SITE INFORMATION **Report Type: Closure Report** 1RP-5023 **General Site Information:** Site: Angell B #2 Marathon Oil Company Company: Section, Township and Range Unit B Sec. 11 T 17S R 36E API No. 30-025-39076 Lease Number: County: Lea County GPS: 32.8559071° N 103.3214257º W Surface Owner: Fee Mineral Owner: State From the intersection of HWY 18 and Stiles Road, travel west on Stiles Rd for 2.4 mi, turn south Directions: onto lease road 0.15 mi, turn west onto lease road for 0.35 mile to location. Release Data: Date Released: 4/9/2018 Type Release: Oil Source of Contamination: Oil Tank Fluid Released: 11 bbls Fluids Recovered: <1 bbl **Official Communication:** Name: Callie Karrigan Clair Gonzales Marathon Oil Company: Tetra Tech Address: 5555 San Felipe Street 4000 N. Big Spring Ste Ste 401 City: Houston, TX 77056 Midland, Texas Phone number: (575) 297-0956 (432) 687-8110 Fax: Email: cnkarrigan@marrathonoil.com Clair.Gonzales@tetratech.com

Ranking Criteria Depth to Groundwater: Ranking Score Site Data <50 ft 20 48' 50-99 ft 10 >100 ft. 0 WellHead Protection: Ranking Score Site Data Water Source <1,000 ft., Private <200 ft. 20 Water Source >1,000 ft., Private >200 ft. 0 0 Surface Body of Water: Ranking Score Site Data <200 ft. 20 200 ft - 1,000 ft. 10 >1,000 ft. 0 0 Total Ranking Score: 20 Acceptable Soil RRAL (mg/kg) Total BTEX Benzene TPH 10 50 100

July 3, 2018

NMOCD approves 1RP-5023 for closure.

Ms. Olivia Yu Environmental Engineer Specialist Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Closure Report for the Marathon Oil, Angell B #2, Unit B, Section 11, Township 17 South, Range 36 East, Lea County, New Mexico. 1RP-5023.

Ms. Yu:

Tetra Tech, Inc. (Tetra Tech) was contacted by Marathon Oil (Marathon) to remediate a spill from Angell B #2, Unit B, Section 11, Township 17 South, Range 36 East, Lea County, New Mex (site). The spill site coordinates are N 32.8559071°, W 103.3214257°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on April 9, 2018, and released approximately eleven (11) barrels of oil from an oil tank. Less than one barrel of oil was recovered. The release occurred around the base of the tank and impacted an area measuring approximately 20' x 30'. The initial C-141 form is included in Appendix A.

Groundwater

No water wells were listed in Section 11 on the New Mexico Office of the State Engineer's (NMOSE) database, the USGS National Water Information System, or the Geology and Ground-Water Conditions in Southern Lea County, New Mexico (Report 6). The nearest well is listed in Section 12 on the NMOSE database, approximately 0.9 miles southwest of the site, with a reported depth to groundwater of 48 feet below surface. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in the area is less than 50 feet below surface. The groundwater data is included in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene,

ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 100 mg/kg.

Soil Assessment and Analytical Results

On May 15, 2018, Tetra Tech personnel were onsite to evaluate and sample the release area. A total of three (3) auger holes (AH-1, AH-2, and AH-3) were installed in the release area around the oil tank to total depths of 0-1' below surface. Deeper samples were not collected due to a dense formation in the area. The samples were submitted to the laboratory for analysis of TPH by EPA method 8015 extended, BTEX by EPA method 8021B, and chlorides by EPA method 300.0. Copies of the laboratory results and chain-of-custody documentation are included in Appendix C. The laboratory results are summarized in Table 1. The auger hole locations are shown in Figure 3.

Referring to Table 1, all of the samples collected showed elevated TPH concentrations of 18,000 mg/kg (AH-1), 20,100 mg/kg (AH-2), and 23,600 mg/kg (AH-3). None of the samples collected showed benzene concentrations above 10 mg/kg. However, the area of auger hole (AH-2) showed a total BTEX concentration above the RRAL of 90.9 mg/kg. The areas of auger holes (AH-1 and AH-3) did not show total BTEX concentrations above the RRALs. The areas of auger holes (AH-1, AH-2, and AH-3) showed chloride concentrations of 2,860 mg/kg, 8,260 mg/kg, and 565 mg/kg, respectively. The hydrocarbon and chloride impact was not vertically defined in all areas.

Remediation Activities

After the sampling event, the failed oil tank was removed for replacement. Remediation activities were scheduled prior to the new tank installation to ensure access for proper removal of the impacted soils. Tetra Tech was onsite on June 27, 2018, to supervise the excavation of the release area prior to the new tank installment.

The release area was excavated to 2.0' below surface. One bottom hole (Bottom Hole #1) and four sidewall samples (North Sidewall, South Sidewall, West Sidewall, and East Sidewall) were collected to ensure proper removal of the impacted soils. The samples were submitted to the laboratory for analysis of TPH by EPA method 8015 extended, BTEX by EPA method 8021B, and chlorides by EPA method 300.0. Copies of the laboratory results and chain-of-custody documentation are included in Appendix C. The laboratory results are summarized in Table 1. The confirmation sample locations are shown in Figure 4.

Referring to Table 1, all of the confirmation samples collected showed TPH, benzene, and total BTEX concentrations below the laboratory reporting limits. Additionally, the chloride concentrations detected were below the 600 mg/kg threshold. Once the excavation was completed, the area was backfilled with clean material to surface grade, and the excavated material was hauled for proper disposal.

Conclusions and Recommendations

Based on the soil assessment and remediation work performed at the site, Marathon requests closure of this spill. The final C-141 is enclosed in Appendix A. If you have any questions or comments concerning the assessment or the remediation activities for this site, please call at (432) 682-4559.

Respectfully submitted, TETRA TECH

Clair Clongalos

Clair Gonzales, Project Manager

cc: Callie Karrigan - Marathon

Figures

Mapped By: Isabel Marmolejo

Date Saved: 7/2/2018 1:27:31 PM User: misti.morgan Path: H:\GIS\212C-MD-01214 Marathon Angell B #2\212C-MD-01214 Topo Map Fig. 2.mxc

Drawn By: MISTI MORGAN

Tables

Table 1 Marathon Angell B #2 Lea County, New Mexico

	Sample	Sample	BEB	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	Sample Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	5/15/2018	0-1	-		Х	1,430	16,100	422	18,000	<0.0992	5.19	19.8	20.8	45.8	2,860
AH-2	5/15/2018	0-1	-		Х	2,480	17,200	372	20,100	<0.200	8.33	39.8	42.8	90.9	8,260
AH-3	5/15/2018	0-1	-		Х	592	22,400	566	23,600	0.0796	2.40	6.36	6.68	15.5	565
Bottom Hole #1	6/27/2018	0-0.5	2.0	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	571
North Sidewall	6/27/2018	0-1	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	15.8
South Sidewall	6/27/2018	0-1	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	34.5
West Sidewall	6/27/2018	0-1	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	35.6
East Sidewall	6/27/2018	0-1	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	278

Below Excavation Bottom

Excavated & Removed

Photos

Marathon Oil Permian, LLC. Angell B #2 Lea County, New Mexico

View North - Release Area

View North – Release Area

Marathon Oil Permian, LLC. Angell B #2 Lea County, New Mexico

View East – Release Area

View South - Excavated Area

Marathon Oil Permian, LLC. Angell B #2 Lea County, New Mexico

View East – Excavated Area

Appendix A

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Release Notification and Corrective Action

	OPERATOR	Initial Report		Final Report
Name of Company Marathon Oil Permian LLC	Contact Callie Karrigan			
Address 5555 San Felipe Street, Houston, Texas 77056	Telephone No. 405-202-1028 (c	ell) 575-297-0956 (offi	ce)	
Facility Name: Angell B No. 2	Facility Type Oil and gas produce	ction facilities		

Surface: Owner: state	Mineral: Owner: state	API No. : 30-025-39076

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
В	11	17S	36	330	Ν	1650	E	Lea

Latitude 32.8559071 Longitude -103.3214257

NATURE OF RELEASE

Type of Release: oil		Volume of Release: 11 bbls	Volume Re	ecovered: <1 bbls
Source of Release: oil tank		Date and Hour of Occurrence	Date and H	lour of Discovery
		unknown	04/09/2018	3 4:00 pm
Was Immediate Notice Given?		If YES, To Whom?		
	Yes 🗌 No 🗌 Not Required	Olivia Yu and Ryan Mann		
By Whom? Callie Karrigan		Date and Hour 04/10/2018 3:34 pm	1	
Was a Watercourse Reached?		If YES, Volume Impacting the Wat	tercourse.	
	🗌 Yes 🖾 No			
If a Watercourse was Impacted, D	escribe Fully.*			
Not applicable.				
Describe Cause of Problem and R	emedial Action Taken.*			
Operator was onsite conducting d	aily rounds and observed oil pooling arou	and the base of the oil tank. Operator	immediately	dispatched a hauling company
to pull remaining contents of tank	. Approximately 11 barrels of oil was rele	eased and verified by gauge sheets. T	The tank is cur	rrently isolated.
Describe Area Affected and Clear	up Action Taken.*			
The pooling and staining is around	d the base of the tank in a $4x8$ area with a	an additional 1.5x3 area. The tank em	ptied and iso	lated. Tetratech will assess the
spill and develop a clean-up plan	to be submitted to the NMOCD for appro-	oval.		
I hereby certify that the information	on given above is true and complete to the	e best of my knowledge and understa	and that nursu	ant to NMOCD rules and
regulations all operators are requi	red to report and/or file certain release no	otifications and perform corrective ac	tions for relea	ases which may endanger
public health or the environment.	The acceptance of a C-141 report by the	NMOCD marked as "Final Report"	does not relie	ve the operator of liability
should their operations have failed	to adequately investigate and remediate	contamination that pose a threat to g	ground water,	surface water, human health
or the environment. In addition, I	MOCD acceptance of a C-141 report do	bes not relieve the operator of response	sibility for con	mpliance with any other
federal, state, or local laws and/or	regulations.			
- 77 / /		OIL CONSERV	VATION I	DIVISION
Callie Karrigan				
Signature:				
Drinted Names Callie Karrison	A	Approved by Environmental Specialis	st:	
Printed Name: Came Karrigan				
Title: HES Professional	A	Approval Date:	Expiration D	ate:
			•	
E-mail Address: cnkarrigan@mar	athonoil.com C	Conditions of Approval:		
D / 04/17/0010				Attached
Date: $04/17/2018$	207.0055 (
Phone: 405-02-1028(cell) 5/5-	297-0950 (Office)			

* Attach Additional Sheets If Necessary

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

	OPERATOR	Initial Report	Final Report
Name of Company Marathon Oil Permian LLC.	Contact Callie Karrigan		
Address 5555 San Felipe St., Houston, TX 77056	Telephone No. (575) 297-0956		
Facility Name Angell B #2	Facility Type Production Facility	y	

Surface Owner: Fee	Mineral Owner State	API No. 30-025-39076

LOCATION OF RELEASE

Unit Letter Section	1 Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
B 11	17S	36E	330	Ν	1650	E	Lea

Latitude N 32.8559071° Longitude W 103.3214257°

NATURE OF RELEASE

Type of Release: Oil	Volume of Release 11 bbls	Volume Recovered <1 bbls					
Source of Release: Oil Tank	Date and Hour of Occurrence	Date and Hour of Discovery					
	Unknown	04/09/2018 4:00 pm					
Was Immediate Notice Given?	If YES, To Whom?						
🛛 Yes 🗌 No 🗌 Not Required	Olivia Yu, NMOCD and Ryan Ma	ann SLO					
By Whom? Callie Karrigan	Date and Hour 04/10/2018 3:34 pm	n					
Was a Watercourse Reached?	If YES, Volume Impacting the Wate	ercourse.					
🗌 Yes 🖾 No	N/A						
If a Watercourse was Impacted, Describe Fully.* N/A	APPROVED						
	By Olivia Yu at 8:58	3 am, Sep 13, 2018					
Describe Cause of Problem and Remedial Action Taken.*							
An oil tank failed, resulting in the release of 11 bbls of oil. The remaining contents in the tank were removed to prevent any further impact to the surrounding soils.							
Describe Area Affected and Cleanup Action Taken.*							

Tetra Tech inspected site and collected samples to define spills extent. Soil that exceeded RRAL was removed and hauled away for proper disposal. Site was then brought up to surface grade with clean backfill material. Tetra Tech prepared closure report and submitted to NMOCD for review.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

	OIL CONSERVATION I	DIVISION
Signature:	dry	
Printed Name: Clair Gonzales	Approved by District Supervisor:	
Title: Project Manager	Approval Date: 9/13/2018 Expiration D	Date: XX/XX/XXXX
E-mail Address: Clair.Gonzales@tetratech.com	Conditions of Approval:	Attached
Date: Phone: (432) 682-4559		

* Attach Additional Sheets If Necessary

Appendix B

Water Well Data Average Depth to Groundwater (ft) Angell B #2 Lea County, New Mexico

	16 So	outh	35	East	
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	17 \$	South		35 East	t
6	5	4	3	2	1
					50
7	8	9	10	11	12
18	17	16	15	14	13
40	55				
19	20	21	22	23	24
85	60				
30	29	28	27	26	25
83		70			
31	32	33	34	35	36
106		63	56	40	50

		18 Sc	outh	35	East	
6	89	5 <mark>69</mark>	4 SITE	3 <mark>62</mark>	2 55	1
	Buc	keye	58		51	
7		8	9 72	10	11 59	12
85				49	48	
18		17 90	16	15	14	13
90		124	75		90	135
19	74	20 85	21	22	23	24
70		50		70		
30		29	28	27	26	25
		95		68	60	
31		32	33	34	35	36
		58	80		58	

	16 Sc	outh	36		
6	5	4	3	2	1
7	⁸ Lo	Angtor	1 ¹⁰	11	12
18	17	16	15	14	13
54					
19	20	21	22 <mark>63</mark>	23 <mark>70</mark>	24
	70	70	63	61	55
30	29	28	27	26	25
82				63	68
31	32	33	34	35	36
74	65			41	60

	17 S	South	36		
6	5	4	3	2 <mark>60</mark>	1 <mark>83</mark>
50	120	65	60	69	74
7	8	9	10 43	<mark>11</mark>	12 44
			43	Site	46
18	17	16	15	14	13
				48	
19	20	21	22	23	24
30	29	28 4(27	26	25
31	32	33	34	35	36

		18	So	36	Ea	st					
6		5	35	4	65	3		2	60	1	50
45											
7	65	8		9	85	10		11		12	
								38		40	
18		17		16		15		14		13	
25						53		55			
19		20		21		22		23		24	
		59		58		60		39		28	
30		29		28		27		26		25	
		55		45		55		55		62	
31		32		33		34		35		36	
						70					

	16 Se	outh	37		
6	5	4	3	2	1
7 66	8	9	10	11 <mark>80</mark>	12
18	17	16	15	14	13
19 <mark>55</mark> 82	20 44	21 50	22	23	24
30 <mark>52</mark>	29 44	28 <mark>34</mark>	27 <mark>73</mark>	26	25 70
31 Site 53	32 <mark>38</mark>	33 60	34 60	35	36

	17 Sc	outh	37		
6 75	5 <mark>57</mark>	4 40	3 <mark>60</mark>	2	1
	62		55	67	51
7	8	9	10 <mark>70</mark>	11	12
65	50	42	64		
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	18 Sc	outh	37	East	
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

- 88 New Mexico State Engineers Well Reports
- 105 USGS Well Reports
- 90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level
- 143 NMOCD Groundwater map well location

(A CLW##### in the

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD replaced, O=orphan C=the fil	has beer ned, e is	(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) (In feet)													
	closed)	POD	(գւ	iarte	ers a	are	small	est to I	argest)	(NAD8	3 UTM in meters	5)	(III leet)			
		Sub-		Q	Q	Q								Water		
POD Number <u>L 00373</u>	Code	basin L	County LE	64 4	16 4	4 4	Sec 18	Tws 17S	Rng 36E	X 651019	Y 3633420* 🥌	DepthWellDe 120	pthWater	Column		
<u>L 00374</u>		L	LE	3	1	1	35	17S	36E	656116	3629884* 🧉	120				
<u>L 00375</u>		L	LE	1	4	4	17	17S	36E	652432	3633650* 🧉	100				
<u>L 00376</u>		L	LE	1	3	3	34	17S	36E	654527	3628843* 🌍	90				
<u>L 00377</u>		L	LE	2	1	4	27	17S	36E	655498	3630879* 🌍	100				
<u>L 00378</u>		L	LE	1	3	1	27	17S	36E	654487	3631269* 🌍	100				
<u>L 00379</u>		L	LE	1	2	1	12	17S	36E	658031	3636570* 🌍	110				
<u>L 00380</u>		L	LE	1	4	1	10	17S	36E	654811	3636117 🌍	90				
<u>L 00380</u>	R	L	LE	1	4	1	10	17S	36E	654811	3636117 🌍	90				
<u>L 00381</u>		L	LE	1	4	1	08	17S	36E	651586	3636052* 🧉	110				
<u>L 01227 POD1</u>		L	LE		1	3	28	17S	36E	652985	3630739* 🌍	94	40	54		
<u>L 01584 POD1</u>		L	LE		2	1	01	17S	36E	658107	3638083* 🌍	110	48	62		
<u>L 01629</u>	R	L	LE			4	33	17S	36E	654023	3628931* 🌍	125	33	92		
L 01629 POD2		L	LE	1	1	4	33	17S	36E	652858	3628151 🧉	100				
<u>L 01629 S</u>		L	LE	4	3	3	33	17S	36E	653116	3628615* 🌍	100				
<u>L 01629 82</u>		L	LE	3	2	3	33	17S	36E	653312	3629027* 🌍	120	54	66		
<u>L 01630</u>	R	L	LE	1	1	3	33	17S	36E	652909	3629220* 🧉	120	80	40		
<u>L 01713</u>		L	LE		1	1	01	17S	36E	657703	3638076* 🌍	150	72	78		
<u>L 01716</u>		L	LE	1	1	4	02	17S	36E	656808	3637357* 🧉	145	50	95		
<u>L 01723</u>		L	LE	1	1	3	05	17S	36E	651164	3637252* 🧉	162	120	42		
<u>L 01723 S</u>		L	LE	4	2	3	05	17S	36E	651767	3637060* 🌍	162	86	76		
<u>L 01723 82</u>		L	LE	1	2	3	05	17S	36E	651567	3637260* 🧉	140	120	20		
<u>L 01723 S3</u>		L	LE	2	1	4	05	17S	36E	652170	3637268* 🍯	140	118	22		
<u>L 01724</u>		L	LE			2	03	17S	36E	655492	3637835* 🌍	146	80	66		
<u>L 01724 S</u>		L	LE	3	4	2	03	17S	36E	655593	3637539* 🍯	135	85	50		
<u>L 01724 S2</u>		L	LE			1	02	17S	36E	656298	3637848* 🤤	140	128	12		
<u>L 01724 S3</u>		L	LE	2	1	3	02	17S	36E	656201	3637343* 🌍	140	125	15		
<u>L 01919</u>	R	L	LE	1	1	2	29	17S	36E	652063	3631626* 🤤	135	31	104		
<u>L 01919 S</u>		L	LE	2	2	2	29	17S	36E	652667	3631634* 🍯	225	110	115		
<u>L 02119</u>		L	LE	1	4	3	01	17S	36E	658024	3636973* 🌍	130				
<u>L 02199</u>		L	LE		4	4	14	17S	36E	657369	3633640* 🍯	110	45	65		
<u>L 02205</u>		L	LE		2	2	12	17S	36E	658939	3636485* 🍯	110	45	65		
<u>L 02331</u>		L	LE		4	4	01	17S	36E	658933	3636888* 🥶	105	48	57		

http://nmwrrs.ose.state.nm.us/nmwrrs/ReportProxy?queryData=%7B%22report%22%3A... 6/29/2018

<u>L 02413</u>	L	LE		4	4	02	17S	36E	657318	3636861* 🌍	90	90	0
<u>L 02426</u>	L	LE		4	4	02	17S	36E	657318	3636861* 🌍	115	48	67
<u>L 02480</u>	L	LE		1	2	02	17S	36E	656897	3638063* 🌍	130	58	72
<u>L 02481</u>	L	LE	4	4 4	2	02	17S	36E	657405	3637566* 🌍	150	76	74
<u>L 02508</u>	L	LE	2	2 2	2	01	17S	36E	659013	3638194* 🌍	120	40	80
<u>L 02566</u>	L	LE	3	33	3	25	17S	36E	657723	3630314* 🌍	110	40	70
<u>L 02984</u>	L	LE		1	1	10	17S	36E	654502	3636414* 🌍	125	45	80
<u>L 03086</u>	L	LE		1	1	25	17S	36E	657804	3631628* 🌍	122	60	62
<u>L 03194</u>	L	LE		4	3	25	17S	36E	658227	3630422* 🌍	120	40	80
<u>L 03577</u>	L	LE				26	17S	36E	656813	3630992* 🌍	160	60	100
<u>L 03676</u>	L	LE		4	2	02	17S	36E	657306	3637667* 🌍	75	68	7
<u>L 03882</u>	L	LE		3	1	14	17S	36E	656147	3634430* 🌍	120	57	63
<u>L 04171</u>	L	LE		4	1	18	17S	36E	650102	3634311* 🌍	128	128	0
<u>L 04549</u>	L	LE		1	2	20	17S	36E	652137	3633140* 🌍	121	48	73
<u>L 04570</u>	L	LE	1	1 3	2	29	17S	36E	652070	3631223* 🌍	106	85	21
<u>L 04570 POD2</u>	L	LE	1	1 3	2	29	17S	36E	652070	3631223* 🌍	210	58	152
<u>L 04599</u>	L	LE		2	1	20	17S	36E	651733	3633133* 🌍	128	38	90
<u>L 04601</u>	L	LE		1	1	30	17S	36E	649772	3631482* 🌍	125	50	75
<u>L 04602</u>	L	LE	2	24	3	17	17S	36E	651825	3633635* 🌍	115	45	70
<u>L 04623</u>	L	LE	1	1 1	1	31	17S	36E	649697	3629969* 🌍	135	75	60
<u>L 04640</u>	L	LE		4	4	31	17S	36E	651004	3628681* 🌍	90	50	40
<u>L 04722</u>	L	LE	3	33	3	32	17S	36E	651306	3628587* 🌍	128	65	63
<u>L 04876</u>	L	LE		4	3	29	17S	36E	651782	3630308* 🌍	130	75	55
<u>L 04936</u>	L	LE		3	1	21	17S	36E	652950	3632752* 🌍	125	55	70
<u>L 04988</u>	L	LE		1	2	01	17S	36E	658510	3638089* 🌍	195	55	140
<u>L 04988 S</u>	L	LE	3	3 2	1	01	17S	36E	658006	3637982* 🌍	182	55	127
<u>L 05161</u>	L	LE		2	4	14	17S	36E	657363	3634043* 🌍	105	36	69
<u>L 05179</u>	L	LE				16	17S	36E	653539	3634162* 🌍	120	65	55
<u>L 05181</u>	L	LE		4	1	20	17S	36E	651740	3632729* 🌍	125	75	50
<u>L 05248</u>	L	LE		1	2	32	17S	36E	652192	3629914* 🌍	118	85	33
<u>L 05281</u>	L	LE		2	4	24	17S	36E	659002	3632453* 🌍	110	52	58
<u>L 05301</u>	L	LE		1	4	31	17S	36E	650594	3629077* 🌍	101	48	53
<u>L 05361</u>	L	LE		3	3	20	17S	36E	651350	3631914* 🌍	123	90	33
<u>L 05407</u>	L	LE		4	1	19	17S	36E	650128	3632699* 🌍	108	49	59
<u>L 05413</u>	L	LE		3	3	12	17S	36E	657747	3635257* 🌍	100	48	52
<u>L 05481</u>	L	LE			2	04	17S	36E	653879	3637806* 🌍	140	115	25
<u>L 05486</u>	L	LE	2	2 3	1	01	17S	36E	657808	3637773* 🌍	225	62	163
L 05486 POD2	L	LE	2	2 1	1	01	17S	36E	657802	3638175* 🌍	232	83	149
<u>L 05616</u>	L	LE		2	3	04	17S	36E	653280	3637194* 🌍	130	65	65
<u>L 05879</u>	L	LE		4	4	10	17S	36E	655731	3635227* 🌍	120	40	80
<u>L 06077</u>	L	LE		3	3	15	17S	36E	654548	3633592* 🌍	101	40	61

<u>L 06156</u>		L	LE		2	2	21	17S	36E	654152	3633180* 🌍	115	60	55	
<u>L 06395</u>		L	LE		4	1	12	17S	36E	658138	3636069* 🌍	112	47	65	
<u>L 07042</u>		L	LE	3	4	2	03	17S	36E	655593	3637539* 🌍	100	60	40	
<u>L 07862</u>		L	LE		4	3	20	17S	36E	651754	3631922* 🌍	100	58	42	
<u>L 07907</u>		L	LE		3	2	29	17S	36E	652171	3631124* 🌍	150	45	105	
<u>L 08266</u>		L	LE	1	3	1	29	17S	36E	651264	3631206* 🌍	130	45	85	
<u>L 09342</u>		L	LE	3	4	3	20	17S	36E	651653	3631821* 🌍	138	60	78	
<u>L 09666</u>		L	LE		2	3	13	17S	36E	658170	3634055* 🌍	150			
<u>L 09892</u>		L	LE	3	1	3	06	17S	36E	649581	3637025* 🧉	135	50	85	
<u>L 09952</u>		L	LE	3	3	2	16	17S	36E	653628	3634281* 🌍	150	45	105	
<u>L 10633</u>	R	L	LE			4	13	17S	36E	659026	3637389* 🌍	209	80	129	
L 10633 POD4		L	LE	1	4	4	01	17S	36E	658832	3636987* 🌍	209	80	129	
L 10633 POD5		L	LE	2	4	4	01	17S	36E	659032	3636987* 🌍	228	120	108	
L 10633 POD6		L	LE	3	4	4	01	17S	36E	658832	3636787* 🧉	196	80	116	
<u>L 10633 S</u>	R	L	LE			4	13	17S	36E	659026	3637189* 🌍	228	120	108	
<u>L 10633 S2</u>	R	L	LE			4	13	17S	36E	659032	3636987* 🌍	196	80	116	
<u>L 10633 S3</u>		L	LE	4	4	4	01	17S	36E	659032	3636787* 🌍	188	80	108	
<u>L 10633 S4</u>		L	LE	2	4	4	01	17S	36E	659032	3636987* 🌍	204	110	94	
<u>L 11198</u>		L	LE	3	3	3	01	17S	36E	657620	3636766* 🌍	186			
L 12562 POD11		L	LE	2	4	2	01	17S	36E	658989	3637831 🧉	112	97	15	
L 12562 POD9		L	LE	1	4	4	25	17S	36E	658980	3630480 🧉	122	107	15	
<u>L 12881 POD1</u>		L	LE	2	3	2	01	17S	36E	658291	3648926 🌍	130	100	30	
<u>L 13272 POD1</u>		L	LE	2	2	3	03	17S	36E	674360	3637724 🌍	185			
<u>L 14187 POD1</u>		L	LE	3	1	3	02	17S	36E	656130	3637225 🌍	78			
<u>L 14187 POD2</u>		L	LE	3	1	3	02	17S	36E	656095	3637201 🌍	77			
<u>L 14187 POD3</u>		L	LE	3	1	3	02	17S	36E	656141	3637232 🌍	80			
L 14187 POD4		L	LE	3	1	3	02	17S	36E	656103	3637219 🌍	80			
<u>L 14207 POD1</u>		L	LE	3	3	2	01	17S	36E	658500	3637679 🌍	240	100	140	
L 14207 POD2		L	LE	2	4	1	01	17S	36E	658222	3637712 🌍	230	101	129	
<u>L 14263 POD1</u>		L	LE	4	4	4	01	17S	36E	658944	3636867 🌍	226			
<u>L 14263 POD2</u>		L	LE	4	4	4	01	17S	36E	658944	3636867 🌍	223			
L 14263 POD3		L	LE	4	4	4	01	17S	36E	658914	3638715 🌍	225			
L 14263 POD4		L	LE	4	4	4	01	17S	36E	658944	3636867 🧉	235			
L 14263 POD6		L	LE	4	4	4	01	17S	36E	658944	3636867 🌍	124			
L 14263 POD7		L	LE	3	4	4	01	17S	36E	658785	3636874 🌍	124			
L 14453 POD1		L	LE	4	1	1	26	17S	36E	656205	3631599 🧉	58	50	8	
											Average Depth to V	Vater:	69 fee	t	
											Minimum	Depth:	31 feet		
											Maximum	Depth:	128 fee	t	
Record Count: 110															
PLSS Search:															

Township: 17S Range: 36E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

6/29/18 10:08 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Appendix C

Analytical Report 586590

for Tetra Tech- Midland

Project Manager: Ike Tavarez

Marathon-Angell B #2

29-MAY-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-25), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab Code: TX00158): Texas (T104704400-18-14) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

29-MAY-18

Project Manager: **Ike Tavarez Tetra Tech- Midland** 4000 N. Big Spring Suite 401 Midland, TX 79705

Reference: XENCO Report No(s): **586590 Marathon-Angell B #2** Project Address: Lea County, New Mexico

Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 586590. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 586590 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 586590

Tetra Tech- Midland, Midland, TX

Marathon-Angell B #2

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
AH #1 (0-1')	S	05-15-18 00:00		586590-001
AH #2 (0-1')	S	05-15-18 00:00		586590-002
AH #3 (0-1')	S	05-15-18 00:00		586590-003

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Marathon-Angell B #2

Project ID: Work Order Number(s): 586590
 Report Date:
 29-MAY-18

 Date Received:
 05/18/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3051176 Inorganic Anions by EPA 300/300.1

Lab Sample ID 586649-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 586590-001, -002, -003. The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3051528 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Contact:

Project Location:

Ike Tavarez

Lea County, New Mexico

Certificate of Analysis Summary 586590

Tetra Tech- Midland, Midland, TX Project Name: Marathon-Angell B #2

Date Received in Lab:Fri May-18-18 01:30 pmReport Date:29-MAY-18Project Manager:Kelsey Brooks

Lab Id:	586590-0	001	586590-0	02	586590-0	003			
Field Id:	AH #1 (0	-1')	AH #2 (0-	-1')	AH #3 (0-1')				
Depth:									
Matrix:	SOIL		SOIL		SOIL				
Sampled:	May-15-18	00:00	May-15-18 (00:00	May-15-18	00:00			
Extracted:	May-25-18	17:00	May-25-18	17:00	May-25-18	17:00			
Analyzed:	May-26-18	12:15	May-26-18	11:58	May-26-18	11:40			
Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL			
	< 0.0992	0.0992	< 0.200	0.200	0.0796	0.0399			
	5.19	0.0992	8.33	0.200	2.40	0.0399			
	19.8	0.0992	39.8	0.200	6.36	0.0399			
	12.7	0.198	29.0	0.401	4.30	0.0798			
	8.08	0.0992	13.8	0.200	2.38	0.0399			
	20.8	0.0992	42.8	0.200	6.68	0.0399			
	45.8	0.0992	90.9	0.200	15.5	0.0399			
Extracted:	May-23-18	08:30	May-23-18 (08:30	May-23-18	08:30			
Analyzed:	May-23-18	10:13	May-23-18	10:19	May-23-18	09:55			
Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL			
	2860	25.0	8260	99.4	565	4.99			
Extracted:	May-18-18	14:00	May-18-18	14:00	May-18-18	14:00			
Analyzed:	May-20-18	12:32	May-20-18	13:03	May-20-18	13:33			
Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL			
	1430	150	2480	150	592	150			
	16100	150	17200	150	22400	150			
	422	150	372	150	566	150			
	18000	150	20100	150	23600	150			
	Lab Id: Field Id: Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL:	Lab Id: 586590-0 Field Id: AH #1 (0) Depth:	Lab Id: 586590-001 Field Id: AH #1 (0-1') Depth:	Lab Id: 586590-001 586590-00 Field Id: AH #1 (0-1') AH #2 (0-1') Depth:	Lab Id: 586590-001 586590-002 Field Id: AH #1 (0-1') AH #2 (0-1') Depth: AH #1 (0-1') AH #2 (0-1') Matrix: SOIL SOIL Sampled: May-15-18 00:00 May-15-18 00:00 Extracted: May-25-18 17:00 May-25-18 17:00 Analyzed: May-26-18 12:15 May-26-18 11:58 Units/RL: mg/kg RL mg/kg RL <<0.0992 0.0992 <0.200 0.200 5.19 0.0992 8.33 0.200 12.7 0.198 29.0 0.401 8.08 0.0992 13.8 0.200 45.8 0.0992 13.8 0.200 45.8 0.0992 90.9 0.200 45.8 0.0992 90.9 0.200 Extracted: May-23-18 08:30 May-23-18 08:30 Analyzed: May-23-18 10:13 May-23-18 10:19 Units/RL: mg/kg RL 2860 25.0 8260 99	Lab Id: 586590-001 586590-002 586590-002 Field Id: AH #1 (0-1') AH #2 (0-1') AH #3 (0 Depth: AH #2 (0-1') AH #3 (0 Matrix: SOIL SOIL SOIL SOIL Sampled: May-15-18 00:00 May-15-18 00:00 May-25-18 17:00 May-25-18 Extracted: May-25-18 17:00 May-25-18 11:58 May-26-18 Units/RL: mg/kg RL mg/kg RL mg/kg 0.0992 0.0992 <0.200	Lab Id: 586590-001 586590-002 586590-003 Field Id: AH #1 (0-1') AH #2 (0-1') AH #3 (0-1') Depth: AH #1 (0-1') AH #2 (0-1') AH #3 (0-1') Matrix: SOIL SOIL SOIL Sampled: May-15-18 00:00 May-15-18 00:00 May-15-18 00:00 Extracted: May-25-18 17:00 May-25-18 17:00 May-25-18 17:00 Analyzed: May-26-18 12:15 May-26-18 11:58 May-26-18 11:40 Units/RL: mg/kg RL mg/kg RL <d><0.092 0.0992 <0.200 0.200 0.0796 0.0399 12.7 0.198 29.0 0.401 4.30 0.0798 8.08 0.0992 13.8 0.200 6.68 0.0399 20.8 0.0992 90.9 0.200 15.5 0.0399 45.8 0.0992 90.9 0.200 15.5 0.0399 45.8 0.0992 90.9 0.200 15.5 0.0399 Extra</d>	Lab Id: 586590-001 586590-002 586590-003 Field Id: AH #1 (0-1') AH #2 (0-1') AH #3 (0-1') Depth: AH #1 (0-1') AH #2 (0-1') AH #3 (0-1') Matrix: SOIL SOIL SOIL SOIL Sampled: May-15-18 00:00 May-25-18 17:00 May-25-18 17:00 May-25-18 17:00 Analyzed: May-26-18 12:15 May-26-18 11:58 May-26-18 11:40 May-26-18 11:40 Units/RL: mg/kg RL mg/kg RL mg/kg RL -0.0992 0.0992 <0.200 0.200 0.0796 0.0399 5.19 0.0992 39.8 0.200 6.36 0.0399 12.7 0.198 29.0 0.401 4.30 0.0798 8.08 0.0992 13.8 0.200 6.68 0.0399 20.8 0.0992 42.8 0.200 15.5 0.0399 20.8 0.0992 90.9 </th <th>Lab Id: 586590-001 586590-002 586590-003 Field Id: AH #1 (0-1) AH #2 (0-1) AH #3 (0-1) Depth: Natrix: SOIL SOIL Sampled: May-15-18 00:00 May-15-18 00:00 May-15-18 00:00 Extracted: May-25-18 17:00 May-25-18 17:00 May-25-18 17:00 Analyzed: May-26-18 12:15 May-26-18 11:58 May-26-18 11:40 Units/RL: mg/kg RL mg/kg RL <d:0.0992< td=""> 0.0992 <0.200 0.200 0.0399 <d:0.0992< td=""> 0.0992 <0.200 0.0399 19.8 0.0992 39.8 0.200 6.36 0.0399 112.7 0.198 29.0 0.401 4.30 0.0798 20.8 0.0992 13.8 0.200 15.5 0.0399 45.8 0.0992 42.8 0.200 16.5 0.0399 45.8 0.0992 9.200 15.5 0.0399 45.8 0.0992<!--</th--></d:0.0992<></d:0.0992<></th>	Lab Id: 586590-001 586590-002 586590-003 Field Id: AH #1 (0-1) AH #2 (0-1) AH #3 (0-1) Depth: Natrix: SOIL SOIL Sampled: May-15-18 00:00 May-15-18 00:00 May-15-18 00:00 Extracted: May-25-18 17:00 May-25-18 17:00 May-25-18 17:00 Analyzed: May-26-18 12:15 May-26-18 11:58 May-26-18 11:40 Units/RL: mg/kg RL mg/kg RL <d:0.0992< td=""> 0.0992 <0.200 0.200 0.0399 <d:0.0992< td=""> 0.0992 <0.200 0.0399 19.8 0.0992 39.8 0.200 6.36 0.0399 112.7 0.198 29.0 0.401 4.30 0.0798 20.8 0.0992 13.8 0.200 15.5 0.0399 45.8 0.0992 42.8 0.200 16.5 0.0399 45.8 0.0992 9.200 15.5 0.0399 45.8 0.0992<!--</th--></d:0.0992<></d:0.0992<>

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Final 1.000

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clier	nt Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	atory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Project Name: Marathon-Angell B #2

Work Or	ders : 58659	0,		Project ID:						
Lab Batch	#: 3050664	Sample: 586590-001 / SMP	Batch	h: 1 Matrix: Soil						
Units:	mg/kg	Date Analyzed: 05/20/18 12:32	SU	RROGATE R	ECOVERY	STUDY				
	TPH]	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooct	tane		118	100	118	70-135				
o-Terpheny	1		44.5	50.0	89	70-135				
Lab Batch	#: 3050664	Sample: 586590-002 / SMP	Batcl	h: 1 Matrix:	Soil					
Units:	mg/kg	Date Analyzed: 05/20/18 13:03	SU	RROGATE R	ECOVERY	STUDY				
	TPH]	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
1 Chlaraget	10.000	Anarytes	129	00.0	120	70.125				
1-Chlorooct	1		128	99.8	128	70-135				
Lab Batch	#• 3050664	Sample: 586590-003 / SMP	40.4 Ratel	49.9 h• 1 Matriv	Soil	/0-135				
LaD Dattin	ma/ka	Data Analyzed: 05/20/18 13:33								
Units.	mg/kg	Date Analyzet. 05/20/16 15.55	SU	RROGATE R	ECOVERY	STUDY				
	TPH]	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes								
1-Chlorooct	tane		112	99.7	112	70-135				
o-Terpheny	l //	G L 506500.002 (0) (D	43.5	49.9	87	70-135				
Lab Batch	#: 3051528	Sample: 586590-003 / SMP	Batch	h: 1 Matrix:	Soll					
Units:	mg/kg	Date Analyzed: 05/26/18 11:40	SU	RROGATE R	ECOVERY	STUDY				
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluoro	obenzene		0.0272	0.0300	91	70-130				
4-Bromoflu	orobenzene		0.0263	0.0300	88	70-130				
Lab Batch	#: 3051528	Sample: 586590-002 / SMP	Batcl	h: 1 Matrix:	Soil					
Units:	mg/kg	Date Analyzed: 05/26/18 11:58	SU	RROGATE R	ECOVERY	STUDY				
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluoro	obenzene		0.0256	0.0300	85	70-130				
4-Bromoflu	orobenzene		0.0292	0.0300	97	70-130				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Marathon-Angell B #2

Work Or	rders: 58659	0, Samula: 586500 001 / SME) Dotal	Project ID:	Soil		
Units:	#. 5051528 mσ/kσ	Date Analyzed: 05/26/18 12:15		DDOCATE DI		OTUDY	
	ing/kg	Duce 11111/2001 05/20/10 12:15	50	KRUGATE KI			1
	BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene	•	0.0241	0.0300	80	70-130	
4-Bromoflu	orobenzene		0.0242	0.0300	81	70-130	
Lab Batch	#: 3050664	Sample: 7645050-1-BLK /	BLK Batch	h: 1 Matrix:	Solid		
Units:	mg/kg	Date Analyzed: 05/20/18 02:38	SU	RROGATE R	ECOVERY	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 Chloroost	tana	Anarytes	07.2	100	07	70.125	
o-Terpheny	1		97.2	50.0	97	70-135	
Lab Batch	<u>#• 3051528</u>	Sample: 7655506-1-BLK /	BIK Batch	30.0 h• 1 Matrix•	Solid	/0-155	
Lab Daten	π. 5051520 mg/kg	Date Analyzed: 05/26/18 02:08					
Omts.	iiig/ Kg	Date Analyzed: 05/20/10 02.00	50	RROGATE RI	ECOVERY	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0268	0.0300	89	70-130	
4-Bromoflu	orobenzene		0.0260	0.0300	87	70-130	
Lab Batch	#: 3050664	Sample: 7645050-1-BKS /	BKS Batch	h: 1 Matrix:	Solid		
Units:	mg/kg	Date Analyzed: 05/20/18 03:05	SU	RROGATE R	ECOVERY	STUDY	
	TPH I	3y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	tane		118	100	118	70-135	
o-Terpheny	1		53.0	50.0	106	70-135	
Lab Batch	#: 3051528	Sample: 7655506-1-BKS /	BKS Batch	h: 1 Matrix:	Solid		
Units:	mg/kg	Date Analyzed: 05/26/18 00:39	SU	RROGATE R	ECOVERY	STUDY	
	ВТЕХ	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0272	0.0300	91	70-130	
4-Bromoflu	orobenzene		0.0256	0.0300	85	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Marathon-Angell B #2

Work Or Lab Batch	ders : 58659 #• 3050664	0, Sample: 7645050-1-BSD / 1	RSD Batch	Project ID:	Solid								
Lab Daten	mg/kg	Date Analyzed: 05/20/18 03:32											
omts.	iiig/kg	Date Analyzed: 05/20/10 05:52	SU	RROGATE R	ECOVERY	STUDY							
	TPH I	3y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1-Chlorooct	tane		123	100	123	70-135							
o-Terpheny	1		57.9	50.0	116	70-135							
Lab Batch	#: 3051528	Sample: 7655506-1-BSD / 1	BSD Batch	a: 1 Matrix:	Solid	1							
Units:	mg/kg	Date Analyzed: 05/26/18 00:57	SU	RROGATE R	ECOVERY	STUDY							
	BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1.4-Difluor	obenzene		0.0309	0.0300	103	70-130							
4-Bromoflu	orobenzene		0.0260	0.0300	87	70-130							
Lab Batch	#: 3050664	Sample: 586189-001 S / MS	Batch	a: 1 Matrix:	Soil								
Units:	mg/kg	Date Analyzed: 05/20/18 04:26	SUI	RROGATE R	ECOVERY	STUDY							
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags						
		Analytes			[D]								
1-Chlorooct	tane		128	99.9	128	70-135							
o-Terpheny	1		52.2	50.0	104	70-135							
Lab Batch	#: 3051528	Sample: 586647-001 S / MS	B Batch	a: 1 Matrix:	Soil								
Units:	mg/kg	Date Analyzed: 05/26/18 01:13	SUI	RROGATE R	ECOVERY	STUDY							
	ВТЕХ	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1,4-Difluor	obenzene		0.0297	0.0300	99	70-130							
4-Bromoflu	orobenzene		0.0323	0.0300	108	70-130							
Lab Batch	#: 3050664	Sample: 586189-001 SD / N	ASD Batch	a: 1 Matrix:	Soil								
Units:	mg/kg	Date Analyzed: 05/20/18 04:53	SU	RROGATE R	ECOVERYS	STUDY							
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1-Chlorooct	tane		118	99.8	118	70-135							
o-Terpheny	1		48.9	49.9	98	70-135							

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Marathon-Angell B #2

Work Orders : 58659	0,		Project ID:										
Lab Batch #: 3051528	Sample: 586647-001 SD / 1	MSD Batcl	h: 1 Matrix:	Soil									
Units: mg/kg Date Analyzed: 05/26/18 01:31 SURROGATE RECOVERY STUDY													
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
1,4-Difluorobenzene		0.0275	0.0300	92	70-130								
4-Bromofluorobenzene		0.0298	0.0300	99	70-130								

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: Marathon-Angell B #2

Work Order #: 586590 Project ID:													
Analyst: ALJ	D	ate Prepar	red: 05/25/20	18			Date A	nalyzed: (05/26/2018				
Lab Batch ID: 3051528 Sample: 7655506-1	-BKS	Bate	h #: 1			Matrix: Solid							
Units: mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY			
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Analytes		[B]	[U]	נטן	[E]	Kesuit [F]	[G]						
Benzene	< 0.00200	0.0998	0.0904	91	0.100	0.0934	93	3	70-130	35			
Toluene	< 0.00200	0.0998	0.0871	87	0.100	0.0896	90	3	70-130	35			
Ethylbenzene	< 0.00200	0.0998	0.0901	90	0.100	0.0905	91	0	70-130	35			
m,p-Xylenes	< 0.00399	0.200	0.188	94	0.201	0.192	96	2	70-130	35			
o-Xylene	< 0.00200	0.0998	0.0982	98	0.100	0.103	103	5	70-130	35			
Analyst: SCM	D	ate Prepar	red: 05/23/20	18	•		Date A	nalyzed: ()5/23/2018				
Lab Batch ID: 3051176 Sample: 7645290-1	-BKS	Bate	h #: 1					Matrix: S	Solid				
Units: mg/kg		BLAN	K /BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY			
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Chloride	<5.00	250	234	94	250	234	94	0	90-110	20			

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Marathon-Angell B #2

Work Order #: 586590 Project ID:														
Analyst:	ARM	D	ate Prepar	red: 05/18/201	8	Date Analyzed: 05/20/2018								
Lab Batch ID:	: 3050664 Sample: 7645050-1	1-BKS Batch #: 1 Matrix: Solid												
Units:	mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUE	ΟY			
	TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result [C]	Blank Spike %R	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Analy	rtes		լոյ		נשן	լեյ	Kesut [F]	[0]						
Gasoline R	Range Hydrocarbons (GRO)	<15.0	1000	1000	100	1000	1030	103	3	70-135	20			
Diesel Ran	nge Organics (DRO)	<15.0	1000	1100	110	1000	1150	115	4	70-135	20			

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Marathon-Angell B #2

Work Order # : 586590						Project II):				
Lab Batch ID: 3051528	QC- Sample ID:	586647-	001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed: 05/26/2018	Date Prepared:	05/25/20)18	An	alyst: A	ALJ					
Reporting Units: mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY S	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[-]	[D]	[E]	[-]	[G]				
Benzene	<0.00201	0.100	0.0572	57	0.101	0.0681	67	17	70-130	35	X
Toluene	<0.00201	0.100	0.0556	56	0.101	0.0647	64	15	70-130	35	X
Ethylbenzene	<0.00201	0.100	0.0510	51	0.101	0.0665	66	26	70-130	35	X
m,p-Xylenes	< 0.00402	0.201	0.107	53	0.202	0.139	69	26	70-130	35	X
o-Xylene	<0.00201	0.100	0.0573	57	0.101	0.0764	76	29	70-130	35	X
Lab Batch ID: 3051176	QC- Sample ID:	586590-	003 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 05/23/2018	Date Prepared:	05/23/20)18	An	alyst: S	SCM					
Date Analyzed:05/23/2018Reporting Units:mg/kg	Date Prepared:	05/23/20 M)18 ATRIX SPIK	An E / MAT	alyst: S RIX SPI	SCM KE DUPLICA	TE REC	OVERY S	STUDY		
Date Analyzed: 05/23/2018 Reporting Units: mg/kg Inorganic Anions by EPA 300/30	Date Prepared: 00.1 Parent Sample Porent	05/23/20 M Spike)18 ATRIX SPIK Spiked Sample Result	An E / MAT Spiked Sample	alyst: S RIX SPI	SCM KE DUPLICA Duplicate Spiked Sample	TE REC Spiked Dup.	OVERY S	STUDY Control Limits	Control Limits	Flag
Date Analyzed: 05/23/2018 Reporting Units: mg/kg Inorganic Anions by EPA 300/30 Analytes	Date Prepared: 00.1 Parent Sample Result [A]	05/23/20 M Spike Added [B])18 ATRIX SPIK Spiked Sample Result [C]	An E / MAT Spiked Sample %R [D]	alyst: S RIX SPI Spike Added [E]	CM KE DUPLICA Duplicate Spiked Sample Result [F]	TE REC Spiked Dup. %R [G]	OVERY S	STUDY Control Limits %R	Control Limits %RPD	Flag
Date Analyzed: 05/23/2018 Reporting Units: mg/kg Inorganic Anions by EPA 300/30 Analytes Chloride	Date Prepared: D0.1 Parent Sample Result [A] 565	05/23/20 M Spike Added [B] 250	018 ATRIX SPIK Spiked Sample Result [C] 783	An E / MAT Spiked Sample %R [D] 87	RIX SPI Spike Added [E] 250	CM KE DUPLICA Duplicate Spiked Sample Result [F] 782	TE REC Spiked Dup. %R [G] 87	OVERY S RPD %	STUDY Control Limits %R 90-110	Control Limits %RPD 20	Flag
Date Analyzed: 05/23/2018 Reporting Units: mg/kg Inorganic Anions by EPA 300/30 Analytes Chloride Lab Batch ID: 3051176	Date Prepared: 00.1 Parent Sample Result [A] 565 QC- Sample ID:	05/23/20 M Spike Added [B] 250 586649-	018 ATRIX SPIK Spiked Sample Result [C] 783 001 S	An E / MAT Spiked Sample %R [D] 87 Ba	RIX SPI Spike Added [E] 250 tch #:	CM KE DUPLICA Duplicate Spiked Sample Result [F] 782 1 Matrix	TE REC Spiked Dup. %R [G] 87 k: Soil	OVERY S RPD %	Control Limits %R 90-110	Control Limits %RPD 20	Flag X
Date Analyzed: 05/23/2018 Reporting Units: mg/kg Inorganic Anions by EPA 300/30 Analytes Chloride Lab Batch ID: 3051176 Date Analyzed: 05/23/2018	Date Prepared: D0.1 Parent Sample Result [A] 565 QC- Sample ID: Date Prepared:	05/23/20 M Spike Added [B] 250 586649- 05/23/20	018 ATRIX SPIK Spiked Sample Result [C] 783 001 S 018	An E / MAT Spiked Sample %R [D] 87 Ba An	alyst: S RIX SPI Spike Added [E] 250 tch #: alyst: S	CM KE DUPLICA Duplicate Spiked Sample Result [F] 782 1 Matrix SCM	TE REC Spiked Dup. %R [G] 87 k: Soil	OVERY S RPD %	Control Limits %R 90-110	Control Limits %RPD 20	Flag X
Date Analyzed:05/23/2018Reporting Units:mg/kgInorganic Anions by EPA 300/30AnalytesChlorideLab Batch ID:3051176Date Analyzed:05/23/2018Reporting Units:mg/kg	Date Prepared: 00.1 Parent Sample Result [A] 565 QC- Sample ID: Date Prepared:	05/23/20 M Spike Added [B] 250 586649- 05/23/20 M	018 ATRIX SPIK Spiked Sample Result [C] 783 001 S 018 ATRIX SPIK	An E / MAT Spiked Sample %R [D] 87 Ba An E / MAT	Aalyst: S RIX SPI Spike Added [E] 250 tch #: aalyst: S RIX SPI	CM KE DUPLICA Duplicate Spiked Sample Result [F] 782 1 Matrix SCM KE DUPLICA	TE REC Spiked Dup. %R [G] 87 k: Soil TE REC	OVERY S RPD % 0 OVERY S	STUDY Control Limits %R 90-110 STUDY	Control Limits %RPD 20	Flag X
Date Analyzed: 05/23/2018 Reporting Units: mg/kg Inorganic Anions by EPA 300/30 Analytes Chloride Lab Batch ID: 3051176 Date Analyzed: 05/23/2018 Reporting Units: mg/kg Inorganic Anions by EPA 300/30 Analytes	Date Prepared: D0.1 Parent Sample Result [A] 565 QC- Sample ID: Date Prepared: 00.1 Parent Sample Result [A]	05/23/20 M Spike Added [B] 250 586649- 05/23/20 M Spike Added	018 ATRIX SPIK Spiked Sample Result [C] 783 001 S 018 ATRIX SPIK Spiked Sample Result [C]	An E / MAT Spiked Sample %R [D] 87 Ba An E / MAT Spiked Sample %R	alyst: S RIX SPI Spike Added [E] 250 tch #: alyst: S RIX SPI Spike Added	CM KE DUPLICA Duplicate Spiked Sample Result [F] 782 1 Matrix SCM KE DUPLICA Duplicate Spiked Sample Result [F]	TE REC Spiked Dup. %R [G] 87 k: Soil TE REC Spiked Dup. %R (G)	OVERY S RPD % 0 OVERY S RPD %	STUDY Control Limits %R 90-110 STUDY Control Limits %R	Control Limits %RPD 20 20 Control Limits %RPD	Flag X Flag
Date Analyzed: 05/23/2018 Reporting Units: mg/kg Inorganic Anions by EPA 300/30 Analytes Chloride Lab Batch ID: 3051176 Date Analyzed: 05/23/2018 Reporting Units: mg/kg Inorganic Anions by EPA 300/30 Analytes	Date Prepared: 00.1 Parent Sample Result [A] 565 QC- Sample ID: Date Prepared: 00.1 Parent Sample Result [A]	05/23/20 M Spike Added [B] 250 586649- 05/23/20 M Spike Added [B])18 ATRIX SPIK Spiked Sample Result [C] 783 001 S)18 ATRIX SPIK Spiked Sample Result [C]	An E / MAT Spiked Sample %R [D] 87 Ba An E / MAT Spiked Sample %R [D]	Allyst: S RIX SPI Spike Added [E] 250 tch #: alyst: S RIX SPI Spike Added [E]	CM KE DUPLICA Duplicate Spiked Sample Result [F] 782 1 Matrix CM KE DUPLICA Duplicate Spiked Sample Result [F]	TE REC Spiked Dup. %R [G] 87 k: Soil K: Soil TE REC Spiked Dup. %R [G]	OVERY S RPD % 0 OVERY S RPD %	STUDY Control Limits %R 90-110 STUDY Control Limits %R	Control Limits %RPD 20 20 Control Limits %RPD	Flag X Flag

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: Marathon-Angell B #2

Work Order # :	586590	Project ID:											
Lab Batch ID:	3050664	QC- Sample ID:	586189-	-001 S	Ba	tch #:	1 Matri	x: Soil					
Date Analyzed:	05/20/2018	Date Prepared:	05/18/20	018	Ar	nalyst: A	ARM						
Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY													
]	TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag	
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD		
Gasoline Range	Hydrocarbons (GRO)	<15.0	999	1020	102	998	939	94	8	70-135	20		
Diesel Range Or	ganics (DRO)	61.8	999	1220	116	998	1110	105	9	70-135	20		

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery $[G] = 100^{*}(F-A)/E$

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

	Relinquished b	Telinquished t							LAB USE	LAB #		comments:	Teceiving Labo	invoice to:	Project Locatio state)	Project Name:	Client Name:	F
	y: Date: Time:	y: Date: / Time:	y: Date: Time: 5/18/18 (:30			AH #3 (0-1')	AH #2 (0-1")	AH #1 (0-1')		SAMPLE IDENTIFICATION			ratory: Xenco	Tetra Tech, Inc.	n: (county, Lea County, New Mexico	Augell B # 2	Marathon	Tetra Tech, Inc.
	Received by:	Received by:	Regeliyed by:			5/15/2018	5/15/2018	5/15/2018	DATE	YEAR: 2018	SAMPLING		Sampler Signature:		Project #:		Site Manager: Ike Tav:	
	Da	Da	Thes			×	×	×	WATEF	3	MATRIX		Mike Ca		212C-N		irez	4000 N. Big 401 Midia Tel (4: Fax (4
	ate: Time:	ate: Time:	Ale: Time:			×	×	×	HCL HNO ₃ ICE None	-	PRESERVATIVE		armona		ND-01214) Spring Street, Ste and, Texas 79705 32) 682-4559 132) 682-3946
0		S	1250			1 Z	1 N X	1 N X	# CONT.	AINEF	RS N)	Y 9260	B					
Sircle) H	29	ample Te	AB U			×	×	×	TPH TX	1005 (I	Ext to	C35)	080-1	MBO)	_	=		
AND DELIVERE	ras C	mperature	SE ONLY						PAH 827 Total Met	OC als Ag	As B g As E	a Cd Cr Ba Cd C	Pb Se r Pb Se	Hg Hg				(
DFEDEX	Rush	RUS	TEMARKS:						TCLP Se RCI	mi Vol	atiles	624					ANALYSI	
UPS T	i Charge ial Repo	H: Sam	TAND			-	-		GC/MS S PCB's 80	emi. V	ol. 82	270C/62	5				S REC	
racking #	s Author rt Limits	e Day	ARD	,		-			NORM PLM (Ast	estos))						UEST	
	rized or TRRP	24 hr 41				×	×	×	Chloride Chloride General	Sul	fate	TDS	see atta	ached	list)			1
	Report	8 hr 72 t							Anion/Ca	tion B	alanc	:e				Ξ		
		hr			++	+	-	-			_					_		

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 05/18/2018 01:30:00 PM Temperature Measuring device used : R8 Work Order #: 586590 Comments Sample Receipt Checklist 2.6 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? N/A #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 05/18/2018

Checklist completed by: Ballo Tal Brianna Teel Checklist reviewed by: Mark Moak Kelsey Brooks

Date: 05/23/2018

Analytical Report 590649

for Tetra Tech- Midland

Project Manager: Ike Tavarez

Marathon- Angell B#2

212C-MD-01214

28-JUN-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-26), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab Code: TX00158): Texas (T104704400-18-15) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

28-JUN-18

Project Manager: **Ike Tavarez Tetra Tech- Midland** 4000 N. Big Spring Suite 401 Midland, TX 79705

Reference: XENCO Report No(s): **590649 Marathon- Angell B#2** Project Address: Lea County, NM

Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 590649. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 590649 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession WRAMER

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id

Bottom Hole (0"-6") 2'BEB North Side Wall South Side Wall East Side Wall West Side Wall

Sample Cross Reference 590649

Tetra Tech- Midland, Midland, TX

Marathon- Angell B#2

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	06-27-18 00:00		590649-001
S	06-27-18 00:00		590649-002
S	06-27-18 00:00		590649-003
S	06-27-18 00:00		590649-004
S	06-27-18 00:00		590649-005

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Marathon- Angell B#2

Project ID: 212C-MD-01214 Work Order Number(s): 590649 Report Date:28-JUN-18Date Received:06/27/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3054831 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:212C-MD-01214Contact:Ike TavarezProject Location:Lea County, NM

Certificate of Analysis Summary 590649

Tetra Tech- Midland, Midland, TX Project Name: Marathon- Angell B#2

Date Received in Lab:Wed Jun-27-18 04:19 pmReport Date:28-JUN-18Project Manager:Jessica Kramer

	Lab Id:	590649-001		590649-002		590649-003		590649-004		590649-005		
Analysis Requested	Field Id:	Bottom Hole (0"	-6") 2'BEB	North Side Wall		South Side Wall		East Side Wall		West Side Wall		
Analysis Requested	Depth:											
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		
	Sampled:	Jun-27-18	00:00	Jun-27-18	00:00	Jun-27-18	00:00	Jun-27-18	00:00	Jun-27-18	00:00	l
BTEX by EPA 8021B	Extracted:	Jun-27-18	17:00	Jun-27-18	17:00	Jun-27-18	17:00	Jun-27-18	17:00	Jun-27-18	17:00	
	Analyzed:	Jun-28-18	07:15	Jun-28-18	07:33	Jun-28-18	07:50	Jun-28-18	08:08	Jun-28-18 (08:26	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Benzene		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	
Toluene		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	
Ethylbenzene		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	
m,p-Xylenes		< 0.00400	0.00400	< 0.00403	0.00403	< 0.00402	0.00402	< 0.00398	0.00398	<0.00399	0.00399	
o-Xylene		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	
Total Xylenes		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	
Total BTEX		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	
TPH By SW8015 Mod	Extracted:	Jun-28-18	07:00	Jun-28-18	07:00	Jun-28-18	07:00	Jun-28-18	07:00	Jun-28-18 (07:00	
	Analyzed:	Jun-28-18	13:25	Jun-28-18	13:46	Jun-28-18	14:07	Jun-28-18	14:28	Jun-28-18	14:49	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	
Diesel Range Organics (DRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	
Oil Range Hydrocarbons (ORO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	
Total TPH		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	· · · · · · · · · · · · · · · · · · ·

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

lession bramer

Jessica Kramer Project Assistant

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	nt Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Laboration	atory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Project Name: Marathon- Angell B#2

Work Or Lab Batch	rders : 59064 #: 3054831	9, Sample: 590649-001 / SMP	Batch	Project ID: a: 1 Matrix:	212C-MD-0 Soil	01214	
Units:	mg/kg	Date Analyzed: 06/28/18 07:15	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0304	0.0300	101	70-130	
4-Bromoflu	orobenzene		0.0287	0.0300	96	70-130	
Lab Batch	#: 3054831	Sample: 590649-002 / SMP	Batch	a: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 06/28/18 07:33	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0323	0.0300	108	70-130	
4-Bromoflu	orobenzene		0.0290	0.0300	97	70-130	
Lab Batch	#: 3054831	Sample: 590649-003 / SMP	Batch	: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 06/28/18 07:50	SUI	RROGATE R	ECOVERY	STUDY	
	ВТЕХ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluor	obenzene		0.0250	0.0200	86	70.120	
4-Bromoflu	lorobenzene		0.0259	0.0300	80	70-130	
Lab Batch	#• 3054831	Sample: 590649-004 / SMP	Batch	• 1 Matrix	Soil	70-130	
Units.	mø/kø	Date Analyzed: 06/28/18 08:08	SU			STUDY	
	ing ng	Duce multiplet. 00,20,10 00.00	501	KRUGAIE R			
	ВТЕХ	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0304	0.0300	101	70-130	
4-Bromoflu	orobenzene		0.0258	0.0300	86	70-130	
Lab Batch	#: 3054831	Sample: 590649-005 / SMP	Batch	: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 06/28/18 08:26	SUI	RROGATE R	ECOVERY S	STUDY	
	ВТЕХ	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0289	0.0300	96	70-130	
4 Bromoflu	lorobenzene		0.0260	0.0200	00	70.120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Marathon- Angell B#2

Work Or Lab Batch	r ders : 590649 #: 3054940	9, Sample: 590649-001 / SMP	Batcl	Project ID: h: 1 Matrix:	212C-MD-0 Soil	01214	
Units:	mg/kg	Date Analyzed: 06/28/18 13:25	SU	RROGATE R	ECOVERY	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	tane		97.1	99.9	97	70-135	
o-Terpheny	1		51.6	50.0	103	70-135	
Lab Batch	#: 3054940	Sample: 590649-002 / SMP	Batcl	h: 1 Matrix:	: Soil		
Units:	mg/kg	Date Analyzed: 06/28/18 13:46	SU	RROGATE R	ECOVERY	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane		98.4	99.7	99	70-135	
o-Terpheny	1		51.3	49.9	103	70-135	
Lab Batch	#: 3054940	Sample: 590649-003 / SMP	Batcl	h: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 06/28/18 14:07	SU	RROGATE R	ECOVERYS	STUDY	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes					
1-Chlorooc	tane		101	99.7	101	70-135	
o-Terpheny	1		52.7	49.9	106	70-135	
Lab Batch	#: 3054940	Sample: 590649-004 / SMP	Batcl	h: 1 Matrix:	: Soil		
Units:	mg/kg	Date Analyzed: 06/28/18 14:28	SU	RROGATE R	ECOVERY	STUDY	
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane		95.9	99.9	96	70-135	
o-Terpheny	1		50.2	50.0	100	70-135	
Lab Batch	#: 3054940	Sample: 590649-005 / SMP	Batel	h: 1 Matrix	Soil		
Units:	mg/kg	Date Analyzed: 06/28/18 14:49	SU	RROGATE R	ECOVERYS	STUDY	
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane		99.2	99.6	100	70-135	
o-Terpheny	l		53.0	49.8	106	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Marathon- Angell B#2

Work Or Lab Batch	rders : 59064	9, Sample: 7657458-1-BLK /	BLK Batch	Project ID:	212C-MD-0 Solid)1214	
Units:	mg/kg	Date Analyzed: 06/27/18 23:27	SU.	RROGATE RI	ECOVERY	STUDY	
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			נען		
1,4-Difluor	obenzene		0.0288	0.0300	96	70-130	
4-Bromoflu	iorobenzene		0.0283	0.0300	94	70-130	
Lab Batch	#: 3054940	Sample: 7657513-1-BLK /	BLK Batch	h: 1 Matrix:	Solid		
Units:	mg/kg	Date Analyzed: 06/28/18 10:09	SU	RROGATE RI	ECOVERY	STUDY	
	TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane	Anarytes	01.0	100	82	70 125	
o-Terpheny			42.8	50.0	86	70-135	
Lob Botch	#• 305/831	Sample: 7657458 1 BKS /	HZ.0 BKS Batek		Solid	70-133	
Lab Dattin	mg/kg	Data Applyzed: 06/27/18 21:55	DK5 Datci				
Units:	mg/kg	Date Analyzed: 00/27/18 21.55	SU	RROGATE RI	ECOVERY	STUDY	
	BTE	A polytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4.5	1	Analytes			[2]		
1,4-Difluor	obenzene		0.0315	0.0300	105	70-130	
4-Bromoliu	#- 2054040	Complex 7657512 1 DVC /	0.0302		101 S-1:4	/0-130	
	#: 3054940	Sample: 7037313-1-BKS7	BKS Balci	n: 1 Matrix:	Solid		
Units:	mg/kg	Date Analyzed: 06/28/18 10:29	SU	RROGATE RI	ECOVERY	STUDY	
	TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane		115	100	115	70-135	
o-Terpheny	1		62.0	50.0	124	70-135	
Lab Batch	#: 3054831	Sample: 7657458-1-BSD /	BSD Batch	h: 1 Matrix:	Solid		·
Units:	mg/kg	Date Analyzed: 06/27/18 22:13	SU	RROGATE RI	ECOVERYS	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0306	0.0300	102	70-130	
4-Bromoflu	iorobenzene		0.0286	0.0300	95	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Marathon- Angell B#2

Work Or Lab Batch	ders : 59064 #: 3054940	9, Sample: 7657513-1-BSD / /	BSD Batcl	Project ID: h: 1 Matrix	212C-MD-0)1214	
Units:	mg/kg	Date Analyzed: 06/28/18 10:50	SU	RROGATE R	ECOVERY	STUDY	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooct	ane		127	100	127	70-135	
o-Terphenyl	1		63.3	50.0	127	70-135	
Lab Batch	#: 3054831	Sample: 590094-001 S / M	S Batch	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 06/27/18 22:32	SU	RROGATE R	ECOVERY	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	obenzene		0.0322	0.0300	107	70-130	
4-Bromoflu	orobenzene		0.0268	0.0300	89	70-130	
Lab Batch	#: 3054940	Sample: 590434-020 S / MS	S Batch	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 06/28/18 11:31	SU	RROGATE R	ECOVERY	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.011		Analytes	110		110	70.107	
T-Chiorooct	ane		118	99.8	118	70-135	
I oh Botoh	H. 2054921	Semula: 500004 001 SD / N	54.2	49.9	109	/0-135	
	#: 3054851	Sample: 590094-001 SD/ F	MSD Balci		: 5011		
Units:	mg/kg	Date Analyzed: 06/27/18 22:50	SU	RROGATE R	ECOVERYS	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	obenzene		0.0295	0.0300	98	70-130	
4-Bromoflue	orobenzene		0.0334	0.0300	111	70-130	
Lab Batch	#: 3054940	Sample: 590434-020 SD / N	MSD Batch	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 06/28/18 11:52	SU	RROGATE R	ECOVERY	STUDY	
	TPHI	3y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	ane		118	99.9	118	70-135	
o-Terphenyl	1		54.5	50.0	109	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: Marathon- Angell B#2

Work Order #: 590649							Proj	ject ID:	212C-MD-	01214	
Analyst: ALJ	D	ate Prepar	ed: 06/27/20	18			Date A	nalyzed:	06/27/2018		
Lab Batch ID: 3054831 Sample: 76574	58-1-BKS	Batcl	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STU	DY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00199	0.0994	0.0976	98	0.0998	0.0897	90	8	70-130	35	
Toluene	< 0.00199	0.0994	0.101	102	0.0998	0.0922	92	9	70-130	35	
Ethylbenzene	< 0.00199	0.0994	0.102	103	0.0998	0.0929	93	9	70-130	35	
m,p-Xylenes	<0.00398	0.199	0.210	106	0.200	0.192	96	9	70-130	35	
o-Xylene	< 0.00199	0.0994	0.0976	98	0.0998	0.0907	91	7	70-130	35	
Analyst: ARM	D	ate Prepar	red: 06/28/20	18	•		Date A	nalyzed:	06/28/2018		•
Lab Batch ID: 3054940 Sample: 76575	13-1-BKS	Batcl	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STU	DY	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<15.0	1000	978	98	1000	1020	102	4	70-135	20	
Diesel Range Organics (DRO)	<15.0	1000	1070	107	1000	1130	113	5	70-135	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Marathon- Angell B#2

Work Order # : 590649						Project II): 212C-N	AD-01214	ļ		
Lab Batch ID: 3054831	QC- Sample ID:	590094	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 06/27/2018	Date Prepared:	06/27/2	018	An	alyst: A	ALJ					
Reporting Units: mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE RECO	OVERYS	STUDY		
BTEX by EPA 80	21B Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Benzene	<0.00200	0.100	0.0606	61	0.0996	0.0578	58	5	70-130	35	X
Toluene	<0.00200	0.100	0.0433	43	0.0996	0.0463	46	7	70-130	35	X
Ethylbenzene	0.0158	0.100	0.0445	29	0.0996	0.0469	31	5	70-130	35	X
m,p-Xylenes	0.0441	0.200	0.0937	25	0.199	0.0913	24	3	70-130	35	X
o-Xylene	0.0553	0.100	0.0786	23	0.0996	0.0703	15	11	70-130	35	X
Lab Batch ID: 3054940	QC- Sample ID:	590434	-020 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 06/28/2018	Date Prepared:	06/28/2	018	An	alyst: A	ARM					
Reporting Units: mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE RECO	OVERY	STUDY		
TPH By SW8015	Mod Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		נטן	[E]		[6]				
Gasoline Range Hydrocarbons (GRO)	<15.0	998	888	89	999	922	92	4	70-135	20	
Diesel Range Organics (DRO)	<15.0	998	962	96	999	1010	101	5	70-135	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

	Relinquished by:	nomiquoiroa by.	Relinquished by	Relinquished by:					<						LAB #		Comments:	Heceiving Laborator		state)				Analysis Reqi
	Date: Time:	Date: Time: •	a Ciner 4/21/18 4/8pm	Date: Time:					vest side wall	AST SIDE WALL	SOUTH SIDE WALL	JORTH SIDE WALL	Dottom Hole (0-6) 2 BEB		SAMPLE IDENTIFICATION			* XAL XENCO		LEA COUNTY, NM	NCIELL B#2	ARATHON	Tetra Tech, Inc.	uest of Chain of Custody Record
ORIGINAL COP	Received by:	Heceived by:	Jawre	Received hv:					6/27/18	6/27/18	Calarlis	6/27/18	6/27/18	DATE	YEAR: 2017	SAMPLING		Sampler Signature:		Project #: 217		Site Manager: i K 1		
~	Da	Dat	ed les						×	×	×	×	×	WATE	I.R	MATRIX	Con	VIKE CAN		24- MD-0		E TAVARE	4000 N. Big 401 Midla Tel (4: Fax (4	
	te: Time:	te: [•] Time:	12 /Q	Timor					*	×	×	X	×	HCL HNO ₃ ICE None		PRESERVATIVE METHOD	INER MORH	2 MOWA/		- Ht2)(2	Spring Street, Ste and,Texas 79705 32) 682-4559 32) 682-3946	
			919						-	1 I		- 7	1	# CONT		RS	RINKY							
(Circ		Sam	L S						۲ ۲	ر. بر	۲ ۲	×	×	BTEX 8	8021B	BTE	X 8260B							
ie) (HAN	200	ple Temp	BUSE						×	×	×	x	X	ТРН ТХ ТРН 80	(1005 15M ((Ext to GRO -	C35) DRO - O	RO - N	(RO)					N
D DELIV		erature	ON L	E										PAH 82 Total Me	270C etals A	g As B	a Cd Cr P	bSe⊦	łg)		3
ERED				-							-			TCLP M	etals / olatiles	Ag As E s	la Cd Cr I	Pb Se	Hg		— Cie 0	≥		Ē
FEDE		ĪĀ						_		_				TCLP Se RCI	emi Vo	olatiles					Y	, ALY		2
× UP	ecial F	USH:	STA											GC/MS	Vol. 8	260B /	624					SIS.		é
s Tr	Зерог	Same	NDA											PCB's 8	3emi. 1082 /	608	:/UU/625					REQ		
acking	Limit	Day	GR	Ŀ	┝┤	-	_	+			-			NORM PLM (As	besto	s)					- în	UES		σ
*	s or Tl	(24 h)											Chloride		· · · ·					— ŭ	: 1		age
	RRP F	U 48	7	\vdash	$\left \right $	\rightarrow		+				\neg	-	Chloride General	Wate	ulfate er Chen	TDS nistry (se	e atta	ched li	st)		.		
	leport	hr 7						4						Anion/Ca	ation	Balanc	e							
		2 hr																						ç
			1	 		-+				\downarrow	_	_												-
Ц				[49 l	Hold xf 15					Fine	1 1 00	1			

a Tech, Inc. an way and a star and		neminquisrieu uy.	Salino uobod ba	Pelinquished by:	mike line (Pelinguished by:					WEST SIDE WA	EAST SIDE WA	SOUTH SIDE WF	NORTH SIDE WY	Bottom Hole (0"-		LAB # SAMPLE		Comments:	Heceiving Laboratory:		state) (country,	Project Incedion: ANCAELL B#2	Project Name:	Tetr	Analysis Request of Chain of Custo
IN E TAVARES IN E TAVARES NAMA USE COULS IN A COULD A COU		Date: Time:	7	Date: Time:	427/18 418pm	Date: Time:					XLL		4LC (·6") 2' BEB					6		NTY, NM			a Tech, Inc.	vdy Record
envices and base of the service of the		Peceived by:		feceived by:	Maure	Jon Mond hv:					6/27/18	6/27/18	6/27/18	81/12/	6/27/18	DATE	YEAR: 2017	SAMPLING		Sampler Signature: M		Project #: 2 \ 2 C		Site Manager:)ドモ		
AMALYSIS RECUEST AMALYSIS RECUEST Circle or Specify Method No.) Circle or Specify Method No.) The server of		Date:		Date:	Control Dalley						×	×	×	×	X	WATE SOIL HCL	R		CONNE	IKE CARM		- MD -0(24		TAVAREZ	4000 N. Big Spring 401 Midland,Te Tel (432) 682 Fax (432) 68	
ANALYSIS REQUEST		Time:		Time:	5) 0/ C						×	×	× -	X	×	ICE None # CON1	TAINE	METHOD	K MQEHDIN	CONA/		<u>.</u>			J Street, Ste xas 79705 ⊱4559 2-3946	
ANALYSIS REQUEST Circle or Specify Method No.) Circle or Specify Method No.) Circle or Specify Method No.) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TotLP Metals Ag As Ba Cd					X					ŀ	Z	2	5	2	۲	FILTER	ED (\	(/N)	2							
AND DELIVERED FEDEX UPS Tracking #:	(Circle)	(Sample)	LAB						×	×	*	х	×	BTEX 8 TPH TX	021B (1005	BTE (Ext to	X 8260E C35)	3						r
ANALYSIS RECUEST ANALYSIS RECUEST ANALYSIS RECUEST Circle or Specify Method No. TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Volatiles TCLP Volatiles TCLP Volatiles Remarks: DULV	HANDI	S.		(USE					\rightarrow	<	×	×	×	×	TPH 80 PAH 82	15M (70C	GRO -	DRO - C	RO - N	/IRO)					
RED TCLP Volatiles Characterity Reciption Image: Strand Report Limits or THRP Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Limits or THRP Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report Image: Strand Report <td>DELIVEI</td> <td></td> <td>ature</td> <td></td> <td>AJNC</td> <td>F</td> <td>H</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>Total Me TCLP M</td> <td>etais A</td> <td>g As B Ag As F</td> <td>a Cd Cr F Ba Cd Cr</td> <td>Pb Se H Pb Se</td> <td>Hg Ha</td> <td></td> <td></td> <td></td> <td></td> <td></td>	DELIVEI		ature		AJNC	F	H				-					Total Me TCLP M	etais A	g As B Ag As F	a Cd Cr F Ba Cd Cr	Pb Se H Pb Se	Hg Ha					
ARCI RCI ARKS: GC/MS Vol. 8260B / 624 STANDARD GC/MS Semi. Vol. 8270C/625 ARKS: GC/MS Semi. Vol. 8270C/625 Special Report Limits or THRP Report NORM VPS Tracking #: VPS Tacking #:	RED		2	ন					1								olatile:	S					q	AN		7
Cial Report Limits or THRP Report Tracking #: UPS Tracking #: Line Cial Report Limits or THRP Report Line Cial Report Limits or THRP Report Limits or THRP Report Limits or THRP Report Limits or THRP Rep	EDEX	L Spe		7 RUS												RCI							v	n ALYS		
Tracking #:	UPS	cial Re	h Char	H: S	STAN			_					-			GC/MS \ GC/MS S	Vol. 8 Serni.	260B / Vol. 82	624 270C/625	i				IS RI		~
King # D <th< td=""><td>Trac</td><td>port L</td><td>rges A</td><td>ame [</td><td>DAF</td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td>PCB's 8</td><td>082 /</td><td>608</td><td></td><td></td><td></td><td></td><td> \$</td><td></td><td></td><td></td></th<>	Trac	port L	rges A	ame [DAF			_			_	_				PCB's 8	082 /	608					\$			
Or THRP Chloride HRP A8 T Chloride Str Chloride Str General Water Chemistry (see attached list) Anion/Cation Balance	king #:	jmits (uthori	Jay (Ğ											PLM (As	besto	s)						EST		Pa
Homework Homew		or TR	ized	°4 h			-	_	-	+	+	-	-		-	Chloride Chloride	SI	Ilfate	TDS							ge
Öp n Anion/Cation Balance N N N N		RP Re		48 h		\square										General	Wate	er Cher	nistry (se	ee atta	ched I	ist)				-
		sport	:	г 72				-			+	+	-+		-ľ	Anion/Ca	ation	Balanc	e							
			-	ŗ					1		1			4												으
						\square	_	-		_	+	-	-	-												-

ORIGINAL COPY

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 06/27/2018 04:19:00 PM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 590649	Temperature Measuring device used: R8
Sample Rece	ipt Checklist Comments
#1 *Temperature of cooler(s)?	6.5
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	N/A
#5 Custody Seals intact on sample bottles?	N/A
#6*Custody Seals Signed and dated?	N/A
#7 *Chain of Custody present?	Yes
#8 Any missing/extra samples?	Νο
#9 Chain of Custody signed when relinquished/ received?	Yes
#10 Chain of Custody agrees with sample labels/matrix?	Yes
#11 Container label(s) legible and intact?	Yes
#12 Samples in proper container/ bottle?	Yes
#13 Samples properly preserved?	Yes
#14 Sample container(s) intact?	Yes
#15 Sufficient sample amount for indicated test(s)?	Yes
#16 All samples received within hold time?	Yes
#17 Subcontract of sample(s)?	Ν/Α
#18 Water VOC samples have zero headspace?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Brianna Teel

Date: 06/27/2018

Checklist reviewed by: Jessica Warmer

Jessica Kramer

Date: 06/28/2018

Analytical Report 590650

for Tetra Tech- Midland

Project Manager: Ike Tavarez

Angell B#2

212C-MD-01214

28-JUN-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-26), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab Code: TX00158): Texas (T104704400-18-15) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

28-JUN-18

Project Manager: **Ike Tavarez Tetra Tech- Midland** 4000 N. Big Spring Suite 401 Midland, TX 79705

Reference: XENCO Report No(s): **590650** Angell B#2 Project Address: Lea County,NM

Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 590650. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 590650 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession WRAMER

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 590650

Tetra Tech- Midland, Midland, TX

Angell B#2

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Bottom Hole (0-6") 2' BEB	S	06-27-18 00:00		590650-001
North Side Wall	S	06-27-18 00:00		590650-002
South Side Wall	S	06-27-18 00:00		590650-003
East Side Wall	S	06-27-18 00:00		590650-004
West Side Wall	S	06-27-18 00:00		590650-005

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Angell B#2

Project ID: 212C-MD-01214 Work Order Number(s): 590650 Report Date: 28-JUN-18 Date Received: 06/27/2018

Sample receipt non conformances and comments: TPH TX1005 RECEIVED IN BULK JAR

Sample receipt non conformances and comments per sample:

None

Ike Tavarez

Lea County,NM

Contact:

Project Location:

Certificate of Analysis Summary 590650

Tetra Tech- Midland, Midland, TX Project Name: Angell B#2

Date Received in Lab:Wed Jun-27-18 04:30 pmReport Date:28-JUN-18Project Manager:Jessica Kramer

	Lab Id:	590650-00	1	590650-0	02	590650-0	03	590650-0	04	590650-0	05	
Analysis Paguastad	Field Id:	Bottom Hole (0-6")) 2' BEB	North Side	Wall	South Side	Wall	East Side V	Wall	West Side V	Wall	
Analysis Kequesiea	Depth:											
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		
	Sampled:	Jun-27-18 00	:00	Jun-27-18 0	0:00	Jun-27-18 0	00:00	Jun-27-18 0	00:00	Jun-27-18 0	0:00	
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-27-18 17	:00	Jun-27-18 1	7:00	Jun-27-18 1	7:00	Jun-27-18 1	7:00	Jun-27-18 1	7:00	
	Analyzed:	Jun-27-18 20	:18	Jun-27-18 2	0:23	Jun-27-18 2	0:28	Jun-27-18 2	0:34	Jun-27-18 2	0:39	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		571	4.99	15.8	4.92	34.5	4.97	35.6	4.95	278	4.98	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

lession bramer

Jessica Kramer Project Assistant

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clier	nt Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	atory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

BS / BSD Recoveries

Project Name: Angell B#2

Work Order	#: 590650								Proj	ect ID:	212C-MD-0	01214	
Analyst:	SCM		Da	ate Prepar	ed: 06/27/201	18			Date A	nalyzed: (06/27/2018		
Lab Batch ID:	3054858 S	Sample: 7657472-1-	BKS	Batch	n#: 1					Matrix: S	Solid		
Units:	mg/kg			BLAN	K/BLANK	SPIKE / 1	BLANK S	SPIKE DUPI	LICATE	RECOV	ERY STUI	DY	
Inorga	nnic Anions by EPA	300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analy	tes			լոյ		[D]	[E]	Kesut [F]	[0]				
Chloride			<5.00	250	238	95	250	238	95	0	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Angell B#2

Work Order # :	590650						Project II	D: 212C-N	MD-0121	4		
Lab Batch ID:	3054858	QC- Sample ID:	590390	-021 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed:	06/27/2018	Date Prepared:	06/27/2	2018	Ar	nalyst: S	SCM					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	'RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample Bosult [F]	Spiked Dup. %P	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	[B]	[C]	/0K [D]	[E]	Kesuit [F]	[G]	70	70K	70KI D	
Chloride		613	248	803	77	248	804	77	0	90-110	20	X
Lab Batch ID:	3054858	QC- Sample ID:	590390	-026 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed:	06/27/2018	Date Prepared:	06/27/2	2018	Ar	nalyst: S	SCM					
Reporting Units:	mg/kg		Ν	IATRIX SPIK	E / MAT	'RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Posult	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	[B]	[C]	-76R [D]	E]	Kesult [F]	-76K [G]	-70	-⁄0K	70KPD	
Chloride		9.93	246	251	98	246	251	98	0	90-110	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

												1				9	Ŧ		
Tetra Tech, Inc.		4000 N. E 401 M Tel Fax	3ig Spring Street, Ste idland,Texas 79705 (432) 682-4559 (432) 682-3946						\checkmark		\leq	\mathcal{O}	\bigcirc	_		ľ			
Client Name: IN AR ATHON	Site Manager:	TAVARI	N.					ANA	LYSIS	REC	ŬE.	띡							
Project Name: AN CNELL 民母と						_	– (Circ	- e - e	– pec	_ÿ	_	- õ	<u> </u>	ن۔ –		_		<u> </u>	
Project Location: (county, LEA COUNTY, NM	Project #: 2 \ 2 C	(10- QM	14											st)					ar 1.00
Invoice to:						RO)	g Ig	_						hed lis					T 111
Receiving Laboratory: メモハこの	Sampler Signature:	remona (c	OWNER MO	EHRING		RO - M	b Se H Pb Se F							e attac					
Comments:					X 8260B	C35) DRO - O	a Cd Cr F a Cd Cr		624	70C/625			TDS	nistry (se	U				
	SAMPLING	MATRIX	PRESERVATIN METHOD	rī RS	/N) BTE	(Ext to GRO ·	g As B Ag As B	latiles	260B /	Vol. 8:		5)	Ifate	r Chei	Jaidii				
LAB #	YEAR: 2017	7		AINE	ED (Y 021B	1005 (5M (tals Agetals A	latiles mi Vo	'ol. 82	iemi. \ 082 / 6		pestos	Su	Wate					
(LAB USE)	DATE	WATEF SOIL	HCL HNO ₃ ICE None	# CONT	FILTERE	TPH TX TPH 801	Fotal Met TCLP Me	TCLP Vo TCLP Se	RCI GC/MS V	GC/MS S	NORM	PLM (Ast	Chloride	General	anon/08			lold	
Bottom HOLE (O"-6") 2' BEB	81/27/0	×	×	-	5							~			-				10 9
NORTH SIDE WALL	8/27/18	×	×	-	Σ.							×		_					га
SOUTH SIDE WALL	6 27 14	×.	×	1	Ζ							×		-	-				
EAST SIDE WALL	6127/18	×	×		Z							x		_	-+				
WEST SIDE WALL	81 123 9	×	× ×	1	Ź							×		-	\dashv				
												$\left \cdot \right $		$\left \right $	$\left \cdot \right $				
]						F								-				_
Helinquished by: Date: Time: Withe m 4/27/18 418 pm	Received by:	en le	Date: Time:	436	Ľ	AB USE	ONLY		RKS:	FAND	ARE	Ň	′						
Relinquished by:	Received by:		Date: Time:		Sap	nple Temp	erature 7. O	ר אר	RUSH	: San	ne Da		- (Ī	48 hr	. 72	hr			
Relinquished by: Date: Time:	Received by:		Date: Time:			N.E.			Specia	al Repo	ort Lin	nits or	TRR	P Rej	port				
	ORIGINAL COPY				(Cir	cie) (ANI) DELIVE	RED FE	DEX L	JPS	Trackir	ig #: 					-		

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 06/27/2018 04:30:14 PM Temperature Measuring device used : R8 Work Order #: 590650 Comments Sample Receipt Checklist 6.5 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? No #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: June Smith Shawnee Gomez Checklist reviewed by: Jessica Vrämer

Date: 06/27/2018

Jessica Kramer

Date: 06/28/2018