R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

August 30, 2018

Olivia Yu NMOCD District 1 1625 N. French Dr. Hobbs, NM 88240

REVIEWED

By Olivia Yu at 11:04 am, Oct 07, 2018

Deferral of remediation for 1RP-4625 not considered until release characterization is completed.

RE: Operator: Pride Energy Company

NM 87 State #001 (Tank Battery)

API#: 30-025-23655

Section 33-14S-34E: Unit K Lea County, New Mexico

Site Characterization Report and Remediation Plan 1 1RP-4625

Ms. Yu:

R.T. Hicks Consultants (Hicks Consultants) is pleased to submit the above-referenced document on behalf of Pride Energy. This document addresses 1RP-4624. The C-141 is reproduced in Appendix A.

The proposed remediation plan relies on data collected during our:

- January 2018 initial characterization, and
- April 2018 delineation and characterization

We followed NMOCD's new release rule 19.15.29 NMAC (the Rule) to characterize and delineate the release. Thus, proposed activities will be conducted under the new Rule.

On June 26, 2018 we submitted a request to NMOCD to defer the remediation plan until the approval of the new release rule. On July 20, 2018 NMOCD declined our request along with the below partial response:

"The release area around the tank battery, represented by NW berm data, and well pad, represented by TT-1 July 2017 data, will need additional vertical delineation."

Our response to NMOCD's above request is addressed in the section titled "Proposed Remediation Plan"

Characterization Results

Seven out of twelve sample locations are located within former production pad areas (Plate 10a) as shown on a 1971 aerial photograph. The tank battery storage site is located within the center of the former production pad areas; and is likely placed on top of a former reserve pit associated with the drilling of the abandoned salt water disposal well. A

conservative assumption is to define the storage site at the center of the former production areas as mapped on Plate 10b; using the tank battery berm as the northern boundary and the former production pad areas as the eastern boundary.

Table 1, attached, presents the result of all sampling conducted at the site. Plates 1-9 show that this site meets the characterization criteria established by 19.15.29.11.A.1-4. Plate 2 shows the depth to groundwater at the location is approximately 70-feet below ground surface; interpolated from the USGS 2007 potentiometric surface¹. The density of groundwater elevation data from the USGS measurements provides a high degree of certainty regarding the depth to groundwater at the site.

Plate 11 shows the sample locations with total depth relative to the 2017 and historic releases. Plate 12 presents chemicals of concern (chloride and/or TPH) data in the upper 4-feet at each location during the January and/or April 2018 characterization activities. Appendix B discusses our January and April 2018 characterization activities.

Below is a summary of observations during characterization. Please refer to Table 1 and Appendix D for summary of analytical and trench/auger logs, respectively.

• 2017 East

Chloride, Benzene, BTEX, and TPH concentrations show no impairment at 0.5 feet bgs. No reclamation is necessary.

• 2017 West

Chloride, Benzene, BTEX, and TPH concentrations show no impairment at 0.5 feet bgs. No restoration is necessary.

• 2017 Northeast (NE)

Chloride, Benzene, BTEX, and TPH concentrations are below closure criteria levels at 0.5 feet bgs. No reclamation is necessary.

• 2017 Northwest (NW Berm)

The trench sample was located within the berm area of an active tank battery and is likely placed over a former reserve pit associated with the drilling of the now abandoned SWD well. Chloride and BTEX concentrations show that the area is impacted. Reclamation of regulated hydrocarbons is necessary at tank battery closure.

Historic North

Chloride, Benzene, BTEX, and TPH concentrations are below closure criteria levels. No restoration is necessary.

• Historic Northeast

Chloride, Benzene, BTEX, and TPH concentrations are below closure criteria levels. No restoration is necessary.

• Historic Southwest

Chloride, Benzene, BTEX, and TPH concentrations show no impairment at 2 and 8 feet bgs. No restoration is necessary.

¹ Current (2004-07) Conditions and Changes in Ground-Water Levels from Predevelopment to 2007, Southern High Plains Aquifer, Southeast New Mexico-Lea County Underground Water Basin; 2008; SIM; 3044; Tillery, Anne

• Historic Southeast

Chloride, Benzene, BTEX, and TPH concentrations are below closure criteria levels at 0.5 feet bgs. No reclamation is necessary.

• SB-01

Chloride, Benzene, and BTEX concentrations shows no impairment. TPH (GRO+DRO+MRO) concentrations at 0-feet exhibit <1665 mg/kg, below the closure criteria of 2,500 mg/kg for areas still in-use. The two below photos show the area around SB-01 beginning to naturally revegetate. Any restoration efforts will negatively impact natural revegetation. Note the bright green vegetation growing in the area between and to the right of the tank battery and SB-01. This area was most heavily impacted by the release and shows the most productive natural revegetation.

Photo 1: Natural revegetation beginning to occur. July 19, 2018.

Photo 2: Photo of natural revegetation as of Aug. 15, 2018

• SB-02

At the surface (0-feet) Chloride is 4,200 mg/kg. BTEX, Benzene, and TPH are below cleanup closure levels. Reclamation for chloride is necessary.

Photo 3: Photo of reclamation area at SB-02. Site condition as of July 19, 2018.

- SB-03 Playa (within the natural depression)
 Chloride, Benzene, BTEX, and TPH are below closure cleanup levels. No reclamation is necessary.
- July 2017 Borehole (TT-1). The location of the borehole is unknown. Conversations with site personnel have placed this boring at three different

locations; one being at the wellhead location 1300-feet west. As we could not reproduce data from this boring, we are discounting any reported results.

Proposed Remediation Plan

The Rule states:

19.15.29.12.C.

(2) The responsible party shall restore the impacted surface area of a release occurring on a developed well pad, central tank battery, drilling site, compressor site or other exploration, development, production or storage sites to meet the standards of Table I of 19.15.29.12 NMAC or other applicable remediation standards and restore and reclaim the area pursuant to 19.15.29.13 NMAC.

(3) The responsible party shall remediate the impacted surface area of a release not occurring on a lined, bermed or otherwise contained exploration, development, production or storage site to meet the standards of Table I of 19.15.29.12 NMAC or other ...

As the characterization clearly shows, concentrations of constituents of concern are below the limits established by Table 1.

However, for areas no longer in use, the following section of the Rule establishes concentration standards for a "soil cover":

19.15.29.12.D. Reclamation of areas no longer in use. The responsible party shall reclaim all areas disturbed by the remediation and closure except areas reasonably needed for production operations or for subsequent drilling operations, as early and as nearly as practical to their original condition

(1) The reclamation must contain a minimum of four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 mg/kg... The soil cover must include a top layer, which is either the background thickness of topsoil or one foot of suitable material to establish vegetation at the site, whichever is greater ...

Reclamation of areas no longer in use at this site are discussed below.

With respect to other areas impacted by the release, the Rule states:

19.15.29.12.B. Areas reasonably needed for production operations or for subsequent drilling operations must be compacted, covered, paved or otherwise stabilized and maintained in such a way as to minimize dust and erosion to the extent practical.

Exhibit 1 summarizes the closure critera for areas "in use" and areas reasonably needed for operations.

Depth (below ground surface)	Depth to Water (bottom of release)	Chloride (mg/kg)	TPH (GRO+DRO+MRO) (mg/kg)	TPH (GRO+DRO) (mg/kg)	BTEX (mg/kg)	Benzene (mg/kg)
Areas no longer in-use and above 4-		600	2,500	1,000	50	10
feet.						
Areas no long in use and below 4-feet	>50 feet	10,000	2,500	1,000	50	10
Areas in-use	>50 feet	10,000	2,500	1,000	50	10

Exhibit 1: Closure Criteria. Table 1 NMAC 19.15.29.

Of the sample locations listed above, two areas are subject to restoration or reclamation:

- 1. 2017 Northwest (within berm); reclamation at tank battery closure when this area is no longer "in use"
- 2. SB-02 Historic; reclamation pursuant to this plan.

2017 Northwest (within tank battery berm area)

Restoration of the 2017 Northwest area was completed during initial response as documented on the C-141 dated January 16, 2017. Initial response/restoration included using a vacuum truck to remove standing fluid and removing the upper surface soils showing release extent.

As discussed above, the location is likely overlying a former reserve pit. TPH concentration confirm this assumption along with trenching logs showing fine sand, silt, and interbedded caliche to total depth (12-feet). In comparison, boring logs from locations outside of the battery area (i.e. SB-01) shows caliche from 0.5 to 10-feet bgs. Furthermore, former reserve pits closed prior to 2004 (Rule 50) are considered by NMOCD a "legacy pit" and are administratively closed.

Pride Energy will evaluate placing a liner around the active tank battery, within the berm area, to reduce future impairment to the environment from accidental releases. Furthermore, the liner will prevent surface water infiltration – reducing the vertical migration of constituents of concern.

Per NMAC 19.15.29.12.C.(2), we ask deferment of reclamation as the constituents of concern are located in an area immediately around tank battery and reclamation would cause a major facility deconstruction. The impaired area will be reclaimed during the closure of the tank battery complying with the standards-in-place at time of closure.

SB-02 Historic

Location SB-02 Historic was not confined to the storage site and requires reclamation per NMAC 19.15.29.13.D as the area is no longer in use. Chloride concentration at the surface (0-feet) is 4,200 mg/kg and 404 mg/kg at 4-feet bgs.

Within 30-days of plan approval, remediation will include:

- Removal of materials to a depth of 4-feet or extent practical and to where chloride is below 600 mg/kg within the excavated depth; whichever is less. We estimate the extent practical at 2-foot, where trenching activities and boring logs demonstrate very hard caliche was encountered. Assuming a 2-foot removal depth, total volume of removed material will be approximately 140 cu. yrds (=209 sq yrds x 0.67 yrds). Plate 13 shows the reclamation extent.
- Collect a 5-point composite sample from the base and walls of the excavation for analysis of chloride (the chemical of concern). Each composite sample will not be representative of more than 200 sq. ft.
- Field titrate for chloride.
 - o If field titrations show chloride ≤ 600 mg/kg, cease excavation. Else, continue excavation, vertically and horizontally as necessary, until composite sample shows chloride is ≤ 600 mg/kg.
 - o Then, submit sample for laboratory analysis for chloride only.
- After laboratory confirmation that chloride is \leq 600 mg/kg, backfill with clean, uncontaminated material.
- Contour surface to blend with surrounding topography and re-seed.

Within 30-days of completion of restoration and remediation activities (90-days of plan approval), we will submit a closure report along with form C-141 in conformance with NMAC 19.15.29.12.E, which shall include:

- a. A scaled site and sampling diagram;
- b. Photographs of the remediated site prior to backfilling;
- c. Laboratory analysis of final sampling (not needed for restorations);
- d. A description of all remedial activities.

NMOCD Request on July 20, 2018 (via email)

On July 20, 2018 NMOCD provided the following request via email:

"The release area around the tank battery, represented by NW berm data, and well pad, represented by TT-1 July 2017 data, will need additional vertical delineation."

The tank battery area is discussed above. The exact location of TT-1 is unknown. Discussions with personnel familiar with the site could not provide an exact location. The well pad referenced in NMOCD's request is in-use and we believe we have sufficiently characterized the well pad and historic release extents with nine (9) borings/trenches. Any reclamation that will be required will occur at the time of tank battery closure.

August 30, 2018 Page 8

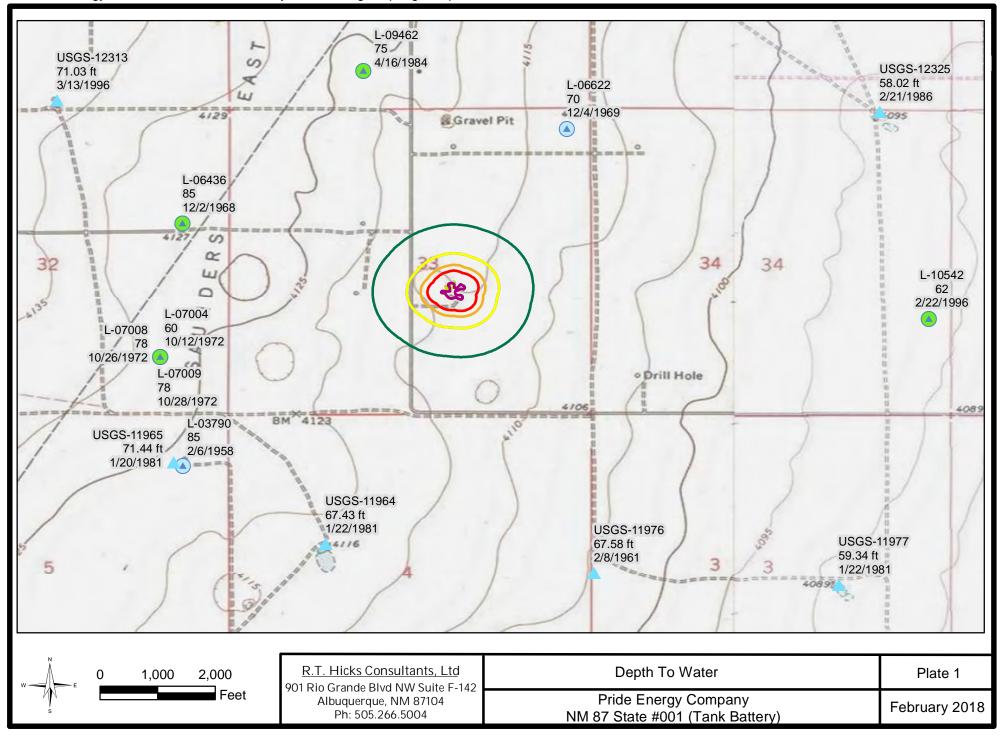
Please contact me at 970-570-9535 with any questions or comments.

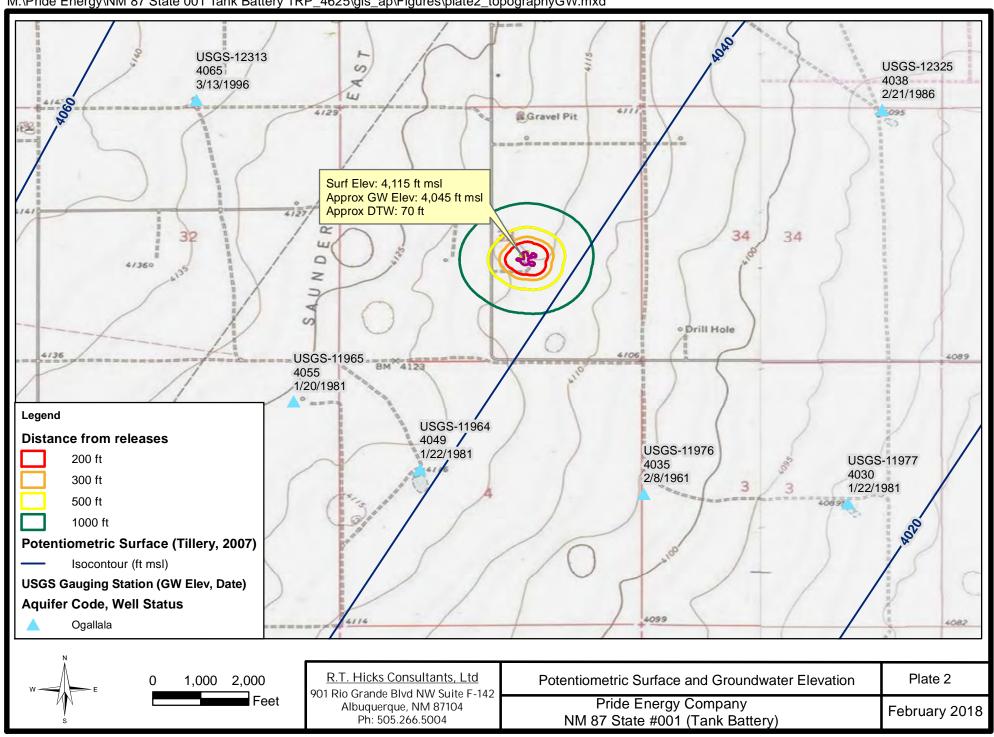
Sincerely,

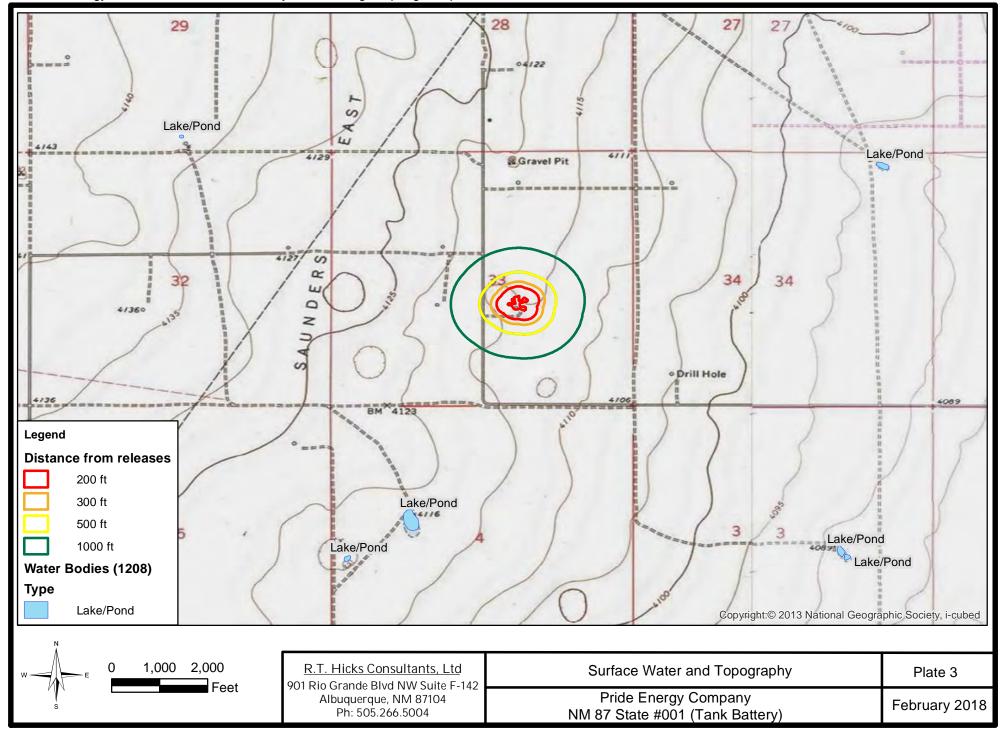
R.T. Hicks Consultants, Ltd.

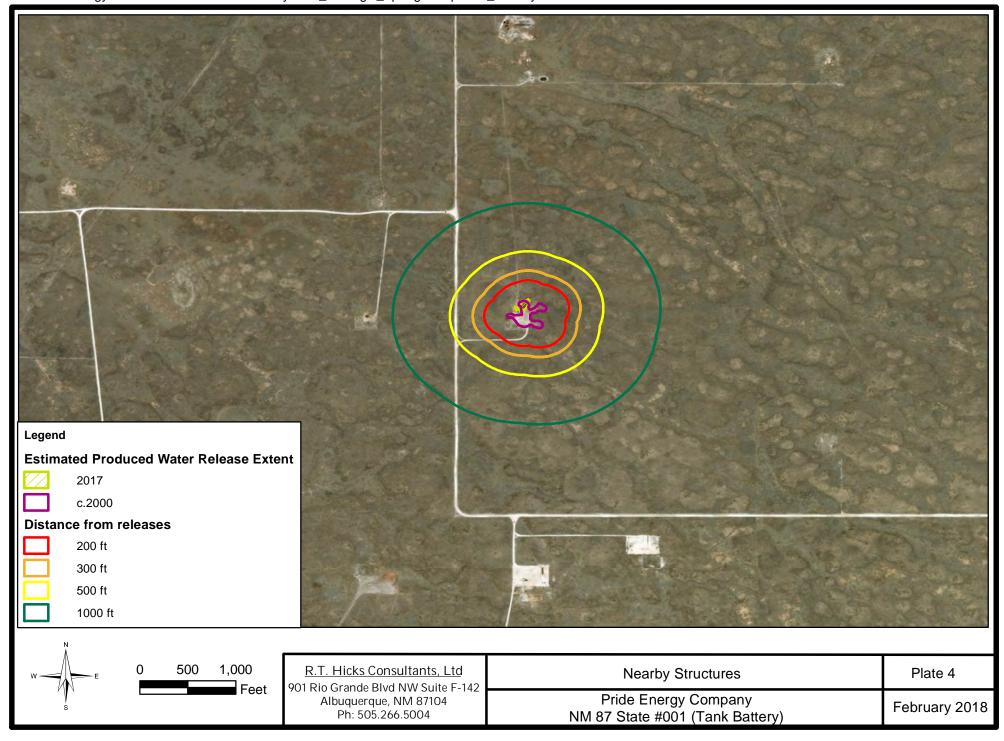
Andrew Parker Project Scientist

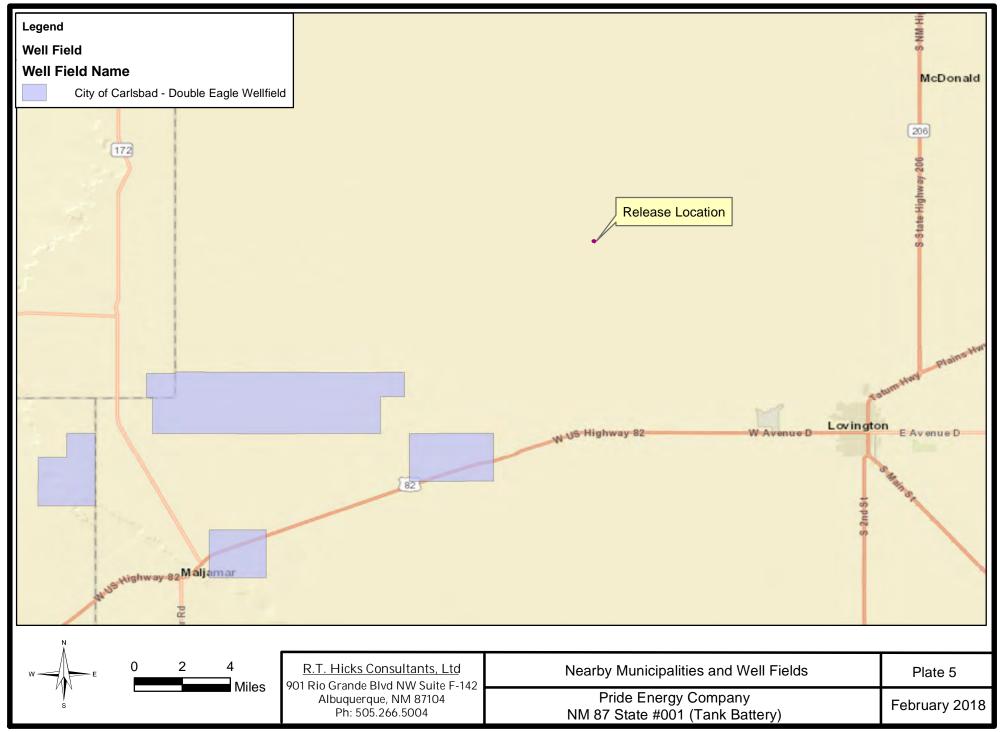
Copy: Hobbs NMOCD office – Oliva Yu (Olivia.Yu@state.nm.us)

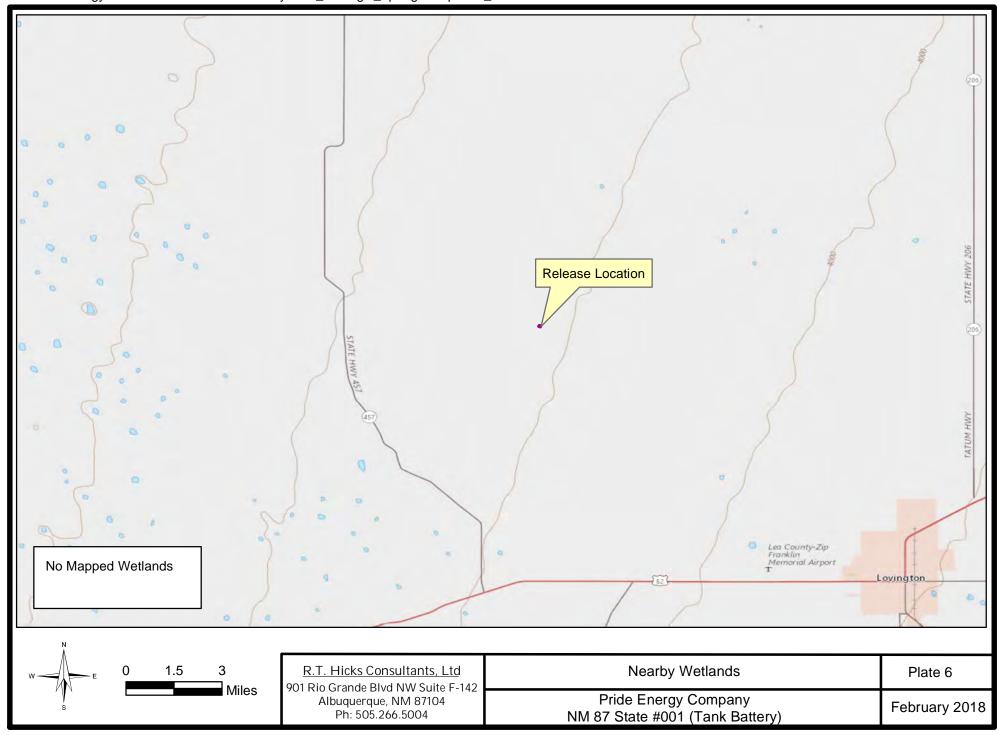

NMOCD – Brad Billings (bradford.billings@state.nm.us) NM SLO - Mark Naranjo (mnaranjo@slo.state.nm.us)

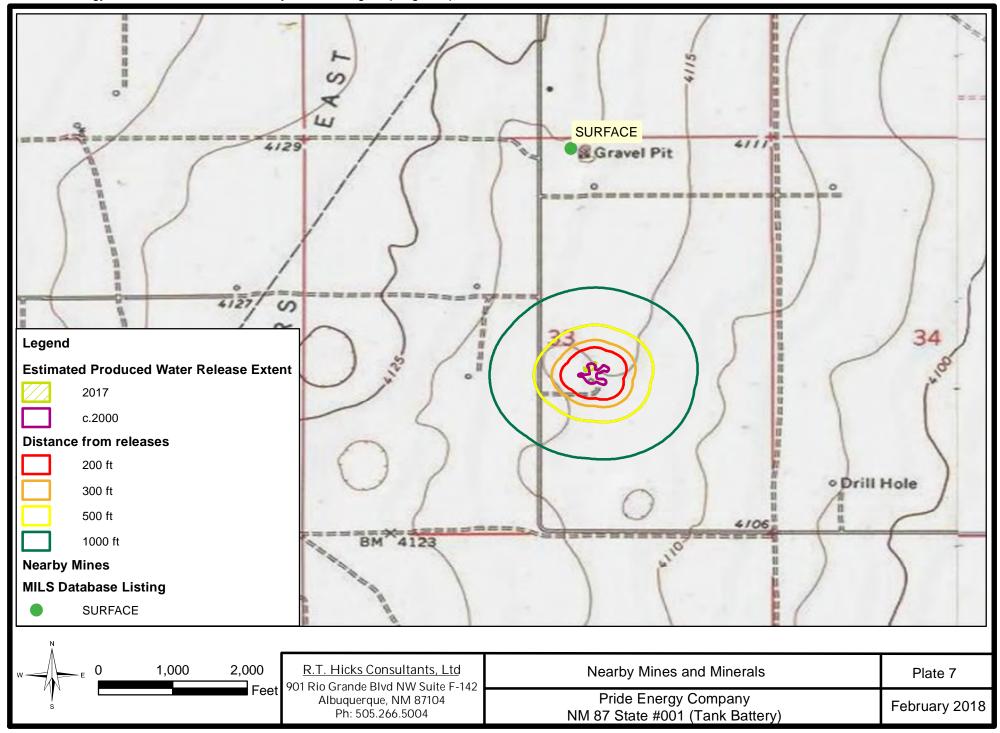

Table 1 Summary of Analytical

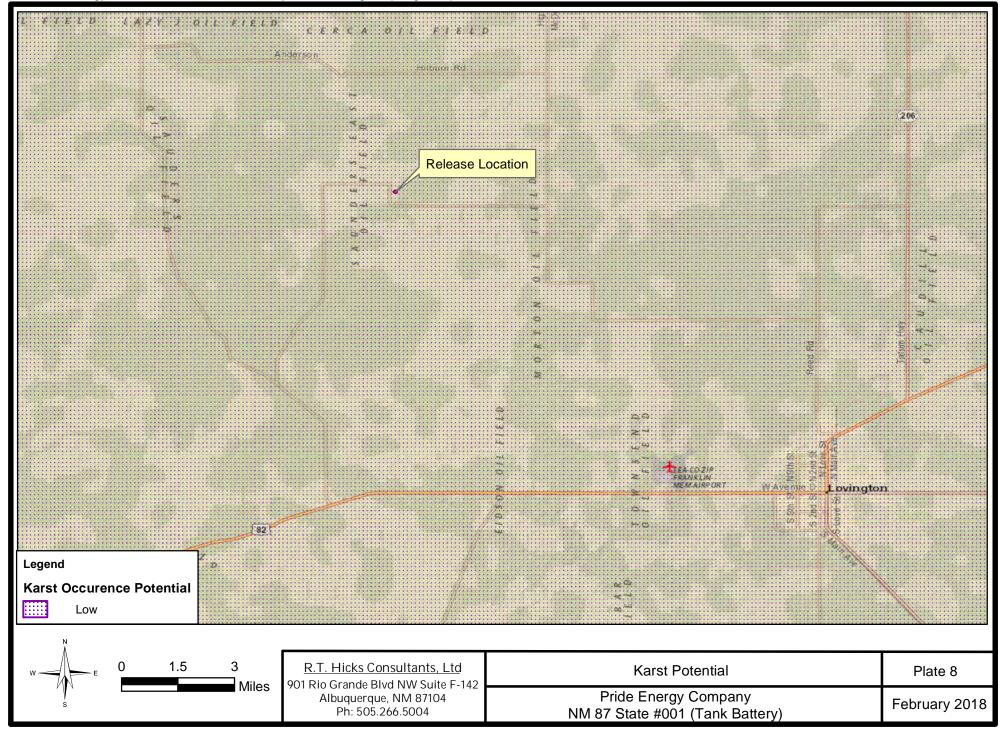

					TDU	TDU
Sample Name	Date	Cl mg/kg	BTEX mg/kg	Benzene mg/kg	TPH (GRO+DRO+MRO) mg/kg	TPH (GRO+DRO) mg/kg
Table 1 (19.15.29 NMAC)		Lab	G, G	<i>3,</i> 3	G, G	G. G
Areas no longer in-use. Above 4-feet		600				
Areas no longer in-use. Below 4-feet		10,000	50	10	2,500	1,000
Areas in-use						
DTW=70ft		10,000	50	10	2,500	1,000
2017 East @ 0.5 ft	1/8/2018	<30	<0.221	<0.025	<14.5	<62.5
2017 West @ 0.5 ft	1/8/2018	<30	<0.225	<0.025	<15	<66
2047 NE @ 0 F #	1/0/2010	-20	₄ 0.212	40.024	-14.4	-C2 4
2017 NE @ 0.5 ft	1/8/2018	<30	<0.213	<0.024	<14.4	<62.4
2017 NW Berm @ 2 ft	1/8/2018	4,600	2.358	0.27	12,150	21,250
2017 NW Berm @ 12 ft	1/8/2018	2,900	35.25	<0.25	8,320	11,220
Historic North @ 0 ft	4/2/2018	<30	<0.207	<0.023	<241.6	<61.6
Historic North @ 0.5 ft	1/8/2018	<30	0.34	<0.024	60.8	122.8
Historic North @ 2.5 ft	4/2/2018	78	<0.216	<0.024	<60.1	<14.1
Historic North @ 4 ft	4/2/2018	36	<0.216	<0.024	<62.3	<14.3
Historic Northeast @ 0.5 ft	1/8/2018	260	<0.222	<0.025	<14.2	<61.2
	. /0/0010					
Historic Southwest @ 2 ft	1/8/2018	500	<0.22	<0.024	<14.8	<63.8
Historic Southwest @ 8 ft	1/8/2018	45				
Historic Southeast @ 0.5 ft	1/8/2018	<30	<0.217	<0.024	<14.5	<63.5
SB-01 2017 @ 0 ft	1/8/2018	93	<0.21	<0.023	144.7	374.7
SB-01 2017 @ 0 ft	4/2/2018	56	<0.21	<0.023	<1664.8	<664.8
SB-01 2017 @ 2 ft	4/2/2018	490	<0.208	<0.023	<62.3	<14.3
SB-01 2017 @ 4 ft	4/2/2018	320	<0.221	<0.025	<63.7	<14.7
SB-01 2017 @ 5 ft	1/8/2018					
SB-01 2017 @ 6 ft	4/2/2018	360	<0.217	<0.024	<61.3	<14.3
SB-01 2017 @ 10 ft	1/8/2018					
SB-01 2017 @ 15 ft	1/8/2018	40				
SB-02 Historic @ 0 ft	1/8/2018	4,200	<0.208	<0.023	<14.4	<63.4
SB-02 Historic @ 4 ft	1/8/2018	,				
SB-02 Historic @ 9 ft	1/8/2018	<30				
SB-02 Historic @ 15 ft	1/8/2018	<30				
SB-02 Historic @ 21 ft	1/8/2018					
SB-03 Playa @ 0 ft	1/8/2018					
SB-03 Playa @ 0 ft	4/3/2018	<30	<0.212	<0.024	<62.4	<14.4
SB-03 Playa @ 2 ft	4/3/2018	47	<0.211	<0.023	<60	<14
SB-03 Playa @ 4 ft	4/3/2018	200	<0.216	<0.024	<62.5	<14.5
SB-03 Playa @ 5 ft	1/8/2018	660	<0.215	<0.024	<14.3	<61.3
SB-03 Playa @ 6 ft	4/3/2018	530	<0.21	<0.023	<61.2	<14.2
SB-03 Playa @ 9 ft	1/8/2018					
SB-03 Playa @ 15 ft	1/8/2018	25.7				
SB-03 Playa @ 21 ft	1/8/2018	220				
SB-03 Playa @ 25 ft	1/8/2018	200				
SB-03 Playa @ 31 ft	1/8/2018	200				
(July 2017 Borehole)						
TT-1 @ 0 ft	7/7/2017	4,830		<0.00109	401.2	498
TT-1 @ 4 ft	7/7/2017	8,670		<0.00112	<28.1	<28.1
TT-1 @ 8 ft	7/7/2017	705		<0.00123	<30.9	<30.9
TT-1 @ 12 ft	7/7/2017	2,630		<0.00109	<21.7	<21.7

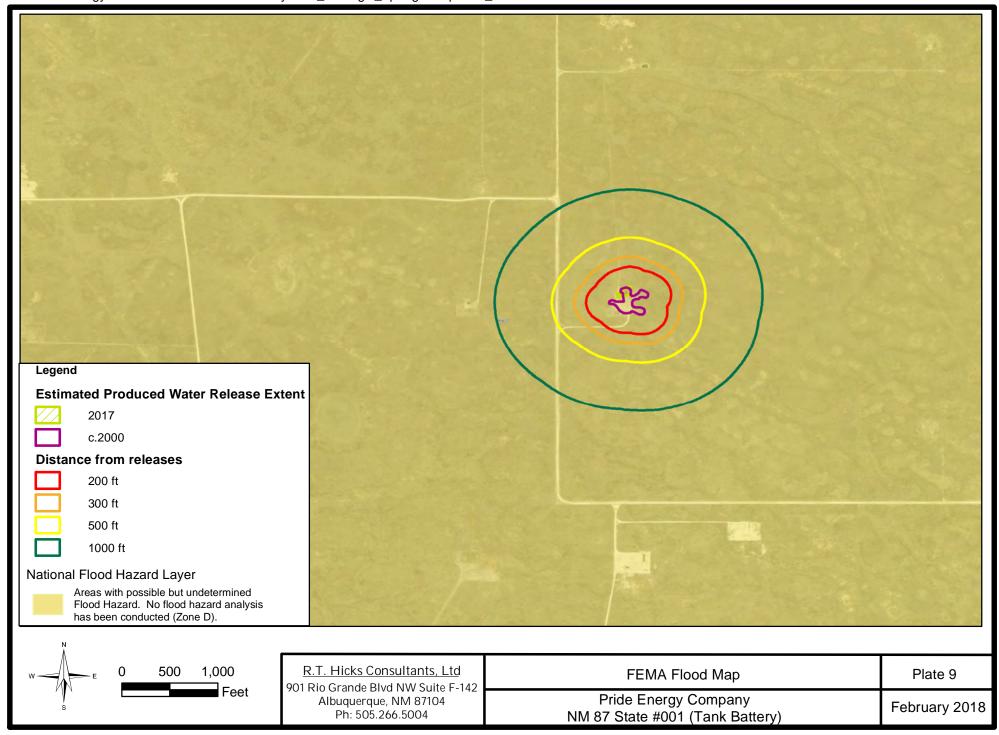


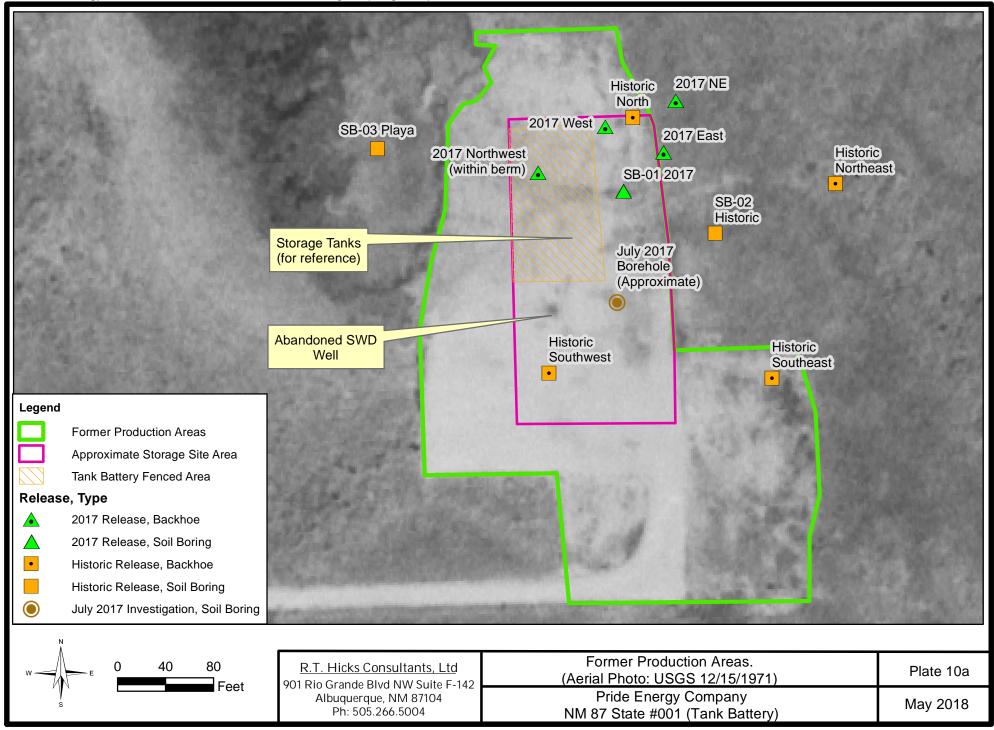


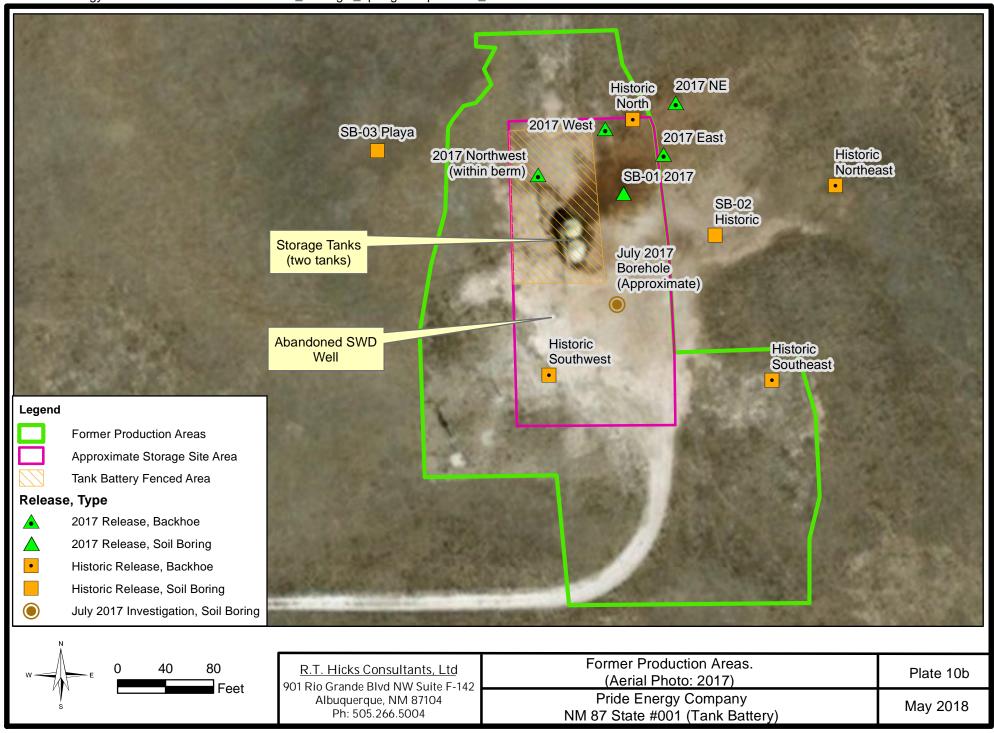

M:\Pride Energy\NM 87 State 001 Tank Batt	Legend Distance from releases 200 ft 300 ft 500 ft 1000 ft	USGS Gauging Station (DTW, Date) Aquifer Code, Well Status Ogallala OSE Water Wells (DTW, Date) Well Depth (ft) (= 150 151 - 350	
	R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142	Depth To Water	Plate 1 Legend
	Albuquerque, NM 87104 Ph: 505.266.5004	Pride Energy Company NM 87 State #001 (Tank Battery)	February 201

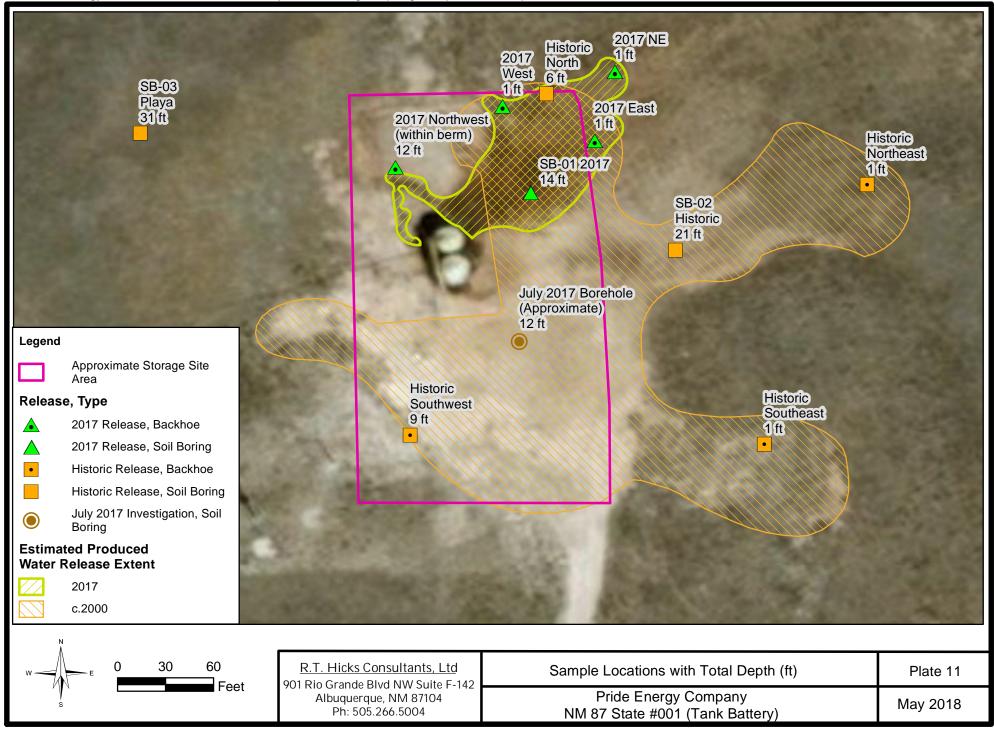


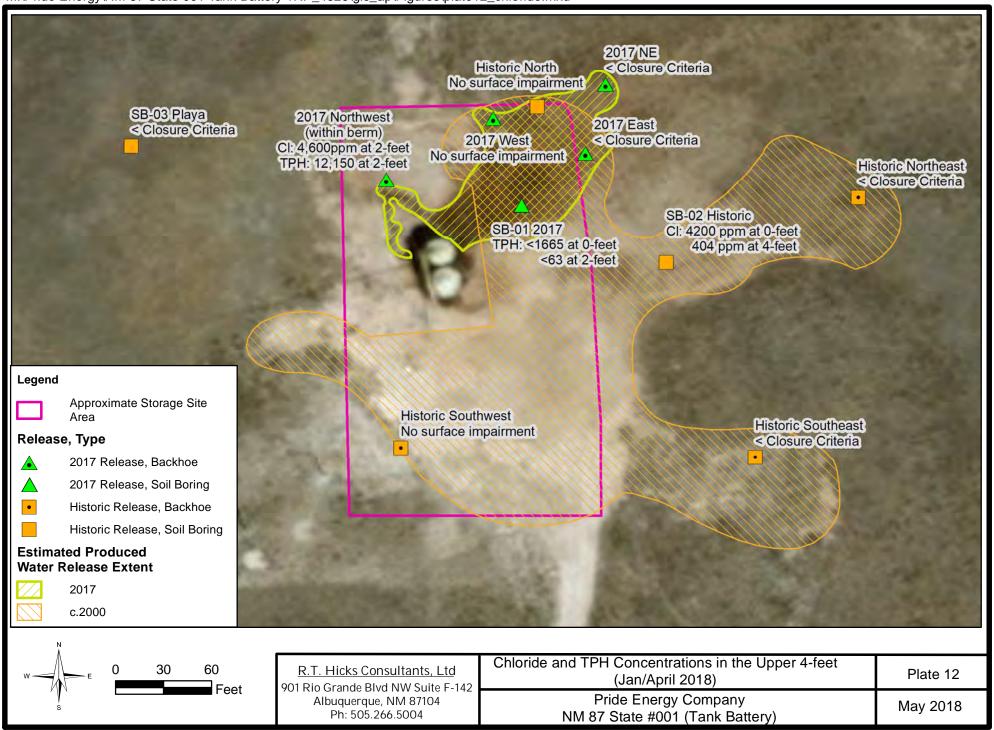


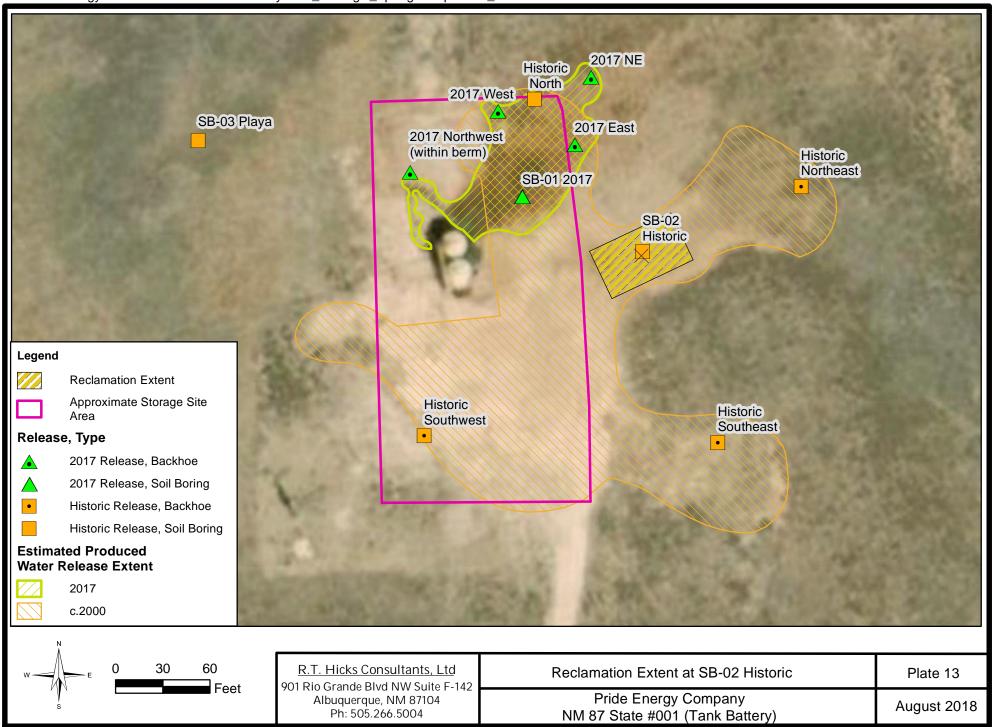












PRIDE ENERGY COMPANY

(918) 524-9200 ◆ Fax (918) 524-9292 ◆ www.pride-energy.com

Physical Address: 4641 E. 91st Street

Tulsa, OK 74137

Mailing Address:

P.O. Box 701950 Tulsa, OK 74170-1950

Email Address:

nulsa, OK 74170-1950 mattp@pride-energy.com

January 16, 2017

Via Certified Mail Return Receipt #

New Mexico Oil Conservation 1625 N. French Drive Hobbs, NM 88240

91 7199 9991 7034 2014 0874

RE:

New Mexico 87 State #001

API # 30-025-23655

Section 33-14S-34E: 2086' FSL and 1,874' FWL (Unit Letter K)

Lea County, New Mexico

Dear Maxey,

In reference to the above well, please find enclosed a completed Form C-141 (Initial Report).

Thank you and if there are any questions, please feel free to contact me at 918-524-9200.

Sincerely,

Matthew L. Pride

Pride Energy Company

Mother L. Prior

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

Date:

1/16/17

* Attach Additional Sheets If Necessary

Phone: 918-524-9200

pOY1706037126

State of New Mexico Energy Minerals and Natural Resources

Revised August 8, 2011

Form C-141

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Release Notification and Corrective Action **OPERATOR** Initial Report Final Report Name of Company Pride Energy Company Contact Matthew Pride Address P.O. Box 701950, Tulsa, OK 74170 Telephone No. 918-524-9200 Facility Name New Mexico 87 State #1 Facility Type Oil Well Surface Owner Mineral Owner API No. State of New Mexico State 30-025-23655 LOCATION OF RELEASE Feet from the Unit Letter Section Township Range North/South Line Feet from the East/West Line County 33 14S 34E 2086 South 1874 West Lea Latitude 33.059717 Longitude -103.514153 NATURE OF RELEASE Type of Release Oil and Water Volume of Release 95 bbls. Volume Recovered 95 bbls. Source of Release Date and Hour of Occurrence Tank Battery Date and Hour of Discovery Unknown 1:55 PM, 1/13/17 Was Immediate Notice Given? If YES, To Whom? Maxey Brown By Whom? Willie Dean (contract pumper) Date and Hour 5:10 PM, 1/13/17 Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. ☐ Yes ⊠ No If a Watercourse was Impacted, Describe Fully.* RECEIVED Describe Cause of Problem and Remedial Action Taken.* By Olivia Yu at 9:49 am, Mar 01, 2017 It appears that the surface owner's cattle may have rubbed up against the mechanism that turned the pumping unit on and caused the tank to run over. When the spill was found, the pumping unit was immediately turned off and a vac truck, backhoe and roustabout crew were called to the location to clean up the spill. Describe Area Affected and Cleanup Action Taken.* The area that was affected was the soil around the tank battery. The vac truck has picked up all free standing oil, and the roustabout crew (with backhoe) has scraped up the oily soil which will be properly disposed of. (most of the free standing oil ran into a hole that is within 10 feet of the tank that had been dug in the past.) A fence around the tank battery and pumping unit will also be constructed to keep livestock (cattle) away from the surface equipment pertaining to the oil well. The dike (firewall) will be reconstructed around the tank battery in order to contain any spilled fluid from the tanks that may occur in the future. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION rabben L. Pride Signature: Printed Name: Matthew L. Pride Approved by Environmental Specialist: Title: President of Pride Production Co., Inc. Approval Date: 3/1/2017 **Expiration Date:** General Partner of Pride Energy Company E-mail Address: mattp@pride-energy.com Conditions of Approval: Attached see attached directive

1RP-4625

fOY1706036376

nOY1706036769

Operator/Responsible Party,

The OCD has received the form C-141 you provided on _1/31/2017_ regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number __1R-_4625_ has been assigned. Please refer to this case number in all future correspondence.

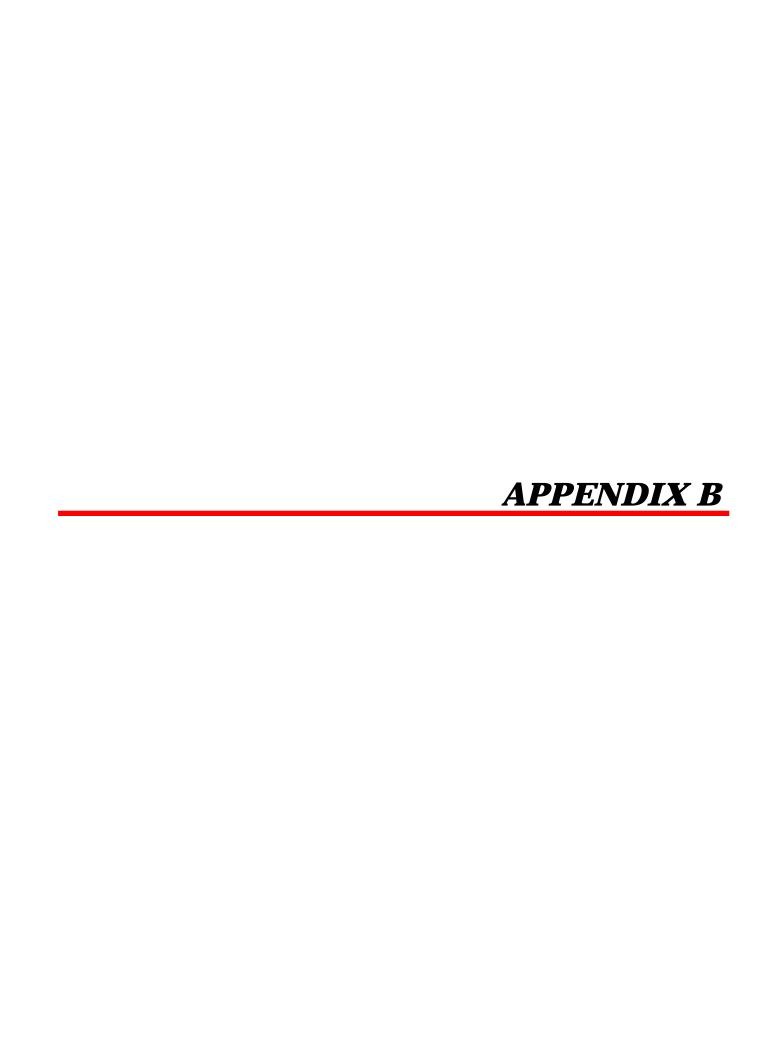
It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District _1_ office in __Hobbs____ on or before _4/1/2017_. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

- Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.
- Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.
- Nominal detection limits for field and laboratory analyses must be provided.
- Composite sampling is not generally allowed.
- Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted


for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

- •Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.
- If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.
- Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold

OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us

January 2018 Sample Locations

On January 08, 2018 Andrew Parker and Kristin Pope of Hicks Consultants mobilized to the Pride Energy State New Mexico 87 State 001 (Tank Battery) location to conduct a limited characterization of an accidental release in January 2017. The release was predominantly crude oil and occurred at the tank battery, which is located at the production pad for the plugged NM 83 State #1 SWD well (Latitude: 33.05973, Latitude: -103.514153; 33-14S-34E Unit Letter J), about 1325 feet east of the NM 87 State #001 producing well.

Gandy Backhoe Services provided backhoe trenching services. Adkins Engineering provided drilling rig services.

We excavated eight (8) backhoe trenches and drilled three (3) soil borings to characterize the 2017 and historic releases. Excavation depth was determined by the extent of the backhoe reach or bucket refusal caused by the underlying caliche. Borehole depth was determined by chloride field titrations. Vertical delineation was determined complete when chloride titrations showed less than 250 mg/kg for ten vertical feet.

Soil samples were collected for the analysis of chloride, BTEX, and GRO/DRO/MRO. Soil samples were submitted to Hall Environmental Laboratory in Albuquerque, NM; on-ice and under strict chain-of-custody. Appendix D contains the laboratory Certificate of Analysis.

Plate 11 shows the location of the sample locations. Exhibit A, below, shows the latitude, longitude, depth, and sampling type. Table 1 is a summary of the laboratory analysis. Appendix D contains the lithologic logs for the sample locations.

Name	Date	Release	Туре	Depth (ft)	Latitude WGS84	Longitude (WGS84)
2017 NE	1/8/2018	2017 Release	Backhoe	1	33.06003943	-103.5138131
Historic Southeast	1/8/2018	Historic Release	Backhoe	1	33.059401	-103.513557
Historic Northeast	1/8/2018	Historic Release	Backhoe	1	33.05984562	-103.5133808
SB-02 Historic	1/8/2018	Historic Release	Soil Boring	21	33.0597343	-103.5137094
Historic North	1/8/2018	Historic Release	Soil Boring	6	33.06000135	-103.5139305
2017 West	1/8/2018	2017 Release	Backhoe	1	33.05998348	-103.5140252
2017 East	1/8/2018	2017 Release	Backhoe	1	33.05992135	-103.5138477
SB-01 2017	1/8/2018	2017 Release	Soil Boring	14	33.05983205	-103.513957
Historic Southwest	1/8/2018	Historic Release	Backhoe	9	33.05941708	-103.5141641
2017 Northwest (within berm)	1/8/2018	2017 Release	Backhoe	12	33.059876	-103.514189
SB-03 Playa	1/8/2018	Historic Release	Soil Boring	31	33.059934	-103.514626

Exhibit A: Sample location and type.

April 2018 Sample Locations

On April 02-03, 2018 Andrew Parker and Kristin Pope of Hicks Consultants mobilized to the Pride Energy State New Mexico 87 State 001 (Wellhead) location to perform additional vertical characterization of three areas (SB-01 2017, Historic North, and SB-03 Playa). Additional characterization at SB-01 and SB-03 was to gather additional data in the upper 4-feet of the soil

column. At Historic North, additional data was collected to evaluate TPH from the surface to 4-feet. Atkins Engineering provided drilling services.

We drilled the boreholes at the locations identified during the January 2018 characterization and offset by 5-feet east. (Plate 11 and Exhibit A).

We collected split-spoon soil samples at 0, 2, 4, 6 feet bgs and total depth. Vertical delineation ceased at 6 feet when:

- PID readings for VOCs were below 100 ppm (using the heated headspace method of field testing), and
- Chloride titrations were below 600 mg/kg (using field titration method).

At Historic North, the split spoon sample had no return due to the very hard caliche. No sample was collect at 6-feet.

Appendix D contains the lithologic logs for the sample locations.

Soil samples were submitted for laboratory testing of TPH (GRO, DRO, MRO), BTEX, Benzene, and Chloride. Soil samples were submitted to Hall Environmental Laboratory in Albuquerque, NM; on-ice and under strict chain-of-custody. Appendix C contains the laboratory Certificates of Analysis.

Protocols for chloride field titrations and VOC screening with a photoionization detector (PID) are located in Appendix E.

Exhibit B: Trench sample at Historic Southeast. Hard caliche encountered at 1-foot below ground surface. Land surface is undergoing natural restoration/re-vegetation. Drilling of SB-02 is visible in upper right of photo.

Exhibit C: Drilling of SB-03, within the natural depression ("playa") west-northwest of the tank battery. Tank battery is visible in photo center.

Exhibit D: Split spoon sample core at SB-03 Playa. 0-feet is at left. 2-feet is at right. Silty sand dominates the upper soil column from the surface to 6-feet.

Exhibit E: Background photo is the drilling of SB-01 2017. Photo front center foreground is the borehole for Historic North. Re-vegetation is occurring in the area of Historic North.

Exhibit F: SB-01 2017 split-spoon core sampling at 4-feet. Core sample is from 4-feet (left) to 6-feet (right). Caliche dominates the core sample.

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Bob Allen
Safety & Environmental Solutions, Inc.
703 E Clinton
Hobbs, New Mexico, TX 88240

Project: Pride NM 83 SWD State #1
Project Number: PRI-17-001
Location: Lea County

Lab Order Number: 7G07005

NELAP/TCEQ # T104704516-16-7

Report Date: 07/13/17

703 E Clinton Project Number: PRI-17-001 Hobbs, New Mexico TX, 88240 Project Manager: Bob Allen

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TT-1 Surface	7G07005-01	Soil	07/05/17 09:00	07-06-2017 17:00
TT-1 4'	7G07005-02	Soil	07/05/17 10:00	07-06-2017 17:00
TT-1 8'	7G07005-03	Soil	07/05/17 10:20	07-06-2017 17:00
TT-1 12'	7G07005-04	Soil	07/05/17 10:35	07-06-2017 17:00

Fax: (575) 393-4388

703 E Clinton Project Number: PRI-17-001 Hobbs, New Mexico TX, 88240 Project Manager: Bob Allen

TT-1 Surface 7G07005-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmer	ıtal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00109	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Toluene	ND	0.00217	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	75-1	25	P7G1103	07/07/17	07/07/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.2 %	75-1	25	P7G1103	07/07/17	07/07/17	EPA 8021B	
General Chemistry Parameters by EPA	A / Standard Method	ls							
Chloride	4830	27.2	mg/kg dry	25	P7G1110	07/11/17	07/12/17	EPA 300.0	
% Moisture	8.0	0.1	%	1	P7G1004	07/10/17	07/10/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3:	5 by EPA Method 80)15M							
C6-C12	ND	27.2	mg/kg dry	1	P7G1106	07/07/17	07/08/17	TPH 8015M	
>C12-C28	374	27.2	mg/kg dry	1	P7G1106	07/07/17	07/08/17	TPH 8015M	
>C28-C35	124	27.2	mg/kg dry	1	P7G1106	07/07/17	07/08/17	TPH 8015M	
Surrogate: 1-Chlorooctane		98.7 %	70-1	30	P7G1106	07/07/17	07/08/17	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-1	30	P7G1106	07/07/17	07/08/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	498	27.2	mg/kg dry	1	[CALC]	07/07/17	07/08/17	calc	

Fax: (575) 393-4388

703 E Clinton Project Number: PRI-17-001 Hobbs, New Mexico TX, 88240 Project Manager: Bob Allen

TT-1 4' 7G07005-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmer	ıtal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00112	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Toluene	ND	0.00225	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Ethylbenzene	ND	0.00112	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Xylene (p/m)	ND	0.00225	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Xylene (o)	ND	0.00112	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		88.3 %	75-1	25	P7G1103	07/07/17	07/07/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		95.6 %	75-1	25	P7G1103	07/07/17	07/07/17	EPA 8021B	
General Chemistry Parameters by EPA	Standard Method	ds							
Chloride	8670	28.1	mg/kg dry	25	P7G1110	07/11/17	07/12/17	EPA 300.0	
% Moisture	11.0	0.1	%	1	P7G1004	07/10/17	07/10/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 l	oy EPA Method 80	015M							
C6-C12	ND	28.1	mg/kg dry	1	P7G1109	07/07/17	07/07/17	TPH 8015M	
>C12-C28	ND	28.1	mg/kg dry	1	P7G1109	07/07/17	07/07/17	TPH 8015M	
>C28-C35	ND	28.1	mg/kg dry	1	P7G1109	07/07/17	07/07/17	TPH 8015M	
Surrogate: 1-Chlorooctane		92.8 %	70-1	30	P7G1109	07/07/17	07/07/17	TPH 8015M	
Surrogate: o-Terphenyl		96.5 %	70-1	30	P7G1109	07/07/17	07/07/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	28.1	mg/kg dry	1	[CALC]	07/07/17	07/07/17	calc	

703 E Clinton Project Number: PRI-17-001 Hobbs, New Mexico TX, 88240 Project Manager: Bob Allen

> TT-1 8' 7G07005-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	ian Basin E	nvironmen	tal Lab, l	L.P.				
Organics by GC									
Benzene	ND	0.00123	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Toluene	ND	0.00247	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Ethylbenzene	ND	0.00123	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Xylene (p/m)	ND	0.00247	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Xylene (o)	ND	0.00123	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		91.8 %	75-12	5	P7G1103	07/07/17	07/07/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.0 %	75-12	5	P7G1103	07/07/17	07/07/17	EPA 8021B	
General Chemistry Parameters by EPA	Standard Method	ls							
Chloride	705	1.23	mg/kg dry	1	P7G1110	07/11/17	07/12/17	EPA 300.0	
% Moisture	19.0	0.1	%	1	P7G1004	07/10/17	07/10/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 b	oy EPA Method 80	15M							
C6-C12	ND	30.9	mg/kg dry	1	P7G1109	07/07/17	07/07/17	TPH 8015M	
>C12-C28	ND	30.9	mg/kg dry	1	P7G1109	07/07/17	07/07/17	TPH 8015M	
>C28-C35	ND	30.9	mg/kg dry	1	P7G1109	07/07/17	07/07/17	TPH 8015M	
Surrogate: 1-Chlorooctane		94.7 %	70-13	0	P7G1109	07/07/17	07/07/17	TPH 8015M	
Surrogate: o-Terphenyl		97.8 %	70-13	0	P7G1109	07/07/17	07/07/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	30.9	mg/kg dry	1	[CALC]	07/07/17	07/07/17	calc	

703 E Clinton Project Number: PRI-17-001 Hobbs, New Mexico TX, 88240 Project Manager: Bob Allen

TT-1 12' 7G07005-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Peri	nian Basin E	nvironmen	tal Lab, I	L .P.				
Organics by GC									
Benzene	ND	0.00109	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Toluene	ND	0.00217	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P7G1103	07/07/17	07/07/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		88.1 %	75-1.	25	P7G1103	07/07/17	07/07/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		95.1 %	75-1.	25	P7G1103	07/07/17	07/07/17	EPA 8021B	
General Chemistry Parameters by EPA / Sta	andard Metho	ds							
Chloride	2630	10.9	mg/kg dry	10	P7G1110	07/11/17	07/12/17	EPA 300.0	
% Moisture	8.0	0.1	%	1	P7G1004	07/10/17	07/10/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by E	EPA Method 8	015M							
C6-C12	ND	27.2	mg/kg dry	1	P7G1109	07/07/17	07/07/17	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P7G1109	07/07/17	07/07/17	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P7G1109	07/07/17	07/07/17	TPH 8015M	
Surrogate: 1-Chlorooctane		94.4 %	70-1.	30	P7G1109	07/07/17	07/07/17	TPH 8015M	
Surrogate: o-Terphenyl		97.6 %	70-1.	30	P7G1109	07/07/17	07/07/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	07/07/17	07/07/17	calc	

Safety & Environmental Solutions, Inc.

Hobbs, New Mexico TX, 88240

Project: Pride NM 83 SWD State #1

703 E Clinton

Fax: (575) 393-4388

Project Number: PRI-17-001 Project Manager: Bob Allen

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7G1103 - General Preparation										
Blank (P7G1103-BLK1)	I (GC)			Prepared &	Analyzed	. 07/07/17				
Benzene	ND	0.00100	mg/kg wet	1 repared &	7 mary zea.	. 07/07/17				
Toluene	ND	0.00200	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.0521		"	0.0600		86.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.0524		"	0.0600		87.4	75-125			
LCS (P7G1103-BS1)				Prepared &	Analyzed	: 07/07/17				
Benzene	0.106	0.00100	mg/kg wet	0.100		106	70-130			
Γoluene	0.104	0.00200	"	0.100		104	70-130			
Ethylbenzene	0.104	0.00100	"	0.100		104	70-130			
Xylene (p/m)	0.187	0.00200	"				70-130			
Xylene (o)	0.0900	0.00100	"				70-130			
Surrogate: 1,4-Difluorobenzene	0.0616		"	0.0600		103	75-125			
Surrogate: 4-Bromofluorobenzene	0.0534		"	0.0600		89.0	75-125			
LCS Dup (P7G1103-BSD1)				Prepared &	Analyzed	07/07/17				
Benzene	0.115	0.00100	mg/kg wet	0.100		115	70-130	7.80	20	
Γoluene	0.112	0.00200	"	0.100		112	70-130	7.13	20	
Ethylbenzene	0.112	0.00100	"	0.100		112	70-130	7.62	20	
Xylene (p/m)	0.200	0.00200	"				70-130		20	
Kylene (o)	0.0985	0.00100	"				70-130		20	
Surrogate: 4-Bromofluorobenzene	0.0603		"	0.0600		101	75-125			
Surrogate: 1,4-Difluorobenzene	0.0652		"	0.0600		109	75-125			
Matrix Spike (P7G1103-MS1)	Sou	rce: 7G07005	5-03	Prepared &	Analyzed	: 07/07/17				
Benzene	0.119	0.00123	mg/kg dry	0.123	ND	96.5	80-120			
Toluene	0.112	0.00247	"	0.123	ND	90.4	80-120			
Ethylbenzene	0.113	0.00123	"	0.123	ND	91.7	80-120			
Xylene (p/m)	0.200	0.00247	"		ND		80-120			
Xylene (o)	0.0991	0.00123	"		ND		80-120			

Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Difluorobenzene

106

111

75-125

75-125

0.0741

0.0741

0.0782

0.0819

703 E Clinton Project Number: PRI-17-001 Hobbs, New Mexico TX, 88240 Project Manager: Bob Allen

Fax: (575) 393-4388

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike Dup (P7G1103-MSD1)	Sour	Source: 7G07005-03			Analyzed:	07/07/17			
Benzene	0.116	0.00123	mg/kg dry	0.123	ND	94.1	80-120	2.48	20
Toluene	0.110	0.00247	"	0.123	ND	89.1	80-120	1.35	20
Ethylbenzene	0.109	0.00123	"	0.123	ND	88.7	80-120	3.36	20
Xylene (p/m)	0.209	0.00247	"		ND		80-120		20
Xylene (o)	0.0994	0.00123	"		ND		80-120		20
Surrogate: 4-Bromofluorobenzene	0.0751		"	0.0741		101	75-125		
Surrogate: 1,4-Difluorobenzene	0.0794		"	0.0741		107	75-125		

703 E Clinton Project Number: PRI-17-001 Hobbs, New Mexico TX, 88240 Project Manager: Bob Allen Fax: (575) 393-4388

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7G1004 - *** DEFAULT PREP ***										
Blank (P7G1004-BLK1)				Prepared &	k Analyzed	07/10/17				
% Moisture	ND	0.1	%							
Duplicate (P7G1004-DUP1)	Sou	ce: 7G07004-	-04	Prepared &	t Analyzed:	07/10/17				
% Moisture	2.0	0.1	%		1.0			66.7	20	
Duplicate (P7G1004-DUP2)	Sou	rce: 7G07022-	-02	Prepared &	k Analyzed:	: 07/10/17				
% Moisture	11.0	0.1	%		11.0			0.00	20	
Batch P7G1110 - *** DEFAULT PREP ***										
Blank (P7G1110-BLK1)				Prepared &	t Analyzed:	07/11/17				
Chloride	ND	1.00	mg/kg wet							
LCS (P7G1110-BS1)				Prepared &	k Analyzed:	: 07/11/17				
Chloride	419	1.00	mg/kg wet	400		105	80-120			
LCS Dup (P7G1110-BSD1)				Prepared &	k Analyzed:	: 07/11/17				
Chloride	410	1.00	mg/kg wet	400		102	80-120	2.29	20	
Duplicate (P7G1110-DUP1)	Sou	ce: 7G10001-	-58	Prepared &	t Analyzed:	: 07/11/17				
Chloride	3.28	1.04	mg/kg dry	•	4.07			21.5	20	R
Duplicate (P7G1110-DUP2)	Sou	rce: 7G07005-	-03	Prepared: (07/11/17 A	nalyzed: 07	//12/17			
Chloride	715	1.23	mg/kg dry		705			1.45	20	
Matrix Spike (P7G1110-MS1)	Sou	rce: 7G10001-	-58	Prepared &	t Analyzed:	: 07/11/17				
Chloride	1080	1.04	mg/kg dry	1040	4.07	103	80-120			

703 E Clinton Project Number: PRI-17-001 Hobbs, New Mexico TX, 88240 Project Manager: Bob Allen

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7G1106 - TX 1005										
Blank (P7G1106-BLK1)				Prepared &	Analyzed	: 07/07/17				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	92.9		"	100		92.9	70-130			
Surrogate: o-Terphenyl	51.2		"	50.0		102	70-130			
LCS (P7G1106-BS1)				Prepared &	Analyzed	: 07/07/17				
C6-C12	1140	25.0	mg/kg wet	1000		114	75-125			
>C12-C28	1060	25.0	"	1000		106	75-125			
Surrogate: 1-Chlorooctane	108		"	100		108	70-130			
Surrogate: o-Terphenyl	59.0		"	50.0		118	70-130			
LCS Dup (P7G1106-BSD1)				Prepared &	Analyzed	: 07/07/17				
C6-C12	1030	25.0	mg/kg wet	1000		103	75-125	9.86	20	
>C12-C28	1040	25.0	"	1000		104	75-125	2.03	20	
Surrogate: 1-Chlorooctane	122		"	100		122	70-130			
Surrogate: o-Terphenyl	55.8		"	50.0		112	70-130			
Matrix Spike (P7G1106-MS1)	Sou	rce: 7G07005	5-01	Prepared: (07/07/17 A	nalyzed: 07	7/08/17			
C6-C12	1280	27.2	mg/kg dry	1090	ND	118	75-125			
>C12-C28	1350	27.2	"	1090	374	89.6	75-125			
Surrogate: 1-Chlorooctane	139		"	109		128	70-130			
Surrogate: o-Terphenyl	64.6		"	54.3		119	70-130			
Matrix Spike Dup (P7G1106-MSD1)	Sour	rce: 7G07005	5-01	Prepared: (07/07/17 A	nalyzed: 07	7/08/17			
C6-C12	1170	27.2	mg/kg dry	1090	ND	108	75-125	8.88	20	
>C12-C28	1240	27.2	"	1090	374	79.3	75-125	12.2	20	
Surrogate: 1-Chlorooctane	140		"	109		129	70-130			
Surrogate: o-Terphenyl	58.5		"	54.3		108	70-130			

Fax: (575) 393-4388

703 E Clinton Project Number: PRI-17-001 Hobbs, New Mexico TX, 88240 Project Manager: Bob Allen Fax: (575) 393-4388

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Manalyte Result Limit Units Level Result WRED Limit Note Result Result WRED Limit Note Result			Reporting		Spike	Source		%REC		RPD	
Batch P7G1109-BLK1)	Analyte	Result		Units	-		%REC		RPD		Notes
Prepared & Analyzed: 07/07/17	,										
ND	Batch P7G1109 - TX 1005										
ND 25.0 " ND 25.0	Blank (P7G1109-BLK1)				Prepared &	Analyzed:	07/07/17				
Surrogate: 1-Chlorooctane	C6-C12	ND	25.0	mg/kg wet							
Surrogate: J-Chlorooctane	>C12-C28	ND	25.0	"							
Surrogate: o-Terphenyl 49,6 78,0 799,2 70-130	>C28-C35	ND	25.0	"							
	Surrogate: 1-Chlorooctane	95.0		"	100		95.0	70-130			
C6-C12	Surrogate: o-Terphenyl	49.6		"	50.0		99.2	70-130			
Surrogate: I-Chlorooctane	LCS (P7G1109-BS1)				Prepared &	Analyzed:	07/07/17				
Surrogate: 1-Chlorooctane 103 " 100 103 70-130 104 70-130 105	C6-C12	966	25.0	mg/kg wet	1000		96.6	75-125			
Surrogate: o-Terphenyl S7.1 " S0.0 114 70-130	>C12-C28	959	25.0	"	1000		95.9	75-125			
Prepared & Analyzed: 07/07/17 C6-C12 956 25.0 mg/kg wet 1000 95.6 75-125 1.01 20 20 20 20 20 20 20	Surrogate: 1-Chlorooctane	103		"	100		103	70-130			
Surrogate: 1-Chlorooctane 956 25.0 mg/kg wet 1000 95.6 75-125 1.01 20	Surrogate: o-Terphenyl	57.1		"	50.0		114	70-130			
Surrogate: 1-Chlorooctane 99.9 " 1000 96.1 75-125 0.244 20	LCS Dup (P7G1109-BSD1)				Prepared &	Analyzed:	07/07/17				
Surrogate: 1-Chlorooctane 99.9 " 100 99.9 70-130 Surrogate: o-Terphenyl 47.5 " 50.0 95.0 70-130 Matrix Spike (P7G1109-MS1) Source: 7G07005-03 Prepared: 07/07/17 Analyzed: 07/08/17 C6-C12 1240 30.9 mg/kg dry 1230 ND 100 75-125 >C12-C28 1200 30.9 " 1230 17.6 96.1 75-125 Surrogate: 1-Chlorooctane 129 " 123 105 70-130 Surrogate: o-Terphenyl 60.2 " 61.7 97.6 70-130 Matrix Spike Dup (P7G1109-MSD1) Source: 7G07005-03 Prepared: 07/07/17 Analyzed: 07/08/17 C6-C12 1260 30.9 mg/kg dry 1230 ND 102 75-125 2.05 20 >C12-C28 1270 30.9 " 1230 17.6 102 75-125 5.60 20 Surrogate: 1-Chlorooctane 134 " 123 108 70-130 To descript 100 100 100 100 To descript 100 To descript 100 To descript 100 100 To descript 1	C6-C12	956	25.0	mg/kg wet	1000		95.6	75-125	1.01	20	
Surrogate: 0-Terphenyl 47.5 " 50.0 95.0 70-130	>C12-C28	961	25.0	"	1000		96.1	75-125	0.244	20	
Matrix Spike (P7G1109-MS1) Source: 7G07005-03 Prepared: 07/07/17 Analyzed: 07/08/17 C6-C12 1240 30.9 mg/kg dry 1230 ND 100 75-125 >C12-C28 1200 30.9 " 1230 17.6 96.1 75-125 Surrogate: I-Chlorooctane 129 " 123 105 70-130 Surrogate: o-Terphenyl 60.2 " 61.7 97.6 70-130 Matrix Spike Dup (P7G1109-MSD1) Source: 7G07005-03 Prepared: 07/07/17 Analyzed: 07/08/17 C6-C12 1260 30.9 mg/kg dry 1230 ND 102 75-125 2.05 20 >C12-C28 1270 30.9 " 1230 17.6 102 75-125 5.60 20 Surrogate: 1-Chlorooctane 134 " 123 108 70-130	Surrogate: 1-Chlorooctane	99.9		"	100		99.9	70-130			
C6-C12	Surrogate: o-Terphenyl	47.5		"	50.0		95.0	70-130			
C6-C12	Matrix Spike (P7G1109-MS1)	Sour	rce: 7G07005	5-03	Prepared: (07/07/17 A	nalyzed: 07	/08/17			
Surrogate: 1-Chlorooctane 129 " 123 105 70-130	C6-C12	1240	30.9	mg/kg dry	1230	ND	100	75-125			
Matrix Spike Dup (P7G1109-MSD1) Source: 7G07005-03 Prepared: 07/07/17 Analyzed: 07/08/17 C6-C12 1260 30.9 mg/kg dry 1230 ND 102 75-125 2.05 20 >C12-C28 1270 30.9 " 1230 17.6 102 75-125 5.60 20 Surrogate: 1-Chlorooctane 134 " 123 108 70-130	>C12-C28	1200	30.9	"	1230	17.6	96.1	75-125			
Matrix Spike Dup (P7G1109-MSD1) Source: 7G07005-03 Prepared: 07/07/17 Analyzed: 07/08/17 Prepared: 07/07/17 Analyzed: 07/08/17 C6-C12 1260 30.9 mg/kg dry 1230 ND 102 75-125 2.05 20 >C12-C28 1270 30.9 " 1230 17.6 102 75-125 5.60 20 Surrogate: 1-Chlorooctane 134 " 123 108 70-130	Surrogate: 1-Chlorooctane	129		"	123		105	70-130			
C6-C12 1260 30.9 mg/kg dry 1230 ND 102 75-125 2.05 20 >C12-C28 1270 30.9 " 1230 17.6 102 75-125 5.60 20 Surrogate: 1-Chlorooctane 134 " 123 108 70-130	Surrogate: o-Terphenyl	60.2		"	61.7		97.6	70-130			
C6-C12 1260 30.9 mg/kg dry 1230 ND 102 75-125 2.05 20 >C12-C28 1270 30.9 " 1230 17.6 102 75-125 5.60 20 Surrogate: I-Chlorooctane 134 " 123 108 70-130	Matrix Spike Dup (P7G1109-MSD1)	Sour	rce: 7G07005	5-03	Prepared: (07/07/17 A	nalyzed: 07	/08/17			
Surrogate: 1-Chlorooctane 134 " 123 108 70-130	C6-C12	1260	30.9	mg/kg dry					2.05	20	
Surrogate. 1-Chiorocciane 134 125 106 70-150	>C12-C28	1270	30.9	"	1230	17.6	102	75-125	5.60	20	
Surrogate: o-Terphenyl 63.3 " 61.7 102 70-130	Surrogate: 1-Chlorooctane	134		"	123		108	70-130			
	Surrogate: o-Terphenyl	63.3		"	61.7		102	70-130			

703 E Clinton Project Number: PRI-17-001 Hobbs, New Mexico TX, 88240 Project Manager: Bob Allen

Notes and Definitions

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

BULK Samples received in Bulk soil containers

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	R. D. Barron		
Report Approved By:	Then Street	Date:	7/13/2017

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

7.2	<i>T\$JCL</i> 1.	7.7	CHA	NN OF C	USTO	DY R	RECOR	D AND	ANA	LYSIS	Pe	rmia	n Ba			nmen	tal La	ab, Li	P					_				6-7235			
		~ ~		110	ا ــــــــــــــــــــــــــــــــــــ								Ranki nd, Te		•	1								\mathcal{L}_{c}	51	100	- 2 e	·hadi		Gn Al	L 4
	Project Manager:	<u>D</u>	ob i		_							<u> </u>								Pro	ject	Nam	e: <u>/</u>	$\frac{y}{2}$	<u>~</u>	<u> </u>					76-4
	Company Name	50	>eTu	4 6	عمار)UN	<u>001</u>	سوسا	M	<u> </u>	<u>S</u>	<u> </u>	UT	100	~ ~ :						Pro	oject	#:		K.	7 -		- 0		<u> </u>	
	Company Address:	70	53	E'	<u></u>		77													P	roje	ct Lo	c:	<u>(</u>	ح	<u>ု</u>	<u>00</u>	14	4		
	City/State/Zip:	do	665	No	W		82	40	-				<u>.</u>									РО	#:								
	Telephone No:	575	5.3	97	-0	57	0		_	Fax No	D :								R	eport	For	mat:	х	Sta	ındar	ď		TRRP] _{NPD}	ES
	Sampler Signature:	_	<u> </u>	<u>. (u</u>	1-14	-				e-mai	il:									_											
(lab use	only) O A A (1				•															Н	Т	Т	T	An	alyze	or:	1		\forall	≘
ORDE	?#: 160 <u>1</u>	\mathcal{M}											Pr	eserva	tion & a	of Co	ntaine	rs	Ма	trix				۱.							g
												١					İ			ब व	8015M	ı	2		ľ						72 (Please call)
only)					_									7		N	ĺ		SL=Sludge	s-someonia specify Other	15B 8		EX.	8	싫				il		2
useon					Beginning Depth	ş		ed		peig		otal #. of Containers		T					ater SL	Spe	35 80		. ار	1	릵						∞
# (lab u					ing	Dep		samp		Sampled	Page 1	f Con		280 mil Poly	and the		<u>§</u>	JAc	ding W	Potable	TX 10	Š		区	긜				1		dare 54
AB#(_		mig	Ending Depth		Date Sampled		rime (ield Filtered	tal #. c	8 <u>1</u>	E S	H ₂ SO ₄	NaOH Na.S.O.	None 1L Poly	aOH/ZnAc	DW-Drinking	NP=Non-	PH by			1	出						Rush 24 4 Standard
7	FIE	LD CODE	- Jace		<u> </u>	<u> </u>	671	05		900	1.14	r P		+	1	2 2	+-	ž	กั) Z	F	0 1	╬	Ļ	7		╀┼	+	+	++	= 10
7	1-11	<u> </u>	in the				871	<u>~~~</u>	_	00	+	Н	❖	╅	Н	+	+	Н			H	+	V	芯	V	+	††	+	\top	+	\top
2	71-1	<u> </u>	`					05		20	+	Н	Ŕ	\top	H	\top	1	П		-	H	十	立	1	7	┰	$\forall t$	\top	十		\Box
A	177-1	(2	G		†		อาโ			35	1	П	×	1	\Box								X	X	8		\Box				
•																								Π				\Box		\prod	
																											$\perp \perp$	Ш	\perp	Ш	
											\perp	Ш	Ц	\bot	Ш		丄							Ц		\perp				\sqcup	
iz.					<u> </u>							Ш	Ц	4	\sqcup		┷	Ц					┸	L	Ш		44	$\perp \!\!\! \perp$	_	11	
					<u> </u>							Ц	Щ	_	Ш	_	4	Ш				4	+	-		_	\dashv		-	$+\!+$	\dashv
	Instructions:				L		<u> </u>					Ш	LL	Л				Ш			Ш	- is		ton		nmen		0.0000.29			
	Jew Me	rico	W	eth	0N	8																S	ampi	e Go	ntain	ers Int eadsp	act?		á	Same and the same of the same	N N
Relinquis	med by:	M	07	Date 06	NJ	me me	· · ·	(IIS)	ĺ		\mathcal{M}	E	×/				4	Da	le C/	11	Time	N AC	usto	ly se	als:o	iner(s) n cont n caal	ainer(s	5)	8	l 1	N N
Relinquis	hed by:	-		Date		me	Receiv	ed by:	<u> </u>	B	, ,		/ Y 3				†	Da		<u> </u>	Time		ampl by	e Ha Sam	nd D pler/C	elivere Sient F	ed Rep. 7		Ø	1	N N
Relinquis	hed b	1-		Date /c	Ti	me	Receiv	egl			7) ^D 7	6//		T+0%		by empe eceis	ratu	ier? re Up	UF ori Re	PS Diceipt:			Lone	
T.Y	124/0		Un.	16/17	1	19 (4	7		L.			2		1	4	4/1	Ψ	טון		djust		۷	<i>i</i> [°C F	actor	IVC	. v=	<u>ا</u> ا
	~ ~		•															L		•											

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 01, 2018

Andrew Parker R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142

Albuquerque, NM 87104 TEL: (505) 266-5004 FAX (505) 266-0745

RE: NM 87 State 001 Tank Battery OrderNo.: 1801659

Dear Andrew Parker:

Hall Environmental Analysis Laboratory received 18 sample(s) on 1/11/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2018

CLIENT: R.T. Hicks Consultants, LTD

Client Sample ID: 2017 East @ 0.5 ft

Project: NM 87 State 001 Tank Battery

Collection Date: 1/8/2018 8:45:00 AM

Lab ID: 1801659-001

Matrix: SOIL

Received Date: 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: MRA
Chloride	ND	30	mg/Kg	20	1/17/2018 2:33:10 PM	36067
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS	;			Analyst	: TOM
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	1/16/2018 10:32:53 AM	36022
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	1/16/2018 10:32:53 AM	36022
Surr: DNOP	101	70-130	%Rec	1	1/16/2018 10:32:53 AM	36022
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	1/15/2018 10:21:21 AM	36006
Surr: BFB	87.1	15-316	%Rec	1	1/15/2018 10:21:21 AM	36006
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst	: AG
Benzene	ND	0.025	mg/Kg	1	1/15/2018 11:15:19 AM	36006
Toluene	ND	0.049	mg/Kg	1	1/15/2018 11:15:19 AM	36006
Ethylbenzene	ND	0.049	mg/Kg	1	1/15/2018 11:15:19 AM	36006
Xylenes, Total	ND	0.098	mg/Kg	1	1/15/2018 11:15:19 AM	36006
Surr: 4-Bromofluorobenzene	105	70-130	%Rec	1	1/15/2018 11:15:19 AM	36006
Surr: Toluene-d8	92.3	70-130	%Rec	1	1/15/2018 11:15:19 AM	36006

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/1/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: R.T. Hicks Consultants, LTD **Project:** NM 87 State 001 Tank Battery

Tioject. Nivi 87 State 001 Talik Battery

Lab ID: 1801659-002 Matrix: SOIL Received Date

Client Sample ID: 2017 West @ 0.5 ft Collection Date: 1/8/2018 9:00:00 AM Received Date: 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: MRA
Chloride	ND	30	mg/Kg	20	1/17/2018 2:45:35 PM	36067
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS	3			Analyst	: TOM
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	1/16/2018 5:57:24 PM	36022
Motor Oil Range Organics (MRO)	ND	51	mg/Kg	1	1/16/2018 5:57:24 PM	36022
Surr: DNOP	77.7	70-130	%Rec	1	1/16/2018 5:57:24 PM	36022
EPA METHOD 8015D: GASOLINE RANG	E				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	1/15/2018 10:45:09 AM	36006
Surr: BFB	91.3	15-316	%Rec	1	1/15/2018 10:45:09 AM	36006
EPA METHOD 8260B: VOLATILES SHO	RT LIST				Analyst	: AG
Benzene	ND	0.025	mg/Kg	1	1/15/2018 12:24:01 PM	36006
Toluene	ND	0.050	mg/Kg	1	1/15/2018 12:24:01 PM	36006
Ethylbenzene	ND	0.050	mg/Kg	1	1/15/2018 12:24:01 PM	36006
Xylenes, Total	ND	0.10	mg/Kg	1	1/15/2018 12:24:01 PM	36006
Surr: 4-Bromofluorobenzene	110	70-130	%Rec	1	1/15/2018 12:24:01 PM	36006
Surr: Toluene-d8	94.2	70-130	%Rec	1	1/15/2018 12:24:01 PM	36006

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2018

CLIENT: R.T. Hicks Consultants, LTD

Client Sample ID: 2017 NW @ 0.5 ft

Project: NM 87 State 001 Tank Battery

Collection Date: 1/8/2018 9:15:00 AM

Lab ID: 1801659-003

Matrix: SOIL

Received Date: 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: MRA
Chloride	ND	30	mg/Kg	20	1/17/2018 2:57:59 PM	36067
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS	3			Analys	t: TOM
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	1/16/2018 12:38:08 PM	A 36022
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	1/16/2018 12:38:08 PM	A 36022
Surr: DNOP	85.3	70-130	%Rec	1	1/16/2018 12:38:08 PM	A 36022
EPA METHOD 8015D: GASOLINE RA	NGE				Analys	t: NSB
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	1/15/2018 5:53:49 PM	36006
Surr: BFB	91.7	15-316	%Rec	1	1/15/2018 5:53:49 PM	36006
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analys	t: AG
Benzene	ND	0.024	mg/Kg	1	1/15/2018 12:46:56 PM	A 36006
Toluene	ND	0.047	mg/Kg	1	1/15/2018 12:46:56 PM	A 36006
Ethylbenzene	ND	0.047	mg/Kg	1	1/15/2018 12:46:56 PM	A 36006
Xylenes, Total	ND	0.095	mg/Kg	1	1/15/2018 12:46:56 PM	A 36006
Surr: 4-Bromofluorobenzene	112	70-130	%Rec	1	1/15/2018 12:46:56 PM	A 36006
Surr: Toluene-d8	94.6	70-130	%Rec	1	1/15/2018 12:46:56 PM	A 36006

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2018

CLIENT:R.T. Hicks Consultants, LTDClient Sample ID: 2017 NW Berm @ 2 ftProject:NM 87 State 001 Tank BatteryCollection Date: 1/8/2018 9:30:00 AMLab ID:1801659-004Matrix: SOILReceived Date: 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qı	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	:: CJS
Chloride	4600	150	mg/Kg	100	1/19/2018 12:33:57 AM	1 36067
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst	:: TOM
Diesel Range Organics (DRO)	12000	1000	mg/Kg	100	1/16/2018 5:33:18 PM	36022
Motor Oil Range Organics (MRO)	9100	5000	mg/Kg	100	1/16/2018 5:33:18 PM	36022
Surr: DNOP	0	70-130	S %Rec	100	1/16/2018 5:33:18 PM	36022
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	150	24	mg/Kg	5	1/15/2018 9:33:37 AM	36006
Surr: BFB	193	15-316	%Rec	5	1/15/2018 9:33:37 AM	36006
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst	: AG
Benzene	0.27	0.049	mg/Kg	2	1/15/2018 1:09:56 PM	36006
Toluene	ND	0.098	mg/Kg	2	1/15/2018 1:09:56 PM	36006
Ethylbenzene	0.69	0.098	mg/Kg	2	1/15/2018 1:09:56 PM	36006
Xylenes, Total	1.3	0.20	mg/Kg	2	1/15/2018 1:09:56 PM	36006
Surr: 4-Bromofluorobenzene	123	70-130	%Rec	2	1/15/2018 1:09:56 PM	36006
Surr: Toluene-d8	94.7	70-130	%Rec	2	1/15/2018 1:09:56 PM	36006

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2018

CLIENT:R.T. Hicks Consultants, LTDClient Sample ID: 2017 NW Berm @ 12 ftProject:NM 87 State 001 Tank BatteryCollection Date: 1/8/2018 9:32:00 AMLab ID:1801659-005Matrix: SOILReceived Date: 1/11/2018 2:15:00 PM

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	:: CJS
Chloride	2900	150	mg/Kg	100	1/19/2018 12:46:22 AM	36067
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst	: TOM
Diesel Range Organics (DRO)	7900	98	mg/Kg	10	1/16/2018 1:28:43 PM	36022
Motor Oil Range Organics (MRO)	2900	490	mg/Kg	10	1/16/2018 1:28:43 PM	36022
Surr: DNOP	0	70-130	S %Rec	10	1/16/2018 1:28:43 PM	36022
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst	:: NSB
Gasoline Range Organics (GRO)	420	50	mg/Kg	10	1/15/2018 9:57:38 AM	36006
Surr: BFB	298	15-316	%Rec	10	1/15/2018 9:57:38 AM	36006
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst	:: AG
Benzene	ND	0.25	mg/Kg	10	1/15/2018 1:32:54 PM	36006
Toluene	ND	0.50	mg/Kg	10	1/15/2018 1:32:54 PM	36006
Ethylbenzene	7.5	0.50	mg/Kg	10	1/15/2018 1:32:54 PM	36006
Xylenes, Total	27	1.0	mg/Kg	10	1/15/2018 1:32:54 PM	36006
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	10	1/15/2018 1:32:54 PM	36006
Surr: Toluene-d8	102	70-130	%Rec	10	1/15/2018 1:32:54 PM	36006

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 5 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2018

CLIENT:R.T. Hicks Consultants, LTDClient Sample ID: 2000 North @ 0.5 ftProject:NM 87 State 001 Tank BatteryCollection Date: 1/8/2018 10:45:00 AMLab ID:1801659-006Matrix: SOILReceived Date: 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	ND	30	mg/Kg	20	1/17/2018 4:24:50 PM	36067
EPA METHOD 8015M/D: DIESEL RA	ANGE ORGANICS	3			Analyst	: TOM
Diesel Range Organics (DRO)	56	9.7	mg/Kg	1	1/16/2018 2:17:42 PM	36022
Motor Oil Range Organics (MRO)	62	48	mg/Kg	1	1/16/2018 2:17:42 PM	36022
Surr: DNOP	97.2	70-130	%Rec	1	1/16/2018 2:17:42 PM	36022
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	1/15/2018 6:17:41 PM	36006
Surr: BFB	98.0	15-316	%Rec	1	1/15/2018 6:17:41 PM	36006
EPA METHOD 8260B: VOLATILES	SHORT LIST				Analyst	: AG
Benzene	ND	0.024	mg/Kg	1	1/15/2018 1:55:54 PM	36006
Toluene	ND	0.048	mg/Kg	1	1/15/2018 1:55:54 PM	36006
Ethylbenzene	ND	0.048	mg/Kg	1	1/15/2018 1:55:54 PM	36006
Xylenes, Total	0.22	0.095	mg/Kg	1	1/15/2018 1:55:54 PM	36006
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	1	1/15/2018 1:55:54 PM	36006
Surr: Toluene-d8	92.6	70-130	%Rec	1	1/15/2018 1:55:54 PM	36006

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 6 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2018

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: 2000 NE @ 0.5 ft

 Project:
 NM 87 State 001 Tank Battery
 Collection Date: 1/8/2018 11:00:00 AM

 Lab ID:
 1801659-007
 Matrix: SOIL
 Received Date: 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: MRA
Chloride	260	30	mg/Kg	20	1/17/2018 4:37:15 PM	1 36067
EPA METHOD 8015M/D: DIESEL RA	ANGE ORGANICS	;			Analy	st: TOM
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	1/16/2018 2:42:17 PN	1 36022
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	1/16/2018 2:42:17 PN	1 36022
Surr: DNOP	98.6	70-130	%Rec	1	1/16/2018 2:42:17 PN	1 36022
EPA METHOD 8015D: GASOLINE R	ANGE				Analy	st: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	1/15/2018 6:41:29 PM	1 36006
Surr: BFB	93.0	15-316	%Rec	1	1/15/2018 6:41:29 PM	1 36006
EPA METHOD 8260B: VOLATILES	SHORT LIST				Analy	st: AG
Benzene	ND	0.025	mg/Kg	1	1/15/2018 2:18:49 PN	1 36006
Toluene	ND	0.049	mg/Kg	1	1/15/2018 2:18:49 PN	1 36006
Ethylbenzene	ND	0.049	mg/Kg	1	1/15/2018 2:18:49 PM	1 36006
Xylenes, Total	ND	0.099	mg/Kg	1	1/15/2018 2:18:49 PM	36006
Surr: 4-Bromofluorobenzene	108	70-130	%Rec	1	1/15/2018 2:18:49 PM	1 36006
Surr: Toluene-d8	93.1	70-130	%Rec	1	1/15/2018 2:18:49 PM	1 36006

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 7 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Received Date: 1/11/2018 2:15:00 PM

Hall Environmental Analysis Laboratory, Inc.

Lab ID:

1801659-008

Date Reported: 2/1/2018

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: 2000 SW @ 2 ft

Matrix: SOIL

Project: NM 87 State 001 Tank Battery **Collection Date:** 1/8/2018 11:15:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: MRA
Chloride	500	30	mg/Kg	20	1/17/2018 4:49:40 PM	36067
EPA METHOD 8015M/D: DIESEL RA	ANGE ORGANICS				Analys	t: TOM
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	1/16/2018 3:06:55 PM	36022
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	1/16/2018 3:06:55 PM	36022
Surr: DNOP	87.9	70-130	%Rec	1	1/16/2018 3:06:55 PM	36022
EPA METHOD 8015D: GASOLINE R	ANGE				Analys	t: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	1/15/2018 7:05:19 PM	36006
Surr: BFB	91.8	15-316	%Rec	1	1/15/2018 7:05:19 PM	36006
EPA METHOD 8260B: VOLATILES	SHORT LIST				Analys	t: AG
Benzene	ND	0.024	mg/Kg	1	1/15/2018 2:41:47 PM	36006
Toluene	ND	0.049	mg/Kg	1	1/15/2018 2:41:47 PM	36006
Ethylbenzene	ND	0.049	mg/Kg	1	1/15/2018 2:41:47 PM	36006
Xylenes, Total	ND	0.098	mg/Kg	1	1/15/2018 2:41:47 PM	36006
Surr: 4-Bromofluorobenzene	108	70-130	%Rec	1	1/15/2018 2:41:47 PM	36006
Surr: Toluene-d8	96.9	70-130	%Rec	1	1/15/2018 2:41:47 PM	36006

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 8 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/1/2018

Hall Environmental Analysis Laboratory, Inc.

Lab ID:

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: 2000 SW @ 8 ft

NM 87 State 001 Tank Battery **Collection Date:** 1/8/2018 11:20:00 AM **Project:** 1801659-009 Matrix: SOIL **Received Date:** 1/11/2018 2:15:00 PM

Result **PQL Qual Units DF** Date Analyzed **Analyses Batch EPA METHOD 300.0: ANIONS** Analyst: CJS 45 Chloride 30 20 1/18/2018 11:19:42 AM 36090 mg/Kg

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 9 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2018

CLIENT: R.T. Hicks Consultants, LTD **Client Sample ID:** 2000 SE @ 0.5 ft

 Project:
 NM 87 State 001 Tank Battery
 Collection Date: 1/8/2018 12:45:00 PM

 Lab ID:
 1801659-010
 Matrix: SOIL
 Received Date: 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	:: CJS
Chloride	ND	30	mg/Kg	20	1/18/2018 12:34:08 PM	1 36090
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS	;			Analyst	: TOM
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	1/16/2018 3:56:02 PM	36022
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	1/16/2018 3:56:02 PM	36022
Surr: DNOP	78.5	70-130	%Rec	1	1/16/2018 3:56:02 PM	36022
EPA METHOD 8015D: GASOLINE R.	ANGE				Analyst	:: NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	1/15/2018 7:29:02 PM	36006
Surr: BFB	90.8	15-316	%Rec	1	1/15/2018 7:29:02 PM	36006
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst	: AG
Benzene	ND	0.024	mg/Kg	1	1/15/2018 3:04:47 PM	36006
Toluene	ND	0.048	mg/Kg	1	1/15/2018 3:04:47 PM	36006
Ethylbenzene	ND	0.048	mg/Kg	1	1/15/2018 3:04:47 PM	36006
Xylenes, Total	ND	0.097	mg/Kg	1	1/15/2018 3:04:47 PM	36006
Surr: 4-Bromofluorobenzene	110	70-130	%Rec	1	1/15/2018 3:04:47 PM	36006
Surr: Toluene-d8	94.2	70-130	%Rec	1	1/15/2018 3:04:47 PM	36006

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 10 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/1/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: R.T. Hicks Consultants, LTD

Client Sample ID: SB 1 @ 0 ft

Project: NM 87 State 001 Tank Battery **Collection Date:** 1/8/2018 9:30:00 AM

Lab ID: 1801659-011 **Matrix:** SOIL **Received Date:** 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CJS
Chloride	93	30	mg/Kg	20	1/18/2018 12:46:32 PM	36090
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS	;			Analyst	TOM
Diesel Range Organics (DRO)	140	9.5	mg/Kg	1	1/16/2018 4:20:18 PM	36022
Motor Oil Range Organics (MRO)	230	48	mg/Kg	1	1/16/2018 4:20:18 PM	36022
Surr: DNOP	95.1	70-130	%Rec	1	1/16/2018 4:20:18 PM	36022
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	NSB
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	1/15/2018 7:52:47 PM	36006
Surr: BFB	88.6	15-316	%Rec	1	1/15/2018 7:52:47 PM	36006
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst	: AG
Benzene	ND	0.023	mg/Kg	1	1/15/2018 3:27:36 PM	36006
Toluene	ND	0.047	mg/Kg	1	1/15/2018 3:27:36 PM	36006
Ethylbenzene	ND	0.047	mg/Kg	1	1/15/2018 3:27:36 PM	36006
Xylenes, Total	ND	0.093	mg/Kg	1	1/15/2018 3:27:36 PM	36006
Surr: 4-Bromofluorobenzene	111	70-130	%Rec	1	1/15/2018 3:27:36 PM	36006
Surr: Toluene-d8	95.1	70-130	%Rec	1	1/15/2018 3:27:36 PM	36006

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 11 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report

Lab Order **1801659**Date Reported: **2/1/2018**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: SB 1 @ 15 ft

Project: NM 87 State 001 Tank Battery **Collection Date:** 1/8/2018

Lab ID: 1801659-012 **Matrix:** SOIL **Received Date:** 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qua	al Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	/st: CJS
Chloride	40	30	mg/Kg	20 1/18/2018 12:58:57 F	PM 36090

-				
Qualifiers:	fiers: * Value exceeds Maximum Contaminant Level.		В	Analyte detected in the associated Method Blank
	D Sample Diluted Due to Matrix		E	Value above quantitation range
	H Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limit Page 12 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL Practical Quanitative Limit		RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2018

CLIENT: R.T. Hicks Consultants, LTD

Client Sample ID: SB 2 @ 0 ft

 Project:
 NM 87 State 001 Tank Battery
 Collection Date: 1/8/2018 11:38:00 AM

 Lab ID:
 1801659-013
 Matrix: SOIL
 Received Date: 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	4200	150	mg/Kg	100	1/19/2018 10:35:22 PM	36090
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS	;			Analyst	: TOM
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	1/16/2018 4:44:54 PM	36022
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	1/16/2018 4:44:54 PM	36022
Surr: DNOP	81.3	70-130	%Rec	1	1/16/2018 4:44:54 PM	36022
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst	NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	1/15/2018 8:16:29 PM	36006
Surr: BFB	89.2	15-316	%Rec	1	1/15/2018 8:16:29 PM	36006
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst	: AG
Benzene	ND	0.023	mg/Kg	1	1/15/2018 3:50:36 PM	36006
Toluene	ND	0.046	mg/Kg	1	1/15/2018 3:50:36 PM	36006
Ethylbenzene	ND	0.046	mg/Kg	1	1/15/2018 3:50:36 PM	36006
Xylenes, Total	ND	0.093	mg/Kg	1	1/15/2018 3:50:36 PM	36006
Surr: 4-Bromofluorobenzene	108	70-130	%Rec	1	1/15/2018 3:50:36 PM	36006
Surr: Toluene-d8	95.6	70-130	%Rec	1	1/15/2018 3:50:36 PM	36006

Qualifiers:	iers: * Value exceeds Maximum Contaminant Level.		В	Analyte detected in the associated Method Blank
	D Sample Diluted Due to Matrix		E	Value above quantitation range
	H Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits Page 13 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/1/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: R.T. Hicks Consultants, LTD

Client Sample ID: SB 2 @ 9 ft

Project: NM 87 State 001 Tank Battery **Collection Date:** 1/8/2018 10:53:00 AM

Lab ID: 1801659-014 **Matrix:** SOIL **Received Date:** 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qua	l Units	DF Date Analyzed Ba				
EPA METHOD 300.0: ANIONS				Ana	alyst: CJS			
Chloride	ND	30	ma/Ka	20 1/18/2018 1:23:46	PM 36090			

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	D Sample Diluted Due to Matrix		Value above quantitation range
	H Holding times for preparation or analysis exceeded		J Analyte detected below quantitation limits Page 14	
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/1/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: SB 2 @ 15 ft

Project: NM 87 State 001 Tank Battery **Collection Date:** 1/8/2018 12:30:00 PM

Lab ID: 1801659-015 **Matrix:** SOIL **Received Date:** 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				А	nalyst: CJS
Chloride	ND	30	mg/Kg	20 1/18/2018 1:36:1	11 PM 36090

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank D Sample Diluted Due to Matrix Е Value above quantitation range Analyte detected below quantitation limits Page 15 of 23 Н Holding times for preparation or analysis exceeded J ND Not Detected at the Reporting Limit P Sample pH Not In Range PQL Practical Quanitative Limit RL Reporting Detection Limit % Recovery outside of range due to dilution or matrix Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2018

CLIENT: R.T. Hicks Consultants, LTD

Client Sample ID: SB 3 @ 5 ft

Project: NM 87 State 001 Tank Battery **Collection Date:** 1/8/2018 1:58:00 PM

Lab ID: 1801659-016 **Matrix:** SOIL **Received Date:** 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: CJS
Chloride	660	30	mg/Kg	20	1/18/2018 1:48:36 PM	36090
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS	3			Analyst	: TOM
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	1/16/2018 5:09:04 PM	36022
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	1/16/2018 5:09:04 PM	36022
Surr: DNOP	85.0	70-130	%Rec	1	1/16/2018 5:09:04 PM	36022
EPA METHOD 8015D: GASOLINE R.	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	1/15/2018 8:40:13 PM	36006
Surr: BFB	87.6	15-316	%Rec	1	1/15/2018 8:40:13 PM	36006
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst	: AG
Benzene	ND	0.024	mg/Kg	1	1/15/2018 4:13:32 PM	36006
Toluene	ND	0.048	mg/Kg	1	1/15/2018 4:13:32 PM	36006
Ethylbenzene	ND	0.048	mg/Kg	1	1/15/2018 4:13:32 PM	36006
Xylenes, Total	ND	0.095	mg/Kg	1	1/15/2018 4:13:32 PM	36006
Surr: 4-Bromofluorobenzene	109	70-130	%Rec	1	1/15/2018 4:13:32 PM	36006
Surr: Toluene-d8	92.7	70-130	%Rec	1	1/15/2018 4:13:32 PM	36006

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	Qualifiers: * Value exceeds Maximum Contaminant Level.		В	Analyte detected in the associated Method Blank
D Sample Diluted Due to Matrix		E	Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 16 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
]	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit

W Sample container temperature is out of limit as specified

% Recovery outside of range due to dilution or matrix

Date Reported: 2/1/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: SB 3 @ 21 ft

Project: NM 87 State 001 Tank Battery **Collection Date:** 1/8/2018 1:48:00 PM

Lab ID: 1801659-017 **Matrix:** SOIL **Received Date:** 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qual	Units	DF Date Analyzed Bate				
EPA METHOD 300.0: ANIONS					Analy	st: CJS		
Chloride	220	30	ma/Ka	20	1/18/2018 2:25:50 PM	A 36090		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank D Sample Diluted Due to Matrix Е Value above quantitation range Analyte detected below quantitation limits Page 17 of 23 Н Holding times for preparation or analysis exceeded J ND Not Detected at the Reporting Limit P Sample pH Not In Range PQL Practical Quanitative Limit RL Reporting Detection Limit % Recovery outside of range due to dilution or matrix Sample container temperature is out of limit as specified

Date Reported: 2/1/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: SB 3 @ 31 ft

Project: NM 87 State 001 Tank Battery **Collection Date:** 1/8/2018 3:33:00 PM

Lab ID: 1801659-018 **Matrix:** SOIL **Received Date:** 1/11/2018 2:15:00 PM

Analyses	Result	PQL Qu	al Units	DF Date Analyzed Bat				
EPA METHOD 300.0: ANIONS					Analy	yst: CJS		
Chloride	200	30	mg/Kg	20	1/18/2018 2:38:15 P	M 36090		

Qualifiers:	ers: * Value exceeds Maximum Contaminant Level.		В	Analyte detected in the associated Method Blank
	D Sample Diluted Due to Matrix		E	Value above quantitation range
	H Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits Page 18 of 23
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL Practical Quanitative Limit		RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: 1801659

01-Feb-18

Client: R.T. Hicks Consultants, LTD **Project:** NM 87 State 001 Tank Battery

Sample ID MB-36067 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 36067 RunNo: 48508

Prep Date: 1/17/2018 Analysis Date: 1/17/2018 SeqNo: 1560534 Units: mg/Kg

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Chloride ND 1.5

Sample ID LCS-36067 SampType: Ics TestCode: EPA Method 300.0: Anions Client ID: LCSS Batch ID: 36067 RunNo: 48508

Prep Date: 1/17/2018 Analysis Date: 1/17/2018 SeqNo: 1560535 Units: mg/Kg

SPK value SPK Ref Val %REC **RPDLimit** Analyte Result PQL LowLimit HighLimit %RPD Qual

Chloride 15 1.5 15.00 0 98.2 110

Sample ID MB-36090 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: **PBS** Batch ID: 36090 RunNo: 48535

Prep Date: Analysis Date: 1/18/2018 SeqNo: 1561668 Units: mg/Kg 1/18/2018

Result SPK value SPK Ref Val %REC LowLimit Analyte **PQL** HighLimit %RPD **RPDLimit** Qual

Chloride ND

Sample ID LCS-36090 SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 36090 RunNo: 48535

Units: mg/Kg Prep Date: 1/18/2018 Analysis Date: 1/18/2018 SeqNo: 1561669

Analyte Result SPK value SPK Ref Val %REC I owl imit HighLimit %RPD **RPDLimit** Qual

Chloride 15 1.5 15.00 0 97.9 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

POL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Page 19 of 23

P Sample pH Not In Range

RLReporting Detection Limit

Sample container temperature is out of limit as specified

QC SUMMARY REPORT

Client:

Hall Environmental Analysis Laboratory, Inc.

R.T. Hicks Consultants, LTD

WO#: 1801659

01-Feb-18

Project:	NM 87	State 001 Tank	Battery				
Sample ID	LCS-36022	SampType:	LCS	TestCode:	EPA Method	8015M/D:	Diesel Range Organics
Client ID:	LCSS	Batch ID:	36022	RunNo:	48464		
Prep Date:	1/15/2018	Analysis Date:	1/16/2018	SeqNo:	1557778	Units: m	g/Kg

Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 10 O 90.4 45 50.00 70 130 Surr: DNOP 4.4 5.000 88.3 70 130

Sample ID MB-36022 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: PBS Batch ID: 36022 RunNo: 48464 Prep Date: 1/15/2018 Analysis Date: 1/16/2018 SeqNo: 1557779 Units: mg/Kg SPK value SPK Ref Val %REC LowLimit Analyte Result **PQL** HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 10 ND 50 Motor Oil Range Organics (MRO) Surr: DNOP 10.00 93.6 70 130

Sample ID 1801659-001AMS SampType: MS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: 2017 East @ 0.5 ft Batch ID: 36022 RunNo: 48464 Prep Date: 1/15/2018 Analysis Date: 1/16/2018 SeqNo: 1558759 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 44 9.4 46.90 5.011 82.4 55.8 125 Surr: DNOP 4.2 4.690 90.6 70 130

TestCode: EPA Method 8015M/D: Diesel Range Organics Sample ID 1801659-001AMSD SampType: MSD Client ID: 2017 East @ 0.5 ft Batch ID: 36022 RunNo: 48464 Prep Date: 1/15/2018 Analysis Date: 1/16/2018 SeqNo: 1558761 Units: mg/Kg SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte Result **PQL** HighLimit Qual Diesel Range Organics (DRO) 44 9.5 47.35 5.011 83.4 55.8 125 1.82 20 Surr: DNOP 4.735 91.9 70 130 0 0

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

4.4

ND Not Detected at the Reporting Limit

POL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Page 20 of 23

P Sample pH Not In Range

RLReporting Detection Limit

Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1801659**

01-Feb-18

Client: R.T. Hicks Consultants, LTD

Project: NM 87 State 001 Tank Battery

Sample ID MB-36006 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBS Batch ID: 36006 RunNo: 48452

Prep Date: 1/12/2018 Analysis Date: 1/15/2018 SeqNo: 1557550 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 930 1000 93.2 15 316

Sample ID LCS-36006 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: 36006 RunNo: 48452

Prep Date: 1/12/2018 Analysis Date: 1/15/2018 SeqNo: 1557551 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 24
 5.0
 25.00
 0
 94.0
 75.9
 131

 Surr: BFB
 1000
 1000
 101
 15
 316

Sample ID 1801659-002AMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: 2017 West @ 0.5 ft Batch ID: 36006 RunNo: 48452

Prep Date: 1/12/2018 Analysis Date: 1/15/2018 SeqNo: 1557554 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Gasoline Range Organics (GRO) 21 4.8 24.13 0 85.4 77.8 128

 Gasoline Range Organics (GRO)
 21
 4.8
 24.13
 0
 85.4
 77.8
 128

 Surr: BFB
 950
 965.3
 98.9
 15
 316

Sample ID 1801659-002AMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: 2017 West @ 0.5 ft Batch ID: 36006 RunNo: 48452

Prep Date: 1/12/2018 Analysis Date: 1/15/2018 SeqNo: 1557555 Units: mg/Kg

Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 22 4.8 23.85 92.6 77.8 128 6.94 20 Surr: BFB 920 954.2 96.2 15 316 0 0

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 21 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: 1801659

01-Feb-18

Client:	R.T. Hicks Consultants, LTD
Project:	NM 87 State 001 Tank Battery

Sample ID Ics-36006	Samp1	Гуре: LC	:S4	Test	tCode: El	PA Method	8260B: Vola	tiles Short	List	
Client ID: BatchQC	Batcl	h ID: 36	006	R	RunNo: 4	8454				
Prep Date: 1/12/2018	Analysis D	Date: 1/	15/2018	S	SeqNo: 1	557603	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.83	0.025	1.000	0	82.8	80	120			
Toluene	0.89	0.050	1.000	0	88.7	80	120			
Ethylbenzene	0.90	0.050	1.000	0	90.2	80	120			
Xylenes, Total	2.6	0.10	3.000	0	87.1	80	120			
Surr: 4-Bromofluorobenzene	0.50		0.5000		99.5	70	130			
Surr: Toluene-d8	0.48		0.5000		95.9	70	130			

Sample ID MB-36006	SampT	уре: МЕ	BLK	Tes	tCode: E	PA Method	8260B: Volat	tiles Short	List	
Client ID: PBS	Batcl	n ID: 36	006	F	RunNo: 4	8454				
Prep Date: 1/12/2018	Analysis D	oate: 1/	15/2018	5	SeqNo: 1	557604	Units: mg/K	ίg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.55		0.5000		110	70	130			
Surr: Toluene-d8	0.47		0.5000		93.4	70	130			

Sample ID 1801659-001ams	SampTy	pe: MS	64	Tes	tCode: El	PA Method	8260B: Volat	tiles Short	List	
Client ID: 2017 East @ 0.5 f	t Batch	ID: 36 0	006	F	RunNo: 4	8454				
Prep Date: 1/12/2018	Analysis Da	ate: 1/	15/2018	5	SeqNo: 1	557606	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.84	0.024	0.9597	0	87.3	80	120			
Toluene	0.87	0.048	0.9597	0	91.1	80	120			
Ethylbenzene	ND	0.048	0.9597	0.01008	-1.05	80	120			S
Xylenes, Total	ND	0.096	2.879	0.02842	-0.0721	80	120			S
Surr: 4-Bromofluorobenzene	0.53		0.4798		110	70	130			
Surr: Toluene-d8	0.45		0.4798		94.8	70	130			

Sample ID 1801659-001amsc	s SampTy	pe: MS	SD4	Tes	tCode: El	PA Method	8260B: Volat	iles Short	List	
Client ID: 2017 East @ 0.5 f	t Batch	ID: 36	006	R	RunNo: 4	8454				
Prep Date: 1/12/2018	Analysis Da	ate: 1/	15/2018	S	SeqNo: 1	557607	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.83	0.023	0.9234	0	89.9	80	120	0.927	0	
Toluene	0.89	0.046	0.9234	0	95.9	80	120	1.25	0	
Ethylbenzene	ND	0.046	0.9234	0.01008	-0.129	80	120	0	0	S
Xylenes, Total	ND	0.092	2.770	0.02842	-0.167	80	120	0	0	S

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RLReporting Detection Limit
- Sample container temperature is out of limit as specified

Page 22 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: **1801659**

01-Feb-18

Client: R.T. Hicks Consultants, LTD

Project: NM 87 State 001 Tank Battery

Sample ID 1801659-001amsd SampType: MSD4 TestCode: EPA Method 8260B: Volatiles Short List

Client ID: 2017 East @ 0.5 ft Batch ID: 36006 RunNo: 48454

Prep Date: 1/12/2018 Analysis Date: 1/15/2018 SeqNo: 1557607 Units: mg/Kg

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	0.51		0.4617		111	70	130	0	0	
Surr: Toluene-d8	0.46		0.4617		98.6	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 23 of 23

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name:	RT HICKS	Work Order Number	r: 1801659		RcptNo:	: 1
Received By:	Dennis Suazo	1/11/2018 2:15:00 PM	1	Daviga	- Sandania	
Completed By:	Dennis Suazo	1/12/2018 9:12:36 AN	1	Danign	_	
Reviewed By:	my/PF	PS 01 12/1		Jan Jan		
Chain of Cus	tody					
1. Is Chain of Co	ustody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the	sample delivered?		<u>Client</u>			
Log In 3. Was an attem	npt made to cool the s	samples?	Yes 🗹	No 🗆	na 🗆	
4. Were all samp	oles received at a tem	perature of >0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗆	
5. Sample(s) in p	proper container(s)?		Yes 🔽	No 🗌		
6. Sufficient sam	ple volume for indicat	ted test(s)?	Yes 🗸	No 🗌		
7. Are samples (except VOA and ONC	6) properly preserved?	Yes 🗹	No 🗌		
8. Was preservat	tive added to bottles?		Yes \square	No 🗹	NA 🗌	
9. VOA vials have	e zero headspace?		Yes 🗌	No 🗆	No VOA Vials 🗹	
10. Were any san	nple containers receiv	red broken?	Yes	No 🗹 🗀	# of preserved bottles checked	
	ork match bottle labels ancies on chain of cus		Yes 🗹	No 🗆	for pH:	>12 unless noted)
12. Are matrices o	correctly identified on	Chain of Custody?	Yes 🗸	No 🗌	Adjusted?	
13. Is it clear what	analyses were reque	ested?	Yes 🗹	No 🗌		
	ng times able to be m ustomer for authorizat		Yes 🗹	No □ -	Checked by:	
Special Handli	ing (if applicable))				
	tified of all discrepand		Yes 🗌	No 🗆	NA 🗹	
Person	Notified:	Date:				
By Who	m:	Via: [eMail 🔲	Phone 🗌 Fax	In Person	
Regardi	ng:	anda a hain a A		and the state of t	***************************************	
Client In	structions:				ero iraini rodulisi orano orala irandaso iranda badab	
16. Additional ren	marks:	· · · · · · · · · · · · · · · · · · ·				-
17. Cooler Inform	mation					
Cooler No	Temp °C Condi	tion Seal Intact Seal No S	Seal Date	Signed By		
1	4.7 Good	Not Present				

Client: RT H Mailing Address: Phone # 970 email or Fax#: 04	RT H	Hicks Consultants	71. 12.	X Standard	Rush		4			4	-	Z	ZIR	ō	Σ	HALL ENVIRONMENTAL
Aailing Ad			ONCO HOND	The state of the s			Ļ		7	N DA	3	T-S	-	2	(0
Aailing Ad Phone # mail or Fa				Project Name:			10		*	2	1	7	0	A D	Š	ANALTSIS LABORALORY
hone #	dress:	con file	16	T8 WN	State 001	Tank BATEN		4901	- 4901 Hawkins NE	Z AND		www.nailenvironmental.com	menta	N N	Albuquernie NM 87:09	
hone #:				Project #:				Tel	Tel. 505-345-3975	15-39		Fax	505-345-4107	45.4	107	,
imail or Fa	-026	570	970-570-9535								An	Analysis Request	Reg	lest	i	
	3X# OIL	drew 6	email or Fax#: andrew Orthicks reasolt. con	Project Manager.	der		-	-	15			(10)			-	
QA/QC Package	kage		□ Level 4 (Full Validation)	Andrew	Parker						(SW	OS PO	oCB,a	Aluc	-	
Accreditation	no	1		1 32		1				(IS 0	O _{2,} F	_	o x	_	
T NELAP		☐ Other		On Ice:	XYes X	ON C		_	_	1'10	728	N.c	_	100	()	
□ EDD (Type)	(ed)			E	perature: 5.1	-04(c)=4.7)g pr			_		/O/\-	
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO. 1801659	BTEX + MT	TM + X3T8 88108 H9T	odisM) H9T	EDB (Metho	PAH's (831)	O,4) enoinA	8081 Pestic	8560B (VO/	8270 (Semi	
SH:80 81/3/	-	50:-	2017 East 00.5 A	402 Jer - 12	301	100		X						X	X	
0	00:60	4	2017 West @ 0.5 A			200		×						×	×	
0	51.60	*	2017 NW @ 0.5 H			003		×	1	H				×	×	
00	04:30	-	2017 8W Berm 02A			004		×						X	X	
8	32.	•	2017 NW Brown 12A			900		×						×	×	
0	54:01	•	2000 North (00,5 AT			900		×						×	×	
115	00	•	2000 NE @ 0.5 Ft			רטט		×						X	×	
11.	11:15	2	1000 SW @ 2 Ft			008		X						×	×	
0	J.: 12	-	2000 SW @ 8 FT			000						Τij			×	
71	54:21	•	1000 SE @ 0.5 PT			010		×	H					×	×	
8	08.50	•				011		×						×	×	
2		>	31015			012									X	
(6.7)	4	Grand Company	My	Received by:	X	J 11/18 /415	Remarks	TKS.	tol	7						
Data Time		Relinquished by		Received by	0	Date Time										

	- X	Hicks	Consol tats	Standard	Rush	-		AN	Š	SIS	4	C C	ANALYSTS LABORATORY
				Project Name:				WW.	www hallenvironmental com	vironme	antai co	m.	
Mailing	Mailing Address:		on- file	NM 87	state ool	DOI Tank Butter		4901 Hawkins NE - Albuquerque, NM 87109	NE - All	padaneco	dne. N	M 8710	ā
				Project #:				Tel. 505-345-3975	975	Fax 50	505-345-4107	4107	
Phone #	-026 #	- 570 -	3. 9535						Anal	Analysis Re	Request		
emailo	r Fax#	andrea	email or Fax# andrew @ rthickressult con	Project Manager	ger		(Vln	OZII (iəs			3		
QAVQC Packe	QNQC Package:		☐ Level 4 (Full Validation)	Andrew	Parker		o seg)				PCB's		
Accreditation	tation			Sampler: A	Andrew Par	Parker	На	10					
□ NELAP	AP	□ Other		On Ice.	100		1+	.81	1A	1,EC	_		_
□ EDD (Type)	(Type)			Sample Temp	Sample Temperature 5 1-0-4(2f)	1. 4 = (+7) 4. D-	38	þ þó	4 10	N'I	_		
Date	Тіте	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	BTEX + MT	TPH Metho TPH (Metho	ANG) 0168 M 8 AROR	O,4) anoinA	OV) B0828	M92) 07S8	८१/० १५७
1/8/18	11:58	Ŕ	58 2 @ # 46 Ft	402 - 21	五任	013	^	X		-	X		\ \ \
	10:53		SB 200 9 44			h10						×	~
	12:30		SB2 @ 15 FH			015						×	
1		2	582 00 0				Î	1	1		*	*	-
	35:51	Ĩ,	583 G 5 At			910		×			×	1	2.50
		16	583 @ 15 17						1	1	1	,	*
	(3.48)		SR3 @ 21 HF "			L10						X	
	6.33					018						X	
Date:	I'me:	Reinquished by. Reinquished by.	W.	Received by:	D	Date Time 1/11/18 4(5	Remarks:	40 7	7				

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 24, 2018

Andrew Parker R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142

Albuquerque, NM 87104 TEL: (505) 266-5004 FAX (505) 266-0745

RE: Pride NM 87 St 001 Battery OrderNo.: 1804243

Dear Andrew Parker:

Hall Environmental Analysis Laboratory received 11 sample(s) on 4/4/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 4/24/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: SB Hist N-0'

Project: Pride NM 87 St 001 Battery **Collection Date:** 4/2/2018 3:15:00 PM

Lab ID: 1804243-001 **Matrix:** SOIL **Received Date:** 4/4/2018 9:55:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: MRA
Chloride	ND	30	mg/Kg	20	4/9/2018 11:23:19 PM	37502
EPA METHOD 8015D MOD: GASOLII	NE RANGE				Analyst	: AG
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	4/9/2018 11:07:43 PM	37463
Surr: BFB	124	70-130	%Rec	1	4/9/2018 11:07:43 PM	37463
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS	;			Analyst	: TOM
Diesel Range Organics (DRO)	57	9.4	mg/Kg	1	4/10/2018 1:43:36 PM	37471
Motor Oil Range Organics (MRO)	180	47	mg/Kg	1	4/10/2018 1:43:36 PM	37471
Surr: DNOP	102	70-130	%Rec	1	4/10/2018 1:43:36 PM	37471
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst	: AG
Benzene	ND	0.023	mg/Kg	1	4/9/2018 11:07:43 PM	37463
Toluene	ND	0.046	mg/Kg	1	4/9/2018 11:07:43 PM	37463
Ethylbenzene	ND	0.046	mg/Kg	1	4/9/2018 11:07:43 PM	37463
Xylenes, Total	ND	0.092	mg/Kg	1	4/9/2018 11:07:43 PM	37463
Surr: 4-Bromofluorobenzene	125	70-130	%Rec	1	4/9/2018 11:07:43 PM	37463
Surr: Toluene-d8	80.0	70-130	%Rec	1	4/9/2018 11:07:43 PM	37463

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 17
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 4/24/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: SB Hist N-2.5'

 Project:
 Pride NM 87 St 001 Battery
 Collection Date: 4/2/2018 3:30:00 PM

 Lab ID:
 1804243-002
 Matrix: SOIL
 Received Date: 4/4/2018 9:55:00 AM

Analyses Result **PQL Qual Units DF** Date Analyzed Batch **EPA METHOD 300.0: ANIONS** Analyst: MRA Chloride 78 30 mg/Kg 20 4/9/2018 11:35:43 PM 37502 **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: AG Gasoline Range Organics (GRO) ND mg/Kg 4/10/2018 12:16:58 AM 37463 4.8 Surr: BFB 70-130 %Rec 4/10/2018 12:16:58 AM 37463 **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: TOM Diesel Range Organics (DRO) ND 37471 9.3 mg/Kg 4/9/2018 3:25:51 PM Motor Oil Range Organics (MRO) ND 46 mg/Kg 1 4/9/2018 3:25:51 PM 37471 Surr: DNOP 97.5 %Rec 37471 70-130 4/9/2018 3:25:51 PM **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: AG 0.024 Benzene mg/Kg 1 4/10/2018 12:16:58 AM 37463 Toluene ND 0.048 mg/Kg 4/10/2018 12:16:58 AM 37463 1 ND Ethylbenzene 0.048 mg/Kg 1 4/10/2018 12:16:58 AM 37463 Xylenes, Total ND 0.096 mg/Kg 4/10/2018 12:16:58 AM 37463 Surr: 4-Bromofluorobenzene 118 70-130 %Rec 4/10/2018 12:16:58 AM 37463 Surr: Toluene-d8 4/10/2018 12:16:58 AM 37463 83.8 70-130 %Rec

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 17
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/24/2018

CLIENT: R.T. Hicks Consultants, LTD

Client Sample ID: SB Hist N-4'

 Project:
 Pride NM 87 St 001 Battery
 Collection Date: 4/2/2018 3:45:00 PM

 Lab ID:
 1804243-003
 Matrix: SOIL
 Received Date: 4/4/2018 9:55:00 AM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: MRA
Chloride	36	30		mg/Kg	20	4/9/2018 11:48:07 PM	37502
EPA METHOD 8015D MOD: GASOL	INE RANGE					Analyst	: AG
Gasoline Range Organics (GRO)	ND	4.8		mg/Kg	1	4/10/2018 1:26:13 AM	37463
Surr: BFB	133	70-130	S	%Rec	1	4/10/2018 1:26:13 AM	37463
EPA METHOD 8015M/D: DIESEL RA	ANGE ORGANICS	;				Analyst	: ТОМ
Diesel Range Organics (DRO)	ND	9.5		mg/Kg	1	4/9/2018 3:47:47 PM	37471
Motor Oil Range Organics (MRO)	ND	48		mg/Kg	1	4/9/2018 3:47:47 PM	37471
Surr: DNOP	99.9	70-130		%Rec	1	4/9/2018 3:47:47 PM	37471
EPA METHOD 8260B: VOLATILES	SHORT LIST					Analyst	: AG
Benzene	ND	0.024		mg/Kg	1	4/10/2018 1:26:13 AM	37463
Toluene	ND	0.048		mg/Kg	1	4/10/2018 1:26:13 AM	37463
Ethylbenzene	ND	0.048		mg/Kg	1	4/10/2018 1:26:13 AM	37463
Xylenes, Total	ND	0.096		mg/Kg	1	4/10/2018 1:26:13 AM	37463
Surr: 4-Bromofluorobenzene	135	70-130	S	%Rec	1	4/10/2018 1:26:13 AM	37463
Surr: Toluene-d8	85.2	70-130		%Rec	1	4/10/2018 1:26:13 AM	37463

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 17
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/24/2018

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: SB-01-0'

 Project:
 Pride NM 87 St 001 Battery
 Collection Date: 4/2/2018 4:15:00 PM

 Lab ID:
 1804243-004
 Matrix: SOIL
 Received Date: 4/4/2018 9:55:00 AM

Analyses	Result	PQL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	56	30	mg/Kg	20	4/10/2018 12:25:22 AM	37502
EPA METHOD 8015D MOD: GASOL	INE RANGE				Analyst	: AG
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	4/10/2018 1:49:18 AM	37463
Surr: BFB	109	70-130	%Rec	1	4/10/2018 1:49:18 AM	37463
EPA METHOD 8015M/D: DIESEL RA	ANGE ORGANICS				Analyst	: TOM
Diesel Range Organics (DRO)	660	97	mg/Kg	10	4/9/2018 4:10:01 PM	37471
Motor Oil Range Organics (MRO)	1000	490	mg/Kg	10	4/9/2018 4:10:01 PM	37471
Surr: DNOP	0	70-130	S %Rec	10	4/9/2018 4:10:01 PM	37471
EPA METHOD 8260B: VOLATILES	SHORT LIST				Analyst	: AG
Benzene	ND	0.024	mg/Kg	1	4/10/2018 1:49:18 AM	37463
Toluene	ND	0.048	mg/Kg	1	4/10/2018 1:49:18 AM	37463
Ethylbenzene	ND	0.048	mg/Kg	1	4/10/2018 1:49:18 AM	37463
Xylenes, Total	ND	0.096	mg/Kg	1	4/10/2018 1:49:18 AM	37463
Surr: 4-Bromofluorobenzene	110	70-130	%Rec	1	4/10/2018 1:49:18 AM	37463
Surr: Toluene-d8	82.8	70-130	%Rec	1	4/10/2018 1:49:18 AM	37463

*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
D	Sample Diluted Due to Matrix	E	Value above quantitation range
H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 17
ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified
	D H ND	 D Sample Diluted Due to Matrix H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit 	D Sample Diluted Due to Matrix E H Holding times for preparation or analysis exceeded J ND Not Detected at the Reporting Limit P PQL Practical Quanitative Limit RL

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/24/2018

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: SB-01-2'

 Project:
 Pride NM 87 St 001 Battery
 Collection Date: 4/2/2018 4:30:00 PM

 Lab ID:
 1804243-005
 Matrix: SOIL
 Received Date: 4/4/2018 9:55:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: MRA
Chloride	490	30	mg/Kg	20	4/10/2018 12:37:47 AM	37502
EPA METHOD 8015D MOD: GASOL	INE RANGE				Analyst	: AG
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	4/10/2018 2:12:23 AM	37463
Surr: BFB	117	70-130	%Rec	1	4/10/2018 2:12:23 AM	37463
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS	;			Analyst	:: TOM
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	4/9/2018 4:32:02 PM	37471
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	4/9/2018 4:32:02 PM	37471
Surr: DNOP	91.7	70-130	%Rec	1	4/9/2018 4:32:02 PM	37471
EPA METHOD 8260B: VOLATILES S	SHORT LIST				Analyst	: AG
Benzene	ND	0.023	mg/Kg	1	4/10/2018 2:12:23 AM	37463
Toluene	ND	0.046	mg/Kg	1	4/10/2018 2:12:23 AM	37463
Ethylbenzene	ND	0.046	mg/Kg	1	4/10/2018 2:12:23 AM	37463
Xylenes, Total	ND	0.093	mg/Kg	1	4/10/2018 2:12:23 AM	37463
Surr: 4-Bromofluorobenzene	118	70-130	%Rec	1	4/10/2018 2:12:23 AM	37463
Surr: Toluene-d8	80.1	70-130	%Rec	1	4/10/2018 2:12:23 AM	37463

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 5 of 17
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/24/2018

Client Sample ID: SB-01-4' **CLIENT:** R.T. Hicks Consultants, LTD

Project: Pride NM 87 St 001 Battery **Collection Date:** 4/3/2018 4:40:00 PM Lab ID: 1804243-006 Matrix: SOIL Received Date: 4/4/2018 9:55:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: MRA
Chloride	320	30	mg/Kg	20	4/11/2018 3:35:41 PM	37540
EPA METHOD 8015D MOD: GASOL	INE RANGE				Analyst	: AG
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	4/10/2018 2:35:31 AM	37463
Surr: BFB	116	70-130	%Rec	1	4/10/2018 2:35:31 AM	37463
EPA METHOD 8015M/D: DIESEL RA	ANGE ORGANICS	3			Analyst	:: TOM
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	4/9/2018 4:54:11 PM	37471
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	4/9/2018 4:54:11 PM	37471
Surr: DNOP	96.6	70-130	%Rec	1	4/9/2018 4:54:11 PM	37471
EPA METHOD 8260B: VOLATILES	SHORT LIST				Analyst	: AG
Benzene	ND	0.025	mg/Kg	1	4/10/2018 2:35:31 AM	37463
Toluene	ND	0.049	mg/Kg	1	4/10/2018 2:35:31 AM	37463
Ethylbenzene	ND	0.049	mg/Kg	1	4/10/2018 2:35:31 AM	37463
Xylenes, Total	ND	0.098	mg/Kg	1	4/10/2018 2:35:31 AM	37463
Surr: 4-Bromofluorobenzene	117	70-130	%Rec	1	4/10/2018 2:35:31 AM	37463
Surr: Toluene-d8	80.8	70-130	%Rec	1	4/10/2018 2:35:31 AM	37463

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. D

- Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 6 of 17 J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc. Date Reported: 4/24/2018

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: SB-01-6'

 Project:
 Pride NM 87 St 001 Battery
 Collection Date: 4/2/2018 4:50:00 PM

 Lab ID:
 1804243-007
 Matrix: SOIL
 Received Date: 4/4/2018 9:55:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: MRA
Chloride	360	30	mg/Kg	20	4/11/2018 3:48:06 PM	37540
EPA METHOD 8015D MOD: GASOLII	NE RANGE				Analyst	: AG
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	4/10/2018 2:58:36 AM	37463
Surr: BFB	117	70-130	%Rec	1	4/10/2018 2:58:36 AM	37463
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS	;			Analyst	: TOM
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	4/9/2018 5:16:17 PM	37471
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	4/9/2018 5:16:17 PM	37471
Surr: DNOP	93.5	70-130	%Rec	1	4/9/2018 5:16:17 PM	37471
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst	: AG
Benzene	ND	0.024	mg/Kg	1	4/10/2018 2:58:36 AM	37463
Toluene	ND	0.048	mg/Kg	1	4/10/2018 2:58:36 AM	37463
Ethylbenzene	ND	0.048	mg/Kg	1	4/10/2018 2:58:36 AM	37463
Xylenes, Total	ND	0.097	mg/Kg	1	4/10/2018 2:58:36 AM	37463
Surr: 4-Bromofluorobenzene	118	70-130	%Rec	1	4/10/2018 2:58:36 AM	37463
Surr: Toluene-d8	84.3	70-130	%Rec	1	4/10/2018 2:58:36 AM	37463

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 7 of 17
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/24/2018

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: SB-03-0'

 Project:
 Pride NM 87 St 001 Battery
 Collection Date: 4/3/2018 8:00:00 AM

 Lab ID:
 1804243-008
 Matrix: SOIL
 Received Date: 4/4/2018 9:55:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analysi	: MRA
Chloride	ND	30	mg/Kg	20	4/11/2018 4:50:09 PM	37540
EPA METHOD 8015D MOD: GASOL	INE RANGE				Analyst	: AG
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	4/10/2018 3:21:41 AM	37463
Surr: BFB	120	70-130	%Rec	1	4/10/2018 3:21:41 AM	37463
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst	: TOM
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	4/10/2018 2:08:05 PM	37471
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	4/10/2018 2:08:05 PM	37471
Surr: DNOP	88.9	70-130	%Rec	1	4/10/2018 2:08:05 PM	37471
EPA METHOD 8260B: VOLATILES S	SHORT LIST				Analyst	: AG
Benzene	ND	0.024	mg/Kg	1	4/10/2018 3:21:41 AM	37463
Toluene	ND	0.047	mg/Kg	1	4/10/2018 3:21:41 AM	37463
Ethylbenzene	ND	0.047	mg/Kg	1	4/10/2018 3:21:41 AM	37463
Xylenes, Total	ND	0.094	mg/Kg	1	4/10/2018 3:21:41 AM	37463
Surr: 4-Bromofluorobenzene	122	70-130	%Rec	1	4/10/2018 3:21:41 AM	37463
Surr: Toluene-d8	83.6	70-130	%Rec	1	4/10/2018 3:21:41 AM	37463

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank D Sample Diluted Due to Matrix Е Value above quantitation range Analyte detected below quantitation limits Page 8 of 17 Н Holding times for preparation or analysis exceeded J ND Not Detected at the Reporting Limit P Sample pH Not In Range PQL Practical Quanitative Limit RL Reporting Detection Limit % Recovery outside of range due to dilution or matrix Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/24/2018

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: SB-03-2'

 Project:
 Pride NM 87 St 001 Battery
 Collection Date: 4/3/2018 8:10:00 AM

 Lab ID:
 1804243-009
 Matrix: SOIL
 Received Date: 4/4/2018 9:55:00 AM

Analyses	Result	PQL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: MRA
Chloride	47	30	mg/K	g 20	4/11/2018 5:02:34 PM	37540
EPA METHOD 8015D MOD: GASOL	NE RANGE				Analys	t: AG
Gasoline Range Organics (GRO)	ND	4.7	mg/K	g 1	4/10/2018 3:44:46 AM	37463
Surr: BFB	112	70-130	%Red	: 1	4/10/2018 3:44:46 AM	37463
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analys	t: TOM
Diesel Range Organics (DRO)	ND	9.3	mg/K	g 1	4/9/2018 6:00:48 PM	37471
Motor Oil Range Organics (MRO)	ND	46	mg/K	g 1	4/9/2018 6:00:48 PM	37471
Surr: DNOP	93.7	70-130	%Red	: 1	4/9/2018 6:00:48 PM	37471
EPA METHOD 8260B: VOLATILES S	SHORT LIST				Analys	t: AG
Benzene	ND	0.023	mg/K	g 1	4/10/2018 3:44:46 AM	37463
Toluene	ND	0.047	mg/K	g 1	4/10/2018 3:44:46 AM	37463
Ethylbenzene	ND	0.047	mg/K	g 1	4/10/2018 3:44:46 AM	37463
Xylenes, Total	ND	0.094	mg/K	g 1	4/10/2018 3:44:46 AM	37463
Surr: 4-Bromofluorobenzene	113	70-130	%Red	: 1	4/10/2018 3:44:46 AM	37463
Surr: Toluene-d8	69.1	70-130	S %Red	: 1	4/10/2018 3:44:46 AM	37463

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 9 of 17
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/24/2018

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: SB-03-4'

 Project:
 Pride NM 87 St 001 Battery
 Collection Date: 4/3/2018 8:15:00 AM

 Lab ID:
 1804243-010
 Matrix: SOIL
 Received Date: 4/4/2018 9:55:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: MRA
Chloride	200	30	mg/Kg	20	4/11/2018 5:14:58 PM	37540
EPA METHOD 8015D MOD: GASOL	INE RANGE				Analyst	: AG
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	4/10/2018 4:07:54 AM	37463
Surr: BFB	124	70-130	%Rec	1	4/10/2018 4:07:54 AM	37463
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS	;			Analyst	: TOM
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	4/9/2018 6:23:05 PM	37471
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	4/9/2018 6:23:05 PM	37471
Surr: DNOP	86.8	70-130	%Rec	1	4/9/2018 6:23:05 PM	37471
EPA METHOD 8260B: VOLATILES S	SHORT LIST				Analyst	: AG
Benzene	ND	0.024	mg/Kg	1	4/10/2018 4:07:54 AM	37463
Toluene	ND	0.048	mg/Kg	1	4/10/2018 4:07:54 AM	37463
Ethylbenzene	ND	0.048	mg/Kg	1	4/10/2018 4:07:54 AM	37463
Xylenes, Total	ND	0.096	mg/Kg	1	4/10/2018 4:07:54 AM	37463
Surr: 4-Bromofluorobenzene	125	70-130	%Rec	1	4/10/2018 4:07:54 AM	37463
Surr: Toluene-d8	82.8	70-130	%Rec	1	4/10/2018 4:07:54 AM	37463

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 10 of 17
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/24/2018

CLIENT: R.T. Hicks Consultants, LTD Client Sample ID: SB-03-6'

 Project:
 Pride NM 87 St 001 Battery
 Collection Date: 4/3/2018 8:25:00 AM

 Lab ID:
 1804243-011
 Matrix: SOIL
 Received Date: 4/4/2018 9:55:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	530	30	mg/Kg	20	4/11/2018 5:27:23 PM	37540
EPA METHOD 8015D MOD: GASOLI	NE RANGE				Analyst	: AG
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	4/10/2018 4:30:58 AM	37463
Surr: BFB	124	70-130	%Rec	1	4/10/2018 4:30:58 AM	37463
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS	;			Analyst	: TOM
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	4/9/2018 6:45:20 PM	37471
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	4/9/2018 6:45:20 PM	37471
Surr: DNOP	85.0	70-130	%Rec	1	4/9/2018 6:45:20 PM	37471
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst	: AG
Benzene	ND	0.023	mg/Kg	1	4/10/2018 4:30:58 AM	37463
Toluene	ND	0.047	mg/Kg	1	4/10/2018 4:30:58 AM	37463
Ethylbenzene	ND	0.047	mg/Kg	1	4/10/2018 4:30:58 AM	37463
Xylenes, Total	ND	0.093	mg/Kg	1	4/10/2018 4:30:58 AM	37463
Surr: 4-Bromofluorobenzene	125	70-130	%Rec	1	4/10/2018 4:30:58 AM	37463
Surr: Toluene-d8	82.5	70-130	%Rec	1	4/10/2018 4:30:58 AM	37463

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 11 of 17
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Client:

Hall Environmental Analysis Laboratory, Inc.

R.T. Hicks Consultants, LTD

Result

15

WO#: 1804243

24-Apr-18

Project:	Prid	e NM 87 St 001 Battery				
Sample ID	MB-37502	SampType: mblk	TestCode: EPA Method	300.0: Anions		
Client ID:	PBS	Batch ID: 37502	RunNo: 50408			
Prep Date:	4/9/2018	Analysis Date: 4/9/2018	SeqNo: 1634794	Units: mg/Kg		
Analyte		Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit	Qual
Chloride		ND 1.5				
Sample ID	LCS-37502	SampType: Ics	TestCode: EPA Method	300.0: Anions		
Client ID:	LCSS	Batch ID: 37502	RunNo: 50408			
Prep Date:	4/9/2018	Analysis Date: 4/9/2018	SeqNo: 1634795	Units: mg/Kg		
Analyte		Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit	Qual
Chloride		14 1.5 15.00	0 94.0 90	110		
Sample ID	MB-37540	SampType: mblk	TestCode: EPA Method	300.0: Anions		
Client ID:	PBS	Batch ID: 37540	RunNo: 50519			
Prep Date:	4/11/2018	Analysis Date: 4/11/2018	SeqNo: 1638382	Units: mg/Kg		
Analyte		Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit	Qual
Chloride		ND 1.5				
Sample ID	LCS-37540	SampType: Ics	TestCode: EPA Method	300.0: Anions		·
Client ID:	LCSS	Batch ID: 37540	RunNo: 50519			
Prep Date:	4/11/2018	Analysis Date: 4/11/2018	SeqNo: 1638383	Units: mg/Kg		

SPK value SPK Ref Val %REC

0

97.4

15.00

Qualifiers:

Analyte

Chloride

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank

LowLimit

90

HighLimit

110

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P
- Sample pH Not In Range
- Reporting Detection Limit RL
- Sample container temperature is out of limit as specified

Page 12 of 17

%RPD

RPDLimit

Qual

Client:

Hall Environmental Analysis Laboratory, Inc.

R.T. Hicks Consultants, LTD

WO#: 1804243

24-Apr-18

Project: Pride N	NM 87 St 001 Battery			
Sample ID MB-37471	SampType: MBLK	TestCode: EPA Method	8015M/D: Diesel Range Organics	
Client ID: PBS	Batch ID: 37471	RunNo: 50391		
Prep Date: 4/6/2018	Analysis Date: 4/9/2018	SeqNo: 1633657	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual
Diesel Range Organics (DRO)	ND 10			
Notor Oil Range Organics (MRO)	ND 50			
Surr: DNOP	9.9 10.00	98.9 70	130	
Sample ID LCS-37471	SampType: LCS	TestCode: EPA Method	8015M/D: Diesel Range Organics	
Client ID: LCSS	Batch ID: 37471	RunNo: 50391		
Prep Date: 4/6/2018	Analysis Date: 4/9/2018	SeqNo: 1633785	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual
iesel Range Organics (DRO)	46 10 50.00	0 91.6 70	130	
Surr: DNOP	4.3 5.000	86.2 70	130	
Sample ID 1804243-001AM	IS SampType: MS	TestCode: EPA Method	8015M/D: Diesel Range Organics	
Client ID: SB Hist N-0'	Batch ID: 37471	RunNo: 50426		
Prep Date: 4/6/2018	Analysis Date: 4/10/2018	SeqNo: 1635711	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual
iesel Range Organics (DRO)	84 9.5 47.39	57.08 56.1 55.8	125	
Surr: DNOP	4.2 4.739	89.4 70	130	
Sample ID 1804243-001AM	ISD SampType: MSD	TestCode: EPA Method	8015M/D: Diesel Range Organics	
Client ID: SB Hist N-0'	Batch ID: 37471	RunNo: 50426		
Prep Date: 4/6/2018	Analysis Date: 4/10/2018	SeqNo: 1635712	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual
iesel Range Organics (DRO)	75 9.7 48.40	57.08 36.8 55.8	125 11.1 20	S
Surr: DNOP	4.3 4.840	87.9 70	130 0 0	
Sample ID LCS-37482	SampType: LCS	TestCode: EPA Method	8015M/D: Diesel Range Organics	
Client ID: LCSS	Batch ID: 37482	RunNo: 50425		
Prep Date: 4/9/2018	Analysis Date: 4/10/2018	SeqNo: 1635884	Units: %Rec	
Analyte		SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual
Surr: DNOP	4.7 5.000	93.1 70	130	2001
Sample ID MB-37482	SampType: MBLK	TestCode: EPA Method	8015M/D: Diesel Range Organics	
Client ID: PBS	Batch ID: 37482	RunNo: 50425		
Prep Date: 4/9/2018	Analysis Date: 4/10/2018	SeqNo: 1635886	Units: %Rec	
., =	, = 11.0/2010	224.10. 100000	,	

Qualifiers:

Analyte

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix D

Η Holding times for preparation or analysis exceeded

Result

ND Not Detected at the Reporting Limit

Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank В

HighLimit

%RPD

Value above quantitation range

J Analyte detected below quantitation limits

Page 13 of 17

Qual

RPDLimit

P Sample pH Not In Range

SPK value SPK Ref Val %REC LowLimit

Reporting Detection Limit RL

Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1804243

24-Apr-18

Client: R.T. Hicks Consultants, LTD **Project:** Pride NM 87 St 001 Battery

Sample ID MB-37482 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics

PBS Client ID: Batch ID: 37482 RunNo: 50425

SeqNo: 1635886 Prep Date: 4/9/2018 Analysis Date: 4/10/2018 Units: %Rec

Analyte SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Surr: DNOP 10 10.00 103 70 130

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- Reporting Detection Limit RL
- Sample container temperature is out of limit as specified

Page 14 of 17

Hall Environmental Analysis Laboratory, Inc.

WO#: **1804243**

24-Apr-18

Client: R.T. Hicks Consultants, LTD

Project: Pride NM 87 St 001 Battery

Sample ID	1804243-002ams	SampT	уре: М S	64	Tes	tCode: El	PA Method	8260B: Vola	tiles Short	List	
Client ID:	SB Hist N-2.5'	Batch	h ID: 37 4	463	F	RunNo: 5	0421				
Prep Date:	4/6/2018	Analysis D	Date: 4/	10/2018	5	SeqNo: 1	634652	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.80	0.023	0.9208	0	86.6	80	120			
Toluene		0.84	0.046	0.9208	0.005776	90.8	80	120			
Ethylbenzene		0.94	0.046	0.9208	0.004503	101	80	120			
Xylenes, Total		2.8	0.092	2.762	0.02714	101	80	120			
	ofluorobenzene	0.47		0.4604		102	70	130			
Surr: Toluene	e-d8	0.38		0.4604		82.6	70	130			
Sample ID	1804243-002amsd	SampT	уре: МS	D4	Tes	tCode: El	PA Method	8260B: Vola	tiles Short	List	
Client ID:	SB Hist N-2.5'	Batch	n ID: 374	463	F	RunNo: 5	0421				
Prep Date:	4/6/2018	Analysis D	Date: 4/	10/2018	\$	SeqNo: 1	634653	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.85	0.024	0.9597	0	88.5	80	120	6.30	0	
Toluene		0.86	0.048	0.9597	0.005776	89.5	80	120	2.67	0	
Ethylbenzene		0.97	0.048	0.9597	0.004503	100	80	120	2.94	0	
Xylenes, Total		2.8	0.096	2.879	0.02714	96.6	80	120	0.164	0	
	ofluorobenzene	0.50		0.4798		104	70	130	0	0	
Surr: Toluene	e-d8 	0.40		0.4798		82.8	70	130	0	0	
Sample ID	lcs-37463	SampT	ype: LC	S4	Tes	tCode: El	PA Method	8260B: Vola	tiles Short	List	
Client ID:	BatchQC	Batch	h ID: 374	463	F	RunNo: 5	0421				
Prep Date:	4/6/2018	Analysis D	Date: 4/	9/2018	9	SeqNo: 1	634695	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.93	0.025	1.000	0	92.8	80	120			
Toluene		0.99	0.050	1.000	0	98.6	80	120			
Ethylbenzene		1.1	0.050	1.000	0	108	80	120			
Xylenes, Total		3.2	0.10	3.000	0	108	80	120			
	ofluorobenzene	0.52		0.5000		105	70	130			
Surr: Toluene	e-d8	0.45		0.5000		89.6	70	130			
Sample ID	mb-37463	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8260B: Vola	tiles Short	List	
Client ID:	PBS	Batch	n ID: 374	463	F	RunNo: 5	0421				
Prep Date:	4/6/2018	Analysis D	Date: 4/	9/2018	9	SeqNo: 1	634697	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								-
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
		ND	0.10								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 15 of 17

Hall Environmental Analysis Laboratory, Inc.

0.42

WO#: **1804243**

24-Apr-18

Client: R.T. Hicks Consultants, LTD

Project: Pride NM 87 St 001 Battery

Surr: Toluene-d8

Sample ID mb-37463 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Short List

Client ID: PBS Batch ID: 37463 RunNo: 50421

Prep Date: 4/6/2018 Analysis Date: 4/9/2018 SeqNo: 1634697 Units: mg/Kg

0.5000

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Surr: 4-Bromofluorobenzene 0.60 0.5000 119 70 130

83.6

70

130

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 16 of 17

Hall Environmental Analysis Laboratory, Inc.

WO#: 1804243

24-Apr-18

Client: R.T. Hicks Consultants, LTD **Project:** Pride NM 87 St 001 Battery

Sample ID 1804243-001ams SampType: MS TestCode: EPA Method 8015D Mod: Gasoline Range Client ID: SB Hist N-0' Batch ID: 37463 RunNo: 50421 Prep Date: 4/6/2018 Analysis Date: 4/9/2018 SeqNo: 1634590 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 4.7 3.364 96.6 64.7 26 23.43 142 Surr: BFB 500 468.6 106 130 Sample ID 1804243-001amsd SampType: MSD TestCode: EPA Method 8015D Mod: Gasoline Range

SB Hist N-0' Batch ID: 37463 RunNo: 50421 4/6/2018 Prep Date: Analysis Date: 4/9/2018 SeqNo: 1634591 Units: mg/Kg SPK value SPK Ref Val Analyte Result **PQL** %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 4.7 23.65 3.364 96.1 64.7 142 0.327 20 Surr: BFB 520 473.0 70 130 0 110

Sample ID Ics-37463 SampType: LCS TestCode: EPA Method 8015D Mod: Gasoline Range Client ID: LCSS Batch ID: 37463 RunNo: 50421 Prep Date: 4/6/2018 Analysis Date: 4/9/2018 SeqNo: 1634632 Units: mg/Kg SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result **PQL** LowLimit HighLimit Qual Gasoline Range Organics (GRO) 24 5.0 25.00 96.2 70 130 Surr: BFB 530 106 70 130 500.0

Sample ID mb-37463 SampType: MBLK TestCode: EPA Method 8015D Mod: Gasoline Range Client ID: **PBS** Batch ID: 37463 RunNo: 50421 Analysis Date: 4/9/2018 Prep Date: 4/6/2018 SeqNo: 1634634 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) ND 5.0 Surr: BFB 590 500.0 118 70 130

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- POL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- P
 - Sample pH Not In Range
- RLReporting Detection Limit
- Sample container temperature is out of limit as specified

Page 17 of 17

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)?	Yes Client Yes Yes Yes Yes Yes Yes Yes Yes	Arne Alexander Arne Alexander Alexan	Not Present NA	
Reviewed By: DDS 4/5/18 Labeled By: MW 4/5/18 Chain of Custody 1. Is Chain of Custody complete? 2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)?	Yes Yes Yes Yes Yes Yes Yes Yes	No I	Not Present	
Reviewed By: DDS 4/5/18 Labeled By: MW 4/5/18 Chain of Custody 1. Is Chain of Custody complete? 2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)?	Yes Yes Yes Yes Yes Yes Yes Yes	No I	Not Present	
Chain of Custody 1. Is Chain of Custody complete? 2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)?	Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No	NA 🗔	
Chain of Custody 1. Is Chain of Custody complete? 2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)?	Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No	NA 🗔	
 Is Chain of Custody complete? How was the sample delivered? Log In Was an attempt made to cool the samples? Were all samples received at a temperature of >0° C to 6.0°C Sample(s) in proper container(s)? 	Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No	NA 🗔	
 2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)? 	Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No	NA 🗔	
Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)?	Yes 🗹 Yes 🗹 Yes 🗹 Yes 🗹	No 🗆		
 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)? 	Yes 🗹 Yes 🗹 Yes 🗹	No 🗆		
 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)? 	Yes 🗹 Yes 🗹 Yes 🗹	No 🗆		
5. Sample(s) in proper container(s)?	Yes ✓ Yes ✓ Yes ✓	No 🗆	na 🗀	
5. Sample(s) in proper container(s)?	Yes ✓ Yes ✓ Yes ✓	No 🗆	NA 🗆	
	Yes ⊻ Yes ⊻	No 🗆		
	Yes ⊻ Yes ⊻	No 🗆		
6. Sufficient sample volume for indicated test(s)?	Yes 🗹			
O, our outple volume for intellection (CSt(S):	Yes 🗹			
		140		
	Y 00 :	No 🗹	NA 🗆	
o. This propertient added to bottles:	res 📖	140	NA 🗀	
9. VOA vials have zero headspace?	Yes 🗌	No 🗌	No VOA Vials 🗹	
10. Were any sample containers received broken?	Yes 🗆	No 🗹		
			# of preserved bottles checked	114
	Yes 🗹	No 🗔	for pH:	1/6/10
(Note discrepancies on chain of custody)	<u></u>	_	(<2.or	12 (mess noted)
	Yes 🗹	No L	Adjusted?	
·	Yes 🔽	No └	Pagkad bu	
4. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗸	No ∐	Checked by:	
pecial Handling (if applicable)				
15. Was client notified of all discrepancies with this order?	Yes 🗀	No 🗀	NA 🔽	
Person Notified: Date		***************************************		
By Whom: Via:	eMail	Phone Fax	In Person	
Regarding:				
Client Instructions:				
16. Additional remarks:				
7. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal	al Data	Signad D. 1		
1 1.0 Good Not Present	al Date	Signed By		
1 222 100010				

MALL ENVIRONMENTAL		Chai	n-ot-C	Chain-of-Custody Record	Turn-Around Time:	Time:										
	Clien	# RT	Horks	Consultants	CX Standard				- ·	A		2	2	Z	EN	AL
	106	Rio	Grande	Rlud NW	Project Name	1				The same	alland of	2		5		Y.
Project # Proj	Mailin	ng Addre			Prido-Alm			4904	Howk	No ME	Alle			11 074	5	
E 3 0 8 2 W F	Phon	Sauce Comme		7 5	-			Tel.	505-34	5-397	1	3x 20	1345	4107	2	
Contained Cont	email	or Fax#	mother	Dest burkenne will com	Drainet Mana	202		_		ŀ	Analy	sis Re	duest	ľ		
Standard Clevel 4 (Full Validation) Population Control Control Population Control Control	QAOC	C Packag	ë:	the same and the same	יישפת ואפונים			ζjuo	202	-		_	1	-	0	
NELLY Content on the Content on th	D St	andard		☐ Level 4 (Full Validation)	Andran			SEĐ	ri ret			_	700	/	7110	
EDD (Type) Semple Request ID Semple Preservative HEQL No. St. Accre	ditation:			Sampler:	ndriw P	1) НАТ					XZI	1.4.2	080	(N	
State Time Matrix Sample Request ID Container Preservetive HEALING HEA	O ED	D (Type	1 1		Sample Temp	erature.	2 2	+ 31			SIE			(AO)	ar	10 Y
18.5 50 50 40 40 3 10 20 20 20 3 4 4 4 4 4 4 4 4 4	Date			and the same of	Container Type and #	Preservative Type	量で	TEX + MTB			CRA 8 Met		_	270 (Semi-V	त्रिकात्त्व ह	lr Bubbles (
	4-2-12	5/3/		4-1	120	110	707	9			H			8	X	٧
	+	1530		CE	10	1	7072			-			\times	X	X	
9 1 9 - 1	4	1545		Hist N-4	116		872			-		-	X	X	X	
	-	1615		8-10	8	11	b22-			H		H	X		X	
77-13	+	16:30		01-3	*		272						X	X	X	
		1640		-10	- 7/6		216						\times	X	X	
	>	1650		1	10	1	111						X	X	X	
	43-18	9.00		\$	44		205						X	X	X	
-> . .	1	08:10			**		7169						X	X	×	
>	1	3.6					do			ĮĮ.			×	×	>	
42 0	>	28:80	>	9	17	٨	D						×	×	<×	
	T	Time	Definement		7		Ш)			-		
		5360	Rack	an (Received by:	-	0	Remarks:								
		Time:	Relinquished		Received by:		Date Time									
	,															Ī

	Logger:	Kristin Pope	/Andrew Parker		Client:			Boring ID:	
	Driller:		nvironmental		Pride E	nergy		3	
	g Method:		Stem Auger		Project Name:				
	Start Date:		2/2018		1RP-4625 (NM 87 Sta	te 001 Tank Battery)		SB-01 20 ⁻	17
	End Date:	4/2	2/2018		Location: 33.059926, -103.5139	17 (WGS84/NAD83)		1	
					00.000020, 100.0100	17 (W 000-7/17/1200)			
Depth		Description	Litho	Joan	Comments	Chloride Boreh	ole	Boring Diameter	Depth
(feet)			Litilo	logy	Comments	Tiitrate/Lab Comple	etion	3.5 inches	(feet)
	0.114 0	0 - 0.5 ft				65/93 mg/kg			
0.0 1.0	Silty San	d; caliche rocks; li	ght brown	200					0.0 1.0
2.0		0.5 - 3.5 ft			Hard	/490			2.0
3.0		Caliche; white			riaid	1 /400			3.0
4.0			\$ } \$ }			492/320		0 - 10 ft	4.0
5.0			l table			73/ mg/kg		Bentonite Plug	5.0
6.0 7.0		3.5 - 10 ft	. 833			383/360			6.0 7.0
8.0		Caliche; light pink							8.0
9.0									9.0
10.0						21/ mg/kg			10.0
11.0		10 - 12.5 ft			Interbedded calcihe				11.0
12.0	Me	edium sand; light p			cobbles			10 to 14 ft	12.0
13.0		12.5 - 14 ft	y (%)		Hard (blowcount = 50/3	00/40 m m/km		Backfill	13.0
14.0 15.0	;	Sandstone; tan; dr	y have	ر نور د	inches)	99/40 mg/kg			14.0 15.0
16.0									16.0
17.0									17.0
18.0									18.0
19.0									19.0 20.0
20.0 21.0									21.0
22.0									22.0
23.0									23.0
24.0									24.0
25.0									25.0
26.0									26.0
27.0 28.0									27.0 28.0
29.0									29.0
30.0									30.0
31.0									31.0
32.0									32.0
33.0 34.0									33.0 34.0
35.0									35.0
36.0									36.0
37.0									37.0
38.0									38.0
39.0 40.0									39.0 40.0
41.0									41.0
42.0									42.0
43.0									43.0
44.0									44.0
45.0 46.0									45.0 46.0
46.0									46.0
48.0									48.0
49.0									49.0
50.0									50.0
51.0									51.0
52.0 53.0									52.0 53.0
54.0									54.0
55.0									55.0
L					·				
	1 Rio Grand				Pride Energy			Appendix D)
Al	Suite F- lbuquerque, l 505-266-	NM 87104		E	Borehole Sampling Log	l		May 2018	

	Logger:	Andre	w Parker	Client:		Trench ID:
	Driller:		/ Backhoe		ide Energy	
Drillin	ng Method:		ckhoe	Project Name:	<u> </u>	
	Start Date:	1/8	3/2018		7 State 001 Tank Battery)	2017 East
	End Date:		3/2018	Location:		
				33.0599	944, -103.513758	
Depth					Chloride Tren	ch Depth
(feet)		Description	Lithology	Comments	(LAB) Comple	
(,			****			
		0 - 1 ft				Backfill with
	l F	ine sand, silt; brov	vn 😂		<30 (0.5 ft)	excavated
0.0		At 1 foot caliche; ta				material
0.0 1.0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Very hard caliche		0.0 1.0
2.0				very flatu caliche		2.0
3.0						3.0
4.0						4.0
5.0						5.0
6.0						6.0
7.0						7.0
8.0 9.0	1					8.0 9.0
10.0	1					10.0
11.0	1					11.0
12.0	1					12.0
13.0	1					13.0
14.0	1					14.0
15.0	1					15.0
16.0						16.0
17.0 18.0	1					17.0 18.0
19.0	1					19.0
20.0						20.0
21.0						21.0
22.0						22.0
23.0						23.0
24.0						24.0
25.0 26.0						25.0 26.0
27.0						27.0
28.0						28.0
29.0						29.0
30.0						30.0
31.0						31.0
32.0						32.0
33.0 34.0						33.0 34.0
35.0						35.0
36.0	1					36.0
37.0	1					37.0
38.0]					38.0
39.0						39.0
40.0	4					40.0
41.0 42.0	1					41.0 42.0
43.0	1					43.0
44.0	1					44.0
45.0]					45.0
46.0						46.0
47.0	4					47.0
48.0	4					48.0
49.0 50.0	1					49.0 50.0
51.0	1					51.0
52.0	1					52.0
53.0	1					53.0
54.0						54.0
55.0						55.0
R.T	. Hicks Cons	sultants, Ltd		Prido Enorgy		Annondix D
	01 Rio Grand Suite F-	142		Pride Energy		Appendix D
A	Albuquerque, 505-266-			Trench Sampling L	_og	May 2018

	Logger:	Andre	ew Parker	Client:			Trench ID:	
	Driller:		/ Backhoe		ride Energy			
Drillin	g Method:		nckhoe	Project Name:				
9	Start Date:		3/2018	1RP-4625 (NM 8	37 State 001 Tank Batt	ery)	2017 We	st
	End Date:		3/2018	Location:		•		
					345, -103.513492		<u> </u>	
Depth					Chloride	Trench		Donth
(feet)		Description	Lithology	Comments		Completion		Depth (feet)
		0 - 1 ft			< 30 @ 0.5 ft		Backfill with excavated	
0.0	/	At 1 foot caliche; ta					material	0.0
1.0 2.0			2,2,2,2	Very hard caliche				1.0 2.0
3.0								3.0
4.0								4.0
5.0								5.0
6.0								6.0
7.0								7.0
8.0 9.0								8.0
10.0								9.0 10.0
11.0								11.0
12.0								12.0
13.0								13.0
14.0								14.0
15.0								15.0
16.0								16.0
17.0								17.0
18.0								18.0
19.0								19.0
20.0 21.0								20.0 21.0
22.0								22.0
23.0								23.0
24.0								24.0
25.0								25.0
26.0								26.0
27.0								27.0
28.0								28.0
29.0								29.0
30.0								30.0
31.0								31.0
32.0								32.0
33.0 34.0								33.0 34.0
35.0								35.0
36.0								36.0
37.0								37.0
38.0								38.0
39.0								39.0
40.0								40.0
41.0								41.0
42.0 43.0								42.0 43.0
44.0								44.0
45.0								45.0
46.0								46.0
47.0								47.0
48.0								48.0
49.0								49.0
50.0								50.0
51.0								51.0
52.0								52.0
53.0 54.0								53.0 54.0
55.0								55.0
			I		<u> </u>			
	. Hicks Cons	sultants, Ltd e Blyd NW		Pride Energy			Appendix [)
	Suite F- lbuquerque,	-142		Trench Sampling	Log		May 2018	
	505-266-			Trench Sampling	Log		IVIAY ZUIÖ	

	Logger:	Andre	ew Parker	Client:		Trench ID:
	Driller:		/ Backhoe		de Energy	
Drillin	g Method:		ickhoe	Project Name:	~	
	Start Date:	1/8	3/2018	1RP-4625 (NM 87	7 State 001 Tank Battery)	2017 Northeast
	End Date:	1/8	3/2018	Location:		
				33.06026	64, -103.513115	
Depth	l				Chloride Tren	ch Depth
(feet)		Description	Lithology	Comments	(LAB) Comple	
(1001)			*****		(2,13)	(1003)
		0 - 1 ft				Backfill with
		ine sand, silt; brov	vn 🟻		<30 at 0.5 ft	excavated
		At 1 foot caliche; ta				material
0.0	· /	At 1 100t callerie, ta	~~~~			0.0
1.0			5555	Very hard caliche		1.0
2.0						2.0
3.0 4.0						3.0 4.0
5.0						5.0
6.0						6.0
7.0						7.0
8.0						8.0
9.0						9.0
10.0						10.0
11.0						11.0
12.0						12.0
13.0						13.0
14.0 15.0						14.0 15.0
16.0						16.0
17.0						17.0
18.0						18.0
19.0						19.0
20.0						20.0
21.0						21.0
22.0						22.0
23.0 24.0						23.0 24.0
25.0 26.0						25.0 26.0
27.0						27.0
28.0						28.0
29.0						29.0
30.0						30.0
31.0						31.0
32.0						32.0
33.0						33.0
34.0						34.0
35.0						35.0
36.0 37.0						36.0 37.0
38.0						38.0
39.0						39.0
40.0						40.0
41.0						41.0
42.0						42.0
43.0						43.0
44.0						44.0
45.0						45.0
46.0 47.0						46.0 47.0
48.0						48.0
49.0						49.0
50.0						50.0
51.0						51.0
52.0						52.0
53.0						53.0
54.0						54.0
55.0						55.0
		sultants, Ltd		Pride Energy		Appendix D
	11 Rio Grand Suite F-	142				Аррения и
A	lbuquerque, 505-266-			Trench Sampling L	.og	May 2018

	Logger:	Andrew Parker		Client:		Trench ID:	
	Driller:	Gandy Backhoe		Pride E	nerav	TIGHOH ID.	
Drilling	g Method:	Backhoe	•	Project Name:		0047.11	
	Start Date:	1/8/2018		1RP-4625 (NM 87 Sta	te 001 Tank Battery)	2017 Northy (within tank batte	
	End Date:	1/8/2018		Location:		(Within tank batte	ery benn)
				33.059876, -	103.514189		
Depth					Chloride Trend	:h	Depth
(feet)	I	Description	Lithology	Comments	Lab (mg/kg) Comple		(feet)
0.0		0 - 1 ft	*****	Pockets of impacted soil			0.0
1.0	Fine sand	, silt; medium brown		from 1 to 2 feet			1.0
2.0	1 1110 00110	, one, modium brown	*****	116111 1 16 2 1661	4600		2.0
3.0							3.0
4.0							4.0
5.0						Backfill with excavated	5.0
6.0		2 - 12 ft				material	6.0
7.0 8.0		interbedded caliche; lig	ht	Hydrocarbon impacted soil		material	7.0 8.0
9.0	grey, h	ydrocarbon odor					9.0
10.0							10.0
11.0							11.0
12.0					2900		12.0
13.0							13.0
14.0 15.0							14.0 15.0
16.0							16.0
17.0							17.0
18.0							18.0
19.0							19.0
20.0							20.0
22.0							22.0
23.0							23.0
24.0							24.0
25.0							25.0
26.0							26.0
27.0 28.0							27.0 28.0
29.0							29.0
30.0							30.0
31.0							31.0
32.0							32.0
33.0 34.0							33.0 34.0
35.0							35.0
36.0							36.0
37.0							37.0
38.0							38.0
39.0 40.0							39.0 40.0
41.0							41.0
42.0							42.0
43.0							43.0
44.0 45.0							44.0 45.0
46.0							45.0
47.0							47.0
48.0							48.0
49.0							49.0
50.0 51.0							50.0 51.0
52.0							52.0
53.0							53.0
54.0							54.0
55.0							55.0
					1		
	Hicks Consulta			Pride Energy		Appendix D)
90	1 Rio Grande Blv Suite F-142	u IN W				••	
Al	lbuquerque, NM 8	37104		Trench Sampling Log		May 2018	

	Logger:	Andre	ew Parker	Client:		Trench ID:
	Driller:		Egineering	Pride E	nergy	Tronon ib.
Drilling	g Method:		Stem Auger	Project Name:	- 57	
	Start Date:		2/2018	1RP-4625 (NM 87 Sta	te 001 Tank Battery)	Historic Release North
	End Date:	4/2	2/2018	Location:		
				33.060086, -	103.513542	
					011	
Depth		Description	Lithology	Comments	Chloride Trend	•
(feet) 0.0		0 - 0.5 ft		Sparse Vegetation at	field/lab Completed	etion (feet)
1.0		Silt; brown		surface	<30/	1.0
2.0		Oiit, Diowii	(4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	Caliche clasts at 2ft	/78	2.0
3.0		05 04		Light grey, very hard		nyulaleu 3.0
4.0		0.5 - 6 ft Caliche	\$4343434	Light pink, med. Density	100/36	bentonite 4.0
5.0		Calicile	[설설설]	Very hard		5.0
6.0				refusal at 6ft	1111	6.0
7.0 8.0				No split spoon return at 6 ft		7.0 8.0
9.0						9.0
10.0						10.0
11.0						11.0
12.0						12.0
13.0						13.0
14.0						14.0
15.0						15.0
16.0 17.0						16.0 17.0
18.0						18.0
19.0						19.0
20.0						20.0
21.0						21.0
22.0						22.0
23.0						23.0
24.0						24.0
25.0						25.0
26.0 27.0						26.0 27.0
28.0						28.0
29.0						29.0
30.0						30.0
31.0						31.0
32.0						32.0
33.0						33.0
34.0						34.0
35.0 36.0						35.0 36.0
37.0						37.0
38.0						38.0
39.0						39.0
40.0						40.0
41.0						41.0
42.0						42.0
43.0 44.0						43.0 44.0
45.0						45.0
46.0						46.0
47.0						47.0
48.0						48.0
49.0						49.0
50.0						50.0
51.0						51.0
52.0 53.0						52.0 53.0
54.0						54.0
55.0						55.0
			1		•	
R.T	. Hicks Cons	sultants, Ltd				
	1 Rio Grand			Pride Energy		Appendix D
	Suite F-					
A	lbuquerque,			Trench Sampling Log		May 2018
	505-266-			Trenen Jamping Log		Way 2010

Driller Canney Backhoe		Logger:	Andre	w Parker	Client:		Trench ID:
Sart Date: 1/8/2018 1/8/2016 1/8/2018 1/8/201		Driller:	Gandy	Backhoe	Pride	e Energy	
End Date: 1/8/2018 Location:	Drillin	g Method:	Ba	ckhoe	Project Name:		
Depth Description						State 001 Tank Battery)	Historic Release Northeast
Depth (leet) Description Lithology Comments Chloride sab (maykg) Completion Comple		End Date:	1/8	3/2018		1 400 540504	
Comments					33.059774	1, -103.513591	
Comparison Com	Depth					Chloride Tren	ch Depth
Sit; brown Al 1 foot caliche; tan Al 1 f			Description	Lithology	Comments		
Sit; brown Al 1 foot caliche; tan Al 1 f							
Sitt brown			0 - 1 ft			000 1056	Backfill with
100 100			Silt; brown	1-1-1-1-1		260 at 0.5 ft	
10	0.0	,	At 1 foot caliche; ta	ın IIIII			material 0.0
20 20 30 40 50 50 50 50 50 50 5				গ্ৰহের	Very hard caliche		
30 40 50 50 50 50 50 50 5					vory mara camono	,	
So So So So So So So So	3.0						3.0
Columb C							
7.0							
8.0 9.0 10.0 11.0 11.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 22.0 22.0 22.0 22.0 22							
9.0 10.0 11.0 11.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 22.0 22.0 22.0 22.0 22							
10.0 10.0							
11.0 11.0 12.0 13.0 14.0 15.0 14.0 15.0 16.0 17.0 18.0 19.0							
13.0							
13.0	12.0						12.0
15.0	13.0						13.0
16.0							
17.0							
18.0 19.0 19.0 20.0 20.0 21.0 22.0							
19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 21.0 22.0							
200 200 200 200 210 220 230							
22.0 22.0 23.0 23.0 23.0 24.0 25.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0 30.0 31.0 33.0	20.0						20.0
23.0 24.0 24.0 25.0 26.0 26.0 26.0 26.0 26.0 26.0 27.0 27.0 28.0 28.0 29.0 30.0 31.0 32.0 33.0							
24.0 25.0 26.0 26.0 26.0 27.0 28.0 29.0 29.0 29.0 30.0 31.0 31.0 32.0 33.0 34.0 35.0 35.0 36.0 37.0 38.0 38.0 39.0 40.0 41.0 42.0 42.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 45.0 46.0 47.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 57.0 55.0 57.0 55.0 57.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 57.0 55.0 55.0 57.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 57.0 55.0 55.0 57.0 55.0 55.0 55.0 57.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 57.0 55.0 57.0 55.0 55.0 57.0 55.0 55.0 55.0 57.0 55.0 55.0 55.0 57.0 55.0 55.0 57.0 55.0 55.0 57.0 55.0 57.0 55.0 57.0 55.0 57.0 55.0 57.0 55.0 57.0 55.0 57.0							
25.0 26.0 26.0 26.0 26.0 27.0 28.0 29.0 29.0 30.0 31.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 36.0 37.0 38.0 39.0 39.0 40.0 41.0 42.0 43.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 45.0 46.0 47.0 48.0 49.0 49.0 49.0 49.0 49.0 49.0 40.0 41.0 42.0 43.0 44.0 44.0 44.0 44.0 44.0 45.0 46.0 46.0 47.0 48.0 49.0 55.0							
26.0 27.0 28.0 27.0 28.0 28.0 29.0 30.0 30.0 30.0 31.0 31.0 32.0 33.3 33.0							
27.0 28.0 29.0 30.0 30.0 30.0 31.0 32.0 33.0							
28.0 29.0 30.0 29.0 30.0 31.0 31.0 32.0 33.0 33.0 33.0 34.0 35.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 44.0 44.0 44.0 45.0 46.0 46.0 47.0 48.0 49.0 50.0 51.0 50.0 55.0 52.0 53.0 54.0 55.0 56.0 55.0	27.0						
30.0 31.0 32.0 31.0 32.0 33.0 34.0 35.0 35.0 36.0 37.0 38.0 38.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 44.0 44.0 44.0 45.0 46.0 46.0 46.0 46.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 55.0 55.0 55.0 R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW 55.0 54.0 55.0 55.0 55.0							28.0
31.0 32.0 33.0 32.0 33.0 34.0 35.0 35.0 35.0 35.0 36.0 37.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 40.0 41.0 42.0 42.0 43.0 44.0 45.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 56.0 55.0 56.0 55.0 56.0	29.0						
32.0 32.0 33.0 33.0 34.0 35.0 35.0 35.0 35.0 36.0 37.0 37.0 38.0 39.0 40.0 41.0 41.0 42.0 43.0 44.0 44.0 45.0 46.0 46.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 53.0 54.0 55.0							
33.0 34.0 35.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 42.0 42.0 43.0 44.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 55.0 55.0 RT. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Trench Sampling Log May 2018							
34.0 35.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 44.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 55.0 55.0 55.0 R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Trench Sampling Log May 2018	32.0 33.0						32.0
35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 53.0 55.0 R.T. Hicks Consultants, Ltd 901 Rio Grande Bivd NW Suite F-142 Albuquerque, NM 87104 Ray 2018 May 2018 May 2018							34.0
36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 55.0 51.0 52.0 53.0 55.0 R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Ray, Day, Day, Day, Day, Day, Day, Day, D							
38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Pride Energy Appendix D Appendix D May 2018							36.0
39.0 40.0 41.0 42.0 43.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 52.0 53.0 54.0 55.0 55.0							
40.0 41.0 42.0 43.0 44.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 55.0 R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Trench Sampling Log May 2018							
41.0 42.0 43.0 44.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Pride Energy Appendix D Appendix D Appendix D Appendix D							
42.0 43.0 44.0 44.0 44.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 55.0 55.0 R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Trench Sampling Log May 2018							
43.0							
45.0 46.0 47.0 48.0 49.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 55.0 55.0 R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Trench Sampling Log May 2018	43.0						43.0
46.0							
47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Pride Energy Appendix D May 2018							
48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Trench Sampling Log May 2018							
49.0 50.0 51.0 51.0 52.0 53.0 54.0 55.0 R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Pride Energy Appendix D May 2018							
Solution							
S1.0 S2.0 S2.0 S3.0 S3.0 S4.0 S5.0							
53.0 54.0 54.0 55.0 54.0 55.0 54.0 55.0	51.0						51.0
S4.0 S5.0 S4.0 S5.0 S6.0							
R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Pride Energy Appendix D May 2018							
R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Pride Energy Appendix D May 2018							
901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Trench Sampling Log May 2018	55.0				<u> </u>		55.0
901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Trench Sampling Log May 2018	n m	Higher Co.	ultanta I 43				
Suite F-142 Albuquerque, NM 87104 Trench Sampling Log May 2018					Pride Energy		Appendix D
Albuquerque, NM 87104 Trench Sampling Log May 2018	70						
	A				Trench Sampling Lo	a	May 2018
					Jamping LO	9	way 2010

	Logger:	Andre	ew Parker		Client:			Trench ID:	
	Driller:		/ Backhoe		Pride E	nergy			
	g Method:		ickhoe		Project Name:				
	Start Date:		3/2018		1RP-4625 (NM 87 Sta	te 001 Tank Battery)		Historic Release	Southwest
	End Date:	1/8	3/2018		Location: 33.059409, -	103 514160		4	
					33.039409, -	103.314109			
Depth		Description	Litholo		Comments	Chloride Tren	ch		Depth
(feet)		Description	Lithoic	ogy	Comments	(LAB) Comple	etion		(feet)
				ું					
	00	0 - 0.5 ft aliche, silt; dark bro	ouen Side	\$ 6					
0.0	Ca	aliche, Siit, dark bit	JWII 3.5.5.4	33					0.0
1.0		0.5 - 2 ft	555	Ė					1.0
2.0		Silt; brown		Ξ		500			2.0
				, 					
3.0		2 - 4 ft	[222	ે				Backfill with	3.0
4.0		Caliche, tan		ું				excavated	4.0
			****	3				material	
			100	>					
5.0		4 - 8 ft	3434	``					5.0
6.0 7.0		Caliche, light pink	,,,,	>					6.0 7.0
8.0			2 4 2 4 3 4 2 2 2 3 3 3			45			8.0
5.5		0 0 4				i iii			0.0
		8 - 9 ft Caliche, tan		3	Very hard at 8 feet				
9.0		Canone, tan	333	ò		[:]:			9.0
10.0 11.0	ł					1			10.0 11.0
12.0	ł					1			12.0
13.0						1			13.0
14.0									14.0
15.0									15.0
16.0 17.0									16.0 17.0
18.0									18.0
19.0									19.0
20.0									20.0
21.0									21.0
22.0 23.0	l								22.0 23.0
24.0									24.0
25.0									25.0
26.0									26.0
27.0									27.0
28.0 29.0									28.0 29.0
30.0									30.0
31.0									31.0
32.0									32.0
33.0									33.0
34.0 35.0									34.0 35.0
36.0									36.0
37.0]								37.0
38.0						1			38.0
39.0 40.0	l					1			39.0 40.0
41.0									41.0
42.0									42.0
43.0									43.0
44.0									44.0
45.0 46.0									45.0 46.0
47.0									47.0
48.0									48.0
49.0									49.0
50.0						1			50.0
51.0 52.0	ł					1			51.0 52.0
53.0						1			53.0
54.0									54.0
55.0									55.0
R.T	. Hicks Cons	sultants, Ltd			Deido France			Annandir F	
	1 Rio Grand	e Blvd NW			Pride Energy			Appendix [,
	Suite F- Ibuquerque, l								
A	.505-266				Trench Sampling Log			May 2018	
							<u> </u>		

	Logger:	Andre		Client:		Trench ID:	
	Driller:		Backhoe		Energy		
	g Method:			Project Name:			
	Start Date:	1/8	3/2018	1RP-4625 (NM 87 S	tate 001 Tank Battery)	Historic Release	Southeast
	End Date:	1/8	/2018	Location:	-103.513557		
				33.039401,	-103.313337		
Depth					Chloride Trend	ch	Depth
(feet)		Description	Lithology	Comments	(LAB) Comple		(feet)
		0 - 0.5 ft				Backfill with	1 ` ′
0.0	Silt, calic	the clasts (6 inch				excavated	0.0
		0.5 - 1 ft		Very hard	<30 @ 0.5 ft	material	
1.0		Caliche, tan	2,2,2,2,2,2	vory nara	11111	·	1.0
2.0 3.0							2.0 3.0
4.0							4.0
5.0							5.0
6.0							6.0
7.0							7.0
8.0							8.0
9.0							9.0
10.0 11.0							10.0 11.0
12.0							12.0
13.0							13.0
14.0							14.0
15.0							15.0
16.0							16.0
17.0							17.0
18.0							18.0
19.0 20.0							19.0 20.0
21.0							21.0
22.0							22.0
23.0							23.0
24.0							24.0
25.0							25.0
26.0							26.0
27.0							27.0
28.0 29.0							28.0 29.0
30.0							30.0
31.0							31.0
32.0							32.0
33.0							33.0
34.0							34.0
35.0							35.0
36.0 37.0							36.0 37.0
38.0							38.0
39.0							39.0
40.0							40.0
41.0							41.0
42.0							42.0
43.0 44.0							43.0 44.0
45.0							45.0
46.0							46.0
47.0							47.0
48.0							48.0
49.0							49.0
50.0 51.0							50.0 51.0
52.0							52.0
53.0							53.0
54.0							54.0
55.0							55.0
							<u> </u>
<u>R.T.</u>	. Hicks Consul	ltants, Ltd		Dride Energy		A 16 to	n
	1 Rio Grande I	Blvd NW		Pride Energy		Appendix I	ע
	Suite F-14						
Al	lbuquerque, NI			Trench Sampling Log	I	May 2018	
	505-266-50	004			•	-,···	

	Logger:	Krist	in Pope		Client:			Boring ID:	
	Driller:		vironmental		Pride E	nergy			
	g Method:		Stem Auger		Project Name:				
	Start Date:		/2018		1RP-4625 (NM 87 Sta	te 001 Tank I	Battery)	SB-02 Histo	oric
	End Date:	1/8	5/2018		Location:		IADOO)	_	
					33.059743, -103.5136	o∠ (WGS84/ľ	VAU83)		
Depth				ı		Chloride	Borehole	Boring Diameter	Depth
(feet)		Description	Lit	thology	Comments		Completion	3.5 Inches	(feet)
		0 - 0.25 ft	*	33333		Titrato/Lab		0.0 11101100	(1001)
0.0	Sil	ty sand; dark brow	vn 🎇		No vegetation	2968/4200 m	ng/kg		0.0
1.0									1.0
2.0		0.25 - 5 ft	[33]	3833					2.0
3.0 4.0	Ca	aliche; light pink, d	lry 🔛	4343434	Hard	40.4/			3.0 4.0
5.0			> "> "			404/ mg/kg	· //		5.0
6.0			100			-			6.0
7.0		5 - 9 ft							7.0
8.0	Medi	um sand; tan, pinl	c; dry						8.0
9.0			<u> </u>			157/<30 mg	/kg	0 - 21 feet	9.0
10.0 11.0			*					Bentonite Plug	10.0 11.0
12.0				\$253				3	12.0
13.0		9 - 16 ft			Hard				13.0
14.0	Caliche; wh	nite; interbedded s	and (15%) 🕌	3333					14.0
15.0			\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	강강강					15.0
16.0				888		45/<30 mg/k	g		16.0
17.0 18.0			[838]						17.0 18.0
19.0	16 - 21 ft		> > . > > .		Hard				19.0
20.0	Caliche,	sand (10%); light	pink; dry 🔌	2023	Blowcounts = 50/6 inches				20.0
21.0				5555		57/ mg/kg			21.0
22.0									22.0
23.0 24.0									23.0 24.0
25.0									25.0
26.0									26.0
27.0									27.0
28.0									28.0
29.0									29.0
30.0									30.0
31.0 32.0									31.0 32.0
33.0									33.0
34.0									34.0
35.0									35.0
36.0									36.0
37.0 38.0									37.0 38.0
39.0									39.0
40.0									40.0
41.0									41.0
42.0									42.0
43.0 44.0									43.0 44.0
45.0									44.0
46.0									46.0
47.0									47.0
48.0									48.0
49.0									49.0
50.0 51.0									50.0 51.0
52.0									52.0
53.0									53.0
54.0									54.0
55.0									55.0
	Hicks Const				Pride Energy			Appendix D)
Al	Suite F-1 Ibuquerque, N 505-266-5	IM 87104		В	Borehole Sampling Log	J		May 2018	

St	Logger: Driller: Method: art Date: ind Date:	Kristin Pope/Andrew Atkins Environme Hollow Stem Au 4/3/2018 4/3/2018	ntal	Client: Pride E Project Name:	nergy	Boring ID:		
St E Depth (feet) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0	Method: art Date:	Hollow Stem Au 4/3/2018			37			
St E Depth (feet) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0	art Date:	4/3/2018	,	i Project Name:		i		
Depth feet) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0				1RP-4625 (NM 87 Sta	te 001 Tank Battery)	SB-03 Pla	va	
Depth (feet) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0				Location:			,	
(feet) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0				33.059934, -103.5146	26 (WGS84/NAD83)			
(feet) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0				,				
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0		Description	Lithology	Comments	Chloride Boreho	le Boring Diameter	Dept	
1.0 2.0 3.0 4.0 5.0 6.0 7.0		Description	Littlology	Comments	Titrate/Lab Complet	tion 3.5 Inches	(feet	
2.0 3.0 4.0 5.0 6.0 7.0					108/ mg/kg		0.0	
3.0 4.0 5.0 6.0 7.0							1.0	
4.0 5.0 6.0 7.0		0 - 6 ft		Interbedded calcihe from 4	/47		2.0	
5.0 6.0 7.0	Cilt						3.0	
6.0 7.0	Silty	sand; dark brown		to 6 ft	/200		4.0	
7.0					632/660 mg/kg		5.0	
					614/530		6.0	
8.0							7.0	
							8.0	
9.0					672/ mg/kg		9.0	
10.0					<u> </u>		10.0	
11.0		6 - 16 ft					11.0	
12.0		Silt; light grey					12.0	
13.0		. 5 6 7					13.0	
14.0							14.0	
15.0					341/ mg/kg	D. ('' D'	15.0	
16.0					<u> </u>	Bentonite Plug	16.0	
17.0			18868888888		1 🛮		17.0	
18.0							18.0	
19.0							19.0	
20.0					207/220 mg/kg		20.0	
21.0					<u> </u>		21.0	
22.0							22.0	
23.0		16 - 31 ft					23.0	
	Medium san	nd, well sorted, round; lig	ht				24.0	
25.0	Galairi Gal	tan			168/ mg/kg		25.0	
26.0		· · · · ·			100/ Hig/Rg		26.0	
27.0							27.0	
28.0							28.0	
29.0							29.0	
30.0					129/200 mg/kg		30.0	
31.0					120/200 Hig/kg		31.0	
32.0					- 2		32.0	
33.0			1				33.0	
34.0			1				34.0	
35.0							35.0	
36.0			1				36.0	
37.0			1				37.0	
38.0		cated in lowest					38.0	
39.0		point of playa	1				39.0	
40.0							40.0	
41.0							41.0	
42.0			1				42.0	
43.0			1				43.0	
14.0							44.0	
45.0			1				45.0	
16.0			1				46.0	
17.0							47.0	
18.0			1				48.0	
19.0			1				49.0	
50.0							50.0	
51.0			1				51.0	
52.0							52.0	
53.0			1				53.0	
54.0			1				54.0	
55.0							55.0	
				<u> </u>	<u> </u>		50.	
	Hicks Consul Rio Grande E			Pride Energy	Appendix D)		
	R10 Grande E Suite F-14 ouquerque, NN	2		Borehole Sampling Log		May 2018	дрених в	

FIELD PROCEDURE Chloride Titration Using

0.282 Normal Silver Nitrate Solution

1.0 Purpose

This procedure is to be used to determine the concentration of chloride in soil and other solids (e.g. drilling waste).

2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

3.0 Sample Collection and Preparation

- 3.1 Collect at least 80 grams of soil from the sample collection point. Take care to ensure that the sample is representative of the general area of concern to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample for soils obtained at several points in the sample area.
- 3.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag. Care should be taken to insure that no cross-contamination occurs between the soil sample and the collection tools or sample processing equipment.
- 3.3 The sealed sample bag should be massaged to break up any clods.

4.0 Sample Preparation

- 4.1 Tare a clean glass vial having a minimum 40 ml capacity. Add at least 10 grams of the soil sample and record the weight.
- 4.2 Add at least 10 grams of reverse osmosis water or distilled water to the soil sample and shake or agitate for 20 seconds.
- 4.3 Allow the sample to set for a period of 5 minutes or until the separation of soil and water.
- 4.4 Carefully pour the free liquid extract from the sample, through a paper filter if necessary, into a clean plastic cup.

5.0 Titration Procedure

5.1 Using a graduated pipette, remove 10 ml extract and dispense into a clean plastic cup.

- 5.2 Add 2-3 drops potassium chromate (K₂CrO₄) to mixture.
- 5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (H₂O₂) to mixture.
- 5.4 Using a 1 ml pipette, carefully add .282 normal silver nitrate (one drop at a time) to the sample while constantly agitating it. Stop adding silver nitrate when the solution begins to change from yellow to red. Be consistent with endpoint recognition.
- 5.5 Record the ml of silver nitrate used.

6.0 Calculation

To obtain the chloride concentration, insert measured data into the following formula:

Using Step 5.0, determine the chloride concentration of the RO water used to mix with the soil sample. Record this concentration and subtract it from the formula results to find the net chloride in the soil sample.

Record all results on a field form.

Additional Notes

- 1) Make sure the scale is weighing in grams.
- 2) "Zero" the scale with clean, empty 40 ml container (including the cap) sitting on the scale.
- 3) Add 10 to 20 grams of sample soil to the container. Record the weight.
- 4) "Re-zero" the scale.
- 5) Add distilled water to almost fill the container. Record the weight.
- 6) Screw the cap on, and shake the container to thoroughly mix the sample with the distilled water. Set aside to allow settling of the sample. This will take only a few minutes for coarse grained material and up to 20 minutes for very fine grained sediments. The solution does not need to be perfectly clear to continue the procedure.
- 7) Add 3 drops of Potassium Chromate to a small, clean, plastic cup.
- 8) Extract 10 ml (using a large pipette at least 10 ml) of solution from the sample container and put it into the plastic cup. Record ml of solution placed in the cup.
 - a. This can be kept track of by careful recording of "before" and "after" fluid levels in the pipette.
 - b. Or: Place the plastic cup on the scale with the potassium chromate and "zero" the scale. Add solution to the cup until 10 grams is indicated on the scale.
- 9) Swirl the solution and the potassium chromate to mix them.
- 10) Using a 1 ml pipette, add silver nitrate to the mixed solution drop by drop while swirling. The entire solution will change from a pale lemon yellow color to a brick red color when sufficient silver nitrate has been added. STOP when it all turns brick red. It does not need to be a deep brick red color. This will result in an overly high result. Record ml of silver nitrate used.
- 11) The chloride concentration of the sample is given by:

$$C_{sam} = (35,450 * 0.282) * (grams of water) * (ml of silver nitrate) (grams of soil) (ml of solution)$$

or:

$$C_{sam} = (9997) * (grams of water (Step 5)) * (ml of silver nitrate (Step 10)) (grams of soil (Step 3)) (ml of solution (Step 8))$$

Units are: mg(of chloride)/kg(of soil)

Equipment List:

Scale
10 ml pipettes
1 ml pipettes
Controllers for pipettes (small and large),
press pipette into open end (carefully)
40 ml sample containers
Small plastic cups
Silver Nitrate
Potassium Chromate
Distilled water

Waste container for final solution. A robust plastic jug with lid will do for field use.

DO NOT pour this down a drain. Dispose of with a chemical lab.

Waste bags for used plastic cups (rinse and pour rinsing fluid into robust jug)

Calculator Nitrile gloves Safety glasses Paper towels

Safety Data

http://ptcl.chem.ox.ac.uk/~hmc/hsci/chemicals/silver_nitrate.html

http://ptcl.chem.ox.ac.uk/~hmc/hsci/chemicals/potassium_chromate.html

Photo-Ionization Detector (PID) Standard Operating Procedures

Headspace analysis procedures should be conducted according to NMOCD approved industry standards or other NMOCD-approved procedures. Accepted NMOCD procedures are as follows:

- a) Fill a 0.5 liter or larger jar half full of sample and seal the top tightly with aluminum foil or fill a one quart zip-lock bag one-half full of sample and seal the top of the bag leaving the remainder of the bag filled with air.
- b) Ensure that the sample temperature is between 15 to 25 degrees Celsius (59-77 degrees Fahrenheit).
- c) Allow aromatic hydrocarbon vapors to develop within the headspace of the sample jar or bag for 5 to 10 minutes. During this period, the sample jar should be shaken vigorously for 1 minute or the contents of the bag should be gently massaged to break up soil clods.
- d) If using a jar, pierce the aluminum foil seal with the probe of either a PID or FID organic vapor meter (OVM), and then record the highest (peak) measurement. If using a bag, carefully open one end of the bag and insert the probe of the OVM into the bag and re-seal the bag around the probe as much as possible to prevent vapors from escaping. Record the peak measurement. The OVM must be calibrated to assume a benzene response factor.