PLAYGROUND GRASSES GOLF COURSE GRASSES ALFALFA / CLOVERS FORAGES

MOUNTAIN PASTURE GRASSES NATIVE PASTURE GRASSES SORGHUMS

# **SUBMITTAL**

November 16, 2017

3.5 Acre Modified BLM #2

To Whom It May Concern:

IRRIGATED PASTURE GRASSES

Curtis & Curtis, Inc certifies that each container of seed is mixed and labeled in accordance with the Federal Seed Act and is at least equal to the requirements indicated below.

|                                   |          |       |                 | Germ &         |   |        |
|-----------------------------------|----------|-------|-----------------|----------------|---|--------|
| <u>Kind</u>                       | Origin   | Lot # | <b>Purity</b> X | <b>Dormant</b> | = | PLS %  |
| Sand Dropseed<br>Not Stated       | Colorado | 19557 | 99.44%          | 90.00%         |   | 89.50% |
| Sideoats Grama<br>El Reno         | Texas    | 18990 | 85.69%          | 98.00%         |   | 83.98% |
| Plains Bristlegrass<br>Not Stated | Oklahoma | 19495 | 90.60%          | 98.00%         |   | 88.79% |

Sincerely,

yler Stuemky

temy

# CURTIS & CURTIS, INC.

4500 North Prince, Clovis, New Mexico 88101 PH: 575-762-4759 FAX: 575-763-4213

Irrigated Pasture Grasses Mountain Pasture Grasses Native Pasture Grasses

KJ Environmental

TO:

Yard and Playground Grasses Golf Course Grasses Alfalfa/Clovers

November 16, 2017

# PRICE QUOTATION

DATE:

| ATTENTION: | Dena                     | SALESPERSON:   | Tyler Stuemky |        |
|------------|--------------------------|----------------|---------------|--------|
| PHONE:     | 940-387-0805             | SHIPPING DATE: | As Directed   |        |
| EMAIL:     | dena@kjenvironmental.com | FOB:           | Clovis        |        |
| PROJECT:   | 3.5 Acre Modified BLM #2 | TERMS:         | TBD           |        |
|            | DESCRIPTION              | PRICE          | AMOUNT        | ====== |
|            | ed BLM #2:               | \$100.00/Acre  | \$350.00      |        |
|            | ndcast Rates*** ON NAME  | BOTANICAL NAME | PLS/ACRE      |        |

| Sand Dropseed       | Sporobolus cryptandrus | 2.0 |
|---------------------|------------------------|-----|
| Sand Lovegrass      | Bouteloua curtipendula | 2.0 |
| Sub. Sideoats Grama | _                      |     |
| Plains Bristlegrass | Setaria leucopila      | 4.0 |

# \*\*\*THIS QUOTE IS GOOD FOR 10 DAYS\*\*\* \*\*\*ALL PRICES SUBJECT TO AVAILABILITY\*\*SUBJECT TO BEING UNSOLD\*\*\*

Here is our quotation on the goods named, subject to the conditions noted:

The prices and terms on this quotation are not subject to verbal changes or other agreements unless approved in writing by the Home Office of the Seller. All quotations and agreements are contingent upon strikes, accidents, fires, availability of materials and all other causes beyond our control. Prices are based on costs and conditions existing on date of quotation and are subject to change by the Seller before final acceptance.

Typographical and stenographic errors are subject to correction. Purchaser agrees to accept either overage or shortage not in excess of ten percent to be charged for prorata. Purchaser assumes liability for patent and copyright infringement when goods are made to Purchaser's specifications. When quotation specifies material to be furnished by the purchaser, ample allowance must be made for reasonable spoilage and material must be of suitable quality to facilitate efficient production. Conditions not specifically stated herein shall be governed by established trade customs. Terms inconsistent with those stated herein, which may appear on Purchaser's formal order will not be binding on the Seller.

#### THIS AGREEMENT IS BETWEEN:

| Buyer: | Date: | Seller: | Date: November 16, 2017 |
|--------|-------|---------|-------------------------|
|        |       |         |                         |