INFORMATION ONLY

		SIT	E INFORMA	TION	
	Report T	ype: Soil Ren	nediation Clo	osure Requ	uest 1RP-3960
General Site Info	ormation:				
Site:		Eunice Yard			
Company:		Globe Energy Se	rvices		
Section, Townsl	hip and Range	Unit I	Sec. 34	T 21S	R 37E
Lease Number:	· · ·				
County:		Lea County			
GPS:			32.433563º N		103.144684º W
Surface Owner:		Chevron USA, Inc			
Mineral Owner:					
Directions:					vel SOUTH on 4th St for approx 0.25 mi, turr Globe Energy Yard is approx 125 feet north o
Release Data:					
Date Released:		Unknown			
Type Release:		Produced Water			
Source of Contar	nination:	Frac Tank Failure			
Fluid Released:		Unknown			
Fluids Recovered	4.	None			
Official Commu		1.10110			
Name:	Tommy Morris				Ike Tavarez
Company:	Globe Energy Serv	vices			Tetra Tech
Address:	113 Texas Ave.				4000 N. Big Spring
					Ste 401
City:	Eunice, NM 88231				Midland, Texas
Phone number:	(325) 207-7775				(432) 687-8110
	(325) 201-1115		-		(432) 887-8110
Fax:			-		
Email:	tommy.morris@c	<u>jeslic.com</u>			Ike.Tavarez@tetratech.com
Ranking Criteria	l				
Depth to Groundv	vater:		Ranking Score		Site Data
<50 ft			20		
50-99 ft			10		
>100 ft.			0		0
WellHead Protect			Ranking Score		Site Data
	000 ft., Private <200 i		20		
Water Source >1,0	000 ft., Private >200 i	ft.	0		0
Surface Body of V	Nator:		Ranking Score		Site Data
<200 ft.	valei.		20		Sile Dala
200 ft - 1,000 ft.			10		
>1,000 ft.			0		0
	Total Ranking Sc	ore:	20	l	
					_
		Accept	table Soil RRAL (
		_			
		Benzene 10	Total BTEX 50	TPH 100	

/ leeepid		
Benzene	Total BTEX	TPH
10	50	100

May 31, 2017

Olivia Yu Environmental Specialist, District 1 Oil Conservation Division, EMNRD 1625 North French Drive Hobbs, New Mexico 88240

RE: Soil Remediation Closure Request for the Globe Energy Services, Produced Water Release Located in Unit I, Section 34, Township 21 South, Range 37 East, Lea County, New Mexico. RP #3960

Dear Ms. Yu:

Tetra Tech was contacted by Globe Energy Services (Globe) to assess and remediate a spill located in Unit I, Section 34, Township 21 South, Range 37 East, Lea County, New Mexico (Site). The GPS coordinates for the site are N 32.433563 and W 103.144684°. The site location is shown on Figures 1 and 2.

BACKGROUND

According to Globe, a produced water release occurred from frac tanks being stored on the south side of the Globe yard located in Eunice, New Mexico. The produced water migrated onto the adjacent property impacting the surface soils. No fluids were recovered and the volume of the fluids released is unknown. Chevron discovered the release on their property and contacted the NMOCD. The initial C-141 for the release is enclosed in Appendix A.

GROUNDWATER AND REGULATORY

According to the New Mexico Office of the State Engineer (NMOSE) online database, five (5) wells were shown in Section 34 with depths to groundwater ranging from 29.0' to 48.0' below surface. The NMOCD groundwater map showed the average depth to groundwater in this area is approximately 50' below surface. However, Chevron has a groundwater investigation site located west, or adjacent, to the Globe Eunice facility. According to the Chevron groundwater monitoring report, dated September 26, 2012, the report indicated the depth to groundwater at approximately 27' below surface. The groundwater data is shown in Appendix B.

According to the Ground Water Report 6, "Geology and Ground Water Conditions in Southern Lea County, New Mexico," published by the New Mexico institute of Mining & Technology (1961), the groundwater in the area is produced from the Ogallala formation and ranges from 100' to 250' in thickness.

A risk-based evaluation will be performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. Based upon the depth to groundwater, the proposed RRAL for TPH is 100 mg/kg.

SOIL INVESTIGATION AND ASSESSMENT

Auger holes Installation and Sampling

On November 19, 2015, Tetra Tech personnel inspected and sampled the spill area. The impacted areas were located outside the Globe facility along the west and south fence line. A total of twenty-four (24) auger holes (AH-1 through AH-24) were installed using a stainless steel hand auger to assess the impacted soils. Soil samples were collected to depths ranging from 1.0' to 2.5'-3.0' below surface. Deeper samples were not collected due to a dense caliche formation at the site. Soil samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The sampling results are summarized in Table 1. The auger hole locations are shown on Figure 3.

Auger hole Sampling Results

Referring to Table 1, all of the auger hole samples selected for BTEX analysis were below the RRAL. The areas of AH-1, AH-16 and AH-21 showed TPH concentrations above the RRAL with concentrations of 350 mg/kg, 387 mg/kg and 320 mg/kg, respectively. However, the impact in these areas were vertically defined in the shallow soils at a depth of approximately 1-1.5' below surface. In addition, auger holes (AH-3, AH-4, AH-8, AH-15, AH-17, AH-19, AH-20 and AH-22) exceeded the TPH RRAL and were not vertically defined. The remaining auger holes (AH-2, AH-5, AH-6, AH-7, AH-9, AH-10, AH-11, AH12, AH-13, AH-14, AH-18, AH-23 and AH-24) did not show any TPH concentrations above the RRAL.

The areas of auger holes (AH-9 and AH-23) showed chloride concentrations of 1,370 mg/kg and 345 mg/kg at 0-1', but were vertically defined at 1-1.5' and 2-2.5', respectively. The areas of auger holes (AH-1, AH-2, AH-3, AH-4, AH-6, AH-7, AH-12, AH-13, AH-14, AH-17 and AH-21) showed chloride concentrations above the RRAL, or delineation concentration, of 250 mg/kg, and were not vertically defined. The remaining auger holes (AH-5, AH-8, AH-10, AH-11, AH-15, AH-16, AH-18, AH-19, AH-20, AH-22 and AH-24) did not show any chloride concentrations in the soils above 250 mg/kg.

Borehole Installation and Sampling

To define vertical extents, Tetra Tech installed boreholes at the site. The total depth of the boreholes ranged from 4'-5' to 24-25' below surface. Deeper sample were not collected due to the shallow groundwater of approximately 27.0' below surface. The borehole drilling

logs are included in Appendix C. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E.

On January 20, 2016, Tetra Tech returned to the site to supervise the installation of a total of twelve (12) boreholes (BH-1 through BH-12) to assess and define the vertical extent of the impacted areas. In summary, auger holes (AH-3, AH-4, AH-8, AH-15, AH-17, AH-19, AH-20 and AH-22) exceeded the TPH RRAL and were not vertically defined below the RRAL. The areas of auger holes (AH-1, AH-2, AH-3, AH-4, AH-6, AH-7, AH-12, AH-13, AH-14, AH-17 and AH-21) showed chloride concentrations above the delineation concentration of 250 mg/kg and were not vertically defined.

Due to safety concerns with the overhead power lines, one borehole (BH-9) was placed at a midpoint between auger holes (AH-19 and AH-20). All of the remaining boreholes were installed as proposed in the approved Work Plan, dated January 18, 2016. As directed by the NMOCD, a single borehole was recommended in each area (AH-1 and AH-2) and (AH-12, AH-13 and AH-14). The two boreholes (BH-6 and BH-7) were installed in the vicinity of auger holes (AH-1 and AH-14).

An air rotary drilling rig was used to collect soil samples. A small core-barrel sampler was used to collect the samples at selected depth intervals of 0-1', 2-3', 4-5', 6-7 and 9-10' and then five (5) foot intervals thereafter. Tetra Tech inspected the soil samples for lithology characteristics and field screened the samples for conductivity and selected samples for field chlorides. In addition, soil samples were field screened for soil headspace gas survey measurements of the relative concentration of organic vapors in the soil. The Ambient Temperature Headspace (ATH) method was used at the Site for the soil headspace gas survey. The ATH method consists of collecting discrete or composite soil samples from a drilled borehole depth interval and placing the sample in a clean plastic sample bag, leaving a vacant headspace in the top of the bag. The bag was sealed, and after approximately fifteen (15) minutes of ambient temperature storage, the concentration of organic vapors in the sample bag headspace was measured using a photo-ionization detector (PID).

All of the soil samples collected for analyses were preserved in laboratory provided sample containers with standard QA/QC procedures. Samples were shipped under proper chain-of-custody control and analyzed within the standard holding times. Selected soil samples were analyzed for TPH analysis by EPA method 8015 modified and chloride by EPA method 300.0. The laboratory results are summarized in Table 1.

Boreholes Sample Results

Referring to Table 1, all of the soil samples collected from the boreholes BH-3 (AH-8), BH-4 (AH-4), BH-5 (AH-3), BH-8 (AH-15), BH-9 (AH-19 and AH-20), BH-10 (AH-17) and BH-12 (AH-22) did not show any TPH concentrations above the laboratory reporting limit.

In addition, soil samples collected at BH-7 (AH-14) did not show any chloride concentrations above 250 mg/kg. Soil samples collected at BH-10 (AH-17) and BH-11 (AH-21) did show chloride spikes of 4,210 mg/kg and 4,170 mg/kg at 2.0'-3.0' below surface, respectively. However, the chloride concentrations declined with depth to 50.8 mg/kg (BH-10) and 69.5 mg/kg (BH-11) at 19'-20' below surface.

The remaining boreholes; BH-1 (AH-6), BH-2 (AH-7), BH-4 (AH-4), BH-5 (AH-3), and BH-6 (AH-1) did not show chloride concentrations decline below 250 mg/kg at a depth of 24'-25', with concentrations of 286 mg/kg, 455 mg/kg, 1,320 mg/kg, 426 mg/kg, and 370 mg/kg, respectively. Due to shallow groundwater in the area, no samples were collected deeper than 24'-25' below surface.

Additional Soil Sampling - Horizontal Delineation

Additional auger holes were installed approximately 3.0' outside the visible spill foot print in order to horizontally define extents. A total of sixteen (16) auger holes were installed (AH-1 H-horizontal through AH-16 H-horizontal) to depths ranging between 0-2.5' below surface. The auger hole locations are shown on Figure 3. All of the soil samples collected for analyses were preserved in laboratory provided sample containers with standard QA/QC procedures. Samples were shipped under proper chain-of-custody control and analyzed within the standard holding times. Selected soil samples were analyzed for TPH analysis by EPA method 8015 modified and chloride by EPA method 300.0. The laboratory results are summarized in Table 2.

Referring to Table 2, none of the samples collected at auger holes (AH-1H through AH-3H), and (AH-6H through AH-16H) showed chloride concentrations above 250 mg/kg. However, the area of auger hole (AH-4H) showed a chloride concentration of 531 mg/kg at 0'-1' below surface and deeper samples were not collected due to a dense caliche formation in the area. Additionally, the samples collected at auger hole (AH-5H) showed chloride concentrations increasing with depth from <2.00 mg/kg at 0'-1' to 316 mg/kg at 2.0'-2.5' below surface. Based on the field data, an additional step out (AH-8H) was installed for delineation, which showed chloride concentrations <250 mg/kg.

In addition, the samples collected at auger holes (AH-3H, AH-4H, AH5H, AH-12H, AH-13H, AH-14H and AH-15H) showed TPH concentrations ranging from <14.9 mg/kg to 15.0 mg/kg. The area of auger hole (AH-16H) showed a TPH concentration of 825 mg/kg at 0-0.5' below surface; deeper samples were not collected due to a dense caliche formation in the area.

GROUNDWATER INVESTIGATION

Due to the shallow groundwater at the site, the NMOCD requested delineation of the soils for chlorides to 250 mg/kg. In addition, if the chloride concentrations were not defined within 10 feet from the top of groundwater, a monitor well would be required to assess the groundwater qualities for the area. Based on the soil assessment, some of the boreholes were not vertically defined at 24-25' below surface in the areas. The depth to groundwater in the area shows to be approximately 25'-30' below surface.

Based on the borehole results, Globe proposed to install a total of three (3) monitor wells in order to evaluate the groundwater qualities at the site. The areas of BH-1 (AH-6), BH-2 (AH-7), BH-4 (AH-4), BH-5 (AH-3) and BH-6 (AH-1) were not defined below 250 mg/kg at 24-25' below surface. One monitor well was proposed in the area of BH-4 (AH-4), one between the areas of BH-1 (AH-6) and BH-2 (AH-7) and one between BH-5 (AH-3) and BH-6 (AH-1). The proposed monitor well locations are shown on Figure 6.

The approved Work Plan submitted by Tetra Tech dated June 1, 2016, proposed installing three (3) monitor wells in order to evaluate the groundwater qualities at the site. According to the Addendum to the Work Plan submitted by Tetra Tech, dated August 18, 2016, the NMOCD requested one monitor well installed outside of the spill footprint in the area of AH-4 (BH-4), prior to the soil remediation. The location of monitor well (MW-1) is shown in Figure 6.

Monitor Well Installation and Construction

On September 20, 2016, Tetra Tech personnel were onsite to supervise the installation of one (1) permanent monitor well (MW-1). During the installation of the well, Tetra Tech field screened the soil with a PID at 5' to 10' intervals down to 20' below surface to evaluate the subsurface soils. The PID readings ranged between 0.2 and 0.8 ppm. Additionally, the field screened intervals were collected for analyses and preserved in laboratory provided sample containers with standard QA/QC procedures. The samples were shipped under proper chain-of-custody control and analyzed within the standard holding times. Selected soil samples were analyzed for TPH analysis by method 8015 (modified), BTEX by method 8021B, and chloride by EPA method 300.0. The laboratory results are summarized in Table 4. The screening log is included in Appendix C.

Referring to Table 4, the samples collected at 10' and 20' below surface did not show any significant TPH or BTEX concentrations. The samples collected showed chloride concentrations ranging from 193 mg/kg (20') and 294 mg/kg (5').

The monitor well was drilled to 50' below surface using an air rotary rig and constructed with 2-inch diameter, screw threaded, schedule 40 PVC casing and 0.020 inch factory slotted scree. The well screen, thirty (30) feet in length, was installed with approximately 20.0' of screen into the groundwater and 10.0' above the groundwater. The well screen was filter packed with graded (20-40) silica sand, which was placed in the annular space between the borehole wall and the screen to a depth of 2.0' above the screen. Bentonite pellets (hydrated) were placed on top of the sand to complete the well, which was then secured with a locking water tight cap and a steel sleeve around the well. Once completed, the monitor well was properly developed and all of the fluids were contained in an onsite drum for proper disposal. The well drilling log is included in Appendix C. The well construction log is included in Appendix D.

Monitor Well Sampling

On September 22, 2016, Tetra Tech personnel returned to the site measure the depth to water to the nearest 0.01 foot and collect samples. The depth to water was measured to be at 27.95' below surface. Prior to sampling, approximately three (3) casing volumes of water was purged from the well using a dedicated bailer and disposable line. All of the purge water was contained in the onsite drum for proper disposal. The groundwater samples were then labeled and placed in to preserved containers provided by the laboratory and analyzed for BTEX by method 8021B and chlorides by EPA method 300.0. The groundwater sampling results are summarized in Table 5.

Referring to Table 5, the groundwater collected at MW-1 showed BTEX concentrations below the laboratory reporting limit. However, a chloride concentration of 1,610 mg/kg was detected at MW-1.

SOIL REMEDIATION

The NMOCD approved the Addendum to the Work Plan submitted by Tetra Tech dated August 18, 2016. The work plan and the addendum detailed the proposed remediation activities for the impact to the south and to the west of the Globe facility.

On February 27-March 23, 2017, Tetra Tech personnel were onsite to supervise the remediation of the impacted soils. Approximately 4,800 cubic yards were removed and hauled to Sundance Disposal located in Eunice, New Mexico. To prevent vertical migration of the impacted soils, a 40 mil liner was then installed at 5.0' below surface to cap the areas of auger holes (AH-1, AH-2, AH-3, AH-4, AH-6, and AH-7).

Once excavated to the appropriate depth, the areas were backfilled with clean soil to grade. The excavated areas and depths highlighted (green) in Table 1 and shown on Figure 5. The soil remediation details were divided into two areas for simplicity. The South Release Area included the areas of auger holes (AH-1 through AH-14) and the West Release area included the areas of auger holes (AH-15 through AH-24).

During the excavation activities, sidewall samples or bottom hole samples were collected and field screened to confirm the impacted soils with chloride concentrations above 250 mg/kg and TPH concentrations above 100 mg/kg were properly removed from the area. Soil samples were either sampled for TPH and/or chlorides depending on the constituents of concern identified during the investigation. Selected samples were analyzed for chloride by EPA method 300.0 and TPH by method 8021B. Copies of the laboratory analysis chain-of-custody documentation are included in Appendix E. The sidewall sample results are summarized in Table 3. The sidewall sample locations are shown on Figure 5.

South Release Area

The areas of auger holes (AH-1, AH-2, AH-3, AH-7, AH-13, and AH-14) were excavated to depth of 5.0'-5.5' below surface and the area of auger hole (AH-6) was excavated to a depth of 6.0' below surface. In the area of auger hole (AH-4), which showed deeper chloride impact to the soils, the area was excavated to 19.0' below surface. Additionally, the areas of auger holes (AH-8, AH-9, and AH-12) were excavated to a depth of 1.5'-2.0' below surface. In addition, a total of seventeen (17) sidewall samples were collected in the south area of the Globe facility. Figure 5a shows the sample locations and Table 3 summarizes the sampling results.

Referring to Table 3, the sidewall samples collected at sidewalls (BH-3 WSW and BH-3 ESW) showed TPH concentrations below the laboratory reporting limits. The samples collected at sidewalls (AH-9 WSW, AH-9 SSW, BH-6 SSW, BH-5 SSW, BH-2 WSW, BH-1 WSW, BH-1 SSW, BH-7 NSW, BH-7 NWSW, BH-7 SWSW, BH-7 SSW, BH-7 SESW, and BH-7 NESW) showed chloride concentrations ranging from 6.01 mg/kg to 192 mg/kg. However,

the sidewall samples collected to the east of the excavation, along the adjoining property line (BH-1 ESW and BH-2 ESW) showed chloride concentrations of 4,160 mg/kg and 5,840 mg/kg, respectively. Additionally, two (2) bottom hole samples (BH-7 NBH and BH-7 SBH) were collected in the area of borehole (BH-7), which showed chloride concentrations of 54.4 mg/kg and 144 mg/kg, respectively.

West Release Area

The areas of auger holes (AH-19 and AH-20) were excavated to a depth of 6" below surface, the areas of auger holes (AH-15, AH-16, AH-17, AH-22, and AH-23) were excavated to a depth of 1.5'-2.0' below surface. In addition, the area of auger hole (AH-21) was excavated to depth of 3.0' below surface. A total of ten (10) sidewall samples were collected during the excavation of the soils in the west area of the Globe facility. Figure 5b shows the samples and Table 3 summarizes the sampling results.

Referring to Table 3, the sidewall sample collected at (AH-17 WSW) showed a chloride concentration of 152 mg/kg. The samples collected at (BH-8 SSW, BH-8 WSW, BH-8 NSW, AH-17 WSW, AH-20 SSW, AH-20 NSW, BH-12 WSW, AH-22 NWSW, and BH-12 NSW) showed TPH concentrations ranging between <10.0 mg/kg and 106 mg/kg. In the area of (AH-19 WSW) elevated TPH concentrations were detected at the original sidewall location and was then expanded an additional 5', which then showed a sidewall concentration of 275 mg/kg. However, after the area was expanded further, a TPH concentration of 548 mg/kg was detected. Further excavation was not performed in this area due to the area sloping uphill and the impact does not appear to be related to the release.

Additionally, two (2) bottom hole samples (AH-17 BH and BH-11 BH) were collected in the areas of AH-17 and BH-11 to confirm the impacted materials were properly removed. The sample collected at (AH-17 BH) showed a chloride concentration of 76.2 mg/kg and the sample collected at (BH-11 BH) showed a TPH concentration of <10.0 mg/kg.

CONCLUSIONS

Soil Remediation

Approximately 4,800 cubic yards were removed and hauled to Sundance Disposal located in Eunice, New Mexico. All of the impacted soils on Chevron property have been properly removed to the appropriate or proposed depths, including the spill footprint. In addition, the areas of auger holes (AH-1, AH-2, AH-3, AH-4, AH-6, and AH-7) were capped with a 40 mil liner to prevent vertical migration of the deeper impact.

Based on the remediation activities performed at the site, Globe requests closure of the soils issue on the Chevron property. The final C-141 form is included in Appendix A. However, the impacted soils (south area) encountered along the adjoining property line (BH-1 ESW and BH-2 ESW) showed chloride concentration of 4,160 mg/kg and 5,840 mg/kg, respectively. These impacted soils will be properly addressed to assess and proper removal of the impacted soil.

RECOMMENDATIONS

Proposed Monitor Well Installation and Construction

As was approved in the Work Plan submitted by Tetra Tech, dated June 1, 2016, two additional monitor wells are proposed to be installed at the site. One monitor well is proposed to be installed between the areas of BH-1 (AH-6) and BH-2 (AH-7) and one monitor well to be installed between the areas of BH-5 (AH-3) and BH-6 (AH-1). Prior to the installation of the monitor wells, appropriate permits will be obtained from the New Mexico Office of the State Engineer (NMOSE).

Tetra Tech will supervise the installation of permanent monitor wells to a total depth of approximately 40-45' below surface using an air rotary rig. The monitor wells will be constructed of 2-inch diameter, screw threaded, schedule 40 PVC casing and 0.020 inch factory slotted screen. The well screens, approximately twenty (20) feet in length, will be installed with approximately 15.0' of screen into the groundwater and 5.0' above the groundwater. The well screens will be filter packed with graded (20-40) silica sand, which will be placed in the annular space between the borehole wall and screen to a depth of approximately two (2) feet above the screen. Bentonite pellets (hydrated) will be placed on top of the sand to complete the well. The wells will be secured with a locking water tight cap, and a steel sleeve will be placed around the well. In addition, the monitor wells (3) will be surveyed by a licensed professional surveyor.

Once completed, the monitor wells will be properly developed and all of the fluids will be contained in drums for proper disposal. At the time of sampling, the well caps will be opened and water level measurements will be collected from the top of the casing. The depth to water measurements will be recorded to the nearest 0.01 foot.

Prior to sampling, approximately three (3) casing volumes of water will be purged from each well using a dedicated bailer and disposable line. All water generated for the purging will be contained in drums for proper disposal. The groundwater samples will be placed into labeled and preserved containers provided by the laboratory and analyzed for chlorides by EPA method 300.0 and BTEX by EPA Method 8021B.

Proposed Soil Investigation - Off Site

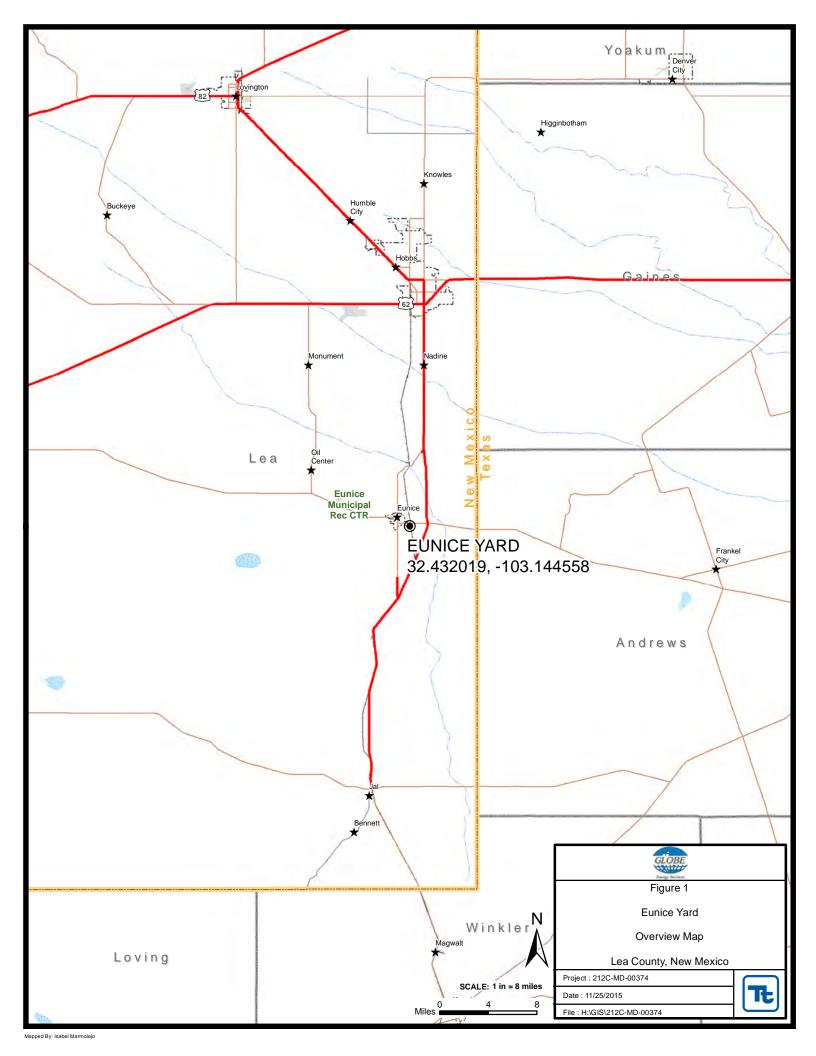
Tetra Tech will investigate the impacted soils along the east property line in the area of (BH-1 ESW) and (BH-2 ESW), which were identified during the excavation when the east sidewall samples were collected along the east property line. The property owner will be contacted to collect soil samples for proper removal of the impacted soils. Soil samples will be collected from the area to assess the soil for chlorides. Once the area is assessed, a work plan will be submitted to the NMOCD for review and approval.

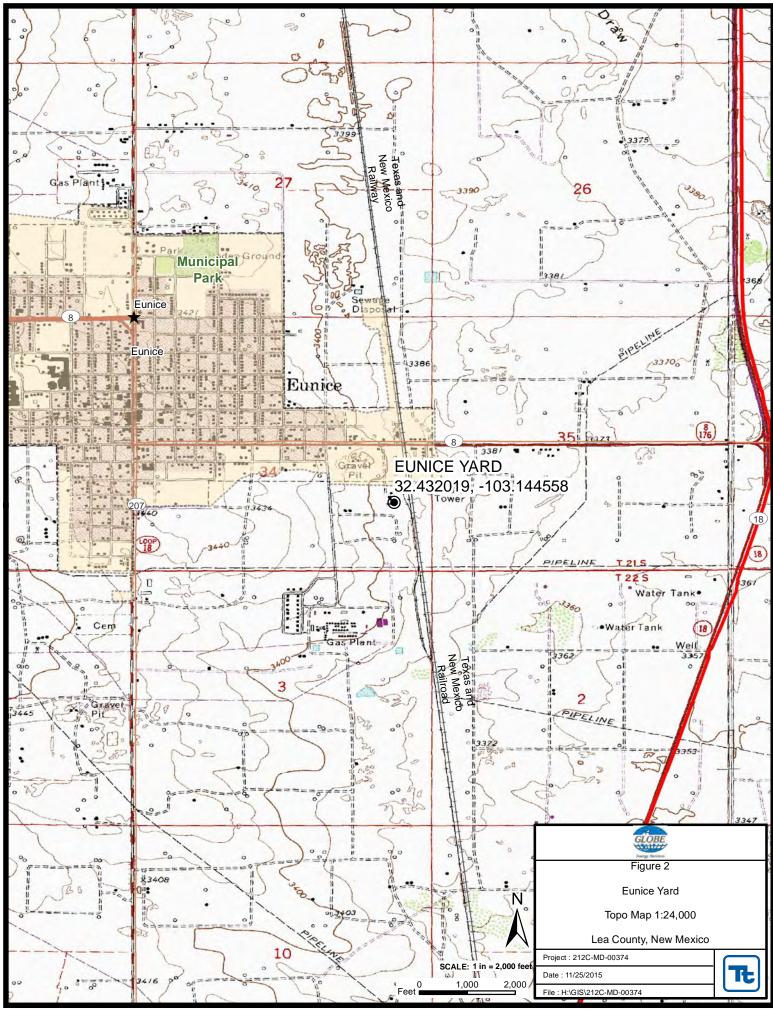
EVALUATION AND REPORTING

Once the proposed monitor wells are installed and the soil assessment is completed, Tetra Tech will assemble all of the data and prepared a report/work plan. The report/work plan will contain discussions of all of the soil and groundwater investigation activities, evaluation and recommendations. If you require any additional information or have any questions or comments concerning this work plan, please call at (432) 682-4559.

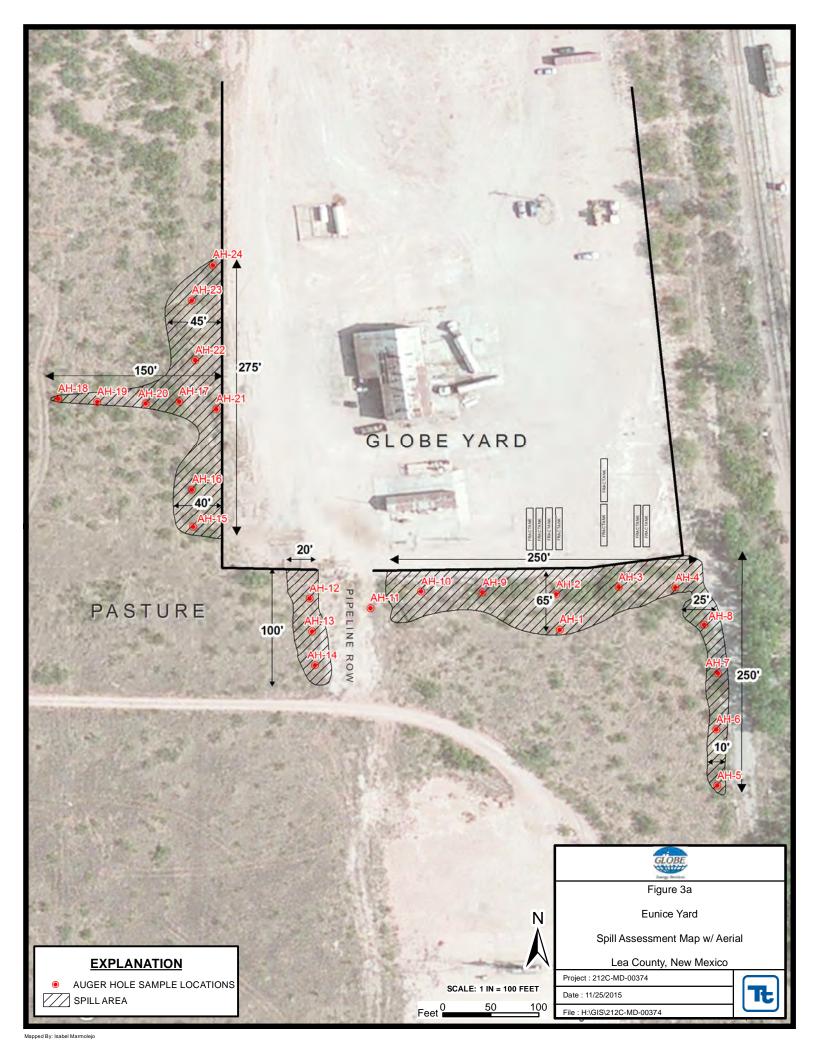
Respectfully submitted, TETRA TECH

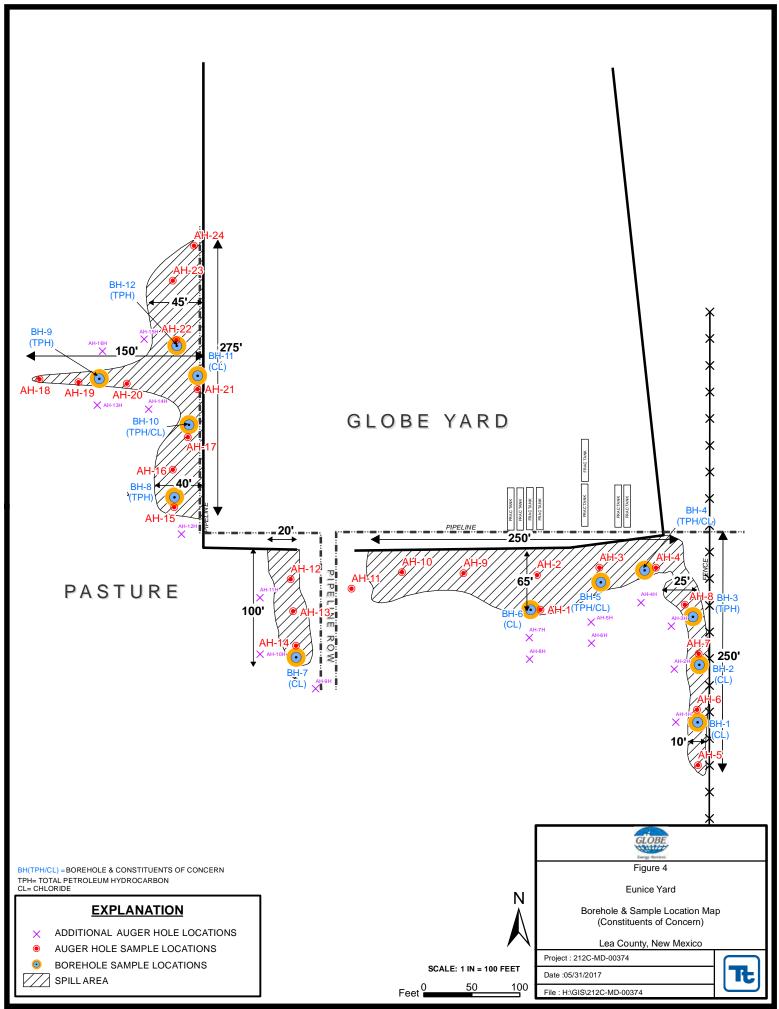
4 TS

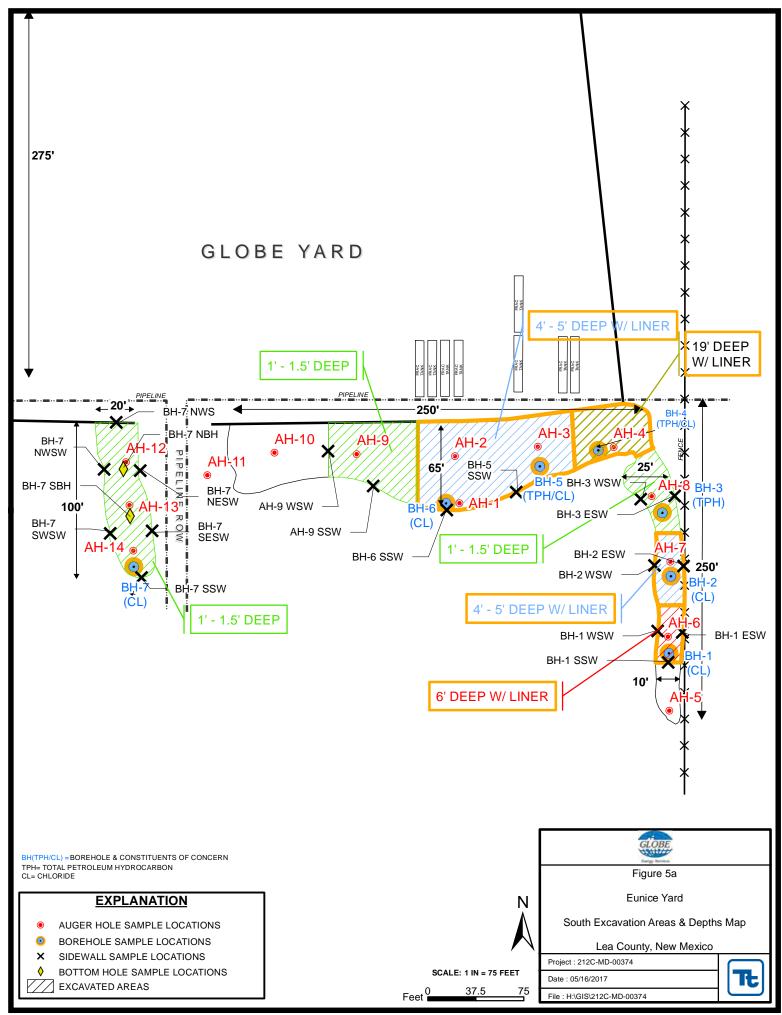

Ike Tavarez, P.G. Project Manager/Senior Geologist

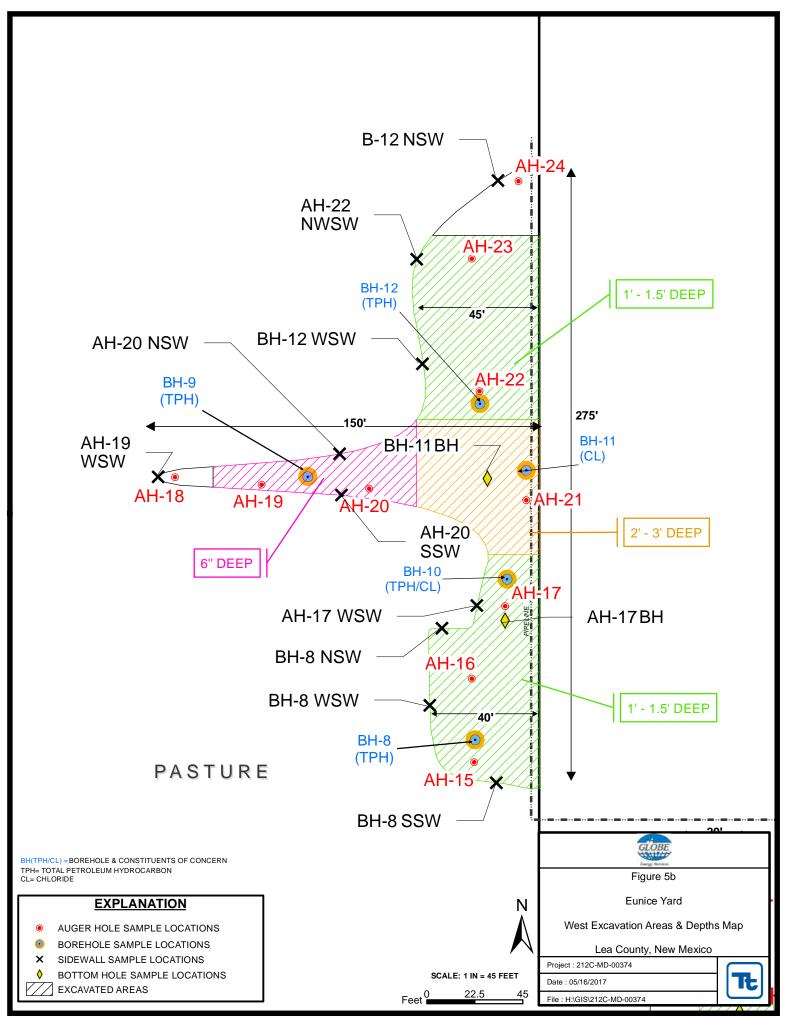

alos

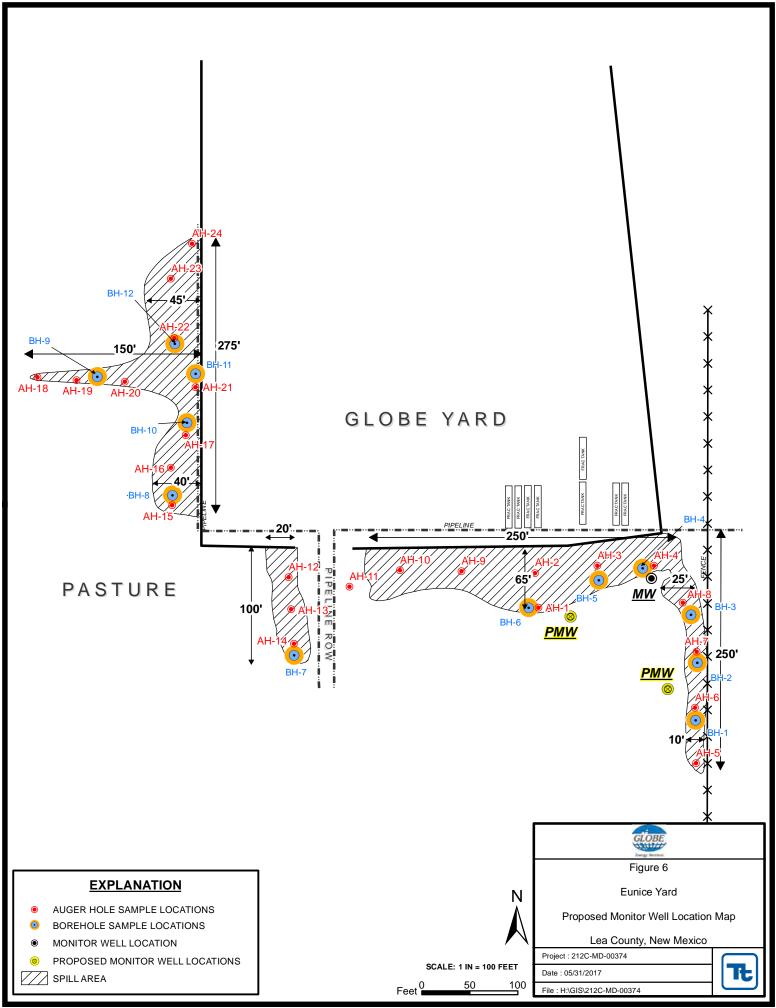

Clair Gonzales, Geologist


cc: Tommy Morris -Globe Kegan Boyer - Chevron


Figures







Tables

		Sample	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	11/19/2015	0-1		Х	<15.0	350	<15.0	350	<0.00101	<0.00202	<0.00101	<0.00101	<0.00101	320
	"	1-1.5		Х	16.6	<15.0	<15.0	16.6	-	-	-	-	-	1,020
	I	2-2.5		Х	-	-	-	-	-	-	-	-	-	4,590
BH-6	1/21/2016	0-1		Х	-	-	-	-	-	-	-	-	-	525
	"	2-3		Х	-	-	-	-	-	-	-	-	-	3,700
	"	4-5		Х	-	-	-	-	-	-	-	-	-	7,630
	"	6-7	Х		-	-	-	-	-	-	-	-	-	1,920
	"	9-10	Х		-	-	-	-	-	-	-	-	-	1,620
	"	14-15	Х		-	-	-	-	-	-	-	-	-	720
	"	19-20	Х		-	-	-	-	-	-	-	-	-	235
	"	24-25	Х		-	-	-	-	-	-	-	-	-	370
AH-2	11/19/2015	0-1		Х	<14.9	<14.9	<14.9	<14.9	-	-	-	-	-	3,080
	"	1-1.5		Х	-	-	-	-	-	-	-	-	-	2,800
AH-3	11/19/2015	0-1		Х	<15.0	826	<15.0	826	<0.00166	<0.00332	<0.00166	<0.00166	<0.00166	625
BH-5	1/20/2016	0-1		Х	-	-	-	-	-	-	-	-	-	133
	"	2-3		Х	<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	7,070
	"	4-5		Х	-	-	-	-	-	-	-	-	-	3,150
	"	6-7	Х		-	-	-	-	-	-	-	-	-	1,340
	"	9-10	Х		-	-	-	-	-	-	-	-	-	234
	"	14-15	Х		-	-	-	-	-	-	-	-	-	146
	"	19-20	Х		-	-	-	-	-	-	-	-	-	44.2
	n	24-25	Х		-	-	-	-	-	-	-	-	-	426

		Sample	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-4	11/19/2015	0-1		Х	116	2,690	<74.9	2,810	<0.00101	<0.00202	<0.00101	<0.00101	<0.00101	676
	"	1-1.5		Х	<15.0	183	38.7	222	-	-	-	-	-	971
	n	2-2.5		Х	<15.0	223	79.5	303	<0.00101	<0.00202	<0.00101	<0.00101	<0.00101	4,080
	"	2.5-3		Х	<15.0	133	33.7	167	-	-	-	-	-	5,190
BH-4	1/20/2016	0-1		Х	-	-	-	-	-	-	-	-	-	4,880
	н	2-3		Х	-	-	-	-	-	-	-	-	-	6,460
	н	4-5		Х	<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	9,060
	"	6-7		Х	-	-	-	-	-	-	-	-	-	6,570
	"	9-10		Х	-	-	-	-	-	-	-	-	-	10,200
	n	14-15		Х	-	-	-	-	-	-	-	-	-	10,100
	"	19-20		Х	-	-	-	-	-	-	-	-	-	3,780
	"	24-25	Х		-	-	-	-	-	-	-	-	-	1,320
AH-5	11/19/2015	0-1		Х	<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	110
	н	1-1.5		Х	-	-	-	-	-	-	-	-	-	32.2
	н	2-2.5		Х	-	-	-	-	-	-	-	-	-	70.9
	n	2.5-3		Х	-	-	-	-	-	-	-	-	-	29.7
AH-6	11/19/2015	0-1		Х	<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	3,050
BH-1	1/20/2016	0-1		Х	-	-	-	-	-	-	-	-	-	11.4
	"	2-3		Х	-	-	-	-	-	-	-	-	-	2,740
	"	4-5		Х	-	-	-	-	-	-	-	-	-	8,850
	"	6-7		Х	-	-	-	-	-	-	-	-	-	2,960
	"	9-10	Х		-	-	-	-	-	-	-	-	-	217
	"	14-15	Х		-	-	-	-	-	-	-	-	-	840
	"	19-20	Х		-	-	-	-	-	-	-	-	-	505
	"	24-25	Х		-	-	-	-	-	-	-	-	-	286

		Sample	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-7	11/19/2015	0-1		Х	<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	588
BH-2	1/20/2016	0-1		Х	-	-	-	-	-	-	-	-	-	2,360
	"	2-3		Х	-	-	-	-	-	-	-	-	-	8,890
	n	4-5		Х	-	-	-	-	-	-	-	-	-	2,030
	"	6-7	Х		-	-	-	-	-	-	-	-	-	619
	"	9-10	Х		-	-	-	-	-	-	-	-	-	338
	II	14-15	Х		-	-	-	-	-	-	-	-	-	381
	H	19-20	Х		-	-	-	-	-	-	-	-	-	99.0
	n	24-25	Х		-	-	-	-	-	-	-	-	-	455
AH-8	11/19/2015	0-1		Х	107	1,260	<74.7	1,370	<0.00164	<0.00328	<0.00164	<0.00164	<0.00164	44.1
BH-3	1/21/2016	0-1		Х										
	"	2-3		Х	<14.9	<14.9	<14.9	<14.9	-	-	-	-	-	-
	"	4-5	Х											
	II	6-7	Х											
	п	9-10	Х											
AH-9	11/19/2015	0-1		Х	<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	1,370
	I	1-1.5		Х	-	-	-	-	-	-	-	-	-	32.6
AH-10	11/19/2015	0-1	Х		<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	215
AH-11	11/19/2015	0-1	Х		<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	64.4
	II	1-1.5	Х		-	-	-	-	-	-	-	-	-	69.3
AH-12	11/19/2015	0-1		Х	<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	1,230
AH-13	11/19/2015	0-1		Х	<14.9	<14.9	<14.9	<14.9	-	-	-	-	-	610

		Sample	Soil S	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-14	11/19/2015	0-1		Х	<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	1,340
BH-7	1/21/2016	0-1		Х	-	-	-	-	-	-	-	-	-	15.3
	"	2-3		Х	-	-	-	-	-	-	-	-	-	41.5
	"	4-5		Х	-	-	-	-	-	-	-	-	-	8.38
AH-15	11/19/2015	0-0.5		Х	<15.0	566	<15.0	566	<0.000992	<0.00198	<0.000992	<0.000992	<0.000992	8.83
BH-8	1/21/2016	0-1		Х										
	"	2-3		Х	<14.9	<14.9	<14.9	<14.9	-	-	-	-	-	-
	"	4-5	Х											
	"	6-7	Х											
	"	9-10	Х											
AH-16	11/19/2015	0-1		Х	<15.0	387	<15.0	387	<0.00101	<0.00201	<0.00101	<0.00101	<0.00101	20.4
	"	1-1.5		Х	<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	36.5
AH-17	11/19/2015	0-1		Х	<15.0	283	<15.0	283	-	-	-	-	-	3,210
BH-10	1/21/2016	0-1		Х	-	-	-	-	-	-	-	-	-	131
	н	2-3		Х	<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	4,210
	"	4-5	Х		-	-	-	-	-	-	-	-	-	259
	н	6-7	Х		-	-	-	-	-	-	-	-	-	128
	n	9-10	Х		-	-	-	-	-	-	-	-	-	254
	н	14-15	Х		-	-	-	-	-	-	-	-	-	196
	н	19-20	Х		-	-	-	-	-	-	-	-	-	50.8
	"	24-25	Х		-	-	-	-	-	-	-	-	-	76.1

		Sample	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-18	11/19/2015	0-0.5		Х	<15.0	24.7	<15.0	24.7	-	-	-	-	-	47.9
AH-19	11/19/2015	0-0.5		Х	<15.0	224	<15.0	224	-	-	-	-	-	14.6
BH-9 (AH-19 & AH-20)	1/21/2016	0-1		Х										
	"	2-3	Х		<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	-
	"	4-5	Х											
	"	6-7	Х											
	н	9-10	Х											
AH-20	11/19/2015	0-0.5		Х	<15.0	299	<15.0	299	-	-	-	-	-	36.8
AH-21	11/19/2015	0-1		Х	<15.0	320	<15.0	320	<0.000996	<0.00199	<0.000996	<0.000996	<0.000996	15.4
	н	1-1.5		Х	<15.0	36.7	<15.0	36.7	-	-	-	-	-	727
BH-11	1/21/2016	0-1		Х	-	-	-	-	-	-	-	-	-	<2.00
	"	2-3		Х	-	-	-	-	-	-	-	-	-	4,170
	"	4-5	Х		-	-	-	-	-	-	-	-	-	82.2
	"	6-7	Х		-	-	-	-	-	-	-	-	-	14.3
	"	9-10	Х		-	-	-	-	-	-	-	-	-	78.0
	"	14-15	Х		-	-	-	-	-	-	-	-	-	40.7
	"	19-20	Х		-	-	-	-	-	-	-	-	-	69.5
AH-22	11/19/2015	0-1		Х	<14.9	530	<14.9	530	<0.00101	<0.00202	<0.00101	<0.00101	<0.00101	8.36
	"	1-1.5		Х	<15.0	375	<15.0	375	<0.00164	<0.00329	<0.00164	<0.00164	<0.00164	7.64
BH-12	1/21/2016	2-3		Х	<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	-
AH-23	11/19/2015	0-1		Х	<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	345
	"	1-1.5		Х	-	-	-	-	-	-	-	-	-	284
	"	2-2.5	Х		-	-	-	-	-	-	-	-	-	104
AH-24	11/19/2015	0-1	Х		<15.0	<15.0	<15.0	<15.0	-	-	-	-	-	30.5

Not Analyzed

Excavation Depths

212C-MD-00374 Xenco Labs

Liner Depth

Table 2Globe EnergyGlobe Eunice FaciltySoil Assessment - Horizontal Delineation

Lea County, New Mexico

Commite ID	Comula Data	Sample	Soil	Status		TPH (mg/kg)		Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)
AH-1 horizontal	1/21/2016	0-1	Х		-	-	-	-	2.33
AH-2 horizontal	1/21/2016	0-1	Х		-	-	-	-	<2.00
	II	1-1.5	Х		-	-	-	-	2.93
AH-3 horizontal	1/21/2016	0-1	Х		<14.9	<14.9	<14.9	<14.9	-
AH-4 horizontal	1/21/2016	0-1	Х		<15.0	<15.0	<15.0	<15.0	531
AH-5 horizontal	1/21/2016	0-1	Х		<15.0	<15.0	<15.0	<15.0	<2.00
	"	1-1.5	Х		-	-	-	-	3.45
	I	2-2.5	Х		-	-	-	-	316
AH-6 horizontal	1/21/2016	0-1	Х		-	-	-	-	2.80
	"	1-1.5	Х		-	-	-	-	<2.00
	I	2-2.5	Х		-	-	-	-	4.00
AH-7 horizontal	1/21/2016	0-1	Х		-	-	-	-	30.1
	II	1-1.5	Х		-	-	-	-	216
AH-8 horizontal	1/21/2016	0-1	Х		-	-	-	-	3.58
	"	1-1.5	Х		-	-	-	-	8.93

Table 2Globe EnergyGlobe Eunice FaciltySoil Assessment - Horizontal DelineationLea County, New Mexico

TPH (mg/kg) Soil Status Chloride Sample Sample ID Sample Date Depth (ft) (mg/kg) In-Situ Removed GRO DRO ORO Total AH-9 horizontal 1/21/2016 Х 5.52 0-1 ----.... 1-1.5 Х 9.80 ----AH-10 horizontal 1/21/2016 0-1 Х 11.3 ----. 1-1.5 Х ----18.9 AH-11 horizontal 1/21/2016 0-1 Х 3.34 ----1/21/2016 <14.9 AH-12 horizontal 0-1 Х <14.9 <14.9 <14.9 -1/21/2016 Х <15.0 <15.0 <15.0 AH-13 horizontal 0-0.5 <15.0 4.31 1/21/2016 <15.0 AH-14 horizontal 0-0.5 Х 15.0 <15.0 15.0 18.8 Х AH-15 horizontal 1/21/2016 0-1 <15.0 <15.0 <15.0 <15.0 <2.00 " 1-1.5 Х ----<2.00 AH-16 horizontal 1/21/2016 0-0.5 Х 23.4 711 91.0 2.62 825

(-) Not Analyzed

212C-MD-00374 Xenco Labs

Table 3

Globe Energy

Globe Eunice Yard

Soil Remediation - Confirmation Sampling

Lea County, New Mexico

Sample ID	Sample Date	Sample	BEB Sample	Soil	Status		TPH (mg/kg)		Chloride
Sample ID	Sample Date	Depth (ft)	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)
		So	uth Excav	ation A	rea			-		-
BH-1 East Sidewall	3/14/2017	-	-	Х		-	-	-	-	4,160
BH-1 West Sidewall	3/14/2017	-	-	Х		-	-	-	-	48.0
BH-1 South Sidewall	3/15/2017	-	-	Х		-	-	-	-	192
BH-2 West Sidewall	3/14/2017	-	-	Х		-	-	-	-	48.0
BH-2 East Sidewall	3/14/2017	-	-	Х		-	-	-	-	5,840
BH-3 West Sidewall	3/14/2017	-	-	Х		<10.0	<10.0	<10.0	<10.0	-
BH-3 East Sidewall	3/14/2017	-	-	Х		<10.0	<10.0	<10.0	<10.0	-
BH-5 South Sidewall	3/15/2017	-	-	Х		-	-	-	-	96.0
BH-6 South Sidewall	3/15/2017	-	-	Х		-	-	-	-	144
AH-9 South Sidewall	3/14/2017	-	-	Х		-	-	-	-	32.0
AH-9 West Sidewall	3/14/2017	-	-	Х		-	-	-	-	80.0
BH-7 Bottom Hole North	3/3/2017	-	1.5	Х		-	-	-	-	54.4
BH-7 South West Sidewall	3/3/2017	-	-	Х		-	-	-	-	6.61
BH-7 North West Sidewall	3/3/2017	-	-	Х		-	-	-	-	6.01
BH-7 South Sidewall	3/3/2017	-	-	Х		-	-	-	-	5.47
BH-7 North Sidewall	3/3/2017	-	-	Х		-	-	-	-	68.7
BH-7 North East Sidewall	3/3/2017	-	-	Х		-	-	-	-	12.4
BH-7 South East Sidewall	3/8/2017	-	-	Х		-	-	-	-	192
BH-7 South Sidewall	3/8/2017	-	-	Х		-	-	-	-	144
BH-7 South Bottom Hole	3/8/2017	-	5.5	Х		-	-	-	-	144

Table 3

Globe Energy

Globe Eunice Yard

Soil Remediation - Confirmation Sampling

Lea County, New Mexico

		Sample	BEB	Soil	Status		TPH (mg/kg)		Chloride
Sample ID	Sample Date	Depth (ft)	Sample Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)
		W	est Excava	ation Ar	ea					
BH-8 North Sidewall	3/1/2017	-	-	Х		<15.0	<15.0	<15.0	<15.0	-
BH-8 West Sidewall	3/1/2017	-	-		Х	<15.0	308	62.2	370	-
	3/8/2017	-	-	Х		<10.0	37.4	68.3	106	-
BH-8 South Sidewall	3/1/2017	-	-		Х	<15.0	178	30.5	209	-
	3/8/2017	-	-	Х		<10.0	<10.0	<10.0	<10.0	-
BH-11 Bottom Hole	3/8/2017	-	2.0		Х	<10.0	185	246	431	112
	3/10/2017		2.5		Х	<10.0	141	171	312	-
	3/20/2017		3.0	Х		<10.0	<10.0	<10.0	<10.0	-
BH-12 North Sidewall	3/8/2017	-	-	Х		<10.0	14.6	17.1	31.7	-
BH-12 West Sidewall	3/8/2017	-	-	Х		<10.0	<10.0	<10.0	<10.0	-
AH-17 West Sidewall	3/1/2017	-	-		Х	<15.0	952	209	1,160	152
	3/8/2017	-	-		Х	<10.0	161	191	352	-
	3/10/2017	-	-	Х		<10.0	<10.0	<10.0	<10.0	-
AH-17 Bottom Hole	3/1/2017	-	2.0	Х		-	-	-	-	76.2
AH-19 West Sidewall	3/1/2017	-	-		Х	<15.0	808	218	1,030	-
	3/8/2017	-	-		Х	<10.0	113	162	275	-
	3/10/2017	-	-	Х		<50.0	239	309	548	-
AH-20 North Sidewall	3/1/2017	-	-		Х	<15.0	1,680	395	2,080	-
	3/8/2017	-	-		Х	<10.0	133	175	308	-
	3/10/2017	-	-		Х	<50.0	311	370	681	-
	3/20/2017	-	-	Х		<10.0	<10.0	<10.0	<10.0	-
AH-20 South Sidewall	3/1/2017	-	-		Х	<15.0	1,610	380	1,990	-
	3/8/2017	-	-		Х	<10.0	422	478	900	-
	3/10/2017	-	-		Х	<50.0	170	219	389	-
	3/20/2017	-	-	Х		<10.0	<10.0	<10.0	<10.0	-
AH-22 North West Sidewall	3/1/2017	-	-		Х	<15.0	375	108	483	-
	3/5/2017	-	-	Х		<10.0	<10.0	<10.0	<10.0	-

(-)

Not Analyzed

Excavated Areas

Table 4 Globe Energy Services Eunice Yard MW-1 - Soils Analysis Lea County, New Mexico

		Sample	Soil	Status	٦	FPH (mg/k	g)	Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MW-1	9/20/2016	5	Х		-	-	-	-	-	-	-	-	294
	"	10	Х		<15.0	<15.0	<15.0	<0.00149	<0.00149	<0.00149	<0.00199	<0.00149	197
	"	15	Х		-	-	-	-	-	-	-	-	239
	"	20	Х		<15.0	21.9	21.9	<0.00149	<0.00149	<0.00149	<0.00198	<0.00149	193

(-) Not Analyzed

Table 5 Globe Energy Services MW-1 - Groundwater Analysis Eunice Yard Lea County, New Mexico

Chloride Ethlybenzene Total BTEX Benzene Toluene Xylene Sample ID Sample Date (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) MW-1 9/22/2016 < 0.00200 <0.00150 < 0.00200 < 0.00200 <0.00150 1,610

Photos

View West – Area of AH-1 and AH-2

View East – Area of AH-4

Globe Energy Eunice NM Yard Lea County, New Mexico

View South – Area of AH-7 and AH-8

View South– Area of AH-5 and AH-6

Globe Energy Eunice NM Yard Lea County, New Mexico

View South – Area of AH-12, AH-13 and AH-14

View Northeast – Area of AH-15 and AH-16

Globe Energy Eunice NM Yard Lea County, New Mexico

View West - Area of AH-17, AH-18 and AH-19

View Northeast - Area of AH-22, AH-23, and AH-24

View East – Area of BH-1

View East – Area of BH-2

View North – Area of BH-3

View West – Area of BH-4

View North – Area of BH-5

View North – Area of BH-6

Globe Energy Eunice NM Yard Lea County, New Mexico

View East – Area of BH-8

View North – Area of BH-10, BH-11, and BH-12

View West – Area of BH-9

View North – Area of MW-1

View South - Excavated Area of BH-1

View South - Excavated Area of BH-2 and BH-3

View East - Excavated Area of BH-4

View East - Excavated Area of BH-5

View Southeast – Excavated Area of BH-6

View West - Excavated Area of AH-9

View South - Excavated Area of BH-7

View South – Lined Area of BH-1 and BH-2

View Northeast - Lined Area of BH-4

View West - Lined Area of BH-5 and BH-6

View South - Backfilled Area of BH-1, BH-2, and BH-3

View East - Backfilled Area of BH-4, BH-5, and BH-6

TETRA TECH

View Southwest - Backfilled Area of AH-9

View South - Backfilled Area of BH-7

View South - Excavated Area of AH-15 and AH-16

View South - Excavated Area of AH-17 and AH-21

View West- Excavated Area of AH-19 and AH-20

View North – Excavated Area of AH-22 and AH-23

View North – Excavated Area of AH-22 and AH-23

View South – Backfilled Area of AH-15 and AH-16

View South – Backfilled Area of AH-17

View North - Backfilled Area of AH-21

View West - Backfilled Area of AH-19 and AH-20

View North – Backfilled Area of AH-22 and AH-23

Appendix A

District.1 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Ariesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

34

1

RECEIVED State of New Mexic Energy Minerals and Natural

By JKeyes at 3:27 pm, Nov 05, 2015

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

			Rele	ase Notifi	cation and C	orrective A	ction			
					OPERA	TOR	🖂 Initi	al Report	F	inal Report
Name of C	ompany: 4	Globe Energ	y Service	25	Contact: T	ommy Morris				
Address: 11	13 Texas /	ve. Eunice,	NM 882	31	Telephone	No.: (325) 207-	7775			
Facility Na	me: Euni	ce Fluid Ser	vices		Facility Ty	e: Fluid Haul	ing			
Surface Ov	mer: Che	vron USA h	nc.	Mineral (Dwner		API No),		
				LOC	ATION OF RE	LEASE				
Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County		

415	3/12	in the second	the second second	internet and	 Lea
				the second second second	
					 -

Latitude 32.43356300 Longitude -103.14468400

	E OF RELEASE		
ype of Release: Produced Water	Volume of Release: Unknown		Recovered: None
ource of Release: Frac Tanks	Date and Hour of Occurrence: Unknown		Hour of Discovery: 26 th , 2015
/as Immediate Notice Given? ⊠ Yes □ No □ Not Requir	If YES, To Whom? Jamie Keyes		
y Whom? Tommy Morris	Date and Hour: October 26th, 2	015	
′as a Watercourse Reached? □ Yes ☑ No	If YES. Volume Impacting the V N/A	atercourse.	
a Watercourse was Impacted, Describe Fully.* /A			
escribe Cause of Problem and Remedial Action Taken.* elease of produced water from frac tanks that were being stored igrated offsite onto the adjacent property. Tetra Tech will sam mediation plan to the NMOCD prior to any significant remediat	ple the areas of concern to evaluate i		
he area of concern affected is South of Globe Energy's property is hereby certify that the information given above is true and complete is gulations all operators are required to report and/or file certain releas- iblic health or the environment. The acceptance of a C-141 report by	o the best of my knowledge and under e notifications and perform corrective the NMOCD marked as "Final Repor	actions for rel "does not rel	eases which may endanger leve the operator of liability
ould their operations have failed to adequately investigate and remect the environment. In addition, NMOCD acceptance of a C-141 repor- deral, state, or local laws and/or regulations.	liate contamination that pose a threat of rt does not relieve the operator of respo	a ground wate onsibility for c	r, surface water, homan healt ompliance with any other
gnature:	OIL CONSEI		
inted Name: Tommy Morris	Approved by Environmental Specia	alist: Jan	L'hye
	Approval Date: 11/05/2015	Expiration	01/06/2015 Date:
ue: HSE Director	a set of the set		
nnail Address: tommy.morris@ges/lc.com ate: //-5-15 Phone: 325-207-7775	Conditions of Approval: Discrete site samples required. Deli remediate per NMOCD guidelines.		Attached IRP 3960

Appendix B

Water Well Data Average Depth to Groundwater (ft) Globe Eunice Facility Lea County, New Mexico

		2	0 So	outh	37	East	
6	37	5	38	4 <mark>22</mark>	3	2	1
7	36	8	35	9	10	11	12
18		17		16	15	14	13 78
19 <mark>35</mark>		20		21	22	23	24
30		29		28 40	27	26	25
31		32		33 198	34	35	36

	38 East	outh	20 South		
6	2 1	4	5	6	
7	11 1	9	8	7	
8	14 1	16	17	18	
19	23 2	21	20	19	
30	26 2	28	29	30	
31	35 3	33	32	31	

20 South 39 East							
6	5	4					
7	8	9					
18	17	16					
19	20	21					
30	29	28					
31	32	33					

	21 So	outh	36 East			
6	5	4	3	2	1	
7	8	9	10 200	11	12	
18 106	17	16 195	15	14	13	
19	20	21	22	23 130 1 50	24	
30	29	28	27	26 1 50	25 148	
31	32	33	34	35	36	

	21 So	outh	37	East	
6 73	5	4 75	3	2	1
7	8	9	10	11	12
18	17 71	16 70	15	14	13
19	20 <mark>98</mark>	21	22 53	23	24
30	29 85	28 71	27 76	26	25
31	32	33 100	34 29	35 48	36

19	20	21
30	29	28
31	32	33
	uth 38	East
6	5	4
7	8	9
18	17	16
19	20	21
30	29	28

36 E 22 South 3 10 9 18 17 16 15 170 19 20 21 22 22 27

28

33

36 E	East			22 S	(
3	2	1	6	5 85	
		137			
10	11	12	7	8	
15	14	13	18	17	
			190		
22	23	24	19	20	ŀ
22					
27	26	25	30	29	ŀ
160		118			
34	35 181	36	31	32	ľ

	22 S	outh		37	East
E	05	4	2		2

6	5 <mark>85</mark>	4	3	2	1
7	8	9 <mark>90</mark>	10	11	12
18	17	16	15	14	13
190			125	65	
19	20	21	22	23	24
		65			60
30	29	28	27	26	25
			53	65	
31	32	33	34	35	36

22 Soi	uth	38	East	
6	5		4	

32

33

7	8	9
18	17	16
19	20	21
30	29	28
31	32	33

88 New Mexico State Engineers Well Reports

105 USGS Well Reports

29

32

30

31

90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)

- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level

143 NMOCD Groundwater map well location

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replace O=orphaned C=the file is closed)	ed, , (quai						IE 3=SW		3 UTM in meters)	(In feet	:)
POD Number	POD Sub- Code basin	County			Q i 4		Tws	Rng	x	Y	and the second s	Contraction of the local division of the loc	Water Column
CP 00835		LE					21\$		673454	3589786* 💮	145		
CP 00943 POD1		LE	1	3	1	34	21S	37E	673166	3590405 🌍	142		
CP 01145 POD1		LE	2	2	2	34	21S	37E	674514	3590848 🌍	90		
CP 01358 POD1		LE	2	1	4	34	21S	37E	674134	3589539 🕘	65	48	17
CP 01358 POD2		LE	4	4	2	34	21S	37E	674497	3589676 🏐	42	29	13
CP 01358 POD3		LE	4	4	1	34	21S	37E	674434	3589782 🌍	45	32	13
CP 01358 POD4		LE	4	2	3	34	21S	37E	674307	3589974 🌑	45	40	5
CP 01358 POD5		LE	4	2	1	34	21S	37E	674306	3590035 🔴	58	41	17
CP 01358 POD6		LE	4	2	3	34	21S	37E	674271	3589921 🌍	26		
										Average Depth	o Water:	38 fe	eet
										Minimu	m Depth:	29 fe	eet
										Maximu	n Depth:	48 fe	eet

PLSS Search:

Section(s): 34

Township: 21S

Range: 37E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW###### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)								VE 3=SW		3 UTM in meters)		(In feet)
	POD Sub-		0	0	Q						-	
POD Number	Code basin Co	ounty					: Tws	Rng	x	Y		Depth Water Water Column
CP 00014	L	.E	1	3	2	23	215	37E	675492	3593749* 🏐	84	
CP 00017	L	E	2	1	2	27	21S	37E	674106	3592513* 🌍	101	
<u>CP 00111</u>	L	.E		2	3	36	21S	37E	676864	3590052* 🌍	90	
CP 00133	L	.E	2	2	4	35	21S	37E	676159	3590137* 🌍	80	
CP 00134	L	.E	1	1	1	24	21S	37E	676289	3594166* 🏐	85	
CP 00137	L	.E	2	2	1	13	21S	37E	676862	3595783* 🌒	65	
CP 00138	L	.E	3	2	2	35	21S	37E	675944	3590741* 🌍	70	
<u>CP 00162</u>	L	.E	1	4	2	09	21S	37E	672621	3596915* 🌑	120	
CP 00163	L	.E	1	4	2	09	21S	37E	672621	3596915* 🌍	120	
CP 00164	L	E.	2	1	1	21	21S	37E	671665	3594080* 💨	120	
CP 00197	Ļ	.E	1	4	1	01	21S	37E	676611	3598599* 🌍	85	
CP 00212	L	.E	2	2	1	14	21S	37E	675254	3595753* 🌑	46	
<u>CP 00214</u>	L	.E	2	1	4	35	21S	37E	675757	3590129* 🛞	80	
CP 00220	L	E	1	1	3	25	21S	37E	676332	3591753* 🕘	75	
CP 00221	L	E	2	1	3	35	21S	37E	674953	3590115* 🚳	290	
CP 00223	L	E	3	2	4	35	21S	37E	675959	3589937* 🌍	110	
CP 00224	L	E	4	3	3	23	21S	37E	674902	3592730* 🏐	96	
CP 00225	L	Е	2	2	4	35	21S	37E	676159	3590137* 🌍	85	
CP 00226	L	E	1	4	4	26	21S	37E	675937	3591344* 🌍	80	
CP 00227	L	E .	2	3	4	26	21S	37E	675735	3591336* 🌍	85	
CP 00228	L	E	4	3	4	26	21S	37E	675735	3591136° 🏐	90	
CP 00229	Li	E ·	4	3	4	35	21S	37E	675764	3589527* 🕘	85	
CP 00230	L	E	3	2	3	26	21S	37E	675126	3591531* 🌍	85	
CP 00235	L	E	2	2	1	23	21S	37E	675283	3594144* 🌍	81	
CP 00236	Li	E :	3	1	2	23	21\$	37E	675485	3593952* 🛞	83	
CP 00238	L	E :	3	3	2	23	21S	37E	675492	3593549* 💮	81	

*UTM location was derived from PLSS - see Help

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is	(quai							V 4=SE)				R
water right life.)	closed) POD	(quai	ter	58	re	sma	liest to	largest) (NAD8	3 UTM in meters)		(In feet))
POD Number	Sub-	•••••••			Q							Depth	
CP 00239	Code basin (LE					21S		X 675485	Y 3594152* 🌍	89	Water (Column
CP 00240		LE	4	2	1	23	21S	37E	675283	3593944* 💨	72		
CP 00241		LE	4	2	1	23	21\$	37E	675283	3593944* 🕘	76		
CP 00242		LE	3	4	2	28	21S	37E	672708	3591889* 🌑	112		
CP 00249		LE	2	3	2	27	21S	37E	674113	3592111* 🏐	102		
CP 00250		LE	2	3	2	27	21S	37E	674113	3592111* 🏐	101		
CP 00251		LE	2	3	4	22	21S	37E	674099	3592915* 🕘	103		
CP 00252		LE	4	2	4	22	21S	37E	674493	3593125* 🕘	106		
CP 00253		LE	3	4	2	27	21S	37E	674315	3591918* 🌍	101		
CP 00293		LE	2	4	1	27	21S	37E	673711	3592104* 🌍	80		
CP 00322		LE			3	28	21S	37E	671818	3591366* 🌍	138	73	65
CP 00346		LE	1	3	1	27	21S	37E	673110	3592096* 🕘	90		
CP 00447		LE	2	4	4	18	21S	37E	669647	3594451* 🌍	95		
CP 00552		LE		2	4	04	21S	37E	672700	3598022* 💨	90	75	15
CP 00553		LE		2	4	04	215	37E	672700	3598022* 🌑	90	75	15
CP 00554		LE		2	2	16	21S	37E	672744	3595610* 🏐	80	70	10
CP 00562		LE	1	2	2	23	21S	37E	675887	3594159* 🌍	136	65	71
CP 00676		LE		4	4	18	21S	37E	669548	3594352* 🌍	140	106	34
CP 00700		LE			2	23	21S	37E	675794	3593851* 🌍	75	65	10
CP 00711		LE	4	2	2	28	21S	37E	672900	3592291* 🌑	100	65	35
CP 00726		LE		2	4	33	21S	37E	672844	3589980" 🏐	125	100	25
CP 00735		LE		2	4	28	21S	37E	672816	3591588* 🏵	105		
CP 00736		LE		3	1	27	21S	37E	673211	3591997* 🛞	120	76	44
CP 00749		LE	2	4	3	28	21S	37E	672118	3591271* 🌍	123	75	48
CP 00835		LE			3	34	21S	37E	673454	3589786* 🕘	145		
CP 00877		LE				06	21S	37E	668920	3598153* 🏐	150	73	77
CP 00881		LE		4	4	22	215	37E	674402	3592824* 🌑	95	53	42
CP 00895		LE		1	1	20	21S	37E	669957	3593956* 🌍	163		
CP 00914 EXPL		LE	4	3	1	36	21S	37E	676554	3590346* 🍚	72		

*UTM location was derived from PLSS - see Help

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is	(quai						JE 3=SV					
water right life.)	closed) POD	(quai	lei.	5 d	ie:	Sina	nest io	(largest)		UTM in meters)	-	(In feet)
POD Number	Sub- Code basin C				Q						and the second second	and the second se	Water
CP 00943 POD1		LE					21S		X 673166	Y 3590405 🌑	142	water	Column
CP 00965 POD1	R	LE	1	3	4	28	21S	37E	672333	3591346 🚳	123	60	63
CP 00965 POD2		LE	1	3	4	28	21S	37E	672273	3591336 🌑	135		
CP 00966 POD1		LE	1	3	4	28	21S	37E	672306	3591367 🌑	154		
CP 00985 POD1		LE	4	4	2	19	21S	37E	669595	3593453 🕘	160		
CP 00986 POD1		LE	4	3	4	06	21S	37E	669110	3597437 🌑	154		
CP 01026 POD1		LE	1	1	3	17	21S	37E	669809	3594958 🕥	167	95	72
CP 01077 POD1		LE	1	2	2	33	21S	37E	672710	3590940 🌑	80	45	35
CP 01141 POD2		LE	3	4	3	15	21S	37E	673541	3594250 🌑	40		
CP 01141 POD3		LE	3	4	3	15	21S	37E	673541	3594250 🔘	40		
CP 01141 POD4		LE	3	4	3	15	21S	37E	673541	3594250 🕘	45		
CP 01145 POD1		LE	2	2	2	34	21S	37E	674514	3590848 🌑	90		
CP 01185 POD1		LE		1	3	14	21S	37E	674598	3594689 🌑	70		
CP 01185 POD2		LE		1	3	14	21S	37E	674623	3594674 🔘	70		
CP 01185 POD3		LE		1	3	14	215	37E	674592	3594620 🕘	70		
CP 01185 POD4		LE		1	3	14	21S	37E	674633	3594610 🌑	70		
CP 01221 POD1		LE	4	4	4	11	21S	37E	676254	3588506 🕥	75	60	15
CP 01222 POD1		LE	2	2	2	35	21S	37E	676079	3591029 🌑	58	48	10
CP 01222 POD2		LE	2	2	2	35	21S	37E	676079	3591029 🌒	65	48	17
CP 01222 POD3		LE	2	2	2	35	21S	37E	676052	3591029 🌑	60	48	12
CP 01222 POD4		LE	2	2	2	35	21S	37E	676105	3590999 🕥	60	44	16
CP 01245 POD1		LE	1	4	3	18	21S	37E	668677	3594410 🔘	220		
CP 01274 POD1		LE	4	3	1	26	21S	37E	674993	3591843 🔴	60		
CP 01274 POD2		LE	4	3	1	26	21S	37E	674993	3591843 🏐	60		
CP 01302 POD1		LE	3	3	3	28	21S	37E	671454	3591072 🔘	162	100	62
CP 01358 POD1		LE	2	1	4	34	215	37E	674134	3589539 🌑	65	48	17
CP 01358 POD2		LE	4	4	2	34	21S	37E	674497	3589676 🌍	42	29	13
CP 01358 POD3		LE	4	4	1	34	21S	37E	674434	3589782 🏐	45	32	13
CP 01358 POD4		LE	4	2	3	34	21S	37E	674307	3589974 🕘	45	40	5

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replace O=orphaned C=the file is closed)	ed, I, (qua						IE 3=SW		33 UTM in mete	rs)	(In feet)
POD Number	POD Sub- Code basin				Q 5 4		Tws	Rng	x	Y			Water Column
CP 01358 POD5		LE	4	2	1	34	21S	37E	674306	3590035 🐔	58	41	17
CP 01358 POD6		LĘ	4	2	3	34	21S	37E	674271	3589921	26		
CP 01540 POD1	CP	LE	1	1	1	35	21S	37E	674374	3590848 🐔	51	36	15
CP 01574 POD1	CP	LE	2	4	4	15	21S	37E	674563	3594599 🍯	68	57	11
CP 01574 POD2	СР	LE	1	3	3	14	21S	37E	674654	3594594	68	57	11
CP 01575 POD1	CP	LE	1	2	1	22	21S	37E	673543	3594200 🍝	40	35	5
CP 01575 POD2	CP	LE	2	2	1	22	21S	37E	673610	3594192 🍝	35	35	0
										Average Dept	h to Water:	60 f	eet
										Minim	um Depth:	29 f	eet
										Maxim	um Depth:	106 f	eet

PLSS Search:

Township: 21S Range: 37E

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Appendix C

Client:	Globe Energy Services Eunice Yard									
Site Name			ď							
Boring/Well:		BH-1								
GPS		32.43107, -103.								
Project #:		212C-MD-00	374							
Total Depth		25'								
Date Installed:		1/20/2016								
DEPTH (Ft)	SAMPLE DESCRIPTION	NOTES	PID (ppm)	CONDUCTIVITY (ppm)	CHLORIDE KIT					
0-1	Fine to mediums brown/red sand	No Stain or odor	-	123	-					
2-3	Dense caliche	No Stain or odor	-	2,007	-					
4-5	Dense caliche	No Stain or odor	-	3,550	-					
6-7	Dense caliche	No Stain or odor	-	1,320	-					
9-10	Dense caliche	No Stain or odor	-	346	-					
14-15	Dense caliche	No Stain or odor	-	740	-					
19-20	Friable caliche, limestone & chert	No Stain or odor	_	753	800					
24-25	Red sandstone and chert	No Stain or odor	-	807	-					

Eunice Yard	
BH-2	
32.43139, -103.4388	
212C-MD-00374	
25'	
1/20/2016	
-	32.43139, -103.4388 212C-MD-00374 25'

DEPTH (Ft)	SAMPLE DESCRIPTION	NOTES	PID (ppm)	CONDUCTIVITY (ppm)	CHLORIDE KIT
0-1	Fine brown sand & calcareous fine tan sand	No Stain or odor	-	1,820	-
2-3	Dense caliche	No Stain or odor	-	4,420	-
4-5	Dense caliche	No Stain or odor	-	1,240	-
6-7	Dense caliche	No Stain or odor	-	487	-
9-10	Friable caliche	No Stain or odor	-	358	-
14-15	Friable caliche	No Stain or odor	-	512	375
19-20	Friable caliche	No Stain or odor	-	315	-
24-25	Red sandstone & chert	No Stain or odor	-	435	-

	SA	MPLE LOG										
Client:		Globe Energy S	ervices									
Site Name	Eunice Yard											
Boring/Well:		BH-3										
GPS	32.43147, -103.14384											
Project #:		212C-MD-00374										
Total Depth	10'											
Date Installed:	1/20/2016											
DEPTH (Ft)	SAMPLE DESCRIPTION	NOTES	PID (ppm)	CONDUCTIVITY (ppm)	CHLORIDE KIT							
0-1	Brown to red silty sand - damp	No Stain or odor	3.20	-	-							
2-3	Dense caliche	No Stain or odor	38.4	-	-							
4-5	Dense caliche	No Stain or odor	35.5	-	-							
6-7	Dense caliche	No Stain or odor	42.3	-	-							
9-10	Friable caliche	No Stain or odor	21.8	-	-							

Client:	Globe Energy Services			
Site Name	Eunice Yard			
Boring/Well:	BH-4			
GPS	32.43159, -103.14395			
Project #:	212C-MD-00374			
Total Depth	25'			
Date Installed:	1/20/2016			

DEPTH (Ft)	SAMPLE DESCRIPTION	NOTES	PID (ppm)	CONDUCTIVITY (ppm)	CHLORIDE KIT
0-1	Brown to red silty sand	No stain / faint odor	38.2	3,750	-
2-3	Dense caliche	No stain / faint odor	36.4	3,330	-
4-5	Dense caliche & fine red sand	No stain / faint odor	27.5	3,910	-
6-7	Dense calcieh	No Stain or odor	19.5	5,300	-
9-10	Friable caliche	No Stain or odor	23.2	5,500	-
14-15	Friable caliche	No Stain or odor	-	6,250	-
19-20	Friable caliche	No Stain or odor	-	3,100	-
24-25	Coarse red to brown sandstone	No Stain or odor	-	1,190	-

Client:	Globe Energy Services
Site Name	Eunice Yard
Boring/Well:	BH-5
GPS	32.43164, -103.14413
Project #:	212C-MD-00374
Total Depth	25'
Date Installed:	1/20/2016

DEPTH (Ft)	SAMPLE DESCRIPTION	NOTES	PID (ppm)	CONDUCTIVITY (ppm)	CHLORIDE KIT
0-1	Brown to red medium to fine sand	No stain / faint odor	0.9	5,370	-
2-3	Dence caliche	No Stain or odor	1.5	4,860	-
4-5	Dense caliche & fine red sand	No Stain or odor	23.0	2,630	-
6-7	Friable caliche & fine red sand	No Stain or odor	0.7	1,030	-
9-10	Friable caliche & fine red sand	No Stain or odor	0.0	587	-
14-15	Friable caliche & fine red sand	No Stain or odor	-	418	-
19-20	Red sandstone & friable caliche	No Stain or odor	-	374	-
24-25	Red sandstone & chert	No Stain or odor	-	497	500

Client:	Globe Energy Services	
Site Name	Eunice Yard	
Boring/Well:	BH-6	
GPS	32.43153, -103.14435	
Project #:	212C-MD-00374	
Total Depth	25'	
Date Installed:	1/21/2016	

DEPTH (Ft)	SAMPLE DESCRIPTION	NOTES	PID (ppm)	CONDUCTIVITY (ppm)	CHLORIDE KIT
0-1	Brown to red medium to fine sand - damp	No Stain or odor	-	307	-
2-3	Dense caliche & fine red sand - dry	No Stain or odor	-	4,360	-
4-5	Dense caliche & fine red sand	No Stain or odor	-	4,620	-
6-7	Dense caliche & fine red sand	No Stain or odor	-	1,380	-
9-10	Dense caliche	No Stain or odor	-	1,670	-
14-15	Friable caliche	No Stain or odor	-	935	-
19-20	Friable caliche	No Stain or odor	-	570	-
24-25	Red sandstone & chert	No Stain or odor	-	717	-

Client:	Globe Energy Services			
Site Name	Eunice Yard			
Boring/Well:	BH-7			
GPS	32.43149, -103.14503			
Project #:	212C-MD-00374			
Total Depth	5'			
Date Installed:	1/21/2016			

DEPTH (Ft)	SAMPLE DESCRIPTION	NOTES	PID (ppm)	CONDUCTIVITY (ppm)	CHLORIDE KIT
0-1	Brown to red medium to fine sand - damp	No Stain or odor	-	145	-
2-3	Dense caliche	No Stain or odor	-	280	180
4-5	Dense caliche	No Stain or odor	-	196	100

Client:	Globe Energy Services			
Site Name	Eunice Yard			
Boring/Well:	BH-8			
GPS	32.43191, -103.14549			
Project #:	212C-MD-00374			
Total Depth	10'			
Date Installed:	1/21/2016			

				CONDUCTIVITY	
DEPTH (Ft)	SAMPLE DESCRIPTION	NOTES	PID (ppm)	(ppm)	CHLORIDE KIT
0-1	Dense caliche & fine brown sand	Faint stain/no odor	0.3	-	-
2-3	Dense caliche	No stain / faint odor	1.1	-	-
4-5	Dense caliche	No Stain or odor	4.8	-	-
6-7	Dense caliche	No Stain or odor	1.3	-	-
9-10	Friable caliche	No Stain or odor	0.4	-	-

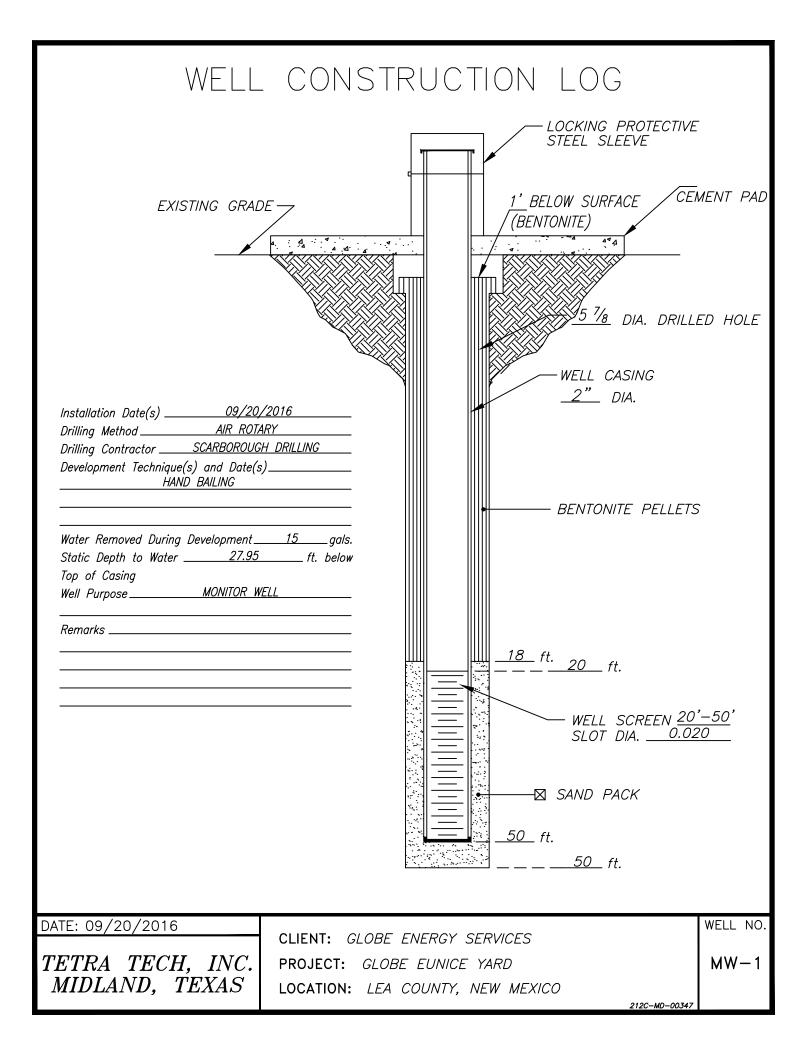
Client:	Globe Energy Services			
Site Name	Eunice Yard			
Boring/Well:	BH-9			
GPS	32.43212, -103.14559			
Project #:	212C-MD-00374			
Total Depth	10'			
Date Installed:	1/21/2016			

DEPTH (Ft)	SAMPLE DESCRIPTION	NOTES	PID (ppm)	CONDUCTIVITY	CHLORIDE KIT
			· · · · · (pp)	(ppm)	0.1201.021.0
0-1	Medium to fine brown sand	No stain / faint odor	3.7	-	-
2-3	Dense caliche	No stain / faint odor	8.1	-	-
4-5	Dense caliche & fine brown sand	No stain / faint odor	0.6	-	-
6-7	Friable caliche & fine brown sand	No Stain or odor	3.1	-	-
9-10	Friable caliche & fine brown sand	No Stain or odor	0.1	-	-

Globe Energy Services	
Eunice Yard	
BH-10	
32.43207, -103.14552	
212C-MD-00374	
25'	
1/21/2016	
	Eunice Yard BH-10 32.43207, -103.14552 212C-MD-00374 25'

DEPTH (Ft)	SAMPLE DESCRIPTION	NOTES	PID (ppm)	CONDUCTIVITY (ppm)	CHLORIDE KIT
0-1	Brown to red medium to fine sand - damp	No stain / faint odor	1.0	295	-
2-3	Dense caliche	No stain / faint odor	3.5	3,010	-
4-5	Dense caliche	No Stain or odor	5.5	610	-
6-7	Dense caliche	No Stain or odor	1.2	285	-
9-10	Friable caliche	No Stain or odor	1.2	500	-
14-15	Friable caliche	No Stain or odor	-	365	-
19-20	Medium red to brown sand	No Stain or odor	-	195	180
24-25	Medium red to brown sand	No Stain or odor	-	225	200

Client:	Globe Energy Services	
Site Name	Eunice Yard	
Boring/Well:	BH-11	
GPS	32.43199, -103.14542	
Project #:	212C-MD-00374	
Total Depth	20'	
Date Installed:	1/21/2016	


DEPTH (Ft)	SAMPLE DESCRIPTION	NOTES	PID (ppm)	CONDUCTIVITY (ppm)	CHLORIDE KIT
0-1	Medium brown sand	No Stain or odor	-	138	-
2-3	Dense caliche	No Stain or odor	-	3,260	-
4-5	Dense caliche & medium brown sand	No Stain or odor	-	398	-
6-7	Friable caliche	No Stain or odor	-	204	-
9-10	Friable caliche	No Stain or odor	-	380	400
14-15	Friable caliche	No Stain or odor	-	165	160
19-20	Medium red to brown sand	No Stain or odor	-	180	-

Client:	Globe Energy Services
Site Name	Eunice Yard
Boring/Well:	BH-12
GPS	32.43224, -103.14540
Project #:	212C-MD-00374
Total Depth	10'
Date Installed:	1/21/2016

DEPTH (Ft)	SAMPLE DESCRIPTION	NOTES	PID (ppm)	CONDUCTIVITY (ppm)	CHLORIDE KIT
	a diana kaominina di	Ada d. Stain (faint a dan	2.7		
0-1	Medium brown sand	Mod. Stain/faint odor	3.7	-	-
2-3	Dense caliche	No stain / faint odor	0.3	-	-
4-5	Dense caliche	No Stain or odor	3.0	-	-
6-7	Friable caliche	No Stain or odor	4.1		-
9-10	Friable caliche	No Stain or odor	2.1	-	-

Client:	Globe Energy Services	TD:	50'	
Site Name	Eunice Yard	Screen Depth:	20-50'	
Boring/Well:	MW-1	DTW:		
GPS	32.43156, -103.14407			
Project #:	212C-MD-00374			
Fotal Depth	50'			
Date Installed:	9/20/2016			
DEPTH (Ft)	SAMPLE DESCRIPTION	NOTES	PID (ppm)	CONDUCTIVITY (ppm)
0-1'	Fine red to brown sand	No stain or odor	-	-
1-2'	Fine red to brown sand & dense caliche	No stain or odor	-	-
2-5'	Dense & friable caliche	No stain or odor	-	-
5'	Dense & friable caliche with fine red to brown sand	No stain or odor	-	795
5-9'	Dense & friable caliche with fine red to brown sand	No stain or odor		-
10'	Limestone & fine brown sand	No stain or odor	-	989
10-11'	Limestone & fine brown sand	No stain or odor	-	-
11-15'	Sandy friable caliche	No stain or odor	-	-
15'	Limestone & chert	No stain or odor	-	815
15-20	Limestone & chert	No stain or odor	-	_
20'	Limestone, chert & fine tan sand	No stain or odor	-	715
20-27'	Limestone	No stain or odor	-	-
27-38'	Very dense limestone	No stain or odor	_	_
38-47	Alluvium & red clay	No stain or odor	-	_
47-50'	Red Clay	No stain or odor		
47-30			-	-

Appendix D

