

Jason Michelson Project Manager Chevron Environmental Management Company 1400 Smith Street, #07084 Houston, Texas 77002 Work: 713-372-0289 Cell: 281-660-8564 jmichelson@chevron.com

APPROVED By Olivia Yu at 10:01 am, Sep 17, 2018

> NMOCD approves of the proposed additional delineation and installation of MW-2 for 1RP-1498.

July 25, 2018

Olivia Yu Environmental Specialist New Mexico Oil Conservation Division, District 1 1625 N. French Drive Hobbs, NM 88240

Re: Chevron Lovington Paddock Unit 60 2017 Soil Assessment Report Case No. RP-1498 Lea County, New Mexico

Dear Ms. Yu,

Please find enclosed for your files copies of the following report:

 Lovington Paddock Unit 60 – 2017 Soil Assessment Report, Unit F, Section 1, Township 17 South, Range 36 East; Lea County New Mexico.

The report was prepared by GHD Services (GHD) on behalf of Chevron Environmental Management Company (CEMC) to document on-going assessment activities throughout 2017 at the Site.

Please do not hesitate to call Scott Foord with GHD at 713-734-3090 or myself at 713-372-0289, should you have any questions.

Sincerely,

Jana Mit

Jason Michelson

Encl. Lovington Paddock Unit 60 – 2017 Soil Assessment Report

C.C. Amy Barnhill, Chevron/MCBU

Site Assessment Report

Lovington Paddock Unit 60 Produced Water Release RP-1498 Lea County, New Mexico

Chevron Environmental Management Company

Table of Contents

1.	Introd	luction	. 1
2.	Back	ground	. 1
3.	Reme	ediation Standards	. 2
4.	Geop	hysical Survey – EM31 and ER	. 3
	4.1	EM31 Survey Methodology	. 3
	4.2	EM31 Survey Results	. 3
	4.3	ER Survey Methodology	. 4
	4.4	ER Survey Results	. 4
	4.5	Geophysical Survey Correlations/Conclusions	. 4
5.	Soil A	Assessment	5
	5.1	Soil Analytical Results	5
6.	Grou	ndwater Assessment	6
	6.1	Groundwater Sampling	6
	6.2	Groundwater Analytical Results	6
7.	Conc	lusions	. 6
8.	2018	Assessment Activities	. 7

Figure Index

Figure 1	Site Vicinity Map
Figure 2	Site Location Map
Figure 3	Soil Boring and Monitor Well Location Map
Figure 4	EM31 Geophysical Investigation
Figure 5	Electrical Resistivity Cross-Section Survey Results and Historical Soil Analytical Data
Figure 6	Chloride Analytical Results Map

Table Index

- Table 1 Summary of Soil Analytical Results
- Table 2 Conductivity Profile Results 2017
- Table 3
 Summary of Groundwater Analytical Results

Appendix Index

- Appendix A SB-6 through SB-11 Boring Logs
- Appendix B Certified Analytical Reports
- Appendix C 2018 Work Plan

1. Introduction

On behalf of Chevron Environmental Management Company (CEMC), GHD Services Inc. (GHD) has prepared this report summarizing site assessment activities at the Lovington Paddock Unit (LPU) 60 site (hereafter referred to as the "Site"). The Site is located in Unit F, Section 1, Township 17 South, Range 36 East, approximately 5 miles southeast of the City of Lovington (COL) in Lea County, New Mexico. The land surface is owned by the COL, and the minerals are managed by the State of New Mexico. The location of the Site is identified on the vicinity map on Figure 1 and the aerial map on Figure 2.

2. Background

CEMC submitted a C-141 Form to the New Mexico Oil Conservation Division (NMOCD) dated July 24, 2007 reporting a release of approximately 50 barrels of produced brine from the failure of a water injection trunkline. The approximate affected area was estimated at 2,950 square feet. NMOCD incident number RP-1498 was assigned by the NMOCD Hobbs office.

Shallow soil samples were collected in August 2010 from two locations (T-1 & T-2) in the affected area at depths of approximately 2.5 feet below ground surface (bgs). Sample analyses included total petroleum hydrocarbons (TPH); benzene, toluene, ethylbenzene, and xylenes (BTEX); and chloride. TPH and BTEX concentrations were below laboratory detection limits in the upper sample intervals of T-1 and T-2 (0-1 feet and 0-0.5 feet, respectively), and therefore were not analyzed at the deeper interval. However, chloride results at location T-1 exceeded the Recommended Remedial Action Level (RRAL) of 250 milligrams per kilogram (mg/kg) at both intervals.

In May 2011, Harrison Cooper, Inc. (HCI) advanced five soil borings (SB-1 through SB-5) utilizing an air-rotary drilling rig to depths of approximately 40 feet bgs. Soil samples were collected at five-foot intervals at depths ranging from 20 to 40 feet bgs (pending chloride field screening results) within each of the five soil borings. Soil samples were submitted for analysis of chloride by EPA Method 300. Laboratory analytical results for chloride indicated that the vertical extent of impact was not yet defined in borings SB-2, SB-3, and SB-5. On June 27, 2012, GHD and CEMC met at the NMOCD District 1 Hobbs office to discuss the path forward for the Site. The NMOCD requested additional assessment be completed to further assess the vertical extent of chloride impacts.

In December 2012, under the supervision of GHD, HCI advanced two additional borings (SB-2b and SB-5b) to depths of 70 feet bgs utilizing an air-rotary drilling rig. Soil samples were collected at 10-foot intervals from depths of 40 to 70 feet bgs and submitted for analysis of chloride by EPA Method 300 in an effort to delineate the vertical extent of chloride impacts. Chloride concentrations above the RRAL were reported in both soil borings. Groundwater was not encountered in either boring. Soil analytical results are included in Table 1 and soil boring locations are depicted on Figure 3.

Monitoring well MW-1 was installed in October 2016 to assess potential groundwater impact in follow-up to soil analytical results reported during previous assessment activities. No soil samples were collected during MW-1 installation activities. The depth to groundwater was confirmed at the Site at 101 feet bgs. Chloride concentrations reported for the groundwater sample collected from

MW-1 in October 2016 were below the New Mexico Water Quality Control Commission (NMWQCC) standard of 250 mg/L.

Analytical results associated with assessment activities conducted from 2011 through 2016 indicate that the horizontal and vertical extent of chloride impact in soil had not been fully delineated. MW-1 was re-sampled in May 2017, and six additional soil borings (SB-6 through SB-11) were advanced and analytical analyses performed in October 2017 in an attempt to fully delineate the horizontal extents of chloride impact to soil. Results from the 2017 assessment activities are summarized below.

3. Remediation Standards

Soil

Information available from various sources including the Petroleum Recovery Research Center (PRRC) Mapping Portal, GHD currently managed groundwater site(s) data, and the United States Geological Survey (USGS) Current Water Database for the Nation, concludes:

- a) The depth to groundwater from the deepest impacted soil at the Site is less than 50-feet bgs.
- b) The nearest private domestic water source is greater than 200-feet from the release site.
- c) The nearest public/municipal water source is greater than 1,000-feet from the release site.
- d) The release site lies more than 1,000 horizontal feet from the nearest surface water body.

The NMOCD provides guidance for remediation of contaminants of oil field wastes or products in Guidelines for Remediation of Leaks, Spills, and Releases (August 13, 1993). Consequently, the NMOCD total ranking criteria score is twenty (20) for the Site. The site-specific RRALs applied to this location by the NMOCD are 10 milligrams per kilogram (mg/kg) for benzene; 50 mg/kg for total benzene, toluene, ethylbenzene, and xylenes (BTEX); 100 mg/kg for total petroleum hydrocarbons (TPH); and an NMOCD accepted 600 mg/kg for horizontal and 250 mg/kg for vertical delineation of chlorides.

In an August 28, 2017 telephone conversation between Bernard Bockisch (GHD) and Jim Griswold (NMOCD Environmental Bureau Chief), GHD was informed that the NMOCD is accepting chloride concentrations of 600 mg/kg for the horizontal delineation assessment clean up levels.

Groundwater

The NMOCD provides guidance for remediation of contaminants of oil field wastes or products in Guidelines for Remediation of Leaks, Spills, and Releases (August 13, 1993). The guidance requires remediation of groundwater to the human health standards of the NMWQCC set forth in New Mexico Administrative Code 20.6.2.3103. Standards for BTEX and chloride are listed below.

Analyte	NMWQCC Groundwater Standard (mg/L)
Benzene	0.01
Toluene	0.75
Ethylbenzene	0.75
Total Xylenes	0.62
Chloride	250

NMWQCC groundwater standards do not include TPH.

4. Geophysical Survey – EM31 and ER

In June and August 2017, GHD completed a two-phase geophysical investigation at the Site. The purpose of the investigation was to delineate areas of elevated conductivity in order to map the extent of suspected chloride impacts to soil at the Site. The first phase of the investigation consisted of an electromagnetic (EM) survey to delineate the footprint of the suspected impacts. Based on the EM survey results, an electrical resistivity (ER) survey was completed to determine the vertical distribution of the suspected impacts. Survey coverage data are presented on attached Figures 4 (EM Survey Results) and 5 (ER Survey Results and Historical Soil Analytical Data).

The EM survey was completed with an EM31 terrain conductivity meter. Prior to conducting the EM31 survey, a grid consisting of parallel lines was established over the proposed area of investigation indicated on Figure 4. Measurements of EM31 data were collected along 30-foot spaced grid lines over the area of investigation, with station spacings of approximately 4 feet on all grid lines. The ER survey line location was chosen based on the EM31 survey results, and transected the EM31 conductivity anomaly. The configuration of the electrodes (also called an array) and the electrode spacings were optimized to achieve an approximate depth of investigation of approximately 70 feet bgs, and the electrode spacing on all grid lines was on the order of 6.6 feet (i.e. 2 meters).

4.1 EM31 Survey Methodology

The EM31 survey was completed to determine the horizontal extent or limits of chloride impacts in the shallow subsurface soils at the Site. The EM31 consists of transmitter and receiver coils located at opposite ends of a rigid boom. The coil separation for the EM31 is approximately 13 feet, which yields an approximate depth of penetration of 18 feet bgs in vertical dipole mode. Measurements of terrain conductivity from the EM31 were used to assess the extent of chloride impacts at the Site. The data for the EM31 survey were then processed as a colored contour plot. The plot was superimposed on an aerial image of the Site plan, and was used to locate elevated conductivity responses indicative of chloride-impacted areas relative to the Site features. Figure 4 depicts the EM31 survey results.

4.2 EM31 Survey Results

The colored contour conductivity plot presented on Figure 4 reveals the highest intensity conductivity responses are colored red to purple, while areas of low response are colored blue. All remaining intermediate responses correspond to the color scale presented on the figure. Results from non-impacted areas within the survey coverage indicate background conductivity responses were

approximately 20 milliSiemens/meter (mS/m). Anomalous responses relative to background were generally 3 to 7 times higher, and ranged from approximately 60 to 140 mS/m. The EM31 survey results delineated one main area of suspected brine-impacted soils centrally located around SB-3. Several small conductive zones were detected along the pipelines that intercept the Site, with some of the higher responses believed associated with conductive metallic piping.

4.3 ER Survey Methodology

The ER survey profile was completed in August 2017 to determine the vertical extent of chlorideimpact in soil on one selected survey line located diagonally across the northwest to southeast transect of the Site (see Figure 4). This area exhibited the highest responses during the EM31 survey. The ER survey was conducted with a dual-function resistivity meter, which operates simultaneously as a transmitter and receiver. The survey utilized two multi-electrode cables yielding a total spread of 72 electrodes. The receiver was programmed to automatically "switch" between measured quadripoles, yielding a pseudosection of apparent resistivity. The apparent resistivity data were then imported into an inversion software program, and processed to yield a modeled profile section of resistivity.

4.4 ER Survey Results

The electrical resistivity results for the survey line are presented on Figure 5. These results are based on the measured apparent resistivity values for various depths along the survey line. Calculations of measured apparent resistivity values include the type of ER array (Wenner), the electrode spacing, and raw field data (i.e., applied current and measured voltage for each data point).

The measured apparent resistivity data were processed with the inversion program RES2DINV, to yield the modeled resistivity section presented on Figure 5. The modeled section represents the resistance of earth materials in the shallow subsurface, and thus provides an interpretation of the overburden sequences and areas of suspected brine impacts along the survey line. The highest resistivity values are colored dark blue, while areas of low resistivity (or conversely, high conductivity) are colored yellow to red. All remaining intermediate responses correspond to the color scale presented on the bottom of each section.

The colored plot reveals that the contour intervals ranged from 2.25 to 1,000 Ohm.meters (Ohm.m). The intermediate contour intervals were determined by applying a normalized distribution curve to the data such that the entire range of responses could be identified by discrete colors. The interpreted colored contoured plot suggests that suspected brine-impacted soils can likely be characterized by modeled responses of approximately 2.25 to 85 Ohm.m.

4.5 Geophysical Survey Correlations/Conclusions

- The EM31 survey delineated one main area of suspected brine-impacted soils at the Site.
- In general, the ER survey results indicate the zone of suspected brine impact is affecting soils from the surface down to at least 70 feet bgs (depth limit of the ER survey).
- The suspected brine impacts appear to correlate well with soil sample analytical results for chloride from the previous assessment activities.

5. Soil Assessment

In order to further define the horizontal and vertical extent of chloride impact, six additional soil borings (SB-6 though SB-11) were installed using an air rotary drilling rig. GHD's contracted service provider, HCI, a New Mexico-licensed water well driller, and GHD mobilized to the Site to begin drilling activities on October 23, 2017. Each boring location was cleared for underground utilities with the use of an air knife up to a depth of 5.0 feet bgs or refusal. Soil borings SB-6 and SB-8 were advanced to 100 feet bgs, and SB-7, SB-9, SB-10, and SB-11 to 90 feet bgs. Site details and boring locations are depicted on Figure 3.

Chloride screening was accomplished in the field by mixing soil samples with distilled water, then testing the rinsate using Hach chloride test strips. The soil types observed during drilling of SB-6 through SB-11 consisted primarily of silty sands. The soils were logged in accordance with the Unified Soil Classification System, and soil boring logs are provided in Appendix A.

Soil samples were collected at 0.5-1 feet bgs, 4-5 feet bgs, and then ten-foot intervals starting at 9-10 feet bgs within each of the six soil borings. Soil samples were placed in laboratory-supplied sample containers on ice, labeled, and submitted to Xenco Laboratories in Midland, Texas for analysis of chlorides by EPA Method 300. Groundwater was not encountered in any of the soil borings. Following completion of activities, the soil cuttings were returned to their respective boreholes and backfilled with hydrated bentonite pellets from 10 feet bgs to the ground surface.

5.1 Soil Analytical Results

Analytical results associated with the soil boring installation activities performed in October 2017 are discussed in the following section. Some of the deeper soil samples were held by the laboratory pending results of shallower soil samples, and were subsequently not analyzed at the direction of GHD. Analytical results are presented in Table 1 and the laboratory reports are provided in Appendix B. These results are summarized below and shown in map view on Figure 6.

- SB-6 exceeded the RRAL for chloride at depths extending from 39 to 90 feet bgs, with concentrations ranging from 622 mg/kg (89-90 ft bgs) to 1,300 mg/kg (49-60 ft bgs ft). The soil sample collected from the terminal depth (99-100 ft bgs) reported chloride at 168 mg/kg.
- No samples collected from SB-7 were reported with chloride concentrations above the site specific RRAL of 250 mg/kg for chlorides.
- SB-8 exceeded the RRAL for chloride at depths extending from 4 to 100 feet bgs, with concentrations ranging from 854 mg/kg (79-80 feet bgs) to 5,570 mg/kg (39-40 feet bgs ft). The soil sample collected from the terminal depth (99-100 ft bgs) reported chloride at 1,920 mg/kg.
- Soil samples collected from SB-9 exceeded the RRAL for chloride at depths extending from 9 to 40 feet bgs, with concentrations ranging from 308 mg/kg (39-40 feet bgs) to 409 mg/kg (9-10 feet bgs ft). The soil sample collected from the terminal depth (89-90 feet bgs) reported chloride at 129 mg/kg.
- SB-10 exhibited chloride concentrations exceeding the RRAL in three sample intervals (0.5-1 feet bgs at 1,190 mg/kg, 4-5 feet bgs at 703 mg/kg, and 9-10 feet bgs at 673 mg/kg). The deepest soil sample analyzed (29-30 feet bgs) reported a chloride concentration of 50 mg/kg.

• SB-11 exhibited chloride concentrations exceeding the RRAL for chloride at all but one depth extending from 4 to 90 feet bgs, with concentrations ranging from 283 mg/kg (69-70 feet bgs) to 1,040 mg/kg (4-5 feet bgs). The soil sample collected at 79-80 feet bgs was not reported above the RRAL for chloride. The soil sample collected from the terminal depth (89-90 feet bgs) reported chloride at 352 mg/kg.

6. Groundwater Assessment

Groundwater sample results from existing monitoring well MW-1 collected in October 2016 reported chloride concentrations below the NMWQCC standard of 250 mg/L. MW-1 was re-sampled in May 2017, and the details are described below.

6.1 Groundwater Sampling

Depth to groundwater was measured in MW-1 to the nearest hundredth of a foot (104.93 feet bgs) from the top of casing using an electronic water level meter on May 26, 2017. The conductivity profile of the water column was determined by recording conductivity at five-foot intervals from the top of the water column to the total depth of the well (221 feet bgs). Field equipment was decontaminated with an Alconox [™] wash and distilled water rinse before beginning field activities. The results of the conductivity profile are summarized on Table 2.

MW-1 was sampled using a Hydrasleeve sampler. The groundwater sample was collected after the Hydrasleeve was lowered to the depth of the highest conductivity measurement (i.e., 225 feet below the top of casing). The sampler was removed from the well and the sample was placed in laboratory-supplied containers and chilled on ice in an insulated cooler. The sample was delivered under chain-of-custody documentation to Xenco Laboratories of Midland, Texas for analysis of chloride by EPA method 300 and total dissolved solids (TDS) by method SM 2540C.

6.2 Groundwater Analytical Results

Chloride was reported at a concentration of 83.6 milligrams per liter (mg/L) from the groundwater sample collected from MW-1, which is below the 250 mg/L standard. TDS was reported at a concentration of 432 mg/L from the sample collected from MW-1, which is below the 1,000 mg/L standard.

Groundwater analytical results for chloride and TDS are summarized in Table 3 in reference to NMWQCC standards. The laboratory analytical report is provided in Appendix B.

7. Conclusions

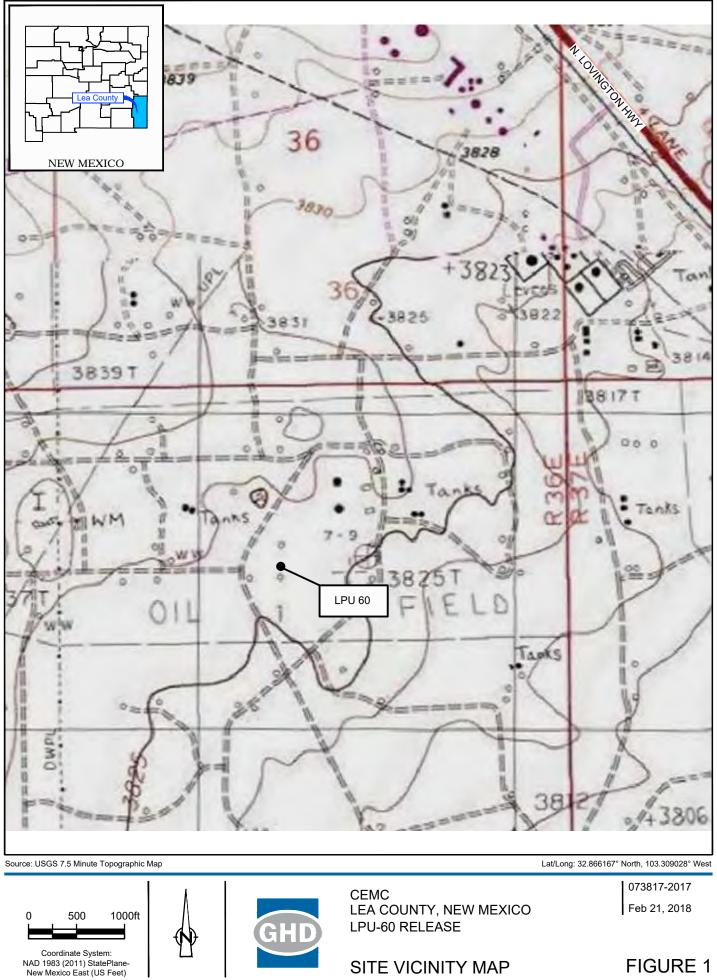
Analytical results associated with soil assessment activities conducted from 2010 through 2017 indicated the horizontal and vertical extents of the chloride impact in soil have not been fully delineated. Recent groundwater confirmation sampling of MW-1 confirms groundwater is not impacted in that location.

8. 2018 Assessment Activities

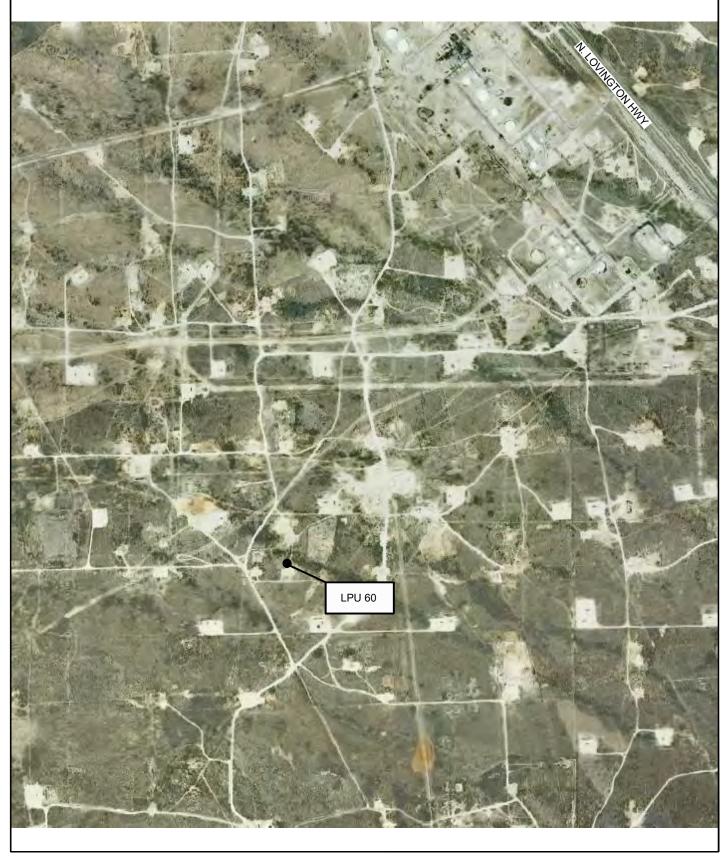
On February 13, 2018, GHD and Chevron representatives met with NMOCD to discuss further assessment activities addressing the presence of chloride in soil and the potential presence of chloride in groundwater at the Site. Additional assessment activities based on those discussions are summarized in the Work Plan included in Appendix C of this report.

Submitted by:

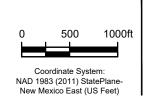
GHD


2

Scott Foord, P.G., Project Manager


Ray U. PaliO

Raaj Patel, Program Manager

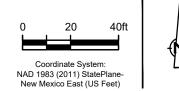

Figures

CAD File: I:\CAD\Files\07----\073---\073817-CEMC-LPU #60\073817-2017\073817-2017(002)\073817-2017(002)GN-DL001.dwg

Source: ESRI 1999 Aerial Photograph

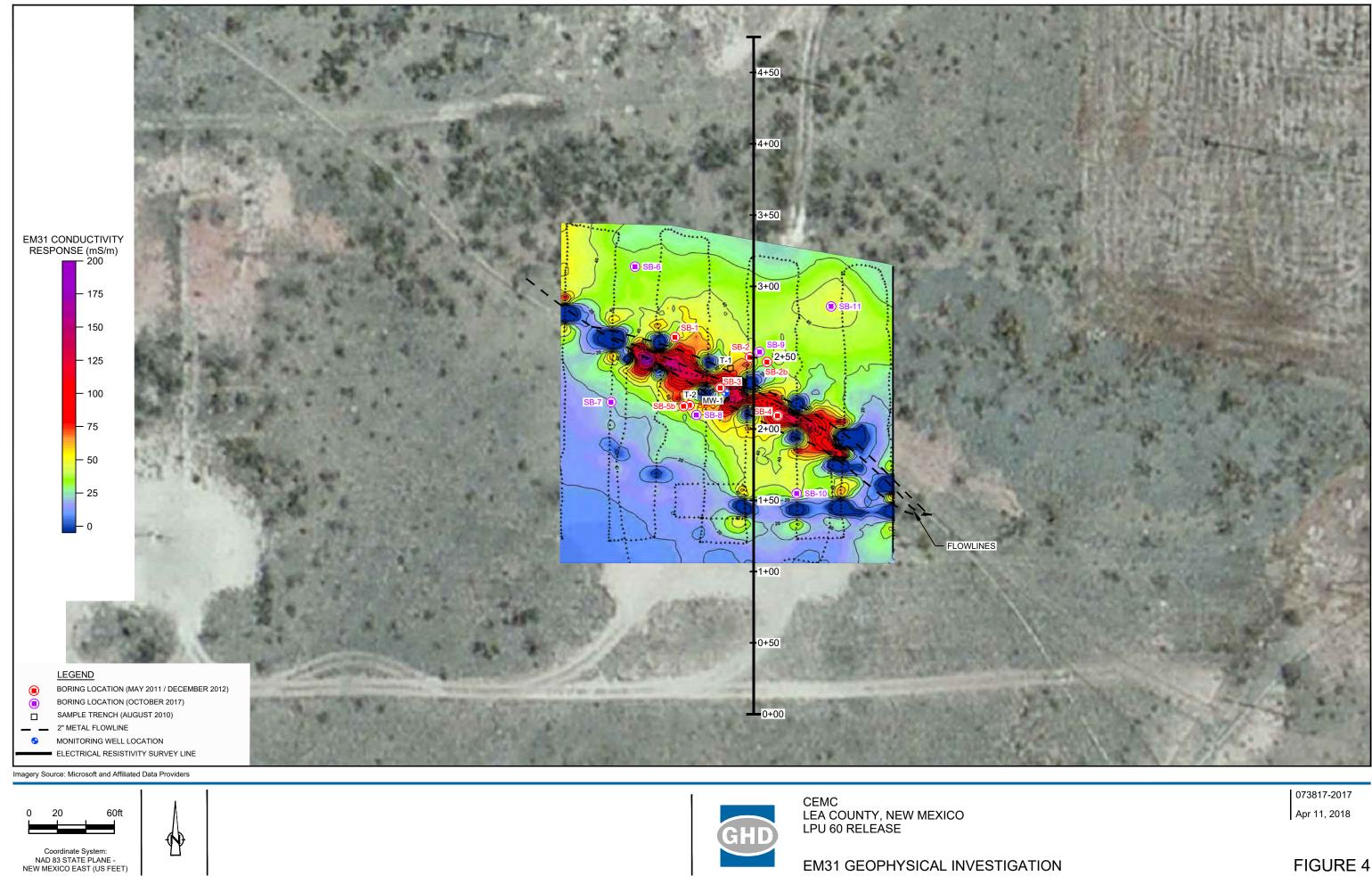
CEMC LEA COUNTY, NEW MEXICO LPU-60 RELEASE Lat/Long: 32.866167° North, 103.309028° West

073817-2017 Feb 21, 2018

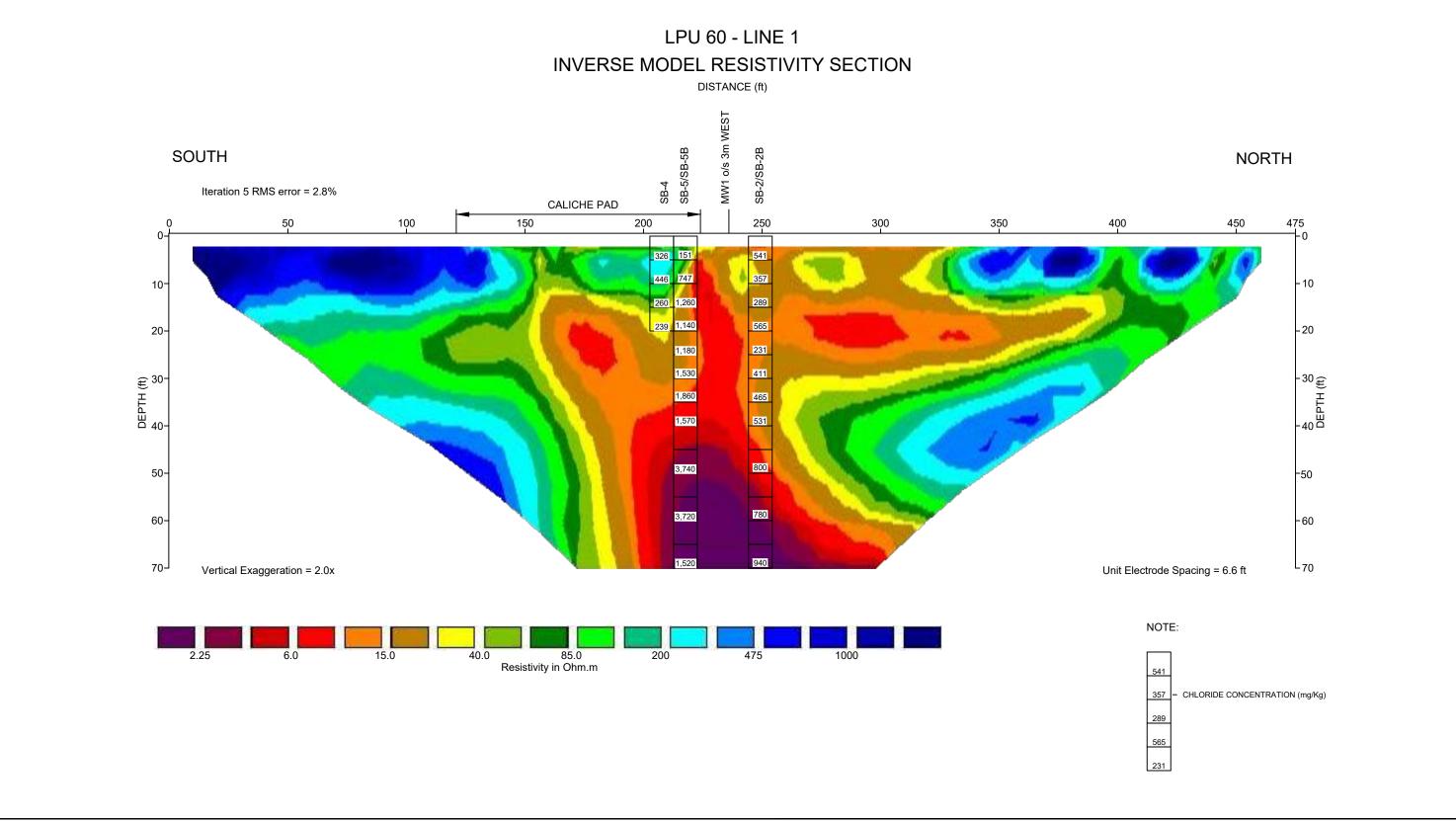

SITE LOCATION MAP

CAD File: I:\CAD\Files\07----\073817-CEMC-LPU #60\073817-2017\073817-2017(002)\073817-2017(002)\073817-2017(002)GN-DL002.dwg

FIGURE 2


Lat/Long: 32.866167° North, 103.309028° West

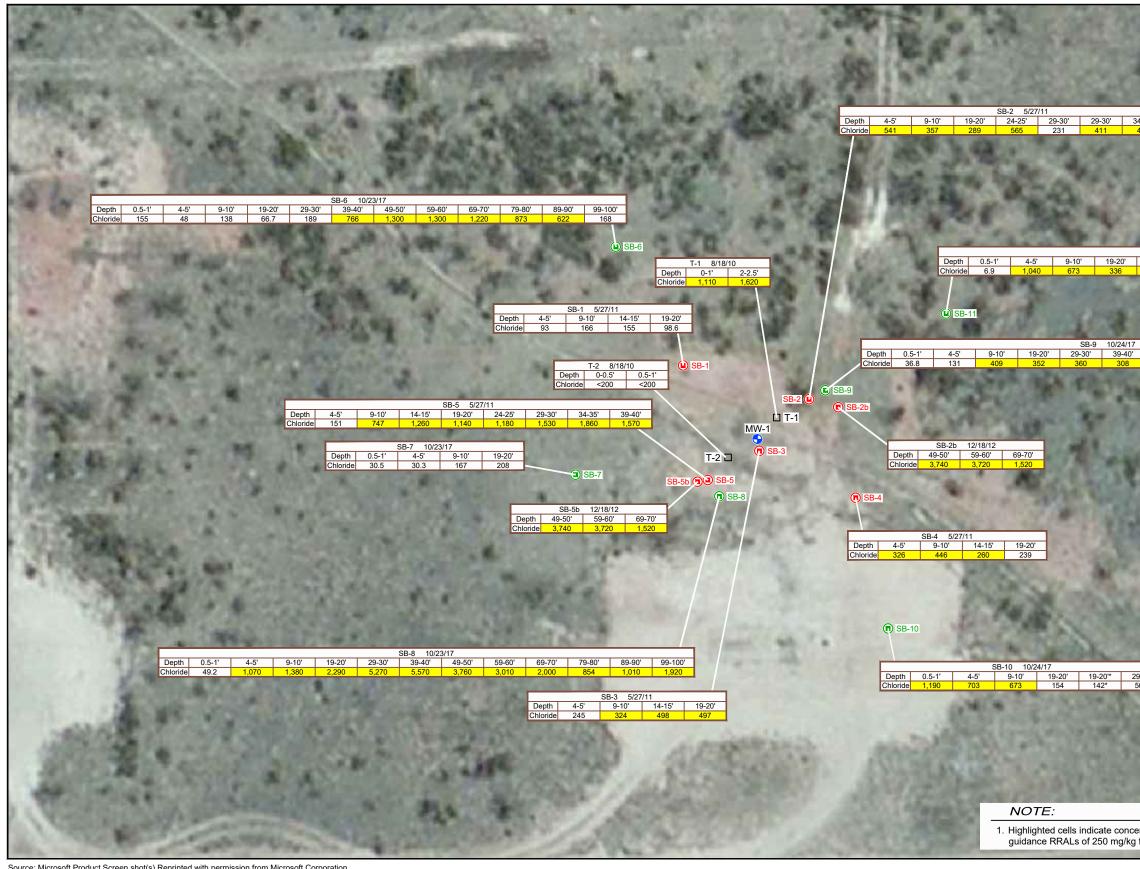
073817-2017 CEMC Apr 27, 2018 LEA COUNTY, NEW MEXICO LPU-60 RELEASE SOIL BORING AND MONITORING WELL **FIGURE 3** LOCATION MAP

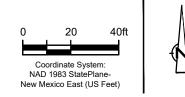

CAD File: I:\CAD\Files\07----\073817-CEMC-LPU #60\073817-2017\073817-2017(002)\073817-2017(002)GN-DL003.dwg

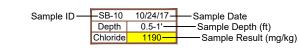
CAD File: P:\drawings\73000s\73817\73817-REPORTS\73817-2017(002)\73817-2017(002)GN\07

EM31 GEOPHYSICAL INVESTIGATION

FIGURE 4




CEMC LEA COUNTY, NEW MEXICO LPU 60 RELEASE ELECTRICAL RESISTIVITY SURVEY RESULTS AND HISTORICAL SOIL ANALYTICAL DATA


FIGURE 5

073817-2017 Apr 11, 2018

Source: Microsoft Product Screen shot(s) Reprinted with permission from Microsoft Corporation

CEMC LEA COUNTY, NEW MEXICO LPU-60 RELEASE

CHLORIDE ANALYTICAL RESULTS MAP

34-35 39-40° 465 531		The second second
SB-11 10/24/17 29-30' 39-40' 49-50' 530 496 477	* 59-60' 69-70' 79-80' 89-90' 398 283 223 352	A CONTRACTOR
17 0' 49-50' 59-60' 69-7 178 119 16 178 129 16 29-30' 50.2	3 200 129	A State of the sta
centrations exceeding kg for chloride.	LEGEND Boring Location (May 2011 / Dec Boring Location (October 2017) Sample Trench (August 2010) Monitoring Well Location * Indicates Duplicate Sample	ember 2012)
	Lat/Long: 32.866167°	North, 103.309028° West 073817-2017 Apr 27, 2018

FIGURE 6

Tables

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY LOVINGTON PADDOCK UNIT 60 UNIT F, SECTION 1-T17S-R36E, LEA COUNTY, NEW MEXICO

					Ethyl-	Total	Total		TPH		
Sample ID	Depth (feet)	Date	Benzene	Toluene	benzene	Xylenes	BTEX	DRO	GRO	GRO/DRO	Chlorides
U			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		NMC		ended Remed	iation Action I	evels (Total F	Ranking Score	= 20)			
			10				50			100	250
T-1	0-1	8/18/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	1110.00
	2-2.5	8/18/10									1620.00
T-2	0-0.5	8/18/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
	0.5-1	8/18/10									<200
SB-1	4-5	5/27/11									93.00
	9-10	5/27/11									166.00
	14-15	5/27/11									155.00
	19-20	5/27/11									98.60
SB-2	4-5	5/27/11									541
	9-10	5/27/11									357
	14-15	5/27/11									289
	19-20	5/27/11									565
	24-25	5/27/11									231.00
	29-30	5/27/11									411
	34-35	5/27/11									465
	39-40	5/27/11									531
SB-2b	49-50	12/18/12									800
	59-60	12/18/12									780
	69-70	12/18/12									940
SB-3	4-5	5/27/11									245.00
	9-10	5/27/11									324
	14-15	5/27/11									498
	19-20	5/27/11									497
SB-4	4-5	5/27/11									326
	9-10	5/27/11									446
	14-15	5/27/11									260
	19-20	5/27/11									239.00
SB-5	4-5	5/27/11									151.00
	9-10	5/27/11									747
	14-15	5/27/11									1260
	19-20	5/27/11									1140
	24-25	5/27/11									1180
	29-30	5/27/11									1530
	34-35	5/27/11									1860
	39-40	5/27/11									1570
SB-5b	49-50	12/18/12									3740
	59-60	12/18/12									3720
	69-70	12/18/12									1520
SB-6	0.5-1	10/23/17									155.00
	4-5	10/23/17									48.00
	9-10	10/23/17									138.00
	19-20	10/23/17									66.70
	29-30	10/23/17									189.00
	39-40	10/23/17									766
	49-50	10/23/17		-							1300
	59-60	10/23/17									1300
	69-70	10/23/17		-							1220
	79-80	10/23/17		-							873
	89-90	10/23/17		-							622
	99-100	10/23/17									168.00

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY LOVINGTON PADDOCK UNIT 60 UNIT F, SECTION 1-T17S-R36E, LEA COUNTY, NEW MEXICO

			_		Ethyl-	Total	Total		TPH		
Sample ID	Depth (feet)	Date	Benzene	Toluene	benzene	Xylenes	BTEX	DRO	GRO	GRO/DRO	Chlorides
U			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		NMC			iation Action I						
			10				50			100	250
SB-7	0.5-1	10/23/17									30.50
	4-5	10/23/17									30.30
	9-10	10/23/17									167.00
	19-20	10/23/17									208.00
SB-8	0.5-1	10/23/17									49.20
	4-5	10/23/17									1070
	9-10	10/23/17									1380
	19-20	10/23/17									2290
	29-30	10/23/17									5270
	39-40	10/23/17									5570
	49-50	10/23/17									3760
	59-60	10/23/17									3010
	69-70	10/23/17									2000
	79-80	10/23/17									854
	89-90	10/23/17									1010
	99-100	10/23/17									1920
SB-9	0.5-1	10/24/17									36.80
	4-5	10/24/17									131.00
	9-10	10/24/17									409
	19-20	10/24/17									352
	29-30	10/24/17									360
	39-40	10/24/17									308
	49-50	10/24/17									178.00
	59-60	10/24/17									119.00
	69-70	10/24/17									163.00
	79-80	10/24/17									200.00
	89-90	10/24/17									129.00
SB-10	0.5-1	10/23/17									1190
	4-5	10/23/17									703
	9-10	10/23/17									673
	19-20	10/23/17									154.00
Dup.	19-20	10/23/17									142.00
	29-30	10/23/17									50.20
SB-11	0.5-1	10/24/17									6.90
	4-5	10/24/17									1040
	9-10	10/24/17		-							673
	19-20	10/24/17									336
	29-30	10/24/17									530
	39-40	10/24/17									496
	49-50	10/24/17									477
	59-60	10/24/17									398
	69-70	10/24/17		-							283
	79-80	10/24/17		-				-			223.00
	89-90	10/24/17		-				-			352

Notes:

- Bold concentrations above lab reporting limits.

- Highlighted cells indicated concentrations exceeding regulatory limits

- "--" indicates not analyzed or not applicable.

- BTEX analyses by EPA Method 8021B.

- TPH analyzed by EPA Method SW8015B Mod.

- Chlorides analyzed by EPA Method 300.

TABLE 2

CONDUCTIVITY PROFILE RESULTS 2017 CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY LOVINGTON PADDOCK UNIT 60 UNIT F, SECTION 1-T17S-R36E, LEA COUNTY, NEW MEXICO

Well: Date:	MW-1 5/26/2017	
Depth	Conductivity	Temperature
104.93		
105	777	19.2
110	734	19.1
115	734	19.1
120	734	19.2
125	734	19.2
130	735	19.1
135	747	19.1
140	746	19.1
145	740	19.1
150	741	19.1
155	722	19.1
160	718	19.1
165	717	19.1
170	717	19.1
175	717	19.2
180	719	19.1
185	730	19.1
190	773	19.2
195	775	19.4
200	776	19.4
205	776	19.4
210	779	19.5
215	780	19.5
220	783	19.5
225	800	19.5

NOTES:

Depth - feet below top of casing Conductivity - microseimens per centimeter Temperature - degrees Celsius

Page 1 of 1

TABLE 3

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY LOVINGTON PADDOCK UNIT 60 UNIT F, SECTION 1-T17S-R36E, LEA COUNTY, NEW MEXICO

Well ID	Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	TPH GRO	TPH DRO	Chloride	Total Dissolved Solids
NMWQCC	Standards	0.01	0.75	0.75	0.62			250	1000
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
MW-1	10/19/16	<0.002	<0.002	<0.002	<0.002	<1.50	<1.50	206	
MW-1	5/26/17	<0.002	<0.002	<0.002	<0.002	<1.50	<1.50	83.9	432

NOTES:

NMWQCC - New Mexico Water Quality Control Commission

'mg/L' indicates milligrams per liter

Yellow-shaded cells indicate that concentration exceeds NMWQCC standard.

- BTEX analysis by EPA Method 8021B.

- TPH analysis by Method SW8015B.

- Chlorides analyzed by EPA Method 300.

GHD | Chevron Environmental Management Company - Site Assessment Report | 073817 (4)

Appendix A SB-6 though SB-11 Boring Logs

		1.0	100	
1	p-	11	1	
1	5	1.1	1.1	۰.
	-			2

Page 1 of 1

PROJECT NAME: Lovington Paddock Unit 60 PROJECT NUMBER: 73817 CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

HOLE DESIGNATION: SB-6 DATE COMPLETED: 23 October 2017

DRILLING METHOD: Air Rotary

FIELD PERSONNEL: Rebecca Jones

HCI SAMPLE CHLORIDES (mg/kg) DEPTH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ft BGS ft BGS DEPTH (ft) NTERVAL (Ħ (tsf) REC (ЪР TOP SOIL 1.00 CALICHE; light brown 4-5 1.0 <28 5 7.50 SILTY SAND (SM); light brown, contains caliche 9-10 1.0 52 1 - 10 — 15 19-20 2.0 <28 - 20 25.00 - 25 SILTY SAND (SM); light brown 29-30 _____ 1.0 74 30 35 39-40 >____ 1.0 227 40 -45 45.00 SILTY SAND (SM); light brown, contains caliche 49-50 >>> 1.0 354 - 50 55 55.00 SILTY SAND (SM); light brown 59-60 2.0 411 60 - 65 65.00 SILTY SAND (SM); light brown, contains caliche 15/2/18 - 70 69-70 **____** 1.0 382 CORP.GDT 75.00 SILTY SAND (SM); light brown 80 _____ 79-80 _____ 1.0 263 0 013817-CVX LPU60.GPJ 0 210 89-90 1.0 95.00 SILTY SAND (SM); reddish brown OVERBURDEN LOG 99-100 1.0 66 END OF BOREHOLE @ 100.0ft BGS NOTES: LABORATORY ANALYSIS

		1.0	100	
1	p-	11	1	
1	5	1.1	1.1	۰.
	-			2

Page 1 of 1

PROJECT NAME: Lovington Paddock Unit 60 PROJECT NUMBER: 73817

CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

HOLE DESIGNATION: SB-7 DATE COMPLETED: 23 October 2017

DRILLING METHOD: Air Rotary

FIELD PERSONNEL: Rebecca Jones

DEPTH INDEX STRATIGRAPHIC DESCRIPTION & REIMARKS DEFTH IT BESS SAMPLE Solution TOP SOIL TOP SOIL 10 10 10 40 10 40 10 50 SILTY SAND (SM); light brown and and an analysis SILTY SAND (SM); light brown and analysis 10 20 40 40 10 20 SILTY SAND (SM); light brown and analysis SILTY SAND (SM); light brown and analysis 10 20 40 40 10 20 Add SILTY SAND (SM); light brown and analysis 50.00 90.00	HCI							
5 CALICHE: light brown 44 10 <28	DEPTH # BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH # BGS			SAMF	PLE	lg/kg)
5 CALICHE: light brown 44 10 <28			11 000	EH (#)	RVAL	C (Ħ)	(tsf)	ES (n
5 CALICHE: light brown 44 10 <28				DEP1	NTEI	REC	đ	RIDE
5 CALICHE; light brown	_		1.00		_			H
SILTY SAND (SM); light brown, contains caliche 7.50 910 1.0 59 15 20 1.0 7.4 1.0 74 25 SILTY SAND (SM); reddish brown 25.00 800 1.0 28 30 35.00 800 1.0 28 40 35.00 800 1.0 28 45 50 60 800 1.0 28 65 60 800 1.0 28 65 60 800 1.0 28 66 907 1.0 28 907 1.0 28		CALICHE; light brown				- 10		
10 SILTY SAND (SM): light brown, contains callche 59 20 920 10 74 25 SILTY SAND (SM): reddish brown 25.00 24.30 10 28 30 35 SILTY SAND (SM): light brown 35.00 36.00	-5			4-5	\sim	1.0		<28
15 10 74 20 10 74 25 SILTY SAND (SM); reddish brown 25.00 30 25.00 28.00 35 SILTY SAND (SM); light brown 35.00 40 35.00 36.00 45 36.00 36.00 50 55 60 65 60 66 65 60 66 70 1.0 <28		SILTY SAND (SM); light brown, contains caliche	7.50	0.10		10		50
20 130 10 74 25 SILTY SAND (SM); reddish brown 25.00 23.0 1.0 28 30 35.00 35.00 35.00 34.0 1.0 28 40 34.0 1.0 28 35.00 36.00 <	10			9-10		1.0		59
20 130 10 74 25 SILTY SAND (SM); reddish brown 25.00 23.0 1.0 28 30 35.00 35.00 35.00 34.0 1.0 28 40 34.0 1.0 28 35.00 36.00 <	-							
25 SILTY SAND (SM); reddish brown 25.00 25.00 30 30 30.0 30.0 30.0 35 SILTY SAND (SM); light brown 35.00 39.40 1.0 28 40 445 45.00 48.0 1.0 28 50 44.5 48.0 1.0 <28	- 15							
25 SILTY SAND (SM); reddish brown 25.00 33.0 33.0 35.00 35.00 35.00 35.00 36.00	- 20			19-20	\geq	1.0		74
30 30 35 SILTY SAND (SM); light brown 40 35.00 35.00 45 36.00 36.00 45 45 45.00 50 49.50 1.0 28.00 60 99.60 1.0 28.00 61 99.60 1.0 28.00 65 99.60 1.0 28.00 66 99.60 1.0 28.00 66 99.60 1.0 28.00 67 70 1.0 28.00	_ 20							
30 30 35 SILTY SAND (SM); light brown 40 35.00 35.00 45 36.00 36.00 45 45 45.00 50 49.50 1.0 28.00 60 99.60 1.0 28.00 61 99.60 1.0 28.00 65 99.60 1.0 28.00 66 99.60 1.0 28.00 66 99.60 1.0 28.00 67 70 1.0 28.00	-25		25.00					
35 SILTY SAND (SM); light brown 35.00 35.00 40 3940 1.0 28 45 45 45 45 50 4980 1.0 28 45 45 45 45 50 45 45 45 50 4980 1.0 28 45 45 4980 1.0 28 66 66 66 667 1.0 28 67 70 1.0 28 28		SILTY SAND (SM); reddish brown						
40 3940 1.0 28 45 45 45 45 50 4950 1.0 <28	- 30			29-30	\geq	1.0		28
40 3940 1.0 28 45 45 45 45 50 4950 1.0 <28	_							
40 3340 1.0 28 45 45 49.50 1.0 <28	35	SILTY SAND (SM): light brown	35.00					
45 -45 50 -55 60 -55 60 -65 70 9970 1.0 -28 9970 1.0 -28								
-50 -55 -55 -60 -55 -65 -65 -67 -70	-40			39-40	\geq	1 .0		28
-50 -55 -60 -65 -70								
55 60 65 65 65 65 65 65 65 65 65 65	45							
55 60 65 65 65 65 65 65 65 65 65 65				49-50		10		<28
60 65 65 69-70 69-70 1.0 <28	- 50					–		20
60 65 65 65 69-70 1.0 69-70 1.0 59-60 1.0 59-60 1.0 59-60 1.0 59-60 59-60 1.0 59-60 50 50 50 50 50 50 50 50 50 50 50 50 50	55							
	_ 55							
	60			59-60	\geq	1.0		<28
	- 65							
	8							
	70			69-70	\geq	1.0		<28
90 -75 -80 -85 -90 END OF BOREHOLE @ 90.0ft BGS 90 NOTES:	⊢L							
00 79-80 1.0 <28	⁹ 75							
80 1.0 <28				70.00				-00
R00 85 90 END OF BOREHOLE @ 90.0ft BGS 95 90.00 NOTES:	80 - 80			/9-80	\sim	1.0		~28
85 90 END OF BOREHOLE @ 90.0ft BGS 90.00 89.90 1.0 <28	GP							
1 90 END OF BOREHOLE @ 90.0ft BGS 90.00 89.90 1.0 <28	85							
90 END OF BOREHOLE @ 90.0ft BGS 95 95 97 NOTES:	ŠL on		00.00	89-90	\geq	1.0		<28
% 95 91 95 92 NOTES:	11-0	END OF BOREHOLE @ 90.0ft BGS	30.00	\square				
	82-95							
NOTES:								
		<u>NOTES:</u>						
	OVEF	LABORATORY ANALYSIS						

		17	-	5
(t	12)
12	-	ы		ø

Page 1 of 1

PROJECT NAME: Lovington Paddock Unit 60 PROJECT NUMBER: 73817 CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

SB-8 HOLE DESIGNATION: DATE COMPLETED: 23 October 2017 DRILLING METHOD: Air Rotary

FIELD PERSONNEL: Rebecca Jones

HCI SAMPLE CHLORIDES (mg/kg) DEPTH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ft BGS ft BGS DEPTH (ft) NTERVAL (Ħ (tsf) REC (ЪР TOP SOIL 1.00 CALICHE; dark brown 4-5 1.0 210 5 7.50 SILTY SAND (SM); light brown, contains caliche 9-10 1.0 354 1 - 10 — 15 19-20 2.0 >651 - 20 - 25 29-30 1.0 >651 30 35.00 ┝ 35 SILTY SAND (SM); light brown 39-40 >____ 1.0 >651 40 -45 45.00 SILTY SAND (SM); light brown, contains caliche 49-50 >>> 1.0 >651 - 50 55 55.00 SILTY SAND (SM); light brown 59-60 1.0 >651 60 - 65 65.00 SILTY SAND (SM); light brown, contains caliche 15/2/18 - 70 69-70 **____** 1.0 443 CORP.GDT 75.00 SILTY SAND (SM); light brown 79-80 _____ 1.0 210 80 _____ OVERBURDEN LOG 073817-CVX LPU60.GPJ 244 89-90 1.0 99-100 1.0 141 END OF BOREHOLE @ 100.0ft BGS NOTES: LABORATORY ANALYSIS

		17	-	5
(t	12)
12	-	ы	4.	ø

Page 1 of 1

PROJECT NAME: Lovington Paddock Unit 60 PROJECT NUMBER: 73817 CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

HOLE DESIGNATION: SB-9 DATE COMPLETED: 24 October 2017

DRILLING METHOD: Air Rotary

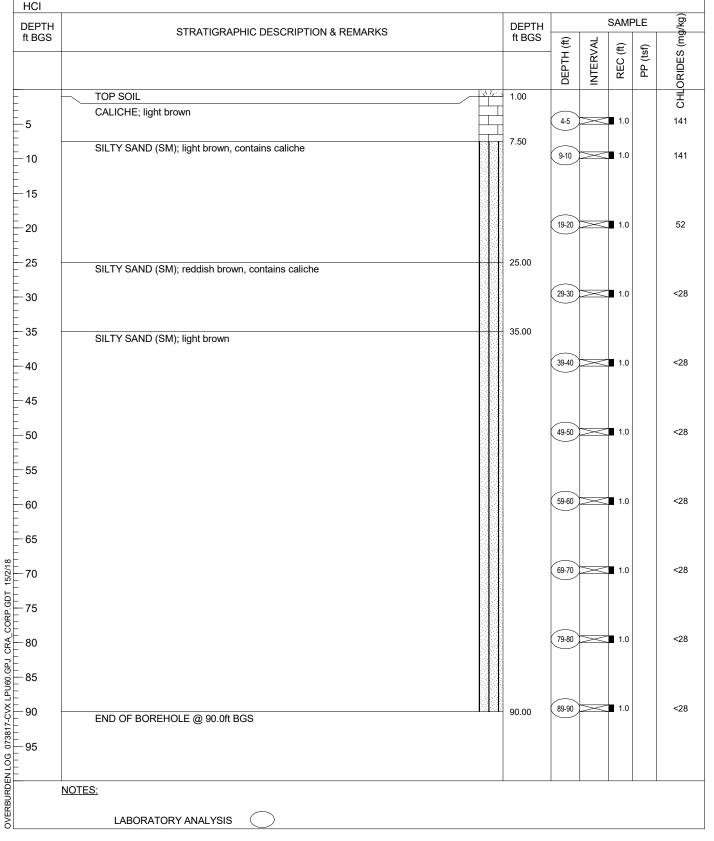
FIELD PERSONNEL: Rebecca Jones

HCI

SAMPLE CHLJORIDES (mg/kg) DEPTH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ft BGS ft BGS DEPTH (ft) NTERVAL (Ħ (tsf) REC (ЪР TOP SOIL 1.00 CALICHE; light brown 4-5 1.0 52 5 7.50 SILTY SAND (SM); light brown, contains caliche 9-10 1.0 119 - 10 15.00 — 15 SILTY SAND (SM); light brown 19-20 2.0 119 - 20 - 25 29-30 1.0 130 30 35 39-40 1.0 141 40 -45 49-50 >>> 1.0 52 - 50 - 55 59-60 1.0 52 60 - 65 15/2/18 - 70 69-70 **____** 1.0 52 CORP.GDT 75.00 SILTY SAND (SM); light brown, contains caliche 79-80 _____ 1.0 80 _____ 52 85.00 SILTY SAND (SM); light brown 89-90 1.0 46 90.00 END OF BOREHOLE @ 90.0ft BGS NOTES: LABORATORY ANALYSIS

1	p-		8
1	5	11	۳.,
	-		-

Page 1 of 1


PROJECT NAME: Lovington Paddock Unit 60 PROJECT NUMBER: 73817 CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

HOLE DESIGNATION: SB-10 DATE COMPLETED: 23 October 2017

DRILLING METHOD: Air Rotary

FIELD PERSONNEL: Rebecca Jones

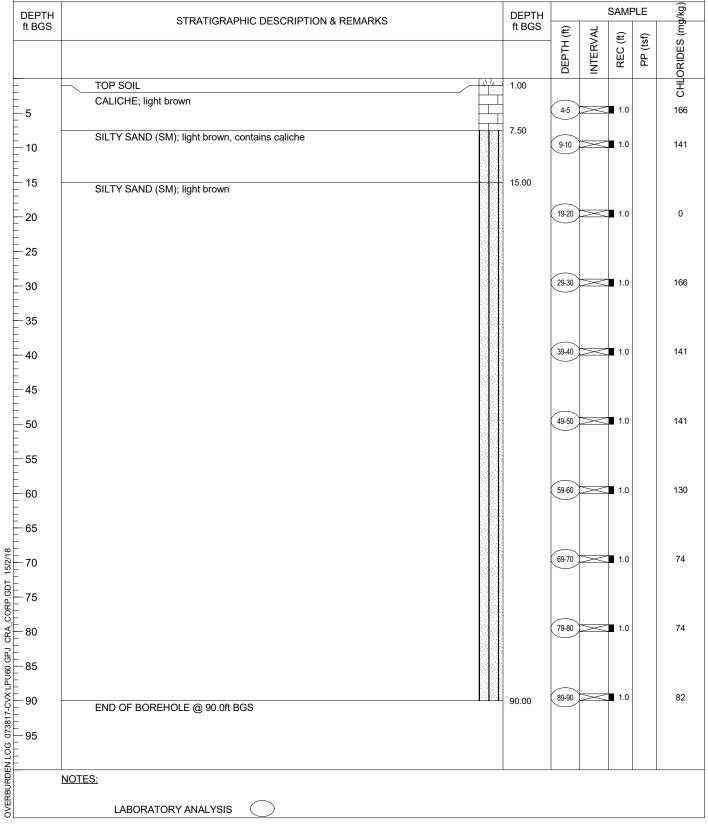
5		-	
(H	-	3
3	<i>ū</i> .		شا

HCI

STRATIGRAPHIC LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Lovington Paddock Unit 60 PROJECT NUMBER: 73817 CLIENT: Chevron Environmental Management Company


OEIEITT: Onevion Environmental Management Compa

LOCATION: Lea County, New Mexico

HOLE DESIGNATION: SB-11 DATE COMPLETED: 24 October 2017

DRILLING METHOD: Air Rotary

FIELD PERSONNEL: Rebecca Jones

Appendix B Certified Analytical Reports

Project Id:073817Contact:William FoordProject Location:Lovington NM

Certificate of Analysis Summary 554083

GHD Services, INC- Midland, Midland, TX

Project Name: CEMCLPU-60

Date Received in Lab:Fri May-26-17 01:35 pmReport Date:02-JUN-17Project Manager:Kelsey Brooks

	Lab Id:	554083-001				
Analysis Requested	Field Id:	LPU-60-W-170526				
Anulysis Kequesieu	Depth:					
	Matrix:	GROUND WATER				
	Sampled:	May-26-17 10:30				
Chloride by EPA 300	Extracted:	May-26-17 16:06		1	1	
	Analyzed:	May-27-17 00:58				
	Units/RL:	mg/L RL				
Chloride		83.9 2.50				
TDS by SM2540C	Extracted:					
	Analyzed:	May-30-17 09:00				
	Units/RL:	mg/L RL				
Total Dissolved Solids		432 5.00				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Analytical Report 554083

for GHD Services, INC- Midland

Project Manager: William Foord

CEMCLPU-60

073817

02-JUN-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

02-JUN-17

Project Manager: **William Foord GHD Services, INC- Midland** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): **554083 CEMCLPU-60** Project Address: Lovington NM

William Foord:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 554083. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 554083 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 554083

GHD Services, INC- Midland, Midland, TX

CEMCLPU-60

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
LPU-60-W-170526	W	05-26-17 10:30		554083-001

CASE NARRATIVE

Client Name: GHD Services, INC- Midland Project Name: CEMCLPU-60

 Project ID:
 073817

 Work Order Number(s):
 554083

 Report Date:
 02-JUN-17

 Date Received:
 05/26/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

GHD Services, INC- Midland, Midland, TX

CEMCLPU-60

Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Seq Number:	3018598							
Analyst:	MAN							
Tech:	MAN				ç	% Moisture:		
Analytical Me	ethod: TDS by SM254	0C						
emorat		10007 00 0	05.7	2.50	ing L	05.27.17 00.50		5
Chloride		16887-00-6	83.9	2.50	mg/L	05.27.17 00.58		5
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Seq Number:	3018407							
Analyst:	MGO		Date Prep:	05.26.17 16.06				
Tech:	MGO				ç	% Moisture:		
Analytical Me	ethod: Chloride by EPA	A 300			I	Prep Method: E30	00P	
Lab Sample Io	d: 554083-001		Date Collec	cted: 05.26.17 10.30				
Sample Id:	LPU-60-W-170526		Matrix:	Ground Water		Date Received:05.2		2

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	гах
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

QC Summary 554083

GHD Services, INC- Midland CEMCLPU-60

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E30	0P	
Seq Number:	3018407			Matrix:	Water				Date Pro	ep: 05.2	6.17	
MB Sample Id:	725283-1-BLK		LCS Sar	nple Id:	725283-1-	BKS		LCSI	O Sample	e Id: 7252	283-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	< 0.500	25.0	26.5	106	26.4	106	90-110	0	20	mg/L	05.27.17 00:20	

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	d: E30	0P	
Seq Number:	3018407			Matrix:	Ground W	ater			Date Pre	ep: 05.2	6.17	
Parent Sample Id:	554082-001		MS San	nple Id:	554082-00	01 S		MS	D Sample	Id: 5540)82-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	144	125	280	109	277	106	90-110	1	20	mg/L	05.27.17 00:43	

Analytical Method:	TDS by SM2540C								
Seq Number:	3018598			Matrix:	Water				
MB Sample Id:	3018598-1-BLK		LCS Sar	nple Id:	3018598-1-BKS				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec		Limits	Units	Analysis Date	Flag
Total Dissolved Solids	<5.00	1000	977	98		80-120	mg/L	05.30.17 09:00	

Analytical Method:	TDS by SM2540C							
Seq Number:	3018598	Matrix:	Ground Water					
Parent Sample Id:	554084-001	MD Sample Id:	554084-001 D					
Parameter	Parent Result	MD Result		%RPD	RPD Limit	Units	Analysis Date	Flag
Total Dissolved Solids	3370	3290		2	10	mg/L	05.30.17 09:00	

Analytical Method: Seq Number:	TDS by SM2540C 3018598	Matrix	Ground Water				
Seq Number.	3018398	Wattix.	Olouliu water				
Parent Sample Id:	554084-011	MD Sample Id:	554084-011 D				
Parameter	Parent Result	MD Result	%RPE	RPD Limit	Units	Analysis Date	Flag
Total Dissolved Solids	892	840	6	10	mg/L	05.30.17 09:00	

1

3

5

Relinquished by Sampler:

Relinquished by:

Relinquished by:

$\begin{array}{c} \textbf{CHAIN} \hspace{0.1cm} \textbf{OF} \hspace{0.1cm} \textbf{CUSTODY} \\ {}_{Page} \hspace{0.1cm} \perp \hspace{0.1cm} \textbf{Of} \hspace{0.1cm} \boldsymbol{\perp} \end{array}$

Setting the Standard since 1990																						
Stafford, Texas (281-240-4200)												Odes	sa, T	exas	432-5	63-18	00)			Lake	eland, F	Torida (863-646-8526)
Dallas Texas (214-902-0300)												Norce	oss,	Geor	gia (7	70-44	9-880	0)		Tam	pa, Flo	rida (813-620-2000)
Service Center - San Antonio, Texas (210-509-3334)		W	ww.xei	00.00	m							Xenco	Quote	8				Xenco Jo	b#	FOF	54	093
														Ar	alytic	al Info	rmatio	m				Matrix Codes
Client / Reporting Information	Pro	ject Inform	mation											1.1								
Company Name / Branch: GHD-Midland	Project Name/Number: CEMCLPU-60/07381	17																				S = Soil/Sed/Solid
Company Address:	Project Location:										-											GW =Ground Water
2135 S Loop 250 W, Midland, TX 79703	Lovington, NM																					DW = Drinking Water
Email: Phone No:	Invoice To:				_					-	-										1	P = Product SW = Surface water
william.foord@ghd.com 713-734-3090																						SL = Sludge
Project Contact: Scott Foord					_	1			_													OW =Ocean/Sea Water W = Wipe
Samplers's Name Just Man	PO Number:																					O = Oil WW= Waste Water
	Collection				Numb	per of	pres	server	t bot	tles	1		0	0	τΛ							A = Air
No. Field ID / Point of Collection		1										×	GH	DB	X	ide	ture					
Sampl Depth			# of bottles	Ţ	VaOH/Zn Acetate	HN03	12SO4	AaOH	NaHSO4	AEOH	NONE	BTEX	TPH-GRO	TPH-DRO	Ë	Chloride	Moisture					5.00
1 LPU-60- W-170526	5-26-17 1050	Matrix	Z	I	ZĂ	I	Ť	ž	Ž	Σ	X		-	-	X	X	2		+	+	-	Field Comments
	5		-		-				-	H	-		-		<u> </u>	<u> </u>		-	-	+	-	
2			-		-	-			-	\square		-	-		-	-	-	-	+	+	-	
3			-	+	-				-		-	-	-	-	-	-	-	-	+	+	-	
4			-	$\left \right $	-	-	-		-	$\left \right $	-				-	-		-	+	+	-	
5		-	-		-	-	-		-	$\left \right $	-	-	-	-	-	_	-		+	+	-	
6			-		-	-	-		-	$\left \right $	-	-	-		-		-	-	+	+	-	
7			-			-	-		-			-	-	-	-	-		-	-	+	-	
8				$\left \right $	-	-			-	$\left \right $	1	-	-		-	-	-	-	+	+	-	
9				$\left \right $	-	-	-		-	$\left \right $	-	-	-	-		-		-	+	+	-	
10 Turnaround Time (Business days)			ata Deliv	verable	Inform	ation		-	-		-	-	-	_	-	-		_		_	_	
Same Day TAT X 5 Day TAT		vel II Std				(1	val IV	/r	Data	Die	leave d	late)				T	emp:	2	1. 2	7	IR ID:R-8
Next Day EMERGENCY 7 Day TAT					-		-	-		-	rkg	naw 0	dud)		-	-	С	-:(0-6	6: -0	.2°C)	IR ID:R-8
		vel III Std		_	-	_	J TR	IRP Le	evel I	IV.		_		_	-	-		(6-2	23: -	+0.2°	C)	
2 Day EMERGENCY Contract TAT	Le	vel 3 (CL	P Form	s)			US	ST / RC	G -41	1	_						С	orrec	ted	Temp): (7.0 _
3 Day EMERGENCY	TR	RP Chec	klist																			
TAT Starts Day received by Lab, if received by 5:00 pm	0															FED-	EX/U	PS: Trac	king #	ŧ		

Relinquished By:

Relinquished By:

Custody Seal #

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to XENCO Laboratories and its affiliates, subcontractors and assigns XENCO's standard terms and conditions of service unless previously neglotiated under a fully executed client contract.

Date Time:

Date Time:

Preserved where applicable

Received By:

Received By:

Og Ice

Cooler Temp.

Thermo. Corr. Factor

SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY

Rece

Received

Received By:

Date Time:

Date Time:

Date Time:

Final 1.000

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: GHD Services, INC- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 05/26/2017 01:35:00 PM Temperature Measuring device used : R8 Work Order #: 554083 Comments Sample Receipt Checklist 2 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A #6 Custody Seals intact on sample bottles? N/A #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes #14 Sample matrix/ properties agree with Chain of Custody? Yes #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? N/A #21 VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst: JKR

PH Device/Lot#: 213315

Date: 05/26/2017

Checklist completed by: Jessica Kramer Checklist reviewed by: Kelsey Brooks

Date: 05/26/2017

Certificate of Analysis Summary 566503

GHD Services, INC- Midland, Midland, TX Project Name: LPU # 60

Date Received in Lab:Wed Oct-25-17 12:50 pmReport Date:09-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	566503-0	01	566503-0	02	566503-0	03	566503-0	04	566503-0	05	566503-0	06
Analysis Requested	Field Id:	DUP_1-17	1023	SB-10-S-0.5-1-	171023	SB-10-S-4-5-1	71023	SB-10-S-9-10-	171023	SB-10-S-19-20-	-171023	SB-10-S-29-30	-171023
Anaiysis Kequesieu	Depth:	0-0		.5-1		4-5		9-10		19-20		29-30	
	Matrix:	SOIL				SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-23-17 (et-23-17 00:00 O		0:30	Oct-23-17 1	0:33	Oct-23-17 1	0:36	Oct-23-17 1	0:39	Oct-23-17 1	0:42
Chloride by EPA 300	Extracted:	Nov-02-17	v-02-17 11:00 No		11:00	Nov-02-17 11:00		Nov-02-17 1	8:00	Nov-02-17	18:00	Nov-10-17 (09:00
	Analyzed:	Nov-02-17	16:44	Nov-02-17 16:53		Nov-02-17 17:02		Nov-03-17 (01:35	Nov-03-17 (02:02	Nov-10-17	12:23
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		142	5.24	1190	26.3	703	5.20	673	5.34	154	5.23	50.2	5.27
Percent Moisture	Extracted:												
	Analyzed:	Oct-26-17 1	ct-26-17 14:00		4:00	Oct-26-17 1	4:00	Oct-26-17 1	4:00	Oct-26-17 1	4:00	Nov-10-17	17:04
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		5.10	1.00	6.79	1.00	4.41	1.00	6.86	1.00	5.08	1.00	5.25	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566503

GHD Services, INC- Midland, Midland, TX Project Name: LPU # 60

Date Received in Lab:Wed Oct-25-17 12:50 pmReport Date:09-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	566503-0)13	566503-0	14	566503-0	15	566503-0)16	566503-0)17	566503-0	18
Analysis Requested	Field Id:	SB-8-S-0.5-1-	171023	SB-8-S-4-5-1	71023	SB-8-S-9-10-1	71023	SB-8-S-19-20-	171023	SB-8-S-29-30-	-171023	SB-8-S-39-40-	171023
Anaiysis Kequesieu	Depth:	0.5-1		4-5		9-10		19-20		29-30		39-40	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-23-17	ct-23-17 11:20 C		1:23	Oct-23-17 11:26		Oct-23-17	11:29	Oct-23-17	11:32	Oct-23-17 1	1:35
Chloride by EPA 300	Extracted:	Nov-02-17	ov-02-17 18:00 N		18:00	Nov-02-17 18:00		Nov-02-17	18:00	Nov-02-17	18:00	Nov-02-17	18:00
	Analyzed:	Nov-03-17	02:11	Nov-03-17 02:19		Nov-03-17 02:28		Nov-03-17	02:55	Nov-03-17	03:04	Nov-03-17 (03:13
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		49.2	5.35	1070	27.1	1380	26.6	2290	25.4	5270	51.8	5570	51.9
Percent Moisture	Extracted:												
	Analyzed:	Oct-26-17	oct-26-17 14:00 C		4:00	Oct-26-17 1	4:00	Oct-26-17	4:00	Oct-26-17	14:00	Oct-26-17 1	4:00
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		8.38	1.00	9.35	1.00	6.56	1.00	3.53	1.00	4.34	1.00	5.42	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566503

GHD Services, INC- Midland, Midland, TX Project Name: LPU # 60

Date Received in Lab:Wed Oct-25-17 12:50 pmReport Date:09-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	566503-0)19	566503-0	20	566503-0	21	566503-0	022	566503-0	23	566503-0	24
Analysis Requested	Field Id:	SB-8-S-49-50-	-171023	SB-8-S-59-60-	171023	SB-8-S-69-70-	171023	SB-8-S-79-80-	171023	SB-8-S-89-90-	171023	SB-8-S-99-100	-171023
Analysis Kequesiea	Depth:	49-50		59-60		69-70		79-80		89-90		99-100	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-23-17	oct-23-17 11:38 (Oct-23-17 11:41		1:44	Oct-23-17 1	11:47	Oct-23-17 1	1:50	Oct-23-17 1	1:53
Chloride by EPA 300	Extracted:	Nov-02-17	ov-02-17 18:00 N		18:00	Nov-02-17 18:00		Nov-02-17	18:00	Nov-02-17	18:00	Nov-10-17 (09:00
	Analyzed:	Nov-03-17	03:21	Nov-03-17 08:49		Nov-03-17 09:25		Nov-03-17 (08:58	Nov-03-17 (09:33	Nov-10-17	12:30
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		3760	25.7	3010	26.1	2000	26.4	854	5.19	1010	5.19	1920	25.9
Percent Moisture	Extracted:												
	Analyzed:	Oct-26-17	oct-26-17 14:00		4:00	Oct-26-17 1	4:00	Oct-26-17 1	4:00	Oct-26-17 1	4:00	Nov-10-17	17:04
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		4.63	1.00	4.28	1.00	5.62	1.00	5.11	1.00	5.47	1.00	3.56	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566503

GHD Services, INC- Midland, Midland, TX

Project Name: LPU # 60

Date Received in Lab:Wed Oct-25-17 12:50 pmReport Date:09-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	566503-0)25	566503-0	26	566503-0	27	566503-0	028	566503-0	36	566503-0	37
Analysis Requested	Field Id:	SB-7-S-0.5-1-	171023	SB-7-S-4-5-1	71023	SB-7-S-9-10-1	171023	SB-7-S-19-20-	171023	SB-6-S-0.5-1-	171023	SB-6-S-4-5-1	71023
Analysis Kequestea	Depth:	0.5-1		4-5		9-10		19-20		0.5-5		4-5	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-23-17	23-17 12:53 Oct-		2:56	Oct-23-17 1	2:59	Oct-23-17 13:02		Oct-23-17 13:50		Oct-23-17 1	3:53
Chloride by EPA 300	Extracted:	Nov-02-17	18:00	Nov-02-17 1	18:00	Nov-02-17 1	18:00	Nov-02-17 18:00		Nov-02-17 18:00		Nov-02-17 1	18:00
	Analyzed:	Nov-03-17	10:00	Nov-03-17 1	10:09	Nov-03-17 10:18		Nov-03-17 10:26		Nov-03-17 10:35		Nov-03-17 10:44	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		30.5	5.50	30.3	5.32	167	5.18	208	5.18	155	33.1	48.0	5.40
Percent Moisture	Extracted:												
	Analyzed:	Oct-26-17	-26-17 14:00 Oc		4:00	Oct-26-17 1	4:00	Oct-26-17 1	4:00	Oct-26-17 1	4:00	Oct-26-17 1	4:00
	Units/RL: %		RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture	Ioisture		1.00	6.39	1.00	4.49	1.00	5.03	1.00	26.1	1.00	7.56	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566503

GHD Services, INC- Midland, Midland, TX Project Name: LPU # 60

Date Received in Lab:Wed Oct-25-17 12:50 pmReport Date:09-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	566503-0)38	566503-0	39	566503-0	40	566503-0	41	566503-0	42	566503-0	43
Analysis Requested	Field Id:	SB-6-S-9-10-	171023	SB-6-S-19-20-	171023	SB-6-S-29-30-	171023	SB-6-S-39-40-	171023	SB-6-S-49-50-	171023	SB-6-S-59-60-	171023
Analysis Kequestea	Depth:	9-10		19-20		29-30		39-40		49-50		59-60	
	Matrix:	SOIL		SOIL		SOIL	SOIL			SOIL		SOIL	
	Sampled:	Oct-23-17	23-17 13:56 Oct-1		3:59	Oct-23-17 1	4:02	Oct-23-17 14:05		Oct-23-17 14:08		Oct-23-17 1	4:11
Chloride by EPA 300	Extracted:	Nov-02-17	18:00	Nov-03-17	18:40	Nov-03-17	18:40	Nov-03-17 18:40		Nov-03-17 18:40		Nov-03-17	18:40
	Analyzed:	Nov-03-17	10:53	Nov-04-17 ()6:56	Nov-04-17 07:05		Nov-04-17 07:14		Nov-04-17 07:40		Nov-04-17 07:49	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		138	5.37	66.7	5.19	189	5.22	766	5.22	1300	5.23	1300	5.24
Percent Moisture	Extracted:												
	Analyzed:	Oct-26-17	t-26-17 14:00 Od		4:00	Oct-26-17 1	4:00						
	Units/RL:	%	% RL		RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture	Moisture		1.00	4.28	1.00	4.96	1.00	4.89	1.00	4.53	1.00	4.64	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566503

GHD Services, INC- Midland, Midland, TX

Project Name: LPU # 60

Date Received in Lab:Wed Oct-25-17 12:50 pmReport Date:09-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	566503-0)44	566503-0	45	566503-0	46	566503-0	047	566503-0	48	566503-0	49
Analysis Requested	Field Id:	SB-6-S-69-70-	-171023	SB-6-S-79-80-	171023	SB-6-S-89-90-	171023	SB-6-S-99-100	-171023	SB-9-S-0.5-1-	171023	SB-9-S-4-5-1	71023
Analysis Kequestea	Depth:	69-70		79-80		89-90		99-100		0.5-1		4-5	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-23-17	23-17 14:14 Oct		4:17	Oct-23-17 1	4:20	Oct-23-17 14:53		Oct-24-17 08:20		Oct-24-17 (08:23
Chloride by EPA 300	Extracted:	Nov-03-17	18:40	Nov-03-17 1	8:40	Nov-03-17 1	8:40	Nov-03-17 18:40		Nov-03-17 18:40		Nov-03-17	18:40
	Analyzed:	Nov-04-17	09:23	Nov-04-17 (9:32	Nov-04-17 09:41		Nov-04-17 10:57		Nov-04-17 11:06		Nov-04-17 11:15	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		1220	5.37	873	5.30	622	5.23	168	5.29	36.8	6.05	131	5.97
Percent Moisture	Extracted:												
	Analyzed:	Oct-26-17	t-26-17 14:00 O		4:00	Oct-26-17 1	4:00	Oct-26-17 1	4:00	Oct-26-17 1	4:00	Oct-26-17 1	4:00
	Units/RL:	%	% RL		RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		7.04	1.00	6.40	1.00	5.28	1.00	5.80	1.00	17.6	1.00	17.7	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566503

GHD Services, INC- Midland, Midland, TX Project Name: LPU # 60

Date Received in Lab:Wed Oct-25-17 12:50 pmReport Date:09-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	566503-0	050	566503-0	51	566503-0	52	566503-0)53	566503-0	54	566503-0	55
Analysis Requested	Field Id:	SB-9-S-9-10-	171023	SB-9-S-19-20-	171023	SB-9-S-29-30-	171023	SB-9-S-39-40-	-171023	SB-9-S-49-50-	171023	SB-9-S-59-60-	171023
Anaiysis Kequesieu	Depth:	9-10		19-20		29-30		39-40		49-50		59-60	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-24-17	24-17 08:26 Oct-		8:29	Oct-24-17 0	8:32	Oct-24-17 08:35		Oct-24-17 08:38		Oct-24-17 (08:41
Chloride by EPA 300	Extracted:	Nov-03-17	18:40	Nov-04-17 (08:50	Nov-10-17 (09:00	Nov-10-17 09:00		Dec-07-17 12:30		Dec-07-17	12:30
	Analyzed:	Nov-04-17	11:24	Nov-04-17 1	Nov-04-17 13:38		Nov-10-17 12:36		12:42	Dec-07-17 13:14		Dec-07-17	13:31
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		409	5.49	352	5.73	360	5.39	308	5.24	178	5.56	119	5.24
Percent Moisture	Extracted:												
	Analyzed:	Oct-26-17	t-26-17 14:00 Od		0:00	Nov-10-17 1	7:04	Nov-10-17	17:04	Dec-07-17 (9:15	Dec-07-17 (09:15
	Units/RL:	%	% RL		RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		9.03	1.00	12.9	1.00	7.40	1.00	6.07	1.00	10.4	1.00	5.50	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566503

GHD Services, INC- Midland, Midland, TX

Project Name: LPU # 60

Date Received in Lab:Wed Oct-25-17 12:50 pmReport Date:09-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	566503-0)56	566503-0	57	566503-0	58	566503-0)59	566503-0	60	566503-0	61
Analysis Requested	Field Id:	SB-9-S-69-70-	171023	SB-9-S-79-80-	171023	SB-9-S-89-90-	171023	SB-11-S-0.5-1	-171023	SB-11-S-4-5-	171023	SB-11-S-9-10-	171023
Anaiysis Kequesieu	Depth:	69-70		79-80		89-90		0.5-1		4-5		9-10	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-24-17 (24-17 08:44 Oct-		08:47	Oct-24-17 0	08:50	Oct-24-17 09:20		Oct-24-17 09:23		Oct-24-17 0)9:26
Chloride by EPA 300	Extracted:	Dec-08-17	09:00	Dec-08-17 0	9:00	Dec-08-17 (09:00	Nov-04-17 08:50		Nov-04-17 08:50		Nov-04-17 08:50	
	Analyzed:	Dec-08-17	13:33	Dec-08-17 1	3:39	Dec-08-17 13:45		Nov-04-17 13:44		Nov-04-17 14:03		Nov-04-17	14:10
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		163	5.35	200	9.73	129	5.28	6.90	5.84	1040	27.8	673	5.58
Percent Moisture	Extracted:												
	Analyzed:	Dec-08-17	c-08-17 08:30 De		08:30	Dec-08-17 (08:30	Oct-27-17 1	0:00	Oct-27-17 1	0:00	Oct-27-17 1	0:00
	Units/RL:	%	% RL		RL	%	RL	%	RL	%	RL	%	RL
cent Moisture		7.06	1.00	48.9	1.00	5.62	1.00	16.1	1.00	10.9	1.00	10.8	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

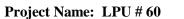
Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566503

GHD Services, INC- Midland, Midland, TX Project Name: LPU # 60

Date Received in Lab:Wed Oct-25-17 12:50 pmReport Date:09-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	566503-0)62	566503-0	63	566503-0	64	566503-0)65	566503-0	66	566503-0	67
Analysis Requested	Field Id:	SB-11-S-19-20	0-171023	SB-11-S-29-30-	171023	SB-11-S-39-40-	171023	SB-11-S-49-50	-171023	SB-11-S-59-60	-171023	SB-11-S-69-70	-171023
Analysis Kequestea	Depth:	19-20		29-30		39-40		49-50		59-60		69-70	
	Matrix:	SOIL		SOIL	SOIL		SOIL			SOIL		SOIL	
	Sampled:	Oct-24-17	24-17 09:29 Oct-		9:32	Oct-24-17 0	9:35	Oct-24-17 09:38		Oct-24-17 09:41		Oct-24-17 0	9:44
Chloride by EPA 300	Extracted:	Nov-04-17	08:50	Nov-04-17 (08:50	Nov-04-17 (08:50	Nov-04-17 08:50		Nov-03-17 18:40		Nov-03-17	18:40
	Analyzed:	Nov-04-17	14:29	Nov-04-17 1	4:35	Nov-04-17 14:41		Nov-04-17 14:48		Nov-04-17 05:10		Nov-04-17 (06:30
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		336	5.24	530	5.35	496	5.26	477	5.23	398	5.21	283	5.32
Percent Moisture	Extracted:												
	Analyzed:	Oct-27-17	t-27-17 10:00 Od		0:00	Oct-27-17 1	0:00	Oct-27-17 1	0:00	Oct-27-17 1	0:00	Oct-27-17 1	0:00
	Units/RL:	%	% RL		RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		4.50	1.00	6.47	1.00	5.71	1.00	5.42	1.00	4.50	1.00	6.84	1.00


This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566503

GHD Services, INC- Midland, Midland, TX

Date Received in Lab:Wed Oct-25-17 12:50 pmReport Date:09-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	566503-0)68	566503-0	69		
Analysis Requested	Field Id:	SB-11-S-79-80	-171023	SB-11-S-89-90-171023			
Analysis Kequestea	Depth:	79-80		89-90			
	Matrix:	SOIL		SOIL			
	Sampled:	Oct-24-17)9:47	Oct-24-17 0	9:50		
Chloride by EPA 300	Extracted:	Nov-03-17	18:40	Nov-03-17	18:40		
	Analyzed:	Nov-04-17	06:39	Nov-04-17 (06:47		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		223	5.37	352	5.96		
Percent Moisture	Extracted:						
	Analyzed:	Oct-27-17	10:00	Oct-27-17 1	0:00		
	Units/RL:	%	RL	%	RL		
Percent Moisture		8.03	1.00	17.1	1.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Analytical Report 566503

for GHD Services, INC- Midland

Project Manager: Scott Foord

LPU # 60

073817

09-DEC-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

09-DEC-17

Project Manager: **Scott Foord GHD Services, INC- Midland** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): **566503 LPU # 60** Project Address: Lovington,NM

Scott Foord:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 566503. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 566503 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

le p

Mike Kimmel Client Services Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 566503

GHD Services, INC- Midland, Midland, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
DUP_1-171023	S	10-23-17 00:00	0 - 0	566503-001
SB-10-S-0.5-1-171023	S	10-23-17 10:30	.5 - 1	566503-002
SB-10-S-4-5-171023	S	10-23-17 10:33	4 - 5	566503-003
SB-10-S-9-10-171023	S	10-23-17 10:36	9 - 10	566503-004
SB-10-S-19-20171023	S	10-23-17 10:39	19 - 20	566503-005
SB-10-S-29-30-171023	S	10-23-17 10:42	29 - 30	566503-006
SB-8-S-0.5-1-171023	S	10-23-17 11:20	0.5 - 1	566503-013
SB-8-S-4-5-171023	S	10-23-17 11:23	4 - 5	566503-014
SB-8-S-9-10-171023	S	10-23-17 11:26	9 - 10	566503-015
SB-8-S-19-20-171023	S	10-23-17 11:29	19 - 20	566503-016
SB-8-S-29-30-171023	S	10-23-17 11:32	29 - 30	566503-017
SB-8-S-39-40-171023	S	10-23-17 11:35	39 - 40	566503-018
SB-8-S-49-50-171023	S	10-23-17 11:38	49 - 50	566503-019
SB-8-S-59-60-171023	S	10-23-17 11:41	59 - 60	566503-020
SB-8-S-69-70-171023	S	10-23-17 11:44	69 - 70	566503-021
SB-8-S-79-80-171023	S	10-23-17 11:47	79 - 80	566503-022
SB-8-S-89-90-171023	S	10-23-17 11:50	89 - 90	566503-023
SB-8-S-99-100-171023	S	10-23-17 11:53	99 - 100	566503-024
SB-7-S-0.5-1-171023	S	10-23-17 12:53	0.5 - 1	566503-025
SB-7-S-4-5-171023	S	10-23-17 12:56	4 - 5	566503-026
SB-7-S-9-10-171023	S	10-23-17 12:59	9 - 10	566503-027
SB-7-S-19-20-171023	S	10-23-17 13:02	19 - 20	566503-028
SB-6-S-0.5-1-171023	S	10-23-17 13:50	0.5 - 5	566503-036
SB-6-S-4-5-171023	S	10-23-17 13:53	4 - 5	566503-037
SB-6-S-9-10-171023	S	10-23-17 13:56	9 - 10	566503-038
SB-6-S-19-20-171023	S	10-23-17 13:59	19 - 20	566503-039
SB-6-S-29-30-171023	S	10-23-17 14:02	29 - 30	566503-040
SB-6-S-39-40-171023	S	10-23-17 14:05	39 - 40	566503-041
SB-6-S-49-50-171023	S	10-23-17 14:08	49 - 50	566503-042
SB-6-S-59-60-171023	S	10-23-17 14:11	59 - 60	566503-043
SB-6-S-69-70-171023	S	10-23-17 14:14	69 - 70	566503-044
SB-6-S-79-80-171023	S	10-23-17 14:17	79 - 80	566503-045
SB-6-S-89-90-171023	S	10-23-17 14:20	89 - 90	566503-046
SB-6-S-99-100-171023	S	10-23-17 14:53	99 - 100	566503-047
SB-9-S-0.5-1-171023	S	10-24-17 08:20	0.5 - 1	566503-048
SB-9-S-4-5-171023	S	10-24-17 08:23	4 - 5	566503-049
SB-9-S-9-10-171023	S	10-24-17 08:26	9 - 10	566503-050
SB-9-S-19-20-171023	S	10-24-17 08:29	19 - 20	566503-051
SB-9-S-29-30-171023	S	10-24-17 08:32	29 - 30	566503-052
SB-9-S-39-40-171023	S	10-24-17 08:35	39 - 40	566503-053
SB-9-S-49-50-171023	S	10-24-17 08:38	49 - 50	566503-054
SB-9-S-59-60-171023	S	10-24-17 08:41	59 - 60	566503-055
SB-9-S-69-70-171023	S	10-24-17 08:44	69 - 70	566503-056

Sample Cross Reference 566503

GHD Services, INC- Midland, Midland, TX

S	10-24-17 08:47	79 - 80	566503-057
S	10-24-17 08:50	89 - 90	566503-058
S	10-24-17 09:20	0.5 - 1	566503-059
S	10-24-17 09:23	4 - 5	566503-060
S	10-24-17 09:26	9 - 10	566503-061
S	10-24-17 09:29	19 - 20	566503-062
S	10-24-17 09:32	29 - 30	566503-063
S	10-24-17 09:35	39 - 40	566503-064
S	10-24-17 09:38	49 - 50	566503-065
S	10-24-17 09:41	59 - 60	566503-066
S	10-24-17 09:44	69 - 70	566503-067
S	10-24-17 09:47	79 - 80	566503-068
S	10-24-17 09:50	89 - 90	566503-069
S	10-23-17 10:45	39 - 40	Not Analyzed
S	10-23-17 10:48	49 - 50	Not Analyzed
S	10-23-17 10:51	59 - 60	Not Analyzed
S	10-23-17 10:54	69 - 70	Not Analyzed
S	10-23-17 10:57	79 - 80	Not Analyzed
S	10-23-17 11:00	89 - 90	Not Analyzed
S	10-23-17 13:05	29 - 30	Not Analyzed
S	10-23-17 13:08	39 - 40	Not Analyzed
S	10-23-17 13:11	49 - 50	Not Analyzed
S	10-23-17 13:14	59 - 60	Not Analyzed
S	10-23-17 13:17	69 - 70	Not Analyzed
S	10-23-17 13:20	79 - 80	Not Analyzed
S	10-23-17 13:23	89 - 90	Not Analyzed
S	10-24-17 00:00		Not Analyzed

SB-9-S-79-80-171023
SB-9-S-89-90-171023
SB-11-S-0.5-1-171023
SB-11-S-4-5-171023
SB-11-S-9-10-171023
SB-11-S-19-20-171023
SB-11-S-29-30-171023
SB-11-S-39-40-171023
SB-11-S-49-50-171023
SB-11-S-59-60-171023
SB-11-S-69-70-171023
SB-11-S-79-80-171023
SB-11-S-89-90-171023
SB-10-S-39-40-171023
SB-10-S-49-50-171023
SB-10-S-59-60-171023
SB-10-S-69-70-171023
SB-10-S-79-80-171023
SB-10-S-89-90-171023
SB-7-S-29-30-171023
SB-7-S-39-40-171023
SB-7-S-49-50-171023
SB-7-S-59-60-171023
SB-7-S-69-70-171023
SB-7-S-79-80-171023
SB-7-S-89-90-171023
Temp Blank

CASE NARRATIVE

Client Name: GHD Services, INC- Midland Project Name: LPU # 60

 Project ID:
 073817

 Work Order Number(s):
 566503

 Report Date:
 09-DEC-17

 Date Received:
 10/25/2017

Sample receipt non conformances and comments:

11/10/17: Per Scott Foord, add Chloride analysis for SB-10(29-30)/SB-8(99-100)/SB-9 (29-30)/SB-9(39-40)

12/07/17: Run all remaining sampling points of SB-9 that were previously on hold for Chloride

Sample receipt non conformances and comments per sample:

None

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	DUP_1-171023 d: 566503-001		Matrix: Date Colle	Soil cted: 10.23.17 00.00		Date Received:10. Sample Depth:0 -		0
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E3	00P	
Tech:	MNV					% Moisture: 5.1		
Analyst:	MNV		Date Prep:	11.02.17 11.00		Basis: Dr	y Weight	
Seq Number:	3032225							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	142	5.24	mg/kg	11.02.17 16.44		1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id	SB-10-S-0.5-1-171023 : 566503-002	;	Matrix: Date Colle	Soil cted: 10.23.17 10.30		Date Received:1 Sample Depth:		0
Analytical Met	thod: Chloride by EPA	300				Prep Method: H	E300P	
Tech:	MNV					% Moisture: 6	5.79	
Analyst:	MNV		Date Prep:	11.02.17 11.00		Basis: I	Dry Weight	
Seq Number:	3032225							
Parameter		Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Chloride		16887-00-6	1190	26.3	mg/kg	11.02.17 16.53	3	5

GHD Services, INC- Midland, Midland, TX

Sample Id: SB-10-S-4-5-17102 Lab Sample Id: 566503-003	3	Matrix: Date Collec	Soil cted: 10.23.17 10.33		Date Received:10.25.17 12.50 Sample Depth: 4 - 5		
Analytical Method: Chloride by EP	A 300				Prep Method: E3	00P	
Tech: MNV					% Moisture: 4.4	1	
Analyst: MNV		Date Prep:	11.02.17 11.00		Basis: Dr	y Weight	
Seq Number: 3032225							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	703	5.20	mg/kg	11.02.17 17.02		1

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-10-S-9-10-17102 . d: 566503-004	3	Matrix: Date Colle	Soil cted: 10.23.17 10.36		Date Received:10.25.17 12.5 Sample Depth: 9 - 10		
Analytical M	ethod: Chloride by EPA	A 300				Prep Method:	E300P	
Tech:	MNV					% Moisture:	6.86	
Analyst:	MNV		Date Prep:	11.02.17 18.00		Basis:	Dry Weight	
Seq Number:	3032348							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	673	5.34	mg/kg	11.03.17 01.3	35	1

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample Id	SB-10-S-19-201710 : 566503-005	23	Matrix: Date Colle	Soil cted: 10.23.17 10.39		Date Received:10.25.17 12 Sample Depth: 19 - 20		
Analytical Me	thod: Chloride by EPA	300]	Prep Method:	E300P	
Tech:	MNV				(% Moisture:	5.08	
Analyst:	MNV		Date Prep:	11.02.17 18.00]	Basis:	Dry Weig	ght
Seq Number:	3032348		-					
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Fla	ag Dil
Chloride		16887-00-6	154	5.23	mg/kg	11.03.17 02.	.02	1

154

GHD Services, INC- Midland, Midland, TX

LPU # 60

Chloride		16887-00-6	50.2	5.27	mg/kg	11.10.17 12.	23	1
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Seq Number:	3032985							
Analyst:	MNV		Date Prep:	11.10.17 09.00]	Basis:	Dry Weight	
Tech:	MNV					% Moisture:	5.25	
Analytical M	ethod: Chloride by EPA	300]	Prep Method:	E300P	
Lab Sample Id: 566503-006			Date Colle	cted: 10.23.17 10.42		Sample Depth	:29 - 30	
Sample Id:	SB-10-S-29-30-17102	23	Matrix:	Soil	1	Date Received:10.25.17 12.50		

GHD Services, INC- Midland, Midland, TX

LPU # 60

Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil
Seq Number:	3032348								
Analyst:	MNV		Date Prep:	11.02.17 18.00		Basis:	Dry V	Weight	
Tech:	MNV					% Moisture:	8.38		
Analytical Me	ethod: Chloride by EPA 3	00				Prep Method:	E300	P	
Sample Id: Lab Sample Id	SB-8-S-0.5-1-171023 d: 566503-013		Matrix: Date Collec	Soil ted: 10.23.17 11.20		Date Received:10.2 Sample Depth: 0.5			
Commite Id.	CD 0 C 0 E 1 171033		Matein	Seil		Data Dagaiwa	1.10.25	17 12 50	

16887-00-6 **49.2**

5.35

11.03.17 02.11

mg/kg

Certificate of Analytical Results 566503

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-8-S-4-5-171023 d: 566503-014		Matrix: Date Colle	Soil cted: 10.23.17 11.23	Date Received:10.25.17 1 Sample Depth:4 - 5			50
Analytical M	ethod: Chloride by EPA	A 300				Prep Method:	E300P	
Tech:	MNV					% Moisture:	9.35	
Analyst:	MNV		Date Prep:	11.02.17 18.00		Basis:	Dry Weight	
Seq Number:	3032348							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	1070	27.1	mg/kg	11.03.17 02.1	19	5

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id	SB-8-S-9-10-171023 d: 566503-015		Matrix: Date Colle	Soil cted: 10.23.17 11.26		Date Received:10.25.17 12.50 Sample Depth: 9 - 10		
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: E	300P	
Tech:	MNV					% Moisture: 6	.56	
Analyst:	MNV		Date Prep:	11.02.17 18.00]	Basis: D	ry Weight	
Seq Number:	3032348							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1380	26.6	mg/kg	11.03.17 02.28		5

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id	SB-8-S-19-20-171023 d: 566503-016		Matrix: Date Colle	Soil cted: 10.23.17 11.29		Date Received: Sample Depth:		0
2	ethod: Chloride by EPA	300				Prep Method:		
Tech:	MNV					% Moisture:	3.53	
Analyst:	MNV		Date Prep:	11.02.17 18.00]	Basis:	Dry Weight	
Seq Number:	3032348							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	2290	25.4	mg/kg	11.03.17 02.5	5	5

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: SB-8-S-29-30-171023 Lab Sample Id: 566503-017			Matrix: Date Collec	Soil eted: 10.23.17 11.32	Date Received:10.25.17 12.5 Sample Depth: 29 - 30				
Analytical Me Tech: Analyst: Seq Number:	ethod: Chloride by EPA 3 MNV MNV 3032348	:00	Date Prep:	11.02.17 18.00		Prep Method: % Moisture: Basis:	4.34		
Parameter	3032340	Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

16887-00-6 5270

51.8

11.03.17 03.04

mg/kg

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample Id	SB-8-S-39-40-171023 d: 566503-018		Matrix: Date Collec	Matrix: Soil Date Collected: 10.23.17 11.35		Date Received:10.25 Sample Depth: 39 - 4			
Analytical Me Tech:	ethod: Chloride by EPA 3 MNV	300				Prep Method: % Moisture:	E30		
Analyst:	MNV		Date Prep:	11.02.17 18.00		Basis:		Weight	
Seq Number:	3032348								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

16887-00-6 **5570**

51.9

11.03.17 03.13

mg/kg

Certificate of Analytical Results 566503

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-8-S-49-50-17102 d: 566503-019	3	Matrix: Date Colle	Soil cted: 10.23.17 11.38		Date Received:10.25.17 12.5 Sample Depth: 49 - 50		
Analytical M	ethod: Chloride by EPA	300				Prep Method:	E300P	
Tech:	MNV					% Moisture:	4.63	
Analyst:	MNV		Date Prep:	11.02.17 18.00		Basis:	Dry Weight	
Seq Number:	3032348							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	3760	25.7	mg/kg	11.03.17 03.2	21	5

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id	SB-8-S-59-60-171023 d: 566503-020		Matrix: Date Colle	Soil cted: 10.23.17 11.41		Date Received:10 Sample Depth: 59		0
Analytical Mo Tech:	ethod: Chloride by EPA MNV	300				Prep Method: E3 % Moisture: 4.2		
Analyst: Seq Number:	MNV 3032348		Date Prep:	11.02.17 18.00		Basis: Dr	y Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	3010	26.1	mg/kg	11.03.17 08.49		5

GHD Services, INC- Midland, Midland, TX

Sample Id: SB-8-S-69-70-171023 Lab Sample Id: 566503-021		Matrix: Date Collec	Matrix: Soil Date Collected: 10.23.17 11.44		Date Received:10.25.17 12.50 Sample Depth: 69 - 70			
Analytical Method: Chloride by EPA 300						Prep Method:	E300P	
Tech:	MNV					% Moisture:	5.62	
Analyst:	MNV		Date Prep:	11.02.17 18.00		Basis:	Dry Weight	
Seq Number:	3032348							
Parameter		Cas Number	Result	RL	Units	Analysis Da	nte Flag	Dil
Chloride		16887-00-6	2000	26.4	mg/kg	11.03.17 09.2	25	5

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-8-S-79-80-171023 d: 566503-022		Matrix: Date Colled	Soil cted: 10.23.17 11.47		Date Received:1 Sample Depth:7		0
Analytical Mo Tech:	ethod: Chloride by EPA MNV	300				Prep Method: E % Moisture: 5		
Analyst: Seq Number:	MNV		Date Prep:	11.02.17 18.00			Pry Weight	
Parameter	3032340	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	854	5.19	mg/kg	11.03.17 08.58		1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id	SB-8-S-89-90-171023 d: 566503-023	i	Matrix: Date Colle	Soil cted: 10.23.17 11.50		Date Received:10 Sample Depth: 89		0
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E	300P	
Tech:	MNV					% Moisture: 5.	47	
Analyst:	MNV		Date Prep:	11.02.17 18.00		Basis: D	ry Weight	
Seq Number:	3032348							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1010	5.19	mg/kg	11.03.17 09.33		1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-8-S-99-100-17102 d: 566503-024	3	Matrix: Date Colle	Soil cted: 10.23.17 11.53	-	Date Received:10. Sample Depth:99		0
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: E30	00P	
Tech:	MNV				Ģ	% Moisture: 3.5	6	
Analyst:	MNV		Date Prep:	11.10.17 09.00]	Basis: Dry	V Weight	
Seq Number:	3032985							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1920	25.9	mg/kg	11.10.17 12.30		5

GHD Services, INC- Midland, Midland, TX

Sample Id: SB-7-S-0.5-1-1710 Lab Sample Id: 566503-025	23	Matrix: Date Collec	Soil cted: 10.23.17 12.53		Date Received:10 Sample Depth: 0.		0
Analytical Method: Chloride by El	PA 300				Prep Method: E3	300P	
Tech: MNV					% Moisture: 9.	8	
Analyst: MNV		Date Prep:	11.02.17 18.00		Basis: D	ry Weight	
Seq Number: 3032348		-					
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	30.5	5.50	mg/kg	11.03.17 10.00		1

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-7-S-4-5-171023 d: 566503-026		Matrix: Date Colle	Soil cted: 10.23.17 12.56		Date Received: Sample Depth:		50
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300P	
Tech:	MNV					% Moisture:	6.39	
Analyst:	MNV		Date Prep:	11.02.17 18.00		Basis:	Dry Weight	
Seq Number:	3032348		-					
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	30.3	5.32	mg/kg	11.03.17 10.0)9	1

Page 35 of 88

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-7-S-9-10-171023 d: 566503-027		Matrix: Date Collee	Soil cted: 10.23.17 12.59		Date Received:10 Sample Depth:9		0
2	ethod: Chloride by EPA	300				Prep Method: E		
Tech:	MNV					% Moisture: 4	.49	
Analyst:	MNV		Date Prep:	11.02.17 18.00		Basis: D	ry Weight	
Seq Number:	3032348							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	167	5.18	mg/kg	11.03.17 10.18		1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-7-S-19-20-171023 d: 566503-028	i	Matrix: Date Collec	Soil cted: 10.23.17 13.02		Date Received:1 Sample Depth: 1		0
Analytical Mo	ethod: Chloride by EPA	300				Prep Method: E	300P	
Tech:	MNV					% Moisture: 5	.03	
Analyst:	MNV		Date Prep:	11.02.17 18.00		Basis: D	Ory Weight	
Seq Number:	3032348							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	208	5.18	mg/kg	11.03.17 10.26		1

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: SI Lab Sample Id: 56	B-6-S-0.5-1-171023 66503-036	Matrix Date (x: Soil Collected: 10.23.17 13.5	50	Date Received Sample Depth	:10.25.17 12.50 :0.5 - 5)
5	d: Chloride by EPA 300				Prep Method:		
Tech: MI Analyst: MI		Date I	Prep: 11.02.17 18.0	00	% Moisture: Basis:	26.05 Dry Weight	
Seq Number: 30	32348						
Parameter	Cas N	umber Result	RL	Units	Analysis Da	ate Flag	Dil
Chloride	16887-	00-6 15	33.1	mg/kg	11.03.17 10.	35	5

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-6-S-4-5-171023 d: 566503-037		Matrix: Date Collec	Soil cted: 10.23.17 13.53		Date Received:10 Sample Depth:4 ·		0
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E3	800P	
Tech:	MNV					% Moisture: 7.5	56	
Analyst:	MNV		Date Prep:	11.02.17 18.00		Basis: Di	y Weight	
Seq Number:	3032348							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	48.0	5.40	mg/kg	11.03.17 10.44		1

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-6-S-9-10-171023 d: 566503-038		Matrix: Date Colle	Soil cted: 10.23.17 13.56		Date Received: Sample Depth: 9		0
Analytical Me	ethod: Chloride by EPA	300				Prep Method: I	E300P	
Tech:	MNV					% Moisture: 7	7.18	
Analyst:	MNV		Date Prep:	11.02.17 18.00		Basis: I	Dry Weight	
Seq Number:	3032348							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride		16887-00-6	138	5.37	mg/kg	11.03.17 10.53	3	1

Certificate of Analytical Results 566503

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample Id	SB-6-S-19-20-17102 d: 566503-039	3	Matrix: Date Colle	Soil cted: 10.23.17 13.59		Date Received Sample Depth:	:10.25.17 12.50 19 - 20
Analytical Me	ethod: Chloride by EPA	300]	Prep Method:	E300P
Tech:	MNV					% Moisture:	4.28
Analyst:	MNV		Date Prep:	11.03.17 18.40	1	Basis:	Dry Weight
Seq Number:	3032480		-				
Parameter		Cas Number	Result	RL	Units	Analysis Da	ite Flag Dil
Chloride		16887-00-6	66.7	5.19	mg/kg	11.04.17 06.5	56 1

Certificate of Analytical Results 566503

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-6-S-29-30-17102 d: 566503-040	3	Matrix: Date Colle	Soil cted: 10.23.17 14.02	-	Date Received: Sample Depth:	:10.25.17 12.50 29 - 30	
Analytical Me	ethod: Chloride by EPA	A 300]	Prep Method:	E300P	
Tech:	MNV				(% Moisture:	4.96	
Analyst:	MNV		Date Prep:	11.03.17 18.40]	Basis:	Dry Weight	
Seq Number:	3032480		-					
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	189	5.22	mg/kg	11.04.17 07.0)5	1

GHD Services, INC- Midland, Midland, TX

Sample Id: SB-6-S-39-40-1710 Lab Sample Id: 566503-041	23	Matrix: Date Colle	Soil octed: 10.23.17 14.05			Date Received:10.25.17 12.50 Sample Depth: 39 - 40		
Analytical Method: Chloride by EF	PA 300				Prep Method: E3	00P		
Tech: MNV					% Moisture: 4.8	9		
Analyst: MNV		Date Prep:	11.03.17 18.40		Basis: Dr	y Weight		
Seq Number: 3032480								
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	766	5.22	mg/kg	11.04.17 07.14		1	

Certificate of Analytical Results 566503

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-6-S-49-50-17102 d: 566503-042	3	Matrix: Date Colle	Soil cted: 10.23.17 14.08		Date Received Sample Depth:		50
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300P	
Tech:	MNV					% Moisture:	4.53	
Analyst:	MNV		Date Prep:	11.03.17 18.40		Basis:	Dry Weight	
Seq Number:	3032480							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	1300	5.23	mg/kg	11.04.17 07.4	40	1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-6-S-59-60-171023 d: 566503-043		Matrix: Date Collec	Soil cted: 10.23.17 14.11		Date Received:10 Sample Depth: 59		0
Tech:	ethod: Chloride by EPA MNV	300					64	
Analyst: Seq Number:	MNV 3032480		Date Prep:	11.03.17 18.40		Basis: D	ry Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1300	5.24	mg/kg	11.04.17 07.49		1

Certificate of Analytical Results 566503

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-6-S-69-70-17102 d: 566503-044	3	Matrix: Date Colle	Soil cted: 10.23.17 14.14			Date Received:10.25.17 12.50 ample Depth: 69 - 70		
Analytical M	ethod: Chloride by EPA	A 300				Prep Method:	E300P		
Tech:	MNV					% Moisture:	7.04		
Analyst:	MNV		Date Prep:	11.03.17 18.40		Basis:	Dry Weight		
Seq Number:	3032480								
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil	
Chloride		16887-00-6	1220	5.37	mg/kg	11.04.17 09.2	23	1	

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id	SB-6-S-79-80-171023 d: 566503-045		Matrix: Date Colle	Soil cted: 10.23.17 14.17		Date Received: Sample Depth: 7		0
Analytical Me	ethod: Chloride by EPA	300				Prep Method: I	E300P	
Tech:	MNV					% Moisture: 6	5.4	
Analyst:	MNV		Date Prep:	11.03.17 18.40		Basis: I	Dry Weight	
Seq Number:	3032480							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride		16887-00-6	873	5.30	mg/kg	11.04.17 09.32	2	1

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-6-S-89-90-17102 d: 566503-046	3	Matrix: Date Colle	Soil cted: 10.23.17 14.20		Date Received Sample Depth:		50
Analytical M	ethod: Chloride by EPA	A 300				Prep Method:	E300P	
Tech:	MNV					% Moisture:	5.28	
Analyst:	MNV		Date Prep:	11.03.17 18.40		Basis:	Dry Weight	
Seq Number:	3032480							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ite Flag	Dil
Chloride		16887-00-6	622	5.23	mg/kg	11.04.17 09.4	41	1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id	SB-6-S-99-100-17102 d: 566503-047	3	Matrix: Date Colle	Soil cted: 10.23.17 14.53		Date Received:10 Sample Depth:99		0
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: E3	00P	
Tech:	MNV					% Moisture: 5.8	5	
Analyst:	MNV		Date Prep:	11.03.17 18.40]	Basis: Dr	y Weight	
Seq Number:	3032480							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	168	5.29	mg/kg	11.04.17 10.57		1

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-9-S-0.5-1-171023 d: 566503-048	3	Matrix: Date Colle	Soil cted: 10.24.17 08.20		Date Received Sample Depth:		50
Analytical M	ethod: Chloride by EPA	A 300]	Prep Method:	E300P	
Tech:	MNV				(% Moisture:	17.64	
Analyst:	MNV		Date Prep:	11.03.17 18.40]	Basis:	Dry Weight	
Seq Number:	3032480							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ite Flag	Dil
Chloride		16887-00-6	36.8	6.05	mg/kg	11.04.17 11.0	06	1

16887-00-6 36.8

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-9-S-4-5-171023 d: 566503-049		Matrix: Date Colle	Soil cted: 10.24.17 08.23			ate Received:10.25.17 12.50 ample Depth: 4 - 5		
Analytical M	ethod: Chloride by EPA	A 300				Prep Method:	E300P		
Tech:	MNV					% Moisture:	17.72		
Analyst:	MNV		Date Prep:	11.03.17 18.40		Basis:	Dry Weight		
Seq Number:	3032480								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ite Flag	Dil	
Chloride		16887-00-6	131	5.97	mg/kg	11.04.17 11.	15	1	

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id	SB-9-S-9-10-171023 d: 566503-050		Matrix: Date Collec	Soil cted: 10.24.17 08.26		Date Received:1 Sample Depth:9		0
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E	E300P	
Tech:	MNV					% Moisture: 9	0.03	
Analyst:	MNV		Date Prep:	11.03.17 18.40		Basis: I	Dry Weight	
Seq Number:	3032480							
Parameter		Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Chloride		16887-00-6	409	5.49	mg/kg	11.04.17 11.24	ŀ	1

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-9-S-19-20-17102 d: 566503-051	3	Matrix: Date Colle	Soil cted: 10.24.17 08.29	-	Date Received: Sample Depth:		0
Analytical Me	ethod: Chloride by EPA	A 300]	Prep Method:	E300P	
Tech:	MNV					% Moisture:	12.9	
Analyst:	MNV		Date Prep:	11.04.17 08.50]	Basis:	Dry Weight	
Seq Number:	3032464							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	352	5.73	mg/kg	11.04.17 13.3	38	1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-9-S-29-30-171023 d: 566503-052	i	Matrix: Date Collec	Soil cted: 10.24.17 08.32		Date Received:10 Sample Depth: 29		0
Analytical Mo	ethod: Chloride by EPA	300				Prep Method: E	300P	
Tech:	MNV					% Moisture: 7.	.4	
Analyst:	MNV		Date Prep:	11.10.17 09.00		Basis: D	ry Weight	
Seq Number:	3032985							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	360	5.39	mg/kg	11.10.17 12.36		1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-9-S-39-40-171023 d: 566503-053	i	Matrix: Date Colle	Soil cted: 10.24.17 08.35		Date Received:10 Sample Depth: 39		0
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: E	300P	
Tech:	MNV					% Moisture: 6.	.07	
Analyst:	MNV		Date Prep:	11.10.17 09.00	1	Basis: D	ry Weight	
Seq Number:	3032985							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	308	5.24	mg/kg	11.10.17 12.42		1

Certificate of Analytical Results 566503

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-9-S-49-50-17102 d: 566503-054	3	Matrix: Date Colle	Soil cted: 10.24.17 08.38	-	Date Received: Sample Depth:		0
Analytical M	ethod: Chloride by EPA	A 300]	Prep Method:	E300P	
Tech:	MNV				(% Moisture:	10.38	
Analyst:	MNV		Date Prep:	12.07.17 12.30]	Basis:	Dry Weight	
Seq Number:	3035238							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	178	5.56	mg/kg	12.07.17 13.1	4	1

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-9-S-59-60-17102 d: 566503-055	3	Matrix: Date Colle	Soil cted: 10.24.17 08.41		Date Received Sample Depth:		50
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300P	
Tech:	MNV					% Moisture:	5.5	
Analyst:	MNV		Date Prep:	12.07.17 12.30		Basis:	Dry Weight	
Seq Number:	3035238							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	119	5.24	mg/kg	12.07.17 13.3	31	1

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: SB-9-S-69-70-17102 Lab Sample Id: 566503-056	23	Matrix: Date Collect	Soil ed: 10.24.17 08.44		Date Received Sample Depth:		50
Analytical Method: Chloride by EP Tech: MNV Analyst: MNV Seq Number: 3035359	A 300	Date Prep:	12.08.17 09.00			E300P 7.06 Dry Weight	
Parameter	Cas Number	Result]	RL	Units	Analysis Da	te Flag	Dil

16887-00-6 163

5.35

12.08.17 13.33

mg/kg

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id	SB-9-S-79-80-171023 d: 566503-057	6	Matrix: Date Collec	Soil cted: 10.24.17 08.47		Date Received:10 Sample Depth: 79		0
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E3	00P	
Tech:	MNV					% Moisture: 48	.92	
Analyst:	MNV		Date Prep:	12.08.17 09.00		Basis: Dr	y Weight	
Seq Number:	3035359							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	200	9.73	mg/kg	12.08.17 13.39		1

Certificate of Analytical Results 566503

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-9-S-89-90-17102 d: 566503-058	3	Matrix: Date Colle	Soil cted: 10.24.17 08.50		Date Received Sample Depth:		50
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300P	
Tech:	MNV					% Moisture:	5.62	
Analyst:	MNV		Date Prep:	12.08.17 09.00		Basis:	Dry Weight	
Seq Number:	3035359							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ite Flag	Dil
Chloride		16887-00-6	129	5.28	mg/kg	12.08.17 13.4	45	1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id	SB-11-S-0.5-1-17102 d: 566503-059	3	Matrix: Date Colle	Soil cted: 10.24.17 09.20		Date Received:10 Sample Depth:0.5		0
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E3	00P	
Tech:	MNV					% Moisture: 16	.11	
Analyst:	MNV		Date Prep:	11.04.17 08.50		Basis: Dr	y Weight	
Seq Number:	3032464							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	6.90	5.84	mg/kg	11.04.17 13.44		1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id	SB-11-S-4-5-171023 d: 566503-060		Matrix: Date Colle	Soil cted: 10.24.17 09.23		Date Received:10 Sample Depth:4 ·		0
Analytical Me	ethod: Chloride by EPA	300			1	Prep Method: E3	00P	
Tech:	MNV					% Moisture: 10	.88	
Analyst:	MNV		Date Prep:	11.04.17 08.50	i	Basis: Di	y Weight	
Seq Number:	3032464							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1040	27.8	mg/kg	11.04.17 14.03		5

Certificate of Analytical Results 566503

GHD Services, INC- Midland, Midland, TX

LPU # 60

Lab Sample I	d: 566503-061		Date Colle	cted: 10.24.17 09.26	:	Sample Depth:	9 - 10	
Analytical M	ethod: Chloride by EPA	A 300]	Prep Method:	E300P	
Tech:	MNV					% Moisture:	10.76	
Analyst:	MNV		Date Prep:	11.04.17 08.50	i	Basis:	Dry Weight	
Seq Number:	3032464							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	673	5.58	mg/kg	11.04.17 14.1	10	1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-11-S-19-20-17102 d: 566503-062	3	Matrix: Date Collec	Soil cted: 10.24.17 09.29		Date Received:1 Sample Depth: 1		0
Analytical Me	ethod: Chloride by EPA	300				Prep Method: H	E300P	
Tech:	MNV					% Moisture: 4	4.5	
Analyst:	MNV		Date Prep:	11.04.17 08.50		Basis: I	Ory Weight	
Seq Number:	3032464							
Parameter		Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Chloride		16887-00-6	336	5.24	mg/kg	11.04.17 14.29)	1

GHD Services, INC- Midland, Midland, TX

Sample Id: SB-11-S-29-3 Lab Sample Id: 566503-063	0-171023	Matrix: Date Collec	Soil cted: 10.24.17 09.32	-	Date Received:10.3 Sample Depth: 29		0
Analytical Method: Chloride Tech: MNV Analyst: MNV	by EPA 300	Date Prep:	11.04.17 08.50	(Prep Method: E3(% Moisture: 6.4' Basis: Dry		
Seq Number: 3032464							
Parameter Chloride	Cas Number 16887-00-6	Result 530	RL 5.35	Units mg/kg	Analysis Date	Flag	Dil

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id:	SB-11-S-39-40-171023 566503-064	3	Matrix: Date Colle	Soil cted: 10.24.17 09.35		Date Received Sample Depth:		50
Analytical Meth	nod: Chloride by EPA	300				Prep Method:	E300P	
Tech:	MNV					% Moisture:	5.71	
Analyst:	MNV		Date Prep:	11.04.17 08.50		Basis:	Dry Weight	
Seq Number:	3032464							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ite Flag	Dil
Chloride		16887-00-6	496	5.26	mg/kg	11.04.17 14.4	41	1

Certificate of Analytical Results 566503

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-11-S-49-50-1710 d: 566503-065	23	Matrix: Date Collec	Soil cted: 10.24.17 09.38		Date Received:10.25.17 12.5 Sample Depth: 49 - 50			
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300P		
Tech:	MNV					% Moisture:	5.42		
Analyst:	MNV		Date Prep:	11.04.17 08.50		Basis:	Dry Weight		
Seq Number:	3032464								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ite Flag	Dil	
Chloride		16887-00-6	477	5.23	mg/kg	11.04.17 14.4	48	1	

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: SB-11-S-59-60-1 Lab Sample Id: 566503-066	71023	Matrix: Date Collec	Soil cted: 10.24.17 09.41		Date Received:10. Sample Depth: 59		0
Analytical Method: Chloride by	EPA 300				Prep Method: E30)0P	
Tech: MNV					% Moisture: 4.5		
Analyst: MNV		Date Prep:	11.03.17 18.40		Basis: Dry	Weight	
Seq Number: 3032480							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	398	5.21	mg/kg	11.04.17 05.10		1

GHD Services, INC- Midland, Midland, TX

LPU # 60

Seq Number: Parameter	3032480	Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil
Analyst:	MNV		Date Prep:	11.03.17 18.40]	Basis:	Dry Weight	
Tech:	MNV				Q	% Moisture:	6.84	
Analytical Me	ethod: Chloride by EPA 3	300]	Prep Method:	E300P	
Sample Id: Lab Sample Id	SB-11-S-69-70-171023 d: 566503-067	i	Matrix: Date Collect	Soil ted: 10.24.17 09.44	-	Date Received Sample Depth	1:10.25.17 12. 1:69 - 70	50

16887-00-6 **283**

5.32

11.04.17 06.30

mg/kg

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id: Lab Sample I	SB-11-S-79-80-1710 d: 566503-068	23	Matrix: Date Colle	Soil cted: 10.24.17 09.47		Date Received:10.25.17 12 Sample Depth: 79 - 80			
Analytical M	ethod: Chloride by EPA	A 300				Prep Method:	E300P		
Tech:	MNV					% Moisture:	8.03		
Analyst:	MNV		Date Prep:	11.03.17 18.40		Basis:	Dry Weight		
Seq Number:	3032480								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ite Flag	Dil	
Chloride		16887-00-6	223	5.37	mg/kg	11.04.17 06.3	39	1	

GHD Services, INC- Midland, Midland, TX

LPU # 60

Sample Id:	SB-11-S-89-90-17102 d: 566503-069	3	Matrix:	Soil cted: 10.24.17 09.50		Date Received:10 Sample Depth: 89		0
	ethod: Chloride by EPA	300	Date Collec	cled: 10.24.17 09.50		Prep Method: E		
Tech:	MNV	500				1	7.07	
Analyst:	MNV		Date Prep:	11.03.17 18.40		Basis: D	ry Weight	
Seq Number:	3032480							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	352	5.96	mg/kg	11.04.17 06.47		1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

GHD Services, INC- Midland

LPU # 60

Analytical Method:	Chloride by EPA 30)0						Pr	ep Metho	d: E30)P	
Seq Number:	3032225 Matrix:				Solid Date Prep: 11.02.17					2.17		
MB Sample Id:	7633683-1-BLK		LCS Sar	nple Id:	7633683-	I-BKS		LCSI	O Sample	Id: 7633	8683-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD I	RPD Limi	t Units	Analysis Date	Flag
Chloride	< 5.00	250	257	103	257	103	90-110	0	20	mg/kg	11.02.17 12:46	

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E30	0P	
Seq Number:	3032348			Matrix:	Solid				Date Pre	ep: 11.0	2.17	
MB Sample Id:	7633738-1-BLK		LCS Sar	nple Id:	7633738-	1-BKS		LCSI	D Sample	e Id: 7633	3738-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	< 5.00	250	243	97	242	97	90-110	0	20	mg/kg	11.03.17 01:18	

Analytical Method:	Chloride by EPA 3	00						P	rep Meth	od: E30	0P	
Seq Number:	3032480			Matrix:	Solid				Date Pr	ep: 11.0	3.17	
MB Sample Id:	7633802-1-BLK		LCS Sar	nple Id:	7633802-	I-BKS		LCS	D Sample	e Id: 763	3802-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	< 5.00	250	252	101	252	101	90-110	0	20	mg/kg	11.04.17 04:52	

Analytical Method:	Chloride by EPA 30	00						Pı	ep Metho	od: E300)P	
Seq Number:	3032464			Matrix:	Solid				Date Pr	ep: 11.0	4.17	
MB Sample Id:	7633803-1-BLK		LCS Sar	nple Id:	7633803-	I-BKS		LCS	D Sample	e Id: 7633	3803-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	< 5.00	250	243	97	249	100	90-110	2	20	mg/kg	11.04.17 12:02	

Analytical Method:	Chloride by EPA 30	00						Р	rep Meth	od: E30)0P	
Seq Number:	3032985			Matrix:	Solid				Date Pr	ep: 11.	10.17	
MB Sample Id:	7634159-1-BLK		LCS Sar	nple Id:	7634159-	1-BKS		LCS	D Sample	e Id: 763	84159-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

GHD Services, INC- Midland

LPU # 60

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	d: E30	0P	
Seq Number:	3035238			Matrix:	Solid				Date Pre	ep: 12.0	7.17	
MB Sample Id:	7635585-1-BLK	LCS Sar	nple Id:	7635585-	I-BKS		LCSI	O Sample	Id: 763	5585-1-BSD		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD]	RPD Limi	t Units	Analysis Date	Flag
Chloride	< 5.00	250	255	102	258	103	90-110	1	20	mg/kg	12.07.17 09:29	

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E30	OP	
Seq Number:	3035359			Matrix:	Solid				Date Pre	ep: 12.0	08.17	
MB Sample Id:	7635634-1-BLK		LCS Sar	nple Id:	7635634-	1-BKS		LCSI	O Sample	e Id: 763	5634-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limi	it Units	Analysis Date	Flag

Analytical Method:	Chloride by EPA 3	00						P	rep Meth	od: E30	0P	
Seq Number:	3032225			Matrix:	Soil				Date Pr	ep: 11.0	2.17	
Parent Sample Id:	566350-001		MS San	nple Id:	566350-00	01 S		MS	D Sample	e Id: 566	350-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	1230	248	1480	101	1480	101	90-110	0	20	mg/kg	11.02.17 13:12	

Analytical Method:	Chloride by EPA 30					Pr	ep Metho	od: E30	0P			
Seq Number:	3032225				Soil				Date Pre	ep: 11.0	2.17	
Parent Sample Id:	567091-005		MS Sar	nple Id:	567091-00)5 S		MSI	O Sample	e Id: 5670)91-005 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	26.4	263	257	88	257	88	90-110	0	20	mg/kg	11.02.17 15:16	x

Analytical Method:	Chloride by EPA 30)0						Р	rep Metho	d: E30	0P	
Seq Number:	3032348			Matrix:	Soil				Date Pre	ep: 11.0	02.17	
Parent Sample Id:	566503-004		MS Sar	nple Id:	566503-00)4 S		MS	D Sample	Id: 566	503-004 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

GHD Services, INC- Midland

LPU # 60

Analytical Method: Seq Number: Parent Sample Id:	Chloride by EPA 3 3032348 566503-022	00		Matrix: nple Id:	Soil 566503-02	22 S		Prep Method: E300P Date Prep: 11.02.17 MSD Sample Id: 566503-022 SI)
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD RPD Limit Units Analys Date	is Flag
Chloride	854	259	1100	95	1100	95	90-110	0 20 mg/kg 11.03.17 0	9:07
Analytical Method: Seq Number: Parent Sample Id:	Chloride by EPA 3 3032480 566503-041	00		Matrix: nple Id:	Soil 566503-04	41 S		Prep Method: E300P Date Prep: 11.03.17 MSD Sample Id: 566503-041 SI)
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD RPD Limit Units Analys Date	is Flag
Chloride	766	261	1020	97	1020	97	90-110	0 20 mg/kg 11.04.17 0	7:23
Analytical Method: Seq Number: Parent Sample Id:	Chloride by EPA 3 3032480 566503-066	00		Matrix: nple Id:	Soil 566503-00	56 S		Prep Method: E300P Date Prep: 11.03.17 MSD Sample Id: 566503-066 SI)
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD RPD Limit Units Analys Date	is Flag
Chloride									
emonde	398	261	667	103	676	107	90-110	1 20 mg/kg 11.04.17 0	5:19
	398 Chloride by EPA 3 3032464 566503-059			Matrix:			90-110	1 20 mg/kg 11.04.17 0 Prep Method: E300P Date Prep: 11.04.17 MSD Sample Id: 566503-059 SI	
Analytical Method: Seq Number:	Chloride by EPA 3 3032464			Matrix:	Soil		90-110 Limits	Prep Method: E300P Date Prep: 11.04.17)

Analytical Method:	Chloride by EPA 3	00						Pı	rep Meth	od: E30	0P	
Seq Number:	3032464			Matrix:	Soil				Date Pr	ep: 11.0	4.17	
Parent Sample Id:	567440-001		MS Sar	nple Id:	567440-00	01 S		MS	D Sample	e Id: 5674	440-001 SD	
Parameter	Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD	RPD Lim	it Units	Analysis	Flag
	Result	Amount	Result	%Rec	Result	%Rec					Date	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

GHD Services, INC- Midland

LPU # 60

Analytical Method:	Chloride b	y EPA 30	00						Р	rep Method	l: E30	0P	
Seq Number:	3032985									Date Prep): 11.1	0.17	
Parent Sample Id:	567962-001	l		MS Sar	nple Id:	567962-0	01 S		MS	D Sample 1	d: 567	962-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		352	249	591	96	587	94	90-110	1	20	mg/kg	11.10.17 11:32	

Analytical Method:	Chloride by EPA 3	00						Pi	rep Metho	od: E30)P	
Seq Number:	3032985			Matrix:	Soil				Date Pre	ep: 11.1	0.17	
Parent Sample Id:	568052-002	MS Sar	nple Id:	568052-00	02 S		MS	D Sample	e Id: 5680)52-002 SD		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	7.10	248	265	104	267	105	90-110	1	20	mg/kg	11.10.17 13:02	

Analytical Method:	Chloride by EPA 30)0						P	rep Meth	od: E30	0P	
Seq Number:	3035238			Matrix:	Soil				Date Pr	ep: 12.0	7.17	
Parent Sample Id:	566199-021		MS Sar	nple Id:	566199-02	21 S		MS	D Sample	e Id: 566	199-021 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	53.4	248	307	102	303	101	90-110	1	20	mg/kg	12.07.17 14:07	

Analytical Method:	Chloride by EPA 30)0						Pı	ep Metho	od: E30	0P	
Seq Number:	3035238			Matrix:	Soil				Date Pre	ep: 12.0	07.17	
Parent Sample Id:	569852-001		MS Sar	nple Id:	569852-00	01 S		MS	D Sample	d: 569	852-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	484	250	730	98	722	95	90-110	1	20	mg/kg	12.07.17 12:44	

Analytical Method:	Chloride by EPA 30)0						P	rep Metho	od: E30	0P	
Seq Number:	3035359			Matrix:	Soil				Date Pre	ep: 12.0	8.17	
Parent Sample Id:	570435-003		MS Sar	nple Id:	570435-00)3 S		MS	D Sample	Id: 570	435-003 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

GHD Services, INC- Midland

LPU # 60

Analytical Method: Seq Number: Parent Sample Id: Parameter Chloride	Chloride by EPA 3 3035359 570435-008 Parent Result 160	00 Spike Amount 249	Matrix: nple Id: MS %Rec 95	Soil 570435-00 MSD Result 402	08 S MSD %Rec 97	Limits 90-110	MSI	ep Metho Date Pre D Sample RPD Limi 20	p: 12.0 Id: 5704		Flag
Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3031623		Matrix: nple Id:	Solid 3031623-	I-BLK				Units %	Analysis Date 10.26.17 14:00	Flag
Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3031627		Matrix: nple Id:	Solid 3031627-	-BLK				Units %	Analysis Date 10.26.17 14:00	Flag
Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3031772		Matrix: nple Id:	Solid 3031772-	I-BLK				Units %	Analysis Date 10.27.17 10:00	Flag
Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3033007		Matrix: nple Id:	Solid 3033007-	I-BLK				Units %	Analysis Date 11.10.17 17:04	Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

GHD Services, INC- Midland

LPU # 60

Analytical Method: Seq Number:	Percent Moisture 3035219	Matrix: MB Sample Id: MB	Solid 3035219-1-BLK			Units	Analysis	
Parameter		Result				emus	Date	Flag
Percent Moisture		<1.00				%	12.07.17 09:15	
Analytical Method:	Percent Moisture							
Seq Number:	3035329	Matrix:						
		-	3035329-1-BLK					
Parameter		MB Result				Units	Analysis Date	Flag
Percent Moisture		<1.00				%	12.08.17 08:30	
Analytical Method: Seq Number: Parent Sample Id: Parameter	Percent Moisture 3031623 566503-001 Parent	Matrix: MD Sample Id: MD		%RPD	RPD Limit	Units	Analysis	Flag
Percent Moisture	Result 5.10	Result 5.04		1	20	%	Date 10.26.17 14:00	r iag
Percent Moisture Analytical Method:	5.10	Result					Date	Fiag
Percent Moisture Analytical Method: Seq Number:	5.10 Percent Moisture 3031623	Result 5.04 Matrix:					Date	Ting
Percent Moisture Analytical Method:	5.10 Percent Moisture 3031623 566503-025	Result 5.04 Matrix: MD Sample Id:		1	20	%	Date 10.26.17 14:00	Ting
Percent Moisture Analytical Method: Seq Number:	5.10 Percent Moisture 3031623	Result 5.04 Matrix:		1		%	Date	Flag
Percent Moisture Analytical Method: Seq Number: Parent Sample Id:	5.10 Percent Moisture 3031623 566503-025 Parent	Result 5.04 Matrix: MD Sample Id: MD		1	20	%	Date 10.26.17 14:00 Analysis	C
Percent Moisture Analytical Method: Seq Number: Parent Sample Id: Parameter	5.10 Percent Moisture 3031623 566503-025 Parent Result 9.80	Result 5.04 Matrix: MD Sample Id: MD Result	566503-025 D Soil	1 %RPD	20 RPD Limit	% Units	Date 10.26.17 14:00 Analysis Date	C
Percent Moisture Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture Analytical Method: Seq Number:	5.10 Percent Moisture 3031623 566503-025 Parent Result 9.80 Percent Moisture 3031627	Result 5.04 Matrix: MD Sample Id: MD Result 9.34 Matrix:	566503-025 D Soil	1 %RPD 5	20 RPD Limit	% Units %	Date 10.26.17 14:00 Analysis Date	C

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

GHD Services, INC- Midland

LPU # 60

Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3031627 566503-050 Parent Result 9.03	Matrix: MD Sample Id: MD Result 10.1	%RPD 11	RPD Limi 20	t Units %	Analysis Date 10.26.17 14:00	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3031772 566503-051 Parent Result 12.9	Matrix: MD Sample Id: MD Result 11.5	%RPD 11	RPD Limi 20	t Units %	Analysis Date 10.27.17 10:00	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3031772 566619-005 Parent Result 4.79	Matrix: MD Sample Id: MD Result 4.90	%RPD 2	RPD Limi 20	t Units %	Analysis Date 10.27.17 10:00	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3033007 566503-053 Parent Result 6.07	Matrix: MD Sample Id: MD Result 5.97	%RPD 2	RPD Limi 20	t Units %	Analysis Date 11.10.17 17:04	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3033007 566621-008 Parent Result 5.59	Matrix: MD Sample Id: MD Result 5.43	%RPD 3	RPD Limit	t Units %	Analysis Date 11.10.17 17:04	Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

QC Summary 566503

GHD Services, INC- Midland

LPU # 60

Analytical Method: Seq Number: Parent Sample Id:	Percent Moisture 3035219 566199-055	Matrix: MD Sample Id:					
Parameter	Parent Result	MD Result	%RPD	RPD Lim	t Units	Analysis Date	Flag
Percent Moisture	7.34	7.39	1	20	%	12.07.17 09:15	

Analytical Method:	Percent Moisture	
Seq Number:	3035329	Ν
Parent Sample Id:	566199-020	MD Sam
Parameter	Parent Result	MD Result
Percent Moisture	6.21	5.90

Matrix:	Soil				
MD Sample Id:	566199-020 D				
MD Result		%RPI) RPD Limit	Units	Analysis Date
5.90		5	20	%	12.08.17 08:30

Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control SampleA = Parent ResultC = MS/LCS ResultE = MSD/LCSD Result

Setting the Standard since 1990				CH	A	N Page	1	of of	21	US	ST	0	D	Y										
Stafford,Texas (281-240-4200)				nio, Texas			4)							Ph	oenix,	Arizona	a (480-355-0900)							
Dallas Texas (214-902-0300)			widiand,	Texas (432		251) www.xe	nco.c	om						Xer	nco Quote	#	Xenco Job # StateSO3							
												-				An	alytical Informa	tion		June	100	Matrix C	odes	
Client / Reporting Information mpany Name / Branch: GHD HDUS mpany Address:			Deciset Los	me/Number:	PU-	HU HU	20	0	138	31	7											W = Water S = Soil/Se GW =Grou DW = Drin	ed/Solid nd Water	
30% Bolhway, St#100 all: NISKNIGHURGHO.COM Ject Contact: Scott Foord	Houston T Phone No: 512-594	5	Invoice To:	U		1N!	~\								C C							P = Produc SW = Surf SL = Sludg OW =Ocea WI = Wipe O = Oil	ct ace water ge in/Sea Water	
mplers's Name KDDELLA SONCS	-		Collectio	n	-		0	Num	erof	nrese	erved	bottl	PC		2 F							WW= Was A = Air	te Water	
0. Field ID / Point of Collection	on.	Sample Depth	Date	Time	Matrix	# of bottles	Į	NaOH/Zn Acetate				4	MEOH		MOISH						F	ield Commen	ts	
DUP-1-171023		-	1023	-	S	1		-		-	-	-	1		1/					3				
JB-10-5-05-1-17	1023	05-1		1030	1	1									1									
SB-10-5-4-5-1710	123	4-5		1033		1		-						1	11									
SB-10-5-9-10-171	023	9-10	1	1030		1					_			1	11									
SB-10-5-19-20-17	1023	19-20	1	1039	1	1				_	-	-	1		11					1				
0B-12-5-09-30-1	71023	29-30	-	1042		1				-	-	-	-	1	17			+ +	++	hold	1,			
DR-10-2-31-40-1	71025	39-40	-	1045		1	-			-	-	-		1	1			+ +		Ho	-			
DB-10-0-44-00-11		49-50	+	1048	\vdash	H	-	-	\vdash	-	-	+	-11			-		++	++	. 1	1d			
08-10- 0-01-00-11		59-60 109-70	1	1051		1	-	-		-	-	-	-	1		-		+		IT	1.21			
Turnaround Time (Business days)	1100-5	19170	V	1004	V	Data Del	iverab	le Inform	ation	-	-	-					Not	es:		THU	bid			
	5 Day TAT			Le	vel II St	d QC				Leve	el IV (Full I	Data Pl	g /ra	w data)				1					
	7 Day TAT	-			vel III S	td QC+ I	Forms			TRR	RP Le	vel IV						emp:	6	1	R ID:	R-8	-	
	Contract TAT					LP Form	-				r/RG		_			-	$+$ $^{\circ}$	(0-6	: -0.2°C 3: +0.2	;)				
3 Day EMERGENCY			1					_		501				_			- C	Orrecte	o. +0.2	°C) p: 5.8	,			
TAT Starts Day received by Lab, if	received by 5:00	0 pm					-				-	_				_	FED-EA	vi v	a rom	p. 5.8				
	SAMPLE CUSTOD	Y MUST BE			_	ME SAMP	LES C	HANGE						RIER	DELIVERY					1	-	7	-	
Relinquished by Sampler:		Date Time	USU.	Received	By:	lil	10	0		Relin 2	nquist	ned B	у:			Date	Time:		ed By: "	. He	10	2 10/	25 12:	
Relinquished by:		Date Time		Received	By: (t		Relin	nquist	hed B	y:			Date	Time:	Receiv	ed By:			0		
Relinquished by:		Date Time		3 Received	By:					4 Cust	tody S	Seal #	1		Pre	served	where applicab	4 le	On Ice	Coole	r Temp.	Thermo, C	orr. Factor	

Notice: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract.

Page 81 of 88

Final 1.001

-	
	XENCO
-	LABORATORIES
Set	ting the Standard since 1990

Stafford, Texas (281-240-4200)

Dallas Texas (214-902-0300)

 $\begin{array}{c} \textbf{CHAIN} \underset{\text{Page } \mathcal{Q} }{\text{Of}} \underset{\text{of}}{\text{F}} \underset{\text{CUSTODY}}{\text{CUSTODY}} \end{array}$

San Antonio, Texas (210-509-3334)

Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

Final 1.001

Page 82 of 88

		Y	ww.xenco.com		Xenco Quote #	Xenco Job #	StaloSO 3
and the second		100 miles			Analyt	tical Information	Matrix Codes
Client / Reporting Information mpany Name / Branch: GHHD HDUS mpany Address:	hA	Project Infor Project Name/Number:	nation 1 # (20 67	3817			W = Water S = Soil/Sed/Solid GW =Ground Water DW = Drinking Water P = Product
il: ect Contact: uplers's Name PUNICCA DNDS	Phone No:	Invoice To: PO Number:			ride		SW = Surface water SL = Sludge OW =Ocean/Sea Water WI = Wipe O = Oil WW= Waste Water
	200	Collection	Number of p	reserved bottles	28		A = Air
5. Field ID / Point of Collection	Sample Depth	Date Time Matrix	Acetate HN03	42SO4 VaHSO4 VEOH VONE	NG-		Field Comments
SB-10-5-79-80-17	1023 79-50						Hold
58-10-5-89-90-17	1023 89-90	1 1100 1	1)	11		Hold
SB-8-5-0.5-1-171	023 0.51	1120	1	I I			
SB-8-54-5-17102	3 4-5	1123	1	1			
SB-8-5-9-10-1710	3 9-10	1126		1	VV		
SB-8-5-19-20-1710	23 19-20	1129		1			
53-8-5-29-30-1710	123 2930	1132	1	i			
SB-8-5-39-40-171	023 39-40	1135	1	1			
SB-8-5-49-50-17	1023 4950		1				1.5
58-8-5-59-40-17	023 59-40	1141	1	1			
Turnaround Time (Business days)	0140		Data Deliverable Information	1.1.1.1.		Notes:	-
Same Day TAT	5 Day TAT	Level II Std	QC	Level IV (Full Data Pkg	g /raw data)	1.	IR ID:R-8
Next Day EMERGENCY	7 Day TAT	Level III St	d QC+ Forms	TRRP Level IV		Temp: 6	
2 Day EMERGENCY	Contract TAT	Level 3 (CI	P Forms)	UST / RG -411		CF:(0-6: -0.2 (6-23: +(Corrected T).2°C)
3 Day EMERGENCY		TRRP Che	cklist			Corrected T	emp: 5-8
TAT Starts Day received by Lab, if r	received by 5:00 pm					FE -	
Relinquished by Sampler:	SAMPLE CUSTODY MUST BE Date [Time	e: Received By		SION, INCLUDING COURI Relinquished By:	ER DELIVERY Date Tim	e: Received By:	1, 0
Kellin in 27	103	1080 1 XC/	1/10	2		2 Com	~ than 10/25 10
Relinquished by:	Date Time	e: Received By:		Relinquished By:	Date Tim	Received By:	0
Relinquished by:	Date Time	e: Received By:		4 Custody Seal #	Preserved who		Ice Cooler Temp. Thermo. Corr. Factor
tice: Notice: Signature of this document and relinquishme		5				2	

Notice: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms will be enforced under a fully executed client contract.

Stafford, Texas (281-240-4200)

Dallas Texas (214-902-0300)

San Antonio, Texas (210-509-3334) Midland, Texas (432-704-5251)

Phoenix, Arizona	(480-355-0900)
	1

Final 1.001

Page 83 of 88

		www.xenco.com	ו	enco Quote #	Xenco Job #	566505
				Analytica	al Information	Matrix Codes
Client / Reporting Information mpany Name / Branch: GA HD HOUSTON mpany Address:	Project L	Project Information Name/Number: 2PU+#60007.	3817			W = Water S = Soil/Sed/Solid GW =Ground Water DW = Drinking Water P = Product
ait: Phone M ject Contact: nplers's Name VIP)0P[[[]] () () () () () () () () () () () () ()	lo: Invoice T			three		SW = Surface water SL = Sludge OW =Ocean/Sea Water WI = Wipe O = Oil WW= Waste Water
kintin tines	Collect	tion Number	of preserved bottles	NV1 I		A = Air
5. Field ID / Point of Collection	Sample Depth Date			MDI		Field Comments
SB-8-5-69-70-17102		3114451		11		
DB-8-5-79-80-1710a	3 19-80	1147 1	1			
SB-8- 3-89-90-17102	3 19-100	1150 1				Hold
SB-7-5-05-1-171023	0.5-1	1253 1				IMO
BB-7-5-4-5-171022	4-5	1256 1				-
53-7-5-9-10-171023	9-10	1259 1	1			
BB-7-5-19-20-171023	19-20	1302 1	1			
55-7-5-29-30-171023	2 29-30	1305 1				Hold
5B-7-5-39-40-17102. Turnaround Time (Business days)	3 39-40 1	BOS 1 Data Deliverable Informati			Notes:	Hold
Same Day TAT 5 Day	TAT	Level II Std QC	Level IV (Full Data Pkg /ra	aw data)	T 1	
Next Day EMERGENCY	TAT	Level III Std QC+ Forms	TRRP Level IV		- Temp: 6 CF:(0-6: -0.2°C	IR ID:R-8
2 Day EMERGENCY Contr	act TAT	Level 3 (CLP Forms)	UST / RG -411		(6-23: +0.2°	C)
3 Day EMERGENCY		TRRP Checklist			(6-23: +0.2° Corrected Temp	o: 5.8
TAT Starts Day received by Lab, if receive	d by 5:00 pm				two	
		ENTED BELOW EACH TIME SAMPLES CHANGE POS			0.10	0
Relinquished by Sampler:	Date Time:	D 1 Received By:	Relinquished By: 2	Date Time:	Received By: 2 Om	- temos 10/25/2
Relinquished by:	Date Time:	Received By:	Relinquished By:	Date Time:	Received By:	0
Relinquished by:	Date Time:	3 Received By:	4 Custody Seal #	Preserved where	applicable On Ice	Cooler Temp. Thermo. Corr. Factor
tice: Notice: Signature of this document and relinquishment of sam		5			X	

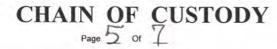
losses or expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract.

Dallas Texas (214-902-0300)

CHAIN OF CUSTODY

San Antonio, Texas (210-509-3334)

Midland, Texas (432-704-5251)


Phoenix, Arizona (480-355-0900)

					Ĩ	www.xe	100.00	m			_		- 1	Xenco	Quote #			Aen	CO JOD #		SINC	505		
								-	C.							Analyti	al Information	ation	-		a		Matrix Co	odes
Client / Reporting Information	iston		Project Nam Project Loc	ne/Number:	PU-	mation #(60	lc	73	81	7											S	V = Water = Soil/Se W =Grou W = Drinl = Produc	d/Solid nd Water king Water
imail: Project Contact: Samplers's Name <i>J.C. Del C.C.</i> DOVVe	Phone No:		PO Number Collection					Numb	per of p	preserv	red b	ottles		1010	Stare								W = Surfa L = Sludg	ace water je n/Sea Wate
No. Field ID / Point of Co	ollection	Sample Depth	Date	Time	Matrix	# of bottles	HCI	NaOH/Zn Acetate	HNO3	H2SO4 NaOH	NaHSO4	MEOH	NONE	Chlor	moi							Field	Comment	s
1 SB-7-5-49-50-	171023	49-50	10/23	1311	S	1							1	1							10	d		
2 SB-7-5-59-60- 2 SB-7-5-69-70	171023	59-60 69-70	1	1314	+	1		-		+	+	-	1	2	1	-		-	-		H	bld		
1 53-7-5-79-80-	171023	79-80		1320	1	1					+	1	1	1	1			1	-		iti	NA		
5 5B-7-5-89-90-	171023	89-90		1323	1	1							1	1							H			
6 SB-(0-S-0.5-1-1	71023	05-1	1	350		1							1	1	1	- 23								
7 SB-6-5-4-5-17		4-5 9-10		1353 1350	+	1		_		-	-	-	1	1	1	-		-	-					
8 DD-10-3	71023	19-20		359	1	1							1	1	1									
10 DB-0-5-09-30-	171023	29.30	V	1402	V	1							1	1					1					
Turnaround Time (Business days)	5 Day TAT				el II Sto	Data Deli	verable	Inform	ation	Level		II Dat	a Pko	Iraw d	(ete		No	tes:						
Next Day EMERGENCY	7 Day TAT			_		d QC+ F	orms			TRRP			arng	naw	ataj			emp		.2°C		R ID:R-8		
2 Day EMERGENCY	Contract TAT	- B		Lev	el 3 (Cl	P Form	s)			UST /	RG -4	11					1 0	.(0	-23: -	+0.2°) C)			
3 Day EMERGENCY				TRF	RP Che	cklist											C	orre	cted	Temp	c) : 5.8	Ś		
TAT Starts Day received by La																	F			· æ -			_	
Relinquished by \$anpler:	SAMPLE CUSTOD	Date Time	5-080	Received	BY	1 CC	ES CH	ANGE P	1	SION, II Relinqu 2 Relinqu	uishe	d By:	OURIE	RDEL		Date Time Date Time		2	ceived l	in	H	ed	10	125 N
3				3						4								4				0		-
Relinquished by: 5	S	Date Time		Received 5	ву:					Custod	ly Sea	#			Prese	rved wher	e applicat	ole		On Ice	Coole	er Temp.	Thermo, Co	orr. Factor

Notice: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract.

Final 1.001

Setting the Standard since 1990 Stafford,Texas (281-240-4200)

Dallas Texas (214-902-0300)

San Antonio, Texas (210-509-3334)

Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

Final 1.001

Page 85 of 88

					WW	w.xenc	o.com					X	enco Q	uote #		1	Xenco Je	00 #	No	4503		
									-	-			-		Analytic	al Inform	ation				Matrix Codes	
Client / Reporting Information mpany Name / Branch: G7 HD / mpany Address:	Houston		Project Name Project Local	Number:	PUE	ation	0/0	73	81	7		-								S	= Water = Soil/Sed/Solid W =Ground Water W = Drinking Water	
ii:	1	Invoice To:																P = Product SW = Surface water SL = Sludge OW =Ocean/Sea Water				
ect Contact:		1	PO Number:	_								-		P							I = Wipe) = Oil	
plers's Name Rebellion 20	nes	1			- 1				-		-	-	de	1							W= Waste Water	
. Field ID / Point of	of Collection		Collection	the second second		Ē		ber of p	preser	T	ttles		MOrid	NHSI						P	= Air	
		Sample Depth	Date	Time		# of pottles	4CI VaOH/Zn Acetate	INO3	12504	VaHSO4	ИЕОН	NONE	CP	mol						Field	Comments	
SB-6-5-39-4	0-17/023	39.40	10/23	1405	5)						1										
SB-6-5-49-5	0-171023	49-50		1408	1	1						1	11	1								
SB-6-5-59-6	0-171023	59-60		1411		1	-					1	1	1				1.1				
SB-6-5-69-	70-171023	69.70		1414	11	1						1		1								
53-6-S-79-8	80-17/023	79-80		1417		1						1	1	1								
SB-6-5-89.	90-171023	89-90		1420		1	11-)		1								
SB-0-5-99-	100-171023	99-100	V	1453		1						1										
SB-9-5-0,5-1.	-171024	15-1	10/24	0820)						i		1								
SB-9-5-4-5-	171024	4-5	1 1	0823		1	1					1	1									
0 SB-9-5-9-10-	171024	9-10	V	1820	VI	1						1	1	1								
Turnaround Time (Business d		1					rable Inform	_	11							Γ.		1			1	
Same Day TAT	5 Day TAT			Leve	I II Std C	C			Level	IV (Fu	I Data	Pkg /ra	aw dat	a)		Temp: 6 IR ID:R-8 CF:(0-6: -0.2°C)						
Next Day EMERGENCY	7 Day TAT		11.24	Leve	I III Std (QC+ For	ms		TRRP	Level	IV				7.1							
2 Day EMERGENCY	Contract TAT	(I)		Leve	3 (CLP	Forms)			UST /	RG -4	1).2°C) emp: 5			
3 Day EMERGENCY				P Check	list									- 16		JUILEC	ieu re	emp. D	0			
TAT Starts Day received by																FED-EX	/ UPS: Tra	cking #				
	SAMPLE CUSTOD	Date Time:	080)	Received B	Phi		S CHANGE	F	Relinq 2	uished	By:	URIER	DELIVE	0	late Time:		Receiv 2	ed By:	H	end	10/25 1	
Relinquished by:		Date Time:	2	Received B	iy:			F	Relinq	uished	By:			D	ate Time:		Receiv	ed By:		0		
Relinquished by:		Date Time:	5	3 Received B	ly:			4	Custo	dy Seal	#		F	Presen	ved where	applicab	4 le	Onl	ce Co	oler Temp. T	hermo. Corr. Factor	
ine Notice Signature of this document and	Security and of some los constitut	los o unlid sur	abasa ardar fi	5	and to Ve		Estas and											X				

Notice: Notice: Notice: Signature of this document and reinquistment of samples constitutes a valid purchase order from client company to Xenco, its atmates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the Client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be eapplied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract.

 $\begin{array}{c} \textbf{CHAIN} \underset{\tiny \mathsf{Page}}{\textbf{OF}} \underset{\mathcal{O}}{\textbf{of}} \underset{\mathcal{T}}{\textbf{CUSTODY}} \\ \end{array}$

Setting the Standard since 1990 Stafford, Texas (281-240-4200)

Dallas Texas (214-902-0300)

San Antonio, Texas (210-509-3334)

Phoenix, Arizona (480-355-0900)

Final 1.001

Page 86 of 88

Midland	Texas	(432-704-5251)
---------	-------	----------------

				1	www.xer	co.com						Xen	o Quote	e #		Xenco	Job# <	SLOLESUZ)
														Ana	lytical Info	rmation			Matrix Codes
Client / Reporting Information			Proje	ct Infor	mation		2				-	-							
pany Name / Branch: GIHO / HOUSTO, pany Address:	Project Name/Number: LPU # UD 073817 Project Location:																	W = Water S = Soil/Sed/Solid GW =Ground Water DW = Drinking Water	
nail: Phone No:			Invoice To:																P = Product SW = Surface water SL = Sludge OW =Ocean/Sea Water
ct Contact:		PO Numbe	PO Number:											1				1	WI = Wipe O = Oil
lers's Name RUDECIA DALS		1												-					WW= Waste Water
		Collectio	n			Nur	nber	of pres	erve	d bottl	es	15	5					-	A = Air
Field ID / Point of Collection	Sample Depth	Date	Time	Matrix	≢ of bottles	HCI NaOH/Zn Acetate	HND3	H2SO4	NaOH	NaHSO4	MEOH	P P 1	NOCH					Fie	d Comments
SB-9-5-19-20-1710	24 19-20	1024	0829	5	1								1						
SB-9-5-29-30-1710	24 1930	19	0832	1	I						1	11	1					Hold	
38-9-5-39-40-1710	24 39-40		0835		1	1.							K					Hold	
SB-9-5-49-50-171	024 4950		0838		1		1					17	1					Hold	
SB-9-5-59-100-171	024 5940		0841	-	i		+				+	11	1					Hold	
SB-9-5-109-70-1711	024 69.70		0844	-	1	-	+				+	it	1				-+-+	Hold	
58-9-5-79-80-171	024 19-80		0847	-	1	-	+				+	1	1					Thid	
S3-9-5, ×9-90, 171	024 89-90		0850	-	i	-	+				-		1		-			4210	
8-11-5-05-1-1710	24 0.5-1		0920	1	1		+		-		+	1	1		-			HUIG	
SB-11-5-4-5-17102			0923	1	1	-	+			+	-	1	1		-				
Turnaround Time (Business days)	F 17.2		0100	V	Pata Deliv	erable Info	matio		-	1	_	1	-			P-4-4			
Same Day TAT	5 Day TAT	Level II Std QC Level IV (Full Data Pkg										kg /raw	data)			Temp	0: (0	10 10	
Next Day EMERGENCY	Day TAT		Lev	el III St	d QC+ Fo	orms	E	TRE	RP Lo	evel IV		_				CF:(0	-6: -0.2	IR ID:	R-8
2 Day EMERGENCY	Contract TAT		Lev	el 3 (Cl	P Forms)		UST	T/R	G -411	1					(6	-23: +0	IR ID: ℃) .2℃) mp: 5. 8	
3 Day EMERGENCY			TRF	RP Che	cklist											Corre	cted Te	mp: 5.8	-
TAT Starts Day received by Lab, if rec	eived by 5:00 pm								-					-	FED-	EX / UPS: Tr			
	SAMPLE CUSTODY MUST B				E SAMPL	ES CHANG	E POS					RIER DE	LIVERY			Die C	0	6	1.00
elinquished by Sempler:	Date Tim 10/24	E CRU	Received	PN	1.0			Relin	nquis	shed B	Y:			Date Ti	me:	Recei	ved By:	H	\$ 10/251
elinquished by:	Date Tim	00-	Received	By:				Relin	nquis	shed B	y:			Date Ti	me:	Recei	ved By:	~ 100	1 10/25
alinguiched bur			3					4			_				<u></u>	4			0
Relinquished by:	Date Tim	ie:	Received	ву:				Cust	tody	Seal #			Pres	served w	here applie	cable	On Ice	Cooler Temp.	Thermo. Corr. Factor

losses or expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract.

 $\begin{array}{c} \textbf{CHAIN} \underset{\text{Page}}{\textbf{OF}} \underbrace{\textbf{OF}}_{\text{of}} \underbrace{\textbf{CUSTODY}}_{7} \end{array}$

Stafford, Texas (281-240-4200)

Dallas Texas (214-902-0300)

San Antonio, Texas (210-509-3334)

Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

				1	www.xe	nco.co	om					×	(enco	Quote 4	ŧ		Xenco	Job #	Sla	6503	
		-									-				Analyti	al Inform	ation				rix Codes
Client / Reporting Information ompany Name / Branch: GHD HOUSON ompany Address:		Project Na Project Lo	ame/Number:	PU	mation #	-0	0/1	0'7	38	17		-								GW = DW =	oil/Sed/Solid Ground Water Drinking Water
mail: Phone No:		Invoice To											e	Ure						SW = SL = 3 OW = WI = 1 O = 0	
	1	Collectio	on	21		1000	Numb	per of p	resen	ved bo	ttles		2	3						A = A	a star and a star a
No. Field ID / Point of Collection	Sample Depth	Date	Time	Matrix	# of bottles	HCI	NaOH/Zn Acetate	HNO3	H2SO4 NaOH	NaHSO4	меон	NONE	Ch)or	moi						Field Com	iments
1 SB-11-S-9-10-171024	9-10	10/24	10920	S	1							1	1								
2 SB-11-5-19-20-171024	19-20	1	0929	1	1							1		1							
3 5B-11-5-29-30-171024	2930		0932		1							1	1	1			_				
4 5B-11-5-39-40-171024	39-40		0935		1							1	1	1	0						
5 5B-11-5-49-50-171024	49-50		0938		1							1	1	1							
· 58-11-5-59-60-171024	59-60		0941	T	1							i	1								
7 JB-11-S-69-70-171024	69-70		0944		1							1		1							
8 SB-11-5- 79-8)- 171024	19-80		0947		1							1	1	1			1.5				
, SB-11-5-89-90-171024	89-90	V	0950	1	1							1		1	311						
10 TEMPBIGNK				V	1		1			1											
Turnaround Time (Business days)	-		1.2.3	1.5	Data Deli	iverable	e Inform	ation	- 13	-		5		1			1				
Same Day TAT 5 Day TAT		1.0-	Leve	el II Sto	I QC				Level	IV (Ful	Data	Pkg /r	aw da	ata)			Tem	: 6			
Next Day EMERGENCY 7 Day TAT			Leve	el III St	d QC+ F	orms			TRRP	Level I	v					Temp: 6 IR ID:R-8					
2 Day EMERGENCY Contract TAT			Leve	el 3 (Cl	P Form	s)			UST/	RG -41	1	_				T	(6	6-23: 4	+0.2°C	2)	
3 Day EMERGENCY TRRP Checklist										1		Corre	cted	Temp:	5.8						
TAT Starts Day received by Lab, if received by 5:	:00 pm															FED-EX	/ UPS: T	racking #	r -		
Relinquished by Sampler	Date Time		Received I				ANGE P			NCLUDI		URIER	DELIN		Date Time		Rece	eived By:		Has	in c
Relinquished by:	Date Time		Received I	By:	10			2 F	Relinqu	uished	Ву:			-	Date Time		2 Rece	CON eived By:	~	-Jucof	10/25 12
3 Relinquished by: 5	Date Time		3 Received	By:			-	4	Custod	ly Seal	#			Prese	rved when	applical	4 ble		n Ice	Cooler Temp. Them	no. Corr. Factor

Notice: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract.

Page 87 of 88

Final 1.001

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: GHD Services, INC- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 10/25/2017 12:50:00 PM Temperature Measuring device used : R8 Work Order #: 566503 Comments Sample Receipt Checklist 5.8 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? No #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 10/25/2017

Checklist completed by: Connie Hernandez Checklist reviewed by: Kelsey Brooks

Date: 10/26/2017

Appendix C 2018 Work Plan

Reference No. 073817

July 16, 2018

Ms. Olivia Yu Environmental Specialist New Mexico Oil Conservation Division – District 1 1625 N. French Drive Hobbs, New Mexico 88240

Re: 2018 Work Plan Lovington Paddock Unit 60 – Produced Water Release (RP-1498) Lea County, New Mexico

Dear Ms. Yu,

1. Project Information

The Site is located approximately 5 miles southeast of Lovington in Lea County, New Mexico in Unit F, Section 1, Township 17 South, Range 36 East. The land surface is owned by the City of Lovington (COL) and the minerals are managed by the State of New Mexico. Chevron Environmental Management Company (CEMC) submitted a C-141 Form to the New Mexico Oil Conservation Division (NMOCD) dated July 24, 2007 reporting a release of approximately 50 barrels of produced brine from the failure of a water injection trunkline. The approximate affected area was estimated at 2,950 square feet. NMOCD incident number RP-1498 was assigned by the NMOCD Hobbs office.

<u>Soil</u>

Information available from various sources including the Petroleum Recovery Research Center (PRRC) Mapping Portal, GHD currently managed groundwater site(s) data, and the United States Geological Survey (USGS) Current Water Database for the Nation, concludes:

- a) The depth to groundwater from the deepest impacted soil at the Site is less than 50-feet bgs.
- b) The nearest private domestic water source is greater than 200-feet from the release site.
- c) The nearest public/municipal water source is greater than 1,000-feet from the release site.
- d) The release site lies more than 1,000 horizontal feet from the nearest surface water body.

The NMOCD provides guidance for remediation of contaminants of oil field wastes or products in Guidelines for Remediation of Leaks, Spills, and Releases (August 13, 1993). Consequently, the NMOCD total ranking criteria score is twenty (20) for the Site. The site-specific Recommended Remedial Action Levels (RRALs) applied to this location by the NMOCD are 10 milligrams per kilogram (mg/kg) for benzene; 50 mg/kg for total benzene, toluene, ethylbenzene, and xylenes (BTEX); 100 mg/kg for total petroleum hydrocarbons (TPH); and an NMOCD accepted 600 mg/kg for horizontal and 250 mg/kg for vertical delineation of chloride.

In an August 28, 2017 telephone conversation between Bernard Bockisch (GHD) and Jim Griswold (NMOCD Environmental Bureau Chief), GHD was informed that the NMOCD is accepting chloride concentrations of 600 mg/kg for the horizontal delineation assessment clean up levels.

Groundwater

The NMOCD provides guidance for remediation of contaminants of oil field wastes or products in Guidelines for Remediation of Leaks, Spills, and Releases (August 13, 1993). The guidance requires remediation of groundwater to the human health standards of the NMWQCC set forth in New Mexico Administrative Code 20.6.2.3103. Standards for chloride and total dissolved solids (TDS) are listed below.

Analyte	NMWQCC Standard for Groundwater (mg/L)
Chloride	250
TDS	1,000

Soil assessment activities were performed in August 2010, May 2011, and December 2012 at the Site. One monitoring well (MW-1) was installed in October 2016 to assess potential groundwater impact. Delineation activities were continued in 2017 and included the advancement of six additional soil borings (SB-6 through SB-11) to 90 feet bgs. Analytical data obtained from the assessment performed in 2017 indicates that vertical and horizontal extent of chloride impacts in soil are not fully delineated.

2. 2018 Scope of Work

On February 13, 2018, GHD and Chevron representatives met with NMOCD and the New Mexico State Land Office (NMSLO) regarding further delineation activities at the Site. Recommended assessment activities are detailed below.

2.1 Task I - Soil Boring (SB-12 through SB-20) and Monitoring Well (MW-2) Installation Activities

GHD is proposing to install nine additional soil borings (SB-12 through SB-20) to approximately 90 feet bgs to further horizontal delineation of chloride impact to soil. Field screening of soil cuttings for chlorides will be performed to guide drilling activities and soil samples will be collected for laboratory analysis. Additionally, GHD is proposing the installation of one 4-inch diameter monitoring well (MW-2) to the southeast (downgradient) of the impacted area to further screen soil and groundwater for chloride impact (see Figure 1). Preparation of a permit application and associated fees for the required NMOSE monitoring well permit will be submitted prior to drilling activities.

Prior to mobilizing drilling equipment to the Site, a utility notification will be made at least 48-hours prior to mobilization. In addition to the utility locate, a geophysical survey will be completed for each of the proposed boring locations.

A hydroexcavator or similar borehole clearance equipment will be used to clear the boring locations with a diameter at least 2 inches greater than the size of the largest drilling tool. The boring will be cleared to 5-feet bgs or refusal. Initially, each boring will be drilled with air-rotary (soil borings) and switched to mud-

rotary (monitoring well only) toward the bottom portion of the boring (if necessary). The rig will be operated by a New Mexico licensed water well driller.

Soil samples will be collected at 10-foot intervals. Soil samples will be field screened for chloride concentrations using Hach Chloride Titration strips and evaluated by the field geologist during the sampling event. Selected soil samples will be submitted for laboratory analysis of chloride by EPA Method 300. Soil sampling will be completed in accordance with our standard Quality Assurance/ Quality Control (QA/QC) procedures designed to minimize cross-contamination between samples and to provide reliable laboratory results.

The total depth and nature of any sampling of soils will be based on results of the chloride field screening and the professional judgment of the GHD geologist with the intent to establish the depth at which soil concentrations are below the Site RRAL. The soil borings will be backfilled with cuttings from the boring and the top 10 feet plugged with bentonite chips.

One soil boring (MW-2) will be installed approximately 20 to 25 feet into the Ogallala Formation (i.e., approximately 130 feet bgs) and completed as a 4 inch monitoring well. A GHD geologist will record the subsurface lithology and any sample data on the well construction diagram/soil boring logs.

Following monitoring well installation activities, the newly installed well (MW-2) will be developed by the driller. Roll off/mud boxes will be located proximate to the proposed well location and drilling and formation fluids, along with drill cuttings, will be containerized. Following waste characterization (estimated at one month), drill cuttings (non-hazardous) will be removed and transported to CEMC-approved Sundance Services, Inc. for disposal.

2.2 Task II – 2018 Groundwater Monitoring Activities

Following installation and development of MW-2, the water levels within the two monitoring wells (MW-1 and MW-2) will be gauged prior to sample collection. Prior to purging the wells, static fluid levels will be measured with an electric interface probe to the nearest hundredth of a foot. After recording fluid levels, monitoring wells will be profiled using a conductivity meter. Subsequent to well gauging, the monitoring wells will be purged using EPA-approved low-flow methodology. Groundwater samples will be collected following purging.

Groundwater samples will be placed on ice in insulated coolers and chilled to a temperature of approximately 4°C (40°F). The coolers will then be sealed for shipment and proper chain-of-custody documentation will accompany the samples to the laboratory for analysis of chloride by EPA Method 300 and TDS by Method 2540C.

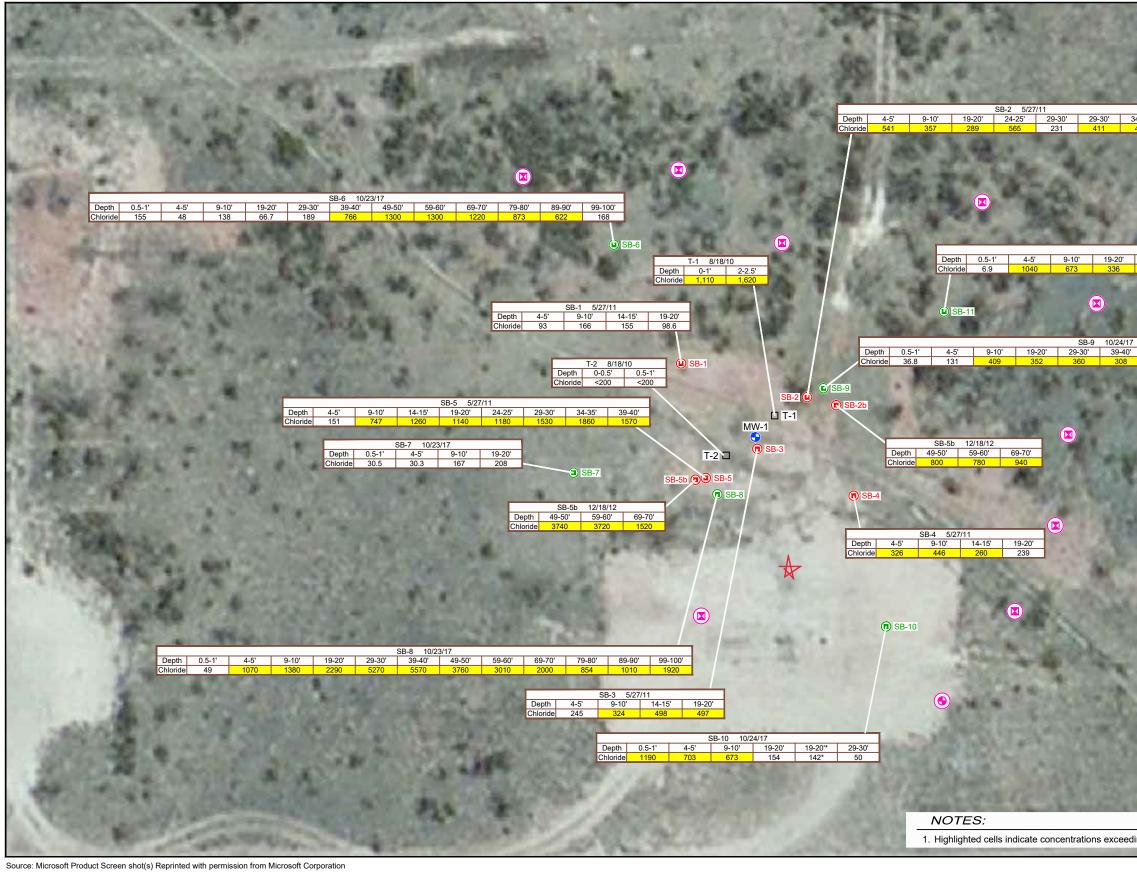
2.3 Task III – Reporting

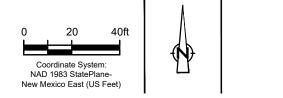
Following completion of the field activities detailed above, a report summarizing the results of the additional assessment will be prepared for submittal to NMOCD. The report will include a Site description, project history, description of field events, a discussion of results, and recommendations (if any). Soil and groundwater analytical results collected will be tabulated in data tables and presented graphically using concentration maps. Boring logs and monitor well construction logs for the Site will also be completed.

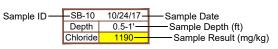
If you have any questions, please contact me at 713-734-3090.

Sincerely,

GHD


2


Scott Foord, P.G. Project Manager


SF/sh/1

Encl.

Attachment: Figure 1 – Proposed Boring Location Map

CEMC LEA COUNTY, NEW MEXICO LPU-60 RELEASE

PROPOSED BORING LOCATION MAP

34- 46		9-40' 531	And South and		No. of States of	「「大学」の		田川になっています	State of the state
-	SB-11 29-30'	10/24/17 39-40'	49-50'	59-60'	69-70'	79-80'	89-90'	5.7	CUA P
	<u>530</u>	496	49-30	398	283	223	352	4	And a
	X	20	2.10	13			in the		PX:
			6.75					27	1000
17	40.50	50.00	00.701	70.00	00.001	1			Ser. 1
)'	49-50' 178	59-60' 119	69-70' 163	79-80' 200	89-90' 129				Server Ser
	- 4	8103		ex.		2.14		A	42.22
	3.4	200	2.0		1.9	a_{c}	12	200	A Star
	50	190	1.5	\$2.5			1.5		1027
			100	100	0.4	46.5			Sec. 1
9	20.1	and i	24					2	
					20	32	19.3		363
		200				80			1000
						80		22	1000
		48				2.5		10.8	24.00
	60		2013					146	60.00
	100	100	100			13		621	6.855
	100	185	38.0			22	234	83	1
	20	2.3			2.8				Cont.
			12.8			150			200
			Car .		610	253			1.2.2.34
	X			22	54	223	100		and the
	1	100				LEGE			
		110		P	roposed S roposed M		Location Well Locat	tion	
		1000		🖲 В	oring Loca	tion (May	2011 / De	cember 2	012)
		10.00			ample Tre	nch (Augi			
edin	g guidan	ce RRALs.	_		onitoring V	Vell Loca	tion		
						Lat/Lon	g: 32.86616	7° North, 10	03.309028° West
								1 0738	17.00

073817-00 May 14, 2018

Figure 1