APPROVED By Olivia Yu at 7:43 am, Nov 14, 2018

NMOCD grants closure to 1RP-4787.

1RP-4787

FINAL

DELINEATION AND REMEDIATION REPORT

NGL Release

Lea County, New Mexico

Latitude: N33.2495° Longitude: W-103.102147°

LAI Project No. 17-0177-01

November 9, 2018

Prepared for:

Targa Midstream Services, LLC P.O. Box 1689 Lovington, New Mexico 88260

Prepared by:

Larson & Associates, Inc. 507 North Marienfeld Street, Suite 205 Midland, Texas 79701

Mark J. Larson, P.G. Certified Professional Geologist #10490

This Page Intentionally Left Blank

Table of Contents

1.0	INTRODUCTION	2
1.1	Background	2
1.2	Physical Setting	2
1.3	Remediation Action Levels	3
1.4	Initial Soil Samples and Microblaze [®] Application	3
2.0	RELEASE DELINEATION AND REMEDIATION CONFIRMATION	4
3.0	CLOSURE	5

Tables

Table 1	Initial Soil Sample Analytical Data Summary
Table 2	Delineation and Remediation Soil Sample Analytical Data Summary
Figures	
Figure 1	Topographic Map
Figure 2	Aerial Map Showing Release Area and Initial Soil Sample Locations
Figure 3	Aerial Map Showing Microblaze Application Area
Figure 4	Aerial Map Showing Delineation and Remediation Confirmation Soil
	Sample Locations
Appendices	
Appendix A	Initial C-141

Appendix A	Initial C-141
Appendix B	OCD Communications
Appendix C	Laboratory Reports
Appendix D	Boring Logs
Appendix E	Photographs
Appendix F	Final C-141

1.0 INTRODUCTION

This delineation and remediation report is submitted to the New Mexico Oil Conservation Division (OCD) District 1 on behalf of Targa Midstream Services, LLC (Targa) for a natural gas liquids (NGL) release from a 6 inch poly line (Site). The release occurred in Unit J (NW/4, SE/4), Section 28, Township 12 South, Range 38 East, Lea County, New Mexico. The geodetic position is North 33.2495° and West - 103.102147°. Figure 1 presents a topographic map.

1.1 Background

On August 5, 2017, Targa was notified of the release which was due to valve failure from corrosion on a 6 inch poly line. The line was isolated, blown down and the valve was removed. Targa estimated approximately 7 barrels (bbl) of NGL and 425 thousand cubic feet (Mcf) of gas was released. Wind dispersed NGL as a mist approximately 2,900 feet north and northwest from the source. NGL was dispersed over an area measuring approximately 1,257,240 square feet or about 28.86 acres. No liquid was recovered. Targa representatives submitted the initial C-141 to the OCD District 1 on August 11, 2017. The OCD assigned the release remediation permit number 1RP-4787 with conditions. Appendix A presents the OCD approved initial C-141.

On September 18, 2018, LAI, on behalf of Targa, submitted a delineation and remediation report to the OCD. On October 25, 2018, OCD District 1 responded that several spots (S-20 and S-21) are above the permissible closure level for TPH extended and must meet the closure standards in Table 1 (19.15.29.12 NMAC). Based on a phone call between OCD District 1 and Targa (verbal communication, November 5, 2018), it was agreed that Targa would collect one confirmatory soil sample to document the current TPH extended level for the area represented by samples S-20 and S-21 and photodocumentation demonstrating revegetation of the release area. Appendix B presents regulatory communications.

1.2 Physical Setting

The physical setting is as follows:

- Elevation is approximately 3,825 feet above mean sea level (amsl);
- Topography slopes gently toward the east;
- Surface water accumulates in a low area located southeast of the Site;
- The soils are designated as "Kimbrough-Lea complex" and "Kimbrough Gravelly Loam", consisting of calcareous alluvium derived from reworking the Blackwater Draw (Pleistocene) and Ogallala (Pliocene) formations, in descending order;
- The soil developed over cemented material (caliche);
- The upper geological unit is the Tertiary-age Blackwater Draw and Ogallala formations, in descending order, comprised of very fine to medium-grained quartz sand and gravel, with minor amount of silt and clay with indistinct to massive crossbeds;

1RP-4787 Final Delineation and Remediation Report Targa Midstream Services, LLC Lea County, New Mexico November 9, 2018

- The Ogallala formation is underlain by clay, silty clay, shale and sandstone of the Chinle formation (Triassic) and is about 75 feet thick;
- The nearest fresh water well is located about 900 feet southwest (cross gradient) in Unit L (NW/4, SW/4), Section 28, Township 12 South, Range 38 East;
- The well is used for livestock watering and has a reported depth to groundwater of approximately 18 feet below ground surface (bgs).

1.3 *Remediation Levels*

The following remediation standards are based on closure criteria for soils impacted by a release as presented in Table 1 of 19.15.29 NMAC:

- Benzene 10 mg/Kg
- BTEX 50 mg/Kg
- TPH 100 mg/Kg
- Chloride 600 mg/Kg

1.4 Initial Soil Samples and Microblaze® Application

August 7, 2017, personnel from Larson & Associates, Inc. (LAI) met at the Site with Targa personnel and the landowner (Jeff Decker) to discuss the release. LAI personnel used a hand trowel to collect surface soil samples at seven (7) locations (S-1 through S-7) beginning near the source (S-1) and terminating about 1,000 feet north and northwest of the source (S-7). The soil samples were collected between ground surface and about 6 inches below ground surface (bgs). The samples were collected in laboratory containers and delivered under preservation and chain of custody to Permian Basin Environmental Lab (PBEL) in Midland, Texas. The laboratory analyzed the samples for BTEX (sum of benzene, toluene, ethylbenzene and xylenes) by EPA SW-846 Method 8021B, total petroleum hydrocarbons (TPH) by Method 8015M including gasoline range organics (GRO), diesel range organics (DRO) and oil range organics (ORO), and chloride by Method 300. Table 1 presents the initial soil sample analytical data summary. Figure 2 presents an aerial map showing the initial soil sample locations.

Benzene and BTEX were below the RRAL in samples S-1 through S-7. TPH exceeded the RRAL in samples of 100 milligrams per kilogram (mg/Kg) in samples S-1 (12,850 mg/Kg), S-2 (3,920 mg/Kg) and S-3 (411.3 mg/Kg). Chloride was above 250 mg/Kg in samples S-1 (2,680 mg/kg) and S-2 (1,640 mg/Kg).

Between August 8 and 25, 2017, LAI personnel treated the spill area with Microblaze microbial amendment. An 8% solution of Microblaze amendment and water was applied to soil and vegetation between the source and sample location S-4. A 6% solution of Microblaze amendment and water was applied to soil and vegetation between sample locations S-4 and S-7. A 3% solution of Microblaze

1RP-4787 Final Delineation and Remediation Report Targa Midstream Services, LLC Lea County, New Mexico November 9, 2018

amendment and water was applied to soil and vegetation over the remaining release area beyond sample location S-7. Figure 3 presents an aerial map of the Microblaze application area.

2.0 RELEASE DELINEATION AND REMEDIATION CONFIRMATION

On August 16, 2017, LAI submitted a delineation plan to OCD District 1, on behalf of Targa, in response to the initial C-141. The delineation plan proposed the following:

- Collect soil samples to delineate TPH and chloride vertically at sample locations S-1, S-2, S-3, S-4 and S-6; and
- Collect soil samples at five (5) locations (S-8 through S-12) outside the release area east, west and south to horizontally delineate the release.

OCD approved the delineation plan on October 16, 2017. Appendix B presents OCD correspondence.

Between October 17, 2017 and December 5, 2017, LAI personnel collected delineation and remediation confirmation soil samples with direct push technology (DPT) at locations S-1 through S-4 and S-6. Soil samples were collected from ground surface to approximately 6 inches bgs to assess bioremediation of hydrocarbons with Microblaze[®], from 6 inches to 1 foot bgs and every 1 foot thereafter (i.e., 1 to 2, 2 to 3 feet) until refusal on calcihe which occurred between approximately 2 and 3 feet bgs. The DPT core barrel was equipped with dedicated polyethylene liners to minimize sample cross contamination. Soil samples were collected at locations S-7 through S-24 from ground surface to approximately 6 inches bgs with a stainless steel hand auger. The auger bucket was thoroughly cleaned between samples with a solution of potable water and laboratory grade detergent (Alkonox[®]) and rinsed with distilled water.

On December 5, 2017, Scarborough Drilling, Inc. (SDI) used an air rotary rig and jam tube sampler to collect deeper soil samples at locations S-1 and S-2 for chloride delineation. Soil samples were collected from S-1 at 5 to 6 feet, 10 to 11 feet, 15 to 16 feet and 20 to 21 feet. Soil samples were collected from S-2 at 5 to 6 feet, 10 to 11 feet and 15 to 16 feet. The borings were plugged with bentonite. The samples were collected in laboratory supplied sample jars that were labeled, preserved and delivered under chain of custody to Permian Basin Environmental Laboratory (PBEL) in Midland, Texas. The laboratory analyzed the samples for TPH by EPA SW-846 Method 8015M, including GRO, DRO and ORO, and chloride by EPA Method 300. Table 2 presents the delineation and remediation confirmation soil sample analytical data summary. Figure 4 presents an aerial map showing the delineation and remediation confirmation sample locations. Appendix C presents the laboratory report. Appendix D presents boring logs.

The laboratory reported TPH above the reporting limit (RL) initially in the following samples:

1RP-4787 Final Delineation and Remediation Report Targa Midstream Services, LLC Lea County, New Mexico November 9, 2018

- S-1, 0.0 0.5' (127 mg/Kg)
- S-2, 0.0 0.5' (194.9 mg/Kg)
- S-20, 0.0 0.5' (111 mg/Kg)
- S-21, 0.0 0.5' (107.3 mg/Kg)

The laboratory results demonstrate that Microblaze[®] reduced the TPH concentrations at locations S-1, 0.0 to 0.5 feet and S-2, 0.0 to 0.5 feet by about 99.01 percent and 95.03 percent, respectively. Microblaze[®] reduced the TPH concentration at S-3, 0.0 to 0.5 feet from 411.3 mg/Kg to less than the analytical method reporting limit (29.1 mg/Kg). Soil samples S-20 (111 mg/Kg) and S-21 (107.3 mg/Kg) were collected outside the spray area and reported TPH concentrations slightly above the RRAL (100 mg/Kg).

Chloride decreased at location S-1, 0.0 to 0.5 feet from 2,680 mg/Kg to 617 mg/Kg and S-2, 0.0 to 0.5 feet from 1,640 mg/Kg to 26.3 mg/Kg following treatment with Microblaze[®]. Chloride was delineated vertically to 250 mg/Kg and maintained for 10 additional feet in depth at locations S-1 and S-2. Chloride was below 250 mg/Kg in the remaining samples except S-12, 0.0 to 0.5 feet (489 mg/Kg) which is the background sample collected south and upwind from the release.

Based on the reduction in TPH concentrations at S-1 (99.01%) and S-2 (95.03%) and TPH concentrations marginally above the RRAL (100 mg/Kg) in samples S-20 (111 mg/Kg) and S-21 (107.3 mg/Kg), located outside the spray area,

On November 7, 2018, LAI personnel, based on a telephone conversation between OCD and Targa, LAI personnel collected a confirmatory soil sample (S-25) in the area represented by S-20 and S-21. The soil samples was collected from ground surface and 0.5 feet bgs and was analyzed by PBEL for TPH including C6-C12, >C12-C28 and >C28-C35. The laboratory results indicated TPH was not detected above reporting limits in any range. Table 2 presents the laboratory data summary. Appendix C presents the laboratory report. Appendix D presents photographs.

3.0 CLOSURE

TPH in sample S-25 was less than the method reporting limit and OCD closure criteria listed in Table 1 (19.15.29.12 NMAC). Photographs demonstrate the release area is revegetated. Targa requests closure for 1RP-4977. Appendix E presents the final C-141.

1RP-4787

Delineation and Remediation Soil Sample Analytical Data Summary

Targa Midstream Services, LLC, Decker Leak

UL J (NW/4, SE/4), Section 28, Township 12 South, Range 38 East

Lea County, New Mexico

Page 1 of 3

Sample	Collection	Depth	Status	C6 - C10	>C10 - C28	>C28 - C35	ТРН	Chloride
	Date	(Feet)		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
RRAL:							100	*250
S-1	08/07/2017	0.0 - 0.5	Pre Microblaze	1,650	9,760	1,440	12,850	2,680
	10/17/2017	0.0 - 0.5	Post Microblaze	<28.7	127	<28.7	127	617
	10/1//2017	0.5 - 1.0	Post Microbiaze	<29.4	/9.9	<29.4	/9.9	998
	10/17/2017	1.0 - 2.0	In-Situ	<30.1	44.3	<30.1	44.3	563
	10/1//2017	2.0 - 3.0	IN-SITU	<29.4	76.9	<29.4	76.9	208 12 F
	12/05/2017	5-0 10 11						13.5
	12/05/2017	10-11						10.5
	12/05/2017	15-10						2.50
	12/05/2017	20-21	III-SILU					<1.09
S-2	08/07/2017	0.0 - 0.5	Pre Microblaze	239	3,120	560	3,920	1,640
	10/17/2017	0.0 - 0.5	Post Microblaze	<28.1	160	34.9	194.9	26.3
	10/17/2017	0.5 - 1.0	Post Microblaze	<29.1	34.8	<29.1	34.8	49.0
	10/17/2017	1.0 - 2.0	In-Situ	<28.7	<28.7	<28.7	<38.7	196
	12/05/2017	5 - 6	In-Situ					<1.06
	12/05/2017	10 - 11	In-Situ					<1.08
	12/05/2017	15 - 16	In-Situ					<1.06
S-3	08/07/2017	0.0 - 0.5	Pre Microblaze	<28.4	345	66.3	411.3	96.9
	10/17/2017	0.0 - 0.5	Post Microblaze	<29.1	<29.1	<29.1	<29.1	8.16
	10/17/2017	0.5 - 1.0	Post Microblaze	<29.8	<29.8	<29.8	<29.8	71.2
	10/17/2017	1.0 - 2.0	In-situ	<27.8	<27.8	<27.8	<27.8	50.1
S-4	08/07/2017	0.0 - 0.5	Pre Microblaze	<27.2	89.1	<27.2	89.1	10.5
	10/17/2017	0.0 - 0.5	Post Microblaze	<27.8	<27.8	<27.8	<27.8	1.11
	10/1//201/	0.5 - 1.0	Post Microblaze	<27.2	<27.2	<27.2	<27.2	<1.09
	10/1//201/	1.0 - 2.0	In-situ	<28.7	<28.7	<28.7	<28.7	12.0
S-5	08/07/2017	0.0 - 0.5	Pre Microblaze	<27.2	<27.2	<27.2	<27.2	4.72
S-6	08/07/2017	0.0 - 0.5	Pre Microblaze	<26.6	36.9	<26.6	36.9	7.73
	10/17/2017	0.0 - 0.5	Post Microblaze	<26.6	<26.6	<26.6	<26.6	<1.06
	10/1//2017	0.5 - 1.0	Post Microblaze	<29.4	<29.4	<29.4	<29.4	<1.18
	10/17/2017	1.0 - 2.0	In-situ	<28.4	<28.4	<28.4	<28.4	<1.14
	10/17/2017	2.0 - 3.0	In-situ	<26.9	<26.9	<26.9	<26.9	<1.08

1RP-4787

Delineation and Remediation Soil Sample Analytical Data Summary

Targa Midstream Services, LLC, Decker Leak

UL J (NW/4, SE/4), Section 28, Township 12 South, Range 38 East

Lea County, New Mexico

Sample	Collection Date	Depth (Feet)	Status	C6 - C10 (mg/Kg)	>C10 - C28 (mg/Kg)	>C28 - C35 (mg/Kg)	TPH (mg/Kg)	Chloride (mg/Kg)
RRAL:							100	*250
S-25	11/0//2018	0.0 - 0.5	Post Microblaze	<27.8	<27.8	<27.8	<27.8	

Notes: analysis performed by Permian Basin Environmental Lab, Midland, Texas, by SW-846 Method 8015M (TPH) and Method 300 (chloride).

Depth in feet below ground surface (bgs)

mg/Kg: milligrams per kilogram equivalent to parts per million (ppm)

*: OCD delineation limit

1RP-4787

Delineation and Remediation Soil Sample Analytical Data Summary

Targa Midstream Services, LLC, Decker Leak

UL J (NW/4, SE/4), Section 28, Township 12 South, Range 38 East

Lea County, New Mexico

1 450 2 01 0	Ρ	age	1	of	3
--------------	---	-----	---	----	---

Sample	Collection	Depth	Status	C6 - C10	>C10 - C28	>C28 - C35	ТРН	Chloride
	Date	(Feet)		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
RRAL:							100	*250
S-1	08/07/2017	0.0 - 0.5	Pre Microblaze	1,650	9,760	1,440	12,850	2,680
	10/17/2017	0.0 - 0.5	Post Microblaze	<28.7	127	<28.7	127	617
	10/17/2017	0.5 - 1.0	Post Microblaze	<29.4	79.9	<29.4	79.9	998
	10/17/2017	1.0 - 2.0	In-Situ	<30.1	44.3	<30.1	44.3	563
	10/17/2017	2.0 - 3.0	In-Situ	<29.4	76.9	<29.4	76.9	208
	12/05/2017	5 - 6	In-Situ					13.5
	12/05/2017	10 - 11	In-Situ					10.3
	12/05/2017	15 - 16	In-Situ					2.56
	12/05/2017	20 - 21	In-Situ					<1.09
S-2	08/07/2017	0.0 - 0.5	Pre Microblaze	239	3,120	560	3,920	1,640
	10/17/2017	0.0 - 0.5	Post Microblaze	<28.1	160	34.9	194.9	26.3
	10/17/2017	0.5 - 1.0	Post Microblaze	<29.1	34.8	<29.1	34.8	49.0
	10/17/2017	1.0 - 2.0	In-Situ	<28.7	<28.7	<28.7	<38.7	196
	12/05/2017	5 - 6	In-Situ					<1.06
	12/05/2017	10 - 11	In-Situ					<1.08
	12/05/2017	15 - 16	In-Situ					<1.06
S-3	08/07/2017	0.0 - 0.5	Pre Microblaze	<28.4	345	66.3	411.3	96.9
	10/17/2017	0.0 - 0.5	Post Microblaze	<29.1	<29.1	<29.1	<29.1	8.16
	10/17/2017	0.5 - 1.0	Post Microblaze	<29.8	<29.8	<29.8	<29.8	71.2
	10/17/2017	1.0 - 2.0	In-situ	<27.8	<27.8	<27.8	<27.8	50.1
S-4	08/07/2017	0.0 - 0.5	Pre Microblaze	<27.2	89.1	<27.2	89.1	10.5
	10/17/2017	0.0 - 0.5	Post Microblaze	<27.8	<27.8	<27.8	<27.8	1.11
	10/17/2017	0.5 - 1.0	Post Microblaze	<27.2	<27.2	<27.2	<27.2	<1.09
	10/17/2017	1.0 - 2.0	In-situ	<28.7	<28.7	<28.7	<28.7	12.0
S_5	08/07/2017	0.0 - 0.5	Pro Microblazo	<07 0	<27.2	<07 0	< 27.2	1 72
3-3	00/07/2017	0.0 - 0.3		~27.2	~27.2	~27.2	~27.2	4.72
S-6	08/07/2017	0.0 - 0.5	Pre Microblaze	<26.6	36.9	<26.6	36.9	7.73

1RP-4787

Delineation and Remediation Soil Sample Analytical Data Summary Targa Midstream Services, LLC, Decker Leak UL J (NW/4, SE/4), Section 28, Township 12 South, Range 38 East

Lea County, New Mexico

Page 2 of 3

Sample	Collection	Depth (Inches)	Status	C6 - C10	>C10 - C28	>C28 - C35	TPH	Chloride
	Date	(Inches)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/Kg)	(mg/Kg)
RRAL:	······						100	*250
	10/17/2017	0.0 - 0.5	Post Microblaze	<26.6	<26.6	<26.6	<26.6	<1.06
	10/17/2017	0.5 - 1.0	Post Microblaze	<29.4	<29.4	<29.4	<29.4	<1.18
	10/17/2017	1.0 - 2.0	In-situ	<28.4	<28.4	<28.4	<28.4	<1.14
	10/17/2017	2.0 - 3.0	In-situ	<26.9	<26.9	<26.9	<26.9	<1.08
	, ,							
S-7	08/07/2017	0.0 - 0.5	Post Microblaze	<29.1	<29.1	<29.1	<29.1	7.45
• •	00,01,2011	0.0 0.0		-2012	-2012	-2012	-2012	7110
S-8	10/20/2017	0.0 - 0.5	Outside Spray Area	<26.9	<26.9	<26.9	<26.9	3.02
J -0	10/20/2017	0.0 0.5	Outside Spray Area	\$20.5	~20.5	\$20.5	\$20.5	5.02
5.0	10/20/2017	00.05	Outside Spray Area	<2E E	<2F F	<2E E	<2E E	E 22
3-9	10/20/2017	0.0 - 0.5	Outside Spray Area	NZ3.3	×23.5	×23.5	×25.5	5.55
6.40	40/20/2017	00.05		.26.2	.26.2	.26.2	-26.2	2.60
S-10	10/20/2017	0.0 - 0.5	Outside Spray Area	<26.3	<26.3	<26.3	<26.3	2.68
S-11	10/20/2017	0.0 - 0.5	Outside Spray Area	<26.3	<26.3	<26.3	<26.3	3.73
S-12	10/20/2017	0.0 - 0.5	Background/Upwind	<26.6	<26.6	<26.6	<26.6	489
S-13	10/20/2017	0.0 - 0.5	Outside Spray Area	<26.9	<26.9	<26.9	<26.9	3.06
S-14	10/20/2017	0.0 - 0.5	Outside Spray Area	<26.3	<26.3	<26.3	<26.3	3.21
			. ,					
S-15	10/20/2017	0.0 - 0.5	Outside Spray Area	<26.0	<26.0	<26.0	<26.0	4.60
	,,							
S-16	10/20/2017	0.0 - 0.5	Outside Sprav Area	<26.3	<26.3	<26.3	<26.3	2.35
0 10	10,20,201,	0.0 0.0		12010	12010	2010	12010	2.00
S-17	10/20/2017	0.0 - 0.5	Outside Spray Area	<26.3	<26.3	<26.3	<26.3	2 56
J-1/	10/20/2017	0.0 0.0	Successive Spray Area	\$20.5	~20.5	~20.5	~20.5	2.50
C 10	10/20/2017		Outsido Spray Area	<26.6	<26.6	<26.6	<26.6	2.25
3-10	10/20/2017	0.0 - 0.3	Outside Spray Area	N20.0	N20.0	N20.0	N20.0	5.55
E 10	10/20/2017		Outsido Spray Area	<17 1		11 0	07.0	2 47
2-13	10/20/2017	0.0 - 0.5	Outside Spray Area	<z1.z< td=""><td>55.Z</td><td>41.ð</td><td>97.0</td><td>2.47</td></z1.z<>	55.Z	41.ð	97.0	2.47

1RP-4787

Delineation and Remediation Soil Sample Analytical Data Summary

Targa Midstream Services, LLC, Decker Leak

UL J (NW/4, SE/4), Section 28, Township 12 South, Range 38 East

Lea County, New Mexico

Page 3 of 3

Sample	Collection Date	Depth (Feet)	Status	C6 - C10 (mg/Kg)	>C10 - C28 (mg/Kg)	>C28 - C35 (mg/Kg)	TPH (mg/Kg)	Chloride (mg/Kg)
RRAL:							100	*250
S-20	10/20/2017	0.0 - 0.5	Outside Spray Area	<27.5	71.9	40.0	111	<1.10
S-21	10/20/2017	0.0 - 0.5	Outside Spray Area	<27.8	70.3	37.0	107.3	<1.11
S-22	10/20/2017	0.0 - 0.5	Post Microblaze	<26.6	<26.6	<26.6	<26.6	<1.06
S-23	10/20/2017	0.0 - 0.5	Post Microblaze	<26.3	<26.3	<26.3	<26.3	<1.05
S-24	10/20/2017	0.0 - 0.5	Post Microblaze	<26.9	<26.9	<26.9	<26.9	<1.08
S-25	11/07/2018	0.0 - 0.5	Post Microblaze	<27.8	<27.8	<27.8	<27.8	

Notes: analysis performed by Permian Basin Environmental Lab, Midland, Texas, by SW-846 Method 8015M (TPH) and Method 300 (chloride).

Depth in feet below ground surface (bgs)

mg/Kg: milligrams per kilogram equivalent to parts per million (ppm)

*: OCD delineation limit

Figure 1 - Topographic Map

Figure 2 - Aerial Map Showing Release Area and Initial Soil Sample Locations

Figure 3 - Aerial Map Showing Microblaze Application

Figure 2 - Aerial Map Showing Spray Area and Surface Soil Sample Location, August 7, 2017

Appendix A

Initial C-141

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

pOY1722353426

1220 S, St, Fran	ieis Dis. Sant	a Fe. NM 8750;	5	1220 S	to E	$\sim NM 875$	05				
				San	а г	e, INM 875	05				
			Relo	ease Notifica	tio	n and Co	orrective A	ctior	1		
						OPERAT	OR		🔲 Init	ial Report 🗵 Final Repor	
Name of Co	ompany Ta	arga Midstrea	am Servie	ces		Contact: Ra	indy Duncan				
Address PC	Box: P.C). Box 1689.	Lovingto	on, NM 88260		Telephone 1	No. (575)631-70	065			
Facility Nat	me: Saund	lers Plant				Facility Typ	e: Gas gatherin	ng line			
Surface Ow	ner: Jeff I	Decker		Mineral Ow	ner	Quete	7		APINC)	
5077000						State					
				LOCAT	01	N OF REI	LEASE	ì		1	
Unit Letter	Section	Township	Range	Feet from the	North	/South Line	Feet from the	East/V	West Line	County	
0.0	20	120	JOL							Lea	
		- C	V	T (. 1	T 14	1				
				Lat	itud	e: Longitu	ae:				
				NATU	RE	OF REL	EASE				
Type of Rele	ase: Gas a	nd pipeline lie	quids			Volume of	Release::		Volume I	Recovered:	
						7 BBLS o	of liquid, 425 met	gas	NA		
Source of Re	lease: 6" p	oly nipeline				Date and H	our of Occurren		Date and	Hour of Discovery	
Source of Re	rease. o p	ory processing				8/5/2017. 7	2:30 PM		8/5/201	7, 7:30 PM	
Was Immedia	ate Notice (Given?	_	_		If YES, To	Whom?				
			Yes 📋	No 🛛 Not Requi	red						
By Whom?						Date and H	our				
Was a Water	course Read	ched?	Vac X	No		If YES, Volume Impacting the Watercourse.					
			165 🗠	1 100							
If a Watercou	urse was Im	pacted, Descr	ibe Fully.*	s		DECE					
							IVED				
						Bv Oli	via Yu at 2	2:35	рт. Aı	<i>ya 11. 2017</i>	
						Ċ					
Describe Cau	ise of Proble	em and Reme	dial Action	n Taken.*							
Targa's 6" pc	bly pipeline	was discovere	ed leaking	as the result of exter	rnal c	corrosion on a	2" valve. The lin	ne was i	solated, blc	own down and a new valve	
installed. Th	e line was p	out back in ser	vice.						,		
D 11 4	A CC . 1	1.01		4							
Describe Are	a Affected a	and Cleanup A	Action Tak	en.*							
The leak caus	sed hydroca	rbon spraying	over the a	affected area. The a	irea a	ffected is beir	ig determined and	d deline	ated by Lar	son and Associates.	
l hereby certi	fy that the i	nformation gi	ven above	is true and complete	e to t	he best of my	knowledge and u	inderstar	nd that purs	suant to NMOCD rules and	
regulations al	loperators	are required to	o report ar	d/or file certain rele	ase n	otifications ai	nd perform correct	ctive act	ions for rel	eases which may endanger	
public health	or the envir	onment. The	acceptanc	e of a C-141 report	by th	e NMOCD m	arked as "Final R	eport" d	loes not reli	ieve the operator of liability	
or the enviro	perations h	ave failed to a diffion NMC	CD accep	investigate and rem tance of a C_{-141} rem	ediat	e contaminati	on that pose a thr	reat to gi	round water	r, surface water, human health	
federal, state,	or local lay	vs and/or regu	lations.	tance of a c TTTTep	, on the	oes not renev	e the operator of	respons	ionity for e	omphanee with any other	
	1	\bigcirc					OIL CON	SERV	ATION	DIVISION	
Cimatumat		11/2 /							J	\checkmark	
Signature	may	unn	near		-	Ammunulk	Environment C	montal!-			
Printed Name	: Randy Du	incan				Approved by	Environmental S	pecians	l:	0	
70% I D1 1							8/11/2017	7		D	
Title: Plant M	lanager				-	Approval Dat	e: [Expiration	Date:	
E-mail Addre	ss: rduncan	(ā:targaresour	ces.com			Conditions of	Approval:				
						See atte	ached direct	ive		Attached	
Date: 8/9/20	7	1021	Phone: (57	5) 631-7065							
Attach Addit	ional Shee	ets II Necess	ary		1	RP-4787	nOY172	2353	505		

fOY1722353253

Operator/Responsible Party,

The OCD has received the form C-141 you provided on _8/10/2017_ regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number _1RP-4787_ has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District _1_ office in __Hobbs____ on or before _9/11/2017_. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C_6 thru C_{36}), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us Appendix B

Regulatory Communications

From:	Higginbotham, Christina
То:	Yu, Olivia, EMNRD; Mark Larson
Cc:	Klein, Cindy S.; Rachel Owen; Hernandez, Christina, EMNRD
Subject:	RE: [EXTERNAL] RE: 1RP-4787 - Final Remediation and Remediation Report, Decker NGL Release, August 30, 2018
Date:	Tuesday, November 06, 2018 9:18:46 AM

Olivia, this is as we discussed. Thank you for summarizing. We will work on the additional sample and documentation needed per your request.

Thank you, Christina

Christina Higginbotham, P.G. | Targa Resources | Sr. Environmental Specialist 811 Louisiana Street, Suite 2100, Houston, TX 77002 | office: (713) 584-1396 | cell: (281) 620-7835 email: chigginbotham@targaresources.com

From: Yu, Olivia, EMNRD <Olivia.Yu@state.nm.us>
Sent: Monday, November 5, 2018 4:24 PM
To: Higginbotham, Christina <chigginbotham@targaresources.com>; Mark Larson
<Mark@laenvironmental.com>
Cc: Klein, Cindy S. <CynthiaKlein@targaresources.com>; Rachel Owen
<rowen@laenvironmental.com>; Hernandez, Christina, EMNRD <Christina.Hernandez@state.nm.us>
Subject: [EXTERNAL] RE: 1RP-4787 - Final Remediation and Remediation Report, Decker NGL
Release, August 30, 2018

Ms. Higginbotham:

Thank you for your patience. I found my notes. You are correct that a meeting occurred in Santa Fe with Mr. Billings, Mr. Larson, Ms. Klein, and yourself at 9 am MST on February 22, 2018. I called in.

While I have more comprehensive notes on Epperson 1RP-4664 and groundwater monitoring scheduling at the Targa Eunice Gas Plant; I did not note any modification of proposed remediation plan for 1RP-4787 for the Saunders Decker release.

As we just discussed over the phone, NMOCD would move 1RP-4787 towards closure with 1 confirmatory soil sample to document current TPH extended levels for the area represented by S-20 and S-21. Photo documentation demonstrating revegetation of the release are also need for closure.

Please confirm or inform for clarification or if information was misunderstood. Please be advised that a new C-141 form accompanied the revised 19.15.29 NMAC. Include the last closure section, signed by the Responsible Operator, along with the additional closure data and closure report.

Thanks,

Olivia

From: Yu, Olivia, EMNRD

Sent: Wednesday, October 24, 2018 10:27 AM

To: Mark Larson <<u>Mark@laenvironmental.com</u>>; Hernandez, Christina, EMNRD

<<u>Christina.Hernandez@state.nm.us</u>>

Cc: Higginbotham, Christina <<u>chigginbotham@targaresources.com</u>>; <u>CKlein@targaresources.com</u>; Rachel Owen <<u>rowen@laenvironmental.com</u>>

Subject: RE: 1RP-4787 - Final Remediation and Remediation Report, Decker NGL Release, August 30, 2018

Good morning Mr. Larson:

Under the revised 19.15.29 NMAC, there are still several spots (S-20 and S-21) that are above the permissible closure level for TPH extended. While these sample locations are outside of the release area for 1RP-4787, please note that all provided data must meet closure standards in Table 1. Were these sample locations resampled and retested?

Thanks, Olivia

From: Mark Larson <<u>Mark@laenvironmental.com</u>>
Sent: Tuesday, September 18, 2018 12:34 PM
To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>>; Hernandez, Christina, EMNRD
<<u>Christina.Hernandez@state.nm.us</u>>
Cc: Higginbotham, Christina <<u>chigginbotham@targaresources.com</u>>; CKlein@targaresources.com;

Rachel Owen <<u>rowen@laenvironmental.com</u>>

Subject: Re: 1RP-4787 - Final Remediation and Remediation Report, Decker NGL Release, August 30, 2018

Olivia/Christina,

Please see attached remediation report for 1RP-4787, which is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Targa Midstream Services, LLC (Targa) for a natural gas liquids (NGL) release on the Decker Lease in Lea County, New Mexico. Please contact Christina Higginbotham with Targa at (713) 584-1396 or chigginbotham@targaresources.com or Cindy Klein at (575) 631-7093 or cklein@targaresources.com or me if you have any questions. Respectfully,

Mark J. Larson, P.G. President/Sr. Hydrogeologist 507 N. Marienfeld St., Suite 205 Midland, Texas 79701 Office – 432-687-0901 Cell – 432- 556-8656 Fax – 432-687-0456 mark@laenvironmental.com

"Serving the Permian Basin Since 2000"

CAUTION: [External Email] Use very high caution, especially if this message contains attachments, links, or requests for information. As a first defense, hover (with your mouse pointer) over email addresses and links to see the actual locations.

This email (including any attachments and accompanying emails) may contain proprietary and confidential information. If you are not the intended recipient, please telephone the sender and immediately delete this e-mail (including any attachments and accompanying emails). Please do not replicate, disclose, distribute, forward, or retain this e-mail or any part of this email. Thank you.

Appendix C

Laboratory Reports

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Decker Leak Project Number: 17-0177-01 Location:

Lab Order Number: 7H08007

NELAP/TCEQ # T104704516-16-7

Report Date: 08/11/17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
S-1	7H08007-01	Soil	08/07/17 15:09	08-08-2017 16:15
S-2	7H08007-02	Soil	08/07/17 15:01	08-08-2017 16:15
S-3	7H08007-03	Soil	08/07/17 14:56	08-08-2017 16:15
S-4	7H08007-04	Soil	08/07/17 14:50	08-08-2017 16:15
S-5	7H08007-05	Soil	08/07/17 14:45	08-08-2017 16:15
S-6	7H08007-06	Soil	08/07/17 14:43	08-08-2017 16:15
S-7	7H08007-07	Soil	08/07/17 14:40	08-08-2017 16:15

S-1 7H08007-01 (Soil)

Reporting Units Dilution Batch Prepared Analyzed Method Notes Analyte Result Limit Permian Basin Environmental Lab, L.P. Organics by GC 0.0738 0.0238 mg/kg dry 20 P7H1114 EPA 8021B Benzene 08/09/17 08/09/17 Toluene 2.68 0.0476 mg/kg dry 20 P7H1114 08/09/17 08/09/17 EPA 8021B 3.63 20 P7H1114 EPA 8021B Ethylbenzene 0.0238 mg/kg dry 08/09/17 08/09/17 P7H1114 Xylene (p/m) 4.06 0.0476 mg/kg dry 20 08/09/17 08/09/17 EPA 8021B mg/kg dry 20 P7H1114 EPA 8021B 0.0238 08/09/17 Xylene (o) 1.54 08/09/17 P7H1114 08/09/17 EPA 8021B S-GC Surrogate: 4-Bromofluorobenzene 08/09/17 32.9 % 75-125 Surrogate: 1,4-Difluorobenzene 80.7% 75-125 P7H1114 08/09/17 08/09/17 EPA 8021B **General Chemistry Parameters by EPA / Standard Methods** Chloride 2680 11.9 mg/kg dry 10 P7H0908 EPA 300.0 08/09/17 08/09/17 % 1 P7H1001 ASTM D2216 % Moisture 16.0 0.1 08/10/17 08/10/17 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M 5 P7H1108 TPH 8015M C6-C12 1650 mg/kg dry 149 08/08/17 08/09/17 >C12-C28 9760 149 mg/kg dry 5 P7H1108 TPH 8015M 08/08/17 08/09/17 5 P7H1108 TPH 8015M >C28-C35 1440 149 mg/kg dry 08/08/17 08/09/17 Surrogate: 1-Chlorooctane P7H1108 08/08/17 TPH 8015M 08/09/17 120~%70-130 70-130 Surrogate: o-Terphenyl 128 % P7H1108 08/08/17 08/09/17 TPH 8015M **Total Petroleum Hydrocarbon** 12800 149 mg/kg dry 5 [CALC] 08/08/17 08/09/17 calc C6-C35

C6-C35

Project: Decker Leak Project Number: 17-0177-01 Project Manager: Mark Larson

S-2 7H08007-02 (Soil) Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes Permian Basin Environmental Lab, L.P. Organics by GC 20 P7H1114 EPA 8021B Benzene ND 0.0241 mg/kg dry 08/09/17 08/09/17 20 P7H1114 EPA 8021B Toluene ND 0.0482 mg/kg dry 08/09/17 08/09/17 0.142 mg/kg dry 20 P7H1114 EPA 8021B Ethylbenzene 0.0241 08/09/17 08/09/17 20 P7H1114 EPA 8021B mg/kg dry Xylene (p/m) 0.221 0.0482 08/09/17 08/09/17 Xylene (o) 0.0834 0.0241 mg/kg dry 20 P7H1114 08/09/17 08/09/17 EPA 8021B Surrogate: 1,4-Difluorobenzene P7H1114 08/09/17 08/09/17 EPA 8021B 99.0 % 75-125 Surrogate: 4-Bromofluorobenzene P7H1114 08/09/17 08/09/17 EPA 8021B S-GC 35.7% 75-125 **General Chemistry Parameters by EPA / Standard Methods** 5 mg/kg dry P7H0908 EPA 300.0 Chloride 1640 6.02 08/09/17 08/09/17 % Moisture 0.1 % 1 P7H1001 ASTM D2216 17.0 08/10/17 08/10/17 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M mg/kg dry C6-C12 5 P7H1108 TPH 8015M 239 151 08/08/17 08/09/17 P7H1108 >C12-C28 3120 151 mg/kg dry 5 08/08/17 08/09/17 TPH 8015M >C28-C35 560 151 mg/kg dry 5 P7H1108 08/08/17 08/09/17 TPH 8015M Surrogate: 1-Chlorooctane 97.3 % P7H1108 08/08/17 08/09/17 TPH 8015M 70-130 Surrogate: o-Terphenyl 102 % 70-130 P7H1108 08/08/17 08/09/17 TPH 8015M **Total Petroleum Hydrocarbon** 3920 151 mg/kg dry 5 [CALC] calc 08/08/17 08/09/17

Permian Basin Environmental Lab, L.P.

S-3 7H08007-03 (Soil) Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes Permian Basin Environmental Lab, L.P. Organics by GC 20 P7H1114 EPA 8021B Benzene ND 0.0227 mg/kg dry 08/09/17 08/09/17 20 P7H1114 EPA 8021B Toluene ND 0.0455 mg/kg dry 08/09/17 08/09/17 mg/kg dry 20 P7H1114 EPA 8021B Ethylbenzene ND 0.0227 08/09/17 08/09/17 Xylene (p/m) ND 0.0455 mg/kg dry 20 P7H1114 08/09/17 08/09/17 EPA 8021B mg/kg dry 20 P7H1114 EPA 8021B ND Xylene (o) 0.0227 08/09/17 08/09/17 Surrogate: 1,4-Difluorobenzene 100 %75-125 P7H1114 08/09/17 08/09/17 EPA 8021B Surrogate: 4-Bromofluorobenzene P7H1114 08/09/17 08/09/17 EPA 8021B S-GC 75-125 45.1 % **General Chemistry Parameters by EPA / Standard Methods** P7H0908 mg/kg dry 1 EPA 300.0 Chloride 96.9 1.14 08/09/17 08/09/17 % Moisture 12.0 0.1 % 1 P7H1001 08/10/17 08/10/17 ASTM D2216 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M C6-C12 ND 28.4 mg/kg dry 1 P7H1108 08/08/17 08/09/17 TPH 8015M P7H1108 TPH 8015M >C12-C28 1 345 28.4 mg/kg dry 08/08/17 08/09/17 P7H1108 >C28-C35 66.3 mg/kg dry 1 08/08/17 TPH 8015M 28.4 08/09/17 Surrogate: 1-Chlorooctane 70-130 P7H1108 08/08/17 08/09/17 TPH 8015M 99.8 % Surrogate: o-Terphenyl P7H1108 08/08/17 08/09/17 TPH 8015M 102 % 70-130 **Total Petroleum Hydrocarbon** 411 28.4 mg/kg dry [CALC] calc 1 08/08/17 08/09/17

C6-C35

Permian Basin Environmental Lab, L.P.

S-4 7H08007-04 (Soil) Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes Permian Basin Environmental Lab, L.P. Organics by GC 20 P7H1114 EPA 8021B Benzene ND 0.0217 mg/kg dry 08/09/17 08/09/17 20 P7H1114 EPA 8021B Toluene ND 0.0435 mg/kg dry 08/09/17 08/09/17 0.0217 mg/kg dry 20 P7H1114 EPA 8021B Ethylbenzene ND 08/09/17 08/09/17 Xylene (p/m) ND 0.0435 mg/kg dry 20 P7H1114 08/09/17 08/09/17 EPA 8021B 20 P7H1114 EPA 8021B ND mg/kg dry Xylene (o) 0.0217 08/09/17 08/09/17 Surrogate: 1,4-Difluorobenzene 96.0 % 75-125 P7H1114 08/09/17 08/09/17 EPA 8021B Surrogate: 4-Bromofluorobenzene P7H1114 08/09/17 08/09/17 EPA 8021B S-GC 42.3 % 75-125 **General Chemistry Parameters by EPA / Standard Methods** P7H0908 Chloride 10.5 mg/kg dry 1 EPA 300.0 1.09 08/09/17 08/09/17 % Moisture 8.0 0.1 % 1 P7H1001 08/10/17 08/10/17 ASTM D2216 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M C6-C12 ND 27.2 mg/kg dry 1 P7H1108 08/08/17 08/10/17 TPH 8015M P7H1108 TPH 8015M >C12-C28 89.1 1 27.2 mg/kg dry 08/08/17 08/10/17>C28-C35 ND mg/kg dry P7H1108 TPH 8015M 27.2 1 08/08/17 08/10/17 P7H1108 08/08/17 08/10/17 TPH 8015M Surrogate: 1-Chlorooctane 103 % 70-130 Surrogate: o-Terphenyl 105 % P7H1108 08/08/17 08/10/17 TPH 8015M 70-130 [CALC] calc **Total Petroleum Hydrocarbon** 89.1 27.2 mg/kg dry 1 08/08/17 08/10/17

C6-C35

Permian Basin Environmental Lab, L.P.

calc

S-5 7H08007-05 (Soil) Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes Permian Basin Environmental Lab, L.P. Organics by GC 20 P7H1114 EPA 8021B Benzene ND 0.0217 mg/kg dry 08/09/17 08/09/17 20 P7H1114 EPA 8021B Toluene ND 0.0435 mg/kg dry 08/09/17 08/09/17 0.0217 mg/kg dry 20 P7H1114 EPA 8021B Ethylbenzene ND 08/09/17 08/09/17 Xylene (p/m) ND 0.0435 mg/kg dry 20 P7H1114 08/09/17 08/09/17 EPA 8021B mg/kg dry 20 P7H1114 EPA 8021B ND Xylene (o) 0.0217 08/09/17 08/09/17 S-GC Surrogate: 4-Bromofluorobenzene 42.0 % 75-125 P7H1114 08/09/17 08/09/17 EPA 8021B Surrogate: 1,4-Difluorobenzene P7H1114 08/09/17 08/09/17 EPA 8021B 94.6 % 75-125 **General Chemistry Parameters by EPA / Standard Methods** P7H0908 Chloride mg/kg dry 1 EPA 300.0 4.72 1.09 08/09/17 08/09/17 % Moisture 8.0 0.1 % 1 P7H1001 08/10/17 08/10/17 ASTM D2216 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M C6-C12 ND 27.2 mg/kg dry 1 P7H1108 08/08/17 08/10/17 TPH 8015M >C12-C28 ND P7H1108 TPH 8015M 27.2 mg/kg dry 1 08/08/17 08/10/17 P7H1108 TPH 8015M >C28-C35 ND 27.2 mg/kg dry 1 08/08/17 08/10/17 Surrogate: 1-Chlorooctane 69.8 % P7H1108 08/08/17 08/10/17 TPH 8015M S-GC 70-130 P7H1108 08/08/17 08/10/17 TPH 8015M Surrogate: o-Terphenyl 70.9% 70-130

27.2 mg/kg dry

ND

Total Petroleum Hydrocarbon C6-C35

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

[CALC]

08/08/17

08/10/17

1

S-6 7H08007-06 (Soil) Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes Permian Basin Environmental Lab, L.P. Organics by GC 20 P7H1114 EPA 8021B Benzene ND 0.0213 mg/kg dry 08/09/17 08/09/17 20 P7H1114 EPA 8021B Toluene ND 0.0426 mg/kg dry 08/09/17 08/09/17 0.0213 mg/kg dry 20 P7H1114 EPA 8021B Ethylbenzene ND 08/09/17 08/09/17 Xylene (p/m) ND 0.0426 mg/kg dry 20 P7H1114 08/09/17 08/09/17 EPA 8021B 0.0213 mg/kg dry 20 P7H1114 EPA 8021B ND Xylene (o) 08/09/17 08/09/17 S-GC Surrogate: 4-Bromofluorobenzene 38.5 % 75-125 P7H1114 08/09/17 08/09/17 EPA 8021B Surrogate: 1,4-Difluorobenzene P7H1114 08/09/17 08/09/17 EPA 8021B 97.7 % 75-125 **General Chemistry Parameters by EPA / Standard Methods** P7H0908 Chloride mg/kg dry 1 EPA 300.0 7.73 1.06 08/09/17 08/09/17 % Moisture 6.0 0.1 % 1 P7H1001 08/10/17 08/10/17 ASTM D2216 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M C6-C12 ND 26.6 mg/kg dry 1 P7H1108 08/08/17 08/10/17 TPH 8015M P7H1108 TPH 8015M >C12-C28 36.9 1 26.6 mg/kg dry 08/08/17 08/10/17>C28-C35 ND mg/kg dry P7H1108 TPH 8015M 26.6 1 08/08/17 08/10/17 P7H1108 08/08/17 TPH 8015M Surrogate: 1-Chlorooctane 100 % 70-130 08/10/17 Surrogate: o-Terphenyl 101 % P7H1108 08/08/17 08/10/17 TPH 8015M 70-130 [CALC] calc **Total Petroleum Hydrocarbon** 36.9 26.6 mg/kg dry 1 08/08/17 08/10/17

C6-C35

Permian Basin Environmental Lab, L.P.

calc

S-7 7H08007-07 (Soil) Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes Permian Basin Environmental Lab, L.P. Organics by GC 20 P7H1114 EPA 8021B Benzene ND 0.0233 mg/kg dry 08/09/17 08/09/17 20 P7H1114 EPA 8021B Toluene ND 0.0465 mg/kg dry 08/09/17 08/09/17 mg/kg dry 20 P7H1114 EPA 8021B Ethylbenzene ND 0.0233 08/09/17 08/09/17 Xylene (p/m) ND 0.0465 mg/kg dry 20 P7H1114 08/09/17 08/09/17 EPA 8021B 0.0233 mg/kg dry 20 P7H1114 EPA 8021B ND Xylene (o) 08/09/17 08/09/17 S-GC Surrogate: 4-Bromofluorobenzene 53.5 % 75-125 P7H1114 08/09/17 08/09/17 EPA 8021B Surrogate: 1,4-Difluorobenzene P7H1114 08/09/17 08/09/17 EPA 8021B 97.2 % 75-125 **General Chemistry Parameters by EPA / Standard Methods** P7H0908 Chloride mg/kg dry 1 EPA 300.0 7.45 1.16 08/09/17 08/09/17 % Moisture 14.0 0.1 % 1 P7H1001 08/10/17 08/10/17 ASTM D2216 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M C6-C12 ND 29.1 mg/kg dry 1 P7H1108 08/08/17 08/10/17 TPH 8015M >C12-C28 ND P7H1108 TPH 8015M 29.1 mg/kg dry 1 08/08/17 08/10/17 P7H1108 TPH 8015M >C28-C35 ND 29.1 mg/kg dry 1 08/08/17 08/10/17 Surrogate: 1-Chlorooctane 99.5 % P7H1108 08/08/17 08/10/17 TPH 8015M 70-130 P7H1108 08/08/17 08/10/17 TPH 8015M Surrogate: o-Terphenyl 103 % 70-130

29.1 mg/kg dry

ND

Total Petroleum Hydrocarbon C6-C35

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

[CALC]

08/08/17

08/10/17

1

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyta	Pogult	Reporting	Unite	Spike	Source	%PEC	%REC		RPD Limit	Notos
Анатус	Result	Limit	Units	Level	Result	70KEU	Linns	KrD	LIIIII	inotes
Batch P7H1114 - General Preparation (GC)										
Blank (P7H1114-BLK1)				Prepared & Analyzed: 08/09/17						
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00200								
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00200								
Xylene (o)	ND	0.00100								
Surrogate: 1,4-Difluorobenzene	0.0633		"	0.0600		105	75-125			
Surrogate: 4-Bromofluorobenzene	0.0394		"	0.0600		65.7	75-125			S-GC
LCS (P7H1114-BS1)	Prepared & Analyzed: 08/09/17									
Benzene	0.117	0.00100	mg/kg wet	0.100		117	70-130			
Toluene	0.114	0.00200	"	0.100		114	70-130			
Ethylbenzene	0.109	0.00100	"	0.100		109	70-130			
Xylene (p/m)	0.195	0.00200					70-130			
Xylene (o)	0.0929	0.00100					70-130			
Surrogate: 1,4-Difluorobenzene	0.0615		"	0.0600		103	75-125			
Surrogate: 4-Bromofluorobenzene	0.0307		"	0.0600		51.2	75-125			S-GC
LCS Dup (P7H1114-BSD1)	Prepared & Analyzed: 08/09/17									
Benzene	0.107	0.00100	mg/kg wet	0.100		107	70-130	8.85	20	
Toluene	0.103	0.00200	"	0.100		103	70-130	10.2	20	
Ethylbenzene	0.102	0.00100	"	0.100		102	70-130	7.01	20	
Xylene (p/m)	0.182	0.00200	"				70-130		20	
Xylene (o)	0.0837	0.00100					70-130		20	
Surrogate: 4-Bromofluorobenzene	0.0317		"	0.0600		52.8	75-125			S-GC
Surrogate: 1,4-Difluorobenzene	0.0614		"	0.0600		102	75-125			
Matrix Spike (P7H1114-MS1)	Source: 7H08007-07			Prepared & Analyzed: 08/09/17						
Benzene	0.148	0.0233	mg/kg dry	0.233	ND	63.6	80-120			QM-07
Toluene	0.143	0.0465		0.233	ND	61.3	80-120			QM-07
Ethylbenzene	0.100	0.0233		0.233	ND	43.2	80-120			QM-07
Xylene (p/m)	0.220	0.0465	"		ND		80-120			
Xylene (o)	0.0972	0.0233			ND		80-120			
Surrogate: 4-Bromofluorobenzene	0.0342		"	0.0698		49.0	75-125			S-GC
Surrogate: 1,4-Difluorobenzene	0.0725		"	0.0698		104	75-125			
Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P7H1114 - General Preparation (GC)

Matrix Spike Dup (P7H1114-MSD1)	Sour	ce: 7H08007	7-07	Prepared &	Analyzed	: 08/09/17				
Benzene	0.165	0.0233	mg/kg dry	0.233	ND	71.0	80-120	11.0	20	QM-07
Toluene	0.160	0.0465	"	0.233	ND	68.6	80-120	11.2	20	QM-07
Ethylbenzene	0.109	0.0233	"	0.233	ND	46.7	80-120	7.79	20	QM-07
Xylene (p/m)	0.233	0.0465	"		ND		80-120		20	
Xylene (o)	0.0974	0.0233	"		ND		80-120		20	
Surrogate: 1,4-Difluorobenzene	0.0729		"	0.0698		104	75-125			
Surrogate: 4-Bromofluorobenzene	0.0355		"	0.0698		50.9	75-125			S-GC

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Snike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7H0908 - *** DEFAULT PREP ***										
LCS (P7H0908-BS1)				Prepared &	Analyzed:	08/09/17				
Chloride	428	1.00	mg/kg wet	400		107	80-120			
LCS Dup (P7H0908-BSD1)				Prepared &	08/09/17					
Chloride	429	1.00	mg/kg wet	400		107	80-120	0.142	20	
Duplicate (P7H0908-DUP1)	Sour	ce: 7H08007	-01	Prepared &	Analyzed:	08/09/17				
Chloride	2680	11.9	mg/kg dry		2680			0.169	20	
Duplicate (P7H0908-DUP2)	Sour	ce: 7H07005	-04	Prepared: (08/09/17 Ai					
Chloride	2790	29.4	mg/kg dry		2780			0.412	20	
Matrix Spike (P7H0908-MS1)	Sour	ce: 7H08007	-01	Prepared &	Analyzed:	08/09/17				
Chloride	3930	11.9	mg/kg dry	1190	2680	105	80-120			
Batch P7H1001 - *** DEFAULT PREP ***										
Blank (P7H1001-BLK1)				Prepared &	Analyzed:	08/10/17				
% Moisture	ND	0.1	%							
Duplicate (P7H1001-DUP1)	Sour	ce: 7H08007	-07	Prepared &	Analyzed:	08/10/17				
% Moisture	15.0	0.1	%		14.0			6.90	20	

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7H1108 - TX 1005				20101	1105410	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10.0		
Blank (P7H1108-BLK1)				Prepared: (08/08/17 Ai	nalyzed: 08	/09/17			
C6-C12	ND	25.0	mg/kg wet	1						
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0								
Surrogate: 1-Chlorooctane	107		"	100		107	70-130			
Surrogate: o-Terphenyl	54.2		"	50.0		108	70-130			
LCS (P7H1108-BS1)				Prepared: (08/08/17 Ai	nalyzed: 08	/09/17			
C6-C12	836	25.0	mg/kg wet	1000		83.6	75-125			
>C12-C28	853	25.0	"	1000		85.3	75-125			
Surrogate: 1-Chlorooctane	95.8		"	100		95.8	70-130			
Surrogate: o-Terphenyl	44.7		"	50.0		89.4	70-130			
LCS Dup (P7H1108-BSD1)				Prepared: (08/08/17 Ai	nalyzed: 08	/09/17			
C6-C12	858	25.0	mg/kg wet	1000		85.8	75-125	2.64	20	
>C12-C28	873	25.0		1000		87.3	75-125	2.29	20	
Surrogate: 1-Chlorooctane	100		"	100		100	70-130			
Surrogate: o-Terphenyl	45.8		"	50.0		91.5	70-130			

Permian Basin Environmental Lab, L.P.

Notes and Definitions

S-GC	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
BULK	Samples received in Bulk soil containers
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Bun Barron

Date: 8/11/2017

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

1300						
HAND DELIVERED	(Incon Chilly			1104	C	-
CI CARRIER BILL #	OTHER D	sY: (Signature)			nature)	RELINQUISHED BX:(Sig
CUSTODY SEALS - D BROKEN KINTACT D NOT USED						
RECEIVING TEMP: LU THERM # L		Y: (Signature)	RECEIVED I	DATE/TIME	nature)	RELINQUISHED BY:(Sig
LABORATORY USE ONLY:	TURN AROUND TIME	sY: (Signature)	RECEIVED E	DATE/TIME	nature)	RELINQUISHED BY: (Sig
						TOTAL
					-	
					1	
			-			
		$\begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{array}$	×	平ち	×	\$- `
				14:43		9-5
				14:45		5.5
				14:50		5.4
				3Stal	5	5-3
				15:01		5-2
- *		XXXX	1	S 60:51	211/18	<u>S-</u>
UT STATES AND STATES	101 [01 [02] 20 [20] 20 [20] 20] 20] 20] 20] 20] 20] 20] 20] 20]	HIN'3 H ₂ SO ₄ ICE UNPRES 8 1 1 1 1 1 1 1 1 1 1 1 1 1	× # of Conti HCI	Time Matri	.ab # Date	Field Sample I.D.
6 1 1 1 1 1 1 1 1 1 1		NaOH C ERVED	ainers			TIME ZONE: Time zone/State:
				THER	-AIR OT=OT	
	C 200	SERVATION	PRE	UDGE	=SOIL P=PAII =WATER SI =SI	TRRP report? S
COLLECTOR: MUAT	ROJECT #: 17-0177	LAI PR	+01			Data Reported to:
ME: Decker Leok Pa	ECT LOCATION OR NAM	487-0001 PROJE	-732- Midian		s, Inc.	SSOCIQTE
LAB WORK ORDER # HO SOON		ienfeld, Ste. 200 PO #:	507 N. Ma		-	A arson &
PAGE OF 5	211818	DATE:				
CHAIN-OF-CUSTOU5						•*

.

1611

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Decker Leak Project Number: 17-0177-01 Location:

Lab Order Number: 7J23004

NELAP/TCEQ # T104704516-16-7

Report Date: 10/30/17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
S-8	7J23004-01	Soil	10/20/17 12:30	10-23-2017 09:08
S-9	7J23004-02	Soil	10/20/17 11:20	10-23-2017 09:08
S-10	7J23004-03	Soil	10/20/17 12:30	10-23-2017 09:08
S-11	7J23004-04	Soil	10/20/17 11:10	10-23-2017 09:08
S-12	7J23004-05	Soil	10/20/17 11:00	10-23-2017 09:08
S-13	7J23004-06	Soil	10/20/17 11:30	10-23-2017 09:08
S-14	7J23004-07	Soil	10/20/17 11:35	10-23-2017 09:08
S-15	7J23004-08	Soil	10/20/17 11:45	10-23-2017 09:08
S-16	7J23004-09	Soil	10/20/17 12:10	10-23-2017 09:08
S-17	7J23004-10	Soil	10/20/17 13:20	10-23-2017 09:08
S-18	7J23004-11	Soil	10/20/17 12:15	10-23-2017 09:08
S-19	7J23004-12	Soil	10/20/17 12:50	10-23-2017 09:08
S-20	7J23004-13	Soil	10/20/17 12:55	10-23-2017 09:08
S-21	7J23004-14	Soil	10/20/17 13:05	10-23-2017 09:08
S-22	7J23004-15	Soil	10/20/17 11:40	10-23-2017 09:08
S-23	7J23004-16	Soil	10/20/17 11:50	10-23-2017 09:08
S-24	7J23004-17	Soil	10/20/17 12:00	10-23-2017 09:08

S-8

		7J23	004-01 (Soi	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin H	Environme	ntal Lab, 1	L.P.				
General Chemistry Parameters by EPA /	Standard Method	ls							
Chloride	3.02	1.08	mg/kg dry	1	P7J2505	10/25/17	10/25/17	EPA 300.0	
% Moisture	7.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 b	y EPA Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: 1-Chlorooctane		118 %	70-1	30	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: o-Terphenyl		133 %	70-1	30	P7J2313	10/23/17	10/24/17	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	10/23/17	10/24/17	calc	

Surrogate: o-Terphenyl

Total Petroleum Hydrocarbon C6-C35

Project: Decker Leak Project Number: 17-0177-01 Project Manager: Mark Larson

S-9 7J23004-02 (Soil) Reporting Dilution Analyte Result Limit Units Batch Prepared Analyzed Method Notes Permian Basin Environmental Lab, L.P. **General Chemistry Parameters by EPA / Standard Methods** Chloride 5.33 mg/kg dry 1 P7J2505 EPA 300.0 1.02 10/25/17 10/25/17 % Moisture 0.1 % 1 P7J2403 ASTM D2216 2.0 10/24/17 10/24/17 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M C6-C12 ND 25.5 mg/kg dry 1 P7J2313 10/23/17 10/24/17 TPH 8015M TPH 8015M >C12-C28 ND 25.5 mg/kg dry 1 P7J2313 10/23/17 10/24/17 ND 25.5 mg/kg dry 1 P7J2313 10/23/17 TPH 8015M >C28-C35 10/24/17 TPH 8015M Surrogate: 1-Chlorooctane 113 % P7J2313 10/23/17 70-130 10/24/17 TPH 8015M

70-130

1

P7J2313

[CALC]

10/23/17

10/23/17

10/24/17

10/24/17

calc

126 %

25.5 mg/kg dry

ND

S-10

7J23004-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin I	Environme	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA	Standard Method	S							
Chloride	2.68	1.05	mg/kg dry	1	P7J2505	10/25/17	10/25/17	EPA 300.0	
% Moisture	5.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	oy EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: 1-Chlorooctane		114 %	70-1	130	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: o-Terphenyl		131 %	70-1	130	P7J2313	10/23/17	10/24/17	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	10/23/17	10/24/17	calc	

S-11

7J23004-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environme	ntal Lab, 1	L.P.				
General Chemistry Parameters by EPA / St	andard Methods	6							
Chloride	3.73	1.05	mg/kg dry	1	P7J2505	10/25/17	10/25/17	EPA 300.0	
% Moisture	5.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 801	5M							
C6-C12	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: 1-Chlorooctane		112 %	70-1	30	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: o-Terphenyl		128 %	70-1	30	P7J2313	10/23/17	10/24/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	10/23/17	10/24/17	calc	

S-12

7J23004-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Per	mian Basin F	Environme	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA / Star	ndard Metho	ds							
Chloride	489	1.06	mg/kg dry	1	P7J2505	10/25/17	10/25/17	EPA 300.0	
% Moisture	6.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by El	PA Method 8	015M							
C6-C12	ND	26.6	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-1	30	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-1	30	P7J2313	10/23/17	10/24/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	10/23/17	10/24/17	calc	

Surrogate: o-Terphenyl

Total Petroleum Hydrocarbon C6-C35

Project: Decker Leak Project Number: 17-0177-01 Project Manager: Mark Larson

S-13 7J23004-06 (Soil) Reporting Result Dilution Analyte Limit Units Batch Prepared Analyzed Method Notes Permian Basin Environmental Lab, L.P. **General Chemistry Parameters by EPA / Standard Methods** Chloride 3.06 mg/kg dry 1 P7J2505 EPA 300.0 1.08 10/25/17 10/25/17 % Moisture 0.1 % 1 P7J2403 ASTM D2216 7.0 10/24/17 10/24/17 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M C6-C12 ND 26.9 mg/kg dry 1 P7J2313 10/23/17 10/24/17 TPH 8015M TPH 8015M >C12-C28 ND 26.9 mg/kg dry 1 P7J2313 10/23/17 10/24/17 ND 26.9 mg/kg dry 1 P7J2313 10/23/17 TPH 8015M >C28-C35 10/24/17 TPH 8015M Surrogate: 1-Chlorooctane P7J2313 10/23/17 118 % 70-130 10/24/17

70-130

1

mg/kg dry

P7J2313

[CALC]

10/23/17

10/23/17

10/24/17

10/24/17

TPH 8015M

calc

S-GC

134 %

26.9

ND

S-14

7J23004-07 (Soil)

Analyte	Result	Reporting	Units	Dilution	Batch	Prenared	Analyzed	Method	Notes
Analyce	Result	Linit	Onts	Dilution	Daten	Trepared	7 mary zeu	Wiethou	Totes
	Perm	ian Basin I	Environme	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Methods	5							
Chloride	3.21	1.05	mg/kg dry	1	P7J2505	10/25/17	10/25/17	EPA 300.0	
% Moisture	5.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 h	oy EPA Method 801	5M							
C6-C12	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-1	30	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-1	30	P7J2313	10/23/17	10/24/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	10/23/17	10/24/17	calc	

S-15 7J23004-08 (Soil) Reporting Result Units Dilution Analyzed Method Analyte Limit Batch Prepared Notes Permian Basin Environmental Lab, L.P. **General Chemistry Parameters by EPA / Standard Methods** Chloride 4.60 1.04 mg/kg dry 1 P7J2505 EPA 300.0 10/25/17 10/26/17 % Moisture 4.0 0.1 % 1 P7J2403 10/24/17 ASTM D2216 10/24/17 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M C6-C12 1 ND 26.0 mg/kg dry P7J2313 10/23/17 10/24/17 TPH 8015M

>C12-C28	ND	26.0	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M
>C28-C35	ND	26.0	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M
Surrogate: 1-Chlorooctane		106 %	70-130		P7J2313	10/23/17	10/24/17	TPH 8015M
Surrogate: o-Terphenyl		121 %	70-130		P7J2313	10/23/17	10/24/17	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	10/23/17	10/24/17	calc

S-16

7J23004-09 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	1ian Basin I	Environme	ntal Lab,	L.P.				
General Chemistry Parameters by EPA	Standard Method	s							
Chloride	2.35	1.05	mg/kg dry	1	P7J2505	10/25/17	10/26/17	EPA 300.0	
% Moisture	5.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	oy EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: 1-Chlorooctane		127 %	70-1	130	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: o-Terphenyl		144 %	70-1	130	P7J2313	10/23/17	10/24/17	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	10/23/17	10/24/17	calc	

S-17

7J23004-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin I	Environme	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Methods	5							
Chloride	2.56	1.05	mg/kg dry	1	P7J2505	10/25/17	10/26/17	EPA 300.0	
% Moisture	5.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 b	y EPA Method 801	15M							
C6-C12	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: 1-Chlorooctane		117 %	70-1	130	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: o-Terphenyl		134 %	70-1	130	P7J2313	10/23/17	10/24/17	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	10/23/17	10/24/17	calc	

S-18

7J23004-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	P	ermian Basin H	Environme	ntal Lab,	L.P.				
General Chemistry Parameters by EPA / Stand	dard Meth	ods							
Chloride	3.35	1.06	mg/kg dry	1	P7J2505	10/25/17	10/26/17	EPA 300.0	
% Moisture	6.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by EP.	A Method	8015M							
C6-C12	ND	26.6	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: 1-Chlorooctane		111 %	70-1	130	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: o-Terphenyl		128 %	70-1	130	P7J2313	10/23/17	10/24/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	10/23/17	10/24/17	calc	

S-19

7J23004-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	an Basin I	Environmen	ital Lab, I	L.P.				
General Chemistry Parameters by El	PA / Standard Methods								
Chloride	2.47	1.09	mg/kg dry	1	P7J2505	10/25/17	10/26/17	EPA 300.0	
% Moisture	8.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 801	5M							
C6-C12	ND	27.2	mg/kg dry	1	P7J2313	10/23/17	10/26/17	TPH 8015M	
>C12-C28	55.2	27.2	mg/kg dry	1	P7J2313	10/23/17	10/26/17	TPH 8015M	
>C28-C35	41.8	27.2	mg/kg dry	1	P7J2313	10/23/17	10/26/17	TPH 8015M	
Surrogate: 1-Chlorooctane		116 %	70-1.	30	P7J2313	10/23/17	10/26/17	TPH 8015M	
Surrogate: o-Terphenyl		130 %	70-1.	30	P7J2313	10/23/17	10/26/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	96.9	27.2	mg/kg dry	1	[CALC]	10/23/17	10/26/17	calc	

Total Petroleum Hydrocarbon

C6-C35

Project: Decker Leak Project Number: 17-0177-01 Project Manager: Mark Larson

calc

S-20 7J23004-13 (Soil) Reporting Dilution Analyte Result Limit Units Batch Prepared Analyzed Method Notes Permian Basin Environmental Lab, L.P. **General Chemistry Parameters by EPA / Standard Methods** ND mg/kg dry 1 P7J2603 EPA 300.0 Chloride 1.10 10/26/17 10/26/17 % 1 P7J2403 ASTM D2216 % Moisture 9.0 0.1 10/24/17 10/24/17 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M C6-C12 TPH 8015M ND 27.5 mg/kg dry P7J2313 1 10/23/17 10/26/17 >C12-C28 71.0 27.5 mg/kg dry 1 P7J2313 10/23/17 10/26/17 TPH 8015M >C28-C35 40.0 27.5 mg/kg dry 1 P7J2313 10/23/17 10/26/17 TPH 8015M P7J2313 10/23/17 Surrogate: 1-Chlorooctane 10/26/17 TPH 8015M 118 % 70-130 Surrogate: o-Terphenyl 133 % 70-130 P7J2313 10/23/17 10/26/17 TPH 8015M S-GC

27.5 mg/kg dry

111

[CALC]

10/23/17

10/26/17

1

Permian Basin Environmental Lab, L.P.

Total Petroleum Hydrocarbon

C6-C35

Project: Decker Leak Project Number: 17-0177-01 Project Manager: Mark Larson

calc

S-21 7J23004-14 (Soil) Reporting Dilution Analyte Result Limit Units Batch Prepared Analyzed Method Notes Permian Basin Environmental Lab, L.P. **General Chemistry Parameters by EPA / Standard Methods** ND mg/kg dry 1 P7J2603 EPA 300.0 Chloride 1.11 10/26/17 10/26/17 % 1 P7J2403 ASTM D2216 % Moisture 10.0 0.1 10/24/17 10/24/17 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M C6-C12 TPH 8015M ND mg/kg dry P7J2313 27.8 1 10/23/17 10/26/17 >C12-C28 70.3 27.8 mg/kg dry 1 P7J2313 10/23/17 10/26/17 TPH 8015M >C28-C35 37.0 27.8 mg/kg dry 1 P7J2313 10/23/17 10/26/17 TPH 8015M P7J2313 10/23/17 Surrogate: 1-Chlorooctane 10/26/17 TPH 8015M 118 % 70-130 Surrogate: o-Terphenyl 135 % 70-130 P7J2313 10/23/17 10/26/17 TPH 8015M S-GC

27.8 mg/kg dry

107

[CALC]

10/23/17

10/26/17

1

Permian Basin Environmental Lab, L.P.

Surrogate: o-Terphenyl

Total Petroleum Hydrocarbon C6-C35

Project: Decker Leak Project Number: 17-0177-01 Project Manager: Mark Larson

TPH 8015M

calc

S-22 7J23004-15 (Soil) Reporting Result Dilution Method Analyte Limit Units Batch Prepared Analyzed Notes Permian Basin Environmental Lab, L.P. **General Chemistry Parameters by EPA / Standard Methods** ND mg/kg dry 1 P7J2603 EPA 300.0 Chloride 1.06 10/26/17 10/26/17 % 1 P7J2403 ASTM D2216 % Moisture 6.0 0.1 10/24/17 10/24/17 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M C6-C12 TPH 8015M ND 26.6 mg/kg dry P7J2408 10/24/17 1 10/26/17 >C12-C28 ND 26.6 mg/kg dry 1 P7J2408 10/24/17 10/26/17 TPH 8015M ND P7J2408 TPH 8015M >C28-C35 mg/kg dry 1 26.6 10/24/17 10/26/17 Surrogate: 1-Chlorooctane 88.6% 70-130 P7J2408 10/24/17 10/26/17 TPH 8015M

70-130

1

P7J2408

[CALC]

10/24/17

10/24/17

10/26/17

10/26/17

98.1 %

ND

26.6 mg/kg dry

Permian Basin Environmental Lab, L.P.

Analyte

Chloride

Project: Decker Leak Project Number: 17-0177-01 Project Manager: Mark Larson

S-23 7J23004-16 (Soil) Reporting Result Limit Units Dilution Analyzed Method Notes Batch Prepared Permian Basin Environmental Lab, L.P. **General Chemistry Parameters by EPA / Standard Methods** ND 1.05 mg/kg dry 1 P7J2603 EPA 300.0 10/26/17 10/26/17 % Moisture 5.0 % 1 P7J2403 ASTM D2216 0.1 10/24/17 10/24/17

Total Petroleum Hydrocarbons C6-C35 b	v EPA Method 801	5M							
C6-C12	ND	26.3	mg/kg dry	1	P7J2408	10/24/17	10/26/17	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P7J2408	10/24/17	10/26/17	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P7J2408	10/24/17	10/26/17	TPH 8015M	
Surrogate: 1-Chlorooctane		85.1 %	70-130		P7J2408	10/24/17	10/26/17	TPH 8015M	
Surrogate: o-Terphenyl		94.9 %	70-130		P7J2408	10/24/17	10/26/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	10/24/17	10/26/17	calc	

Permian Basin Environmental Lab, L.P.

Surrogate: o-Terphenyl

Total Petroleum Hydrocarbon C6-C35

Project: Decker Leak Project Number: 17-0177-01 Project Manager: Mark Larson

TPH 8015M

calc

S-24 7J23004-17 (Soil) Reporting Result Dilution Method Analyte Limit Units Batch Prepared Analyzed Notes Permian Basin Environmental Lab, L.P. **General Chemistry Parameters by EPA / Standard Methods** ND mg/kg dry 1 P7J2603 EPA 300.0 Chloride 1.08 10/26/17 10/26/17 % 1 P7J2403 ASTM D2216 % Moisture 7.0 0.1 10/24/17 10/24/17 Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M C6-C12 TPH 8015M ND 26.9 mg/kg dry P7J2408 10/24/17 1 10/26/17 >C12-C28 ND 26.9 mg/kg dry 1 P7J2408 10/24/17 10/26/17 TPH 8015M ND P7J2408 TPH 8015M >C28-C35 mg/kg dry 1 26.9 10/24/17 10/26/17 Surrogate: 1-Chlorooctane 89.7 % 70-130 P7J2408 10/24/17 10/26/17 TPH 8015M

70-130

1

97.7%

ND

26.9 mg/kg dry

P7J2408

[CALC]

10/24/17

10/24/17

10/26/17

10/26/17

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Denert		C 11-	C		0/DEC		מת	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7J2403 - *** DEFAULT PREP ***										
Blank (P7J2403-BLK1)				Prepared &	& Analyzed:	: 10/24/17				
% Moisture	ND	0.1	%							
Blank (P7J2403-BLK2)				Prepared &	& Analyzed:	: 10/24/17				
% Moisture	ND	0.1	%							
Duplicate (P7J2403-DUP1)	Sou	rce: 7J23002-	09	Prepared &	& Analyzed:	: 10/24/17				
% Moisture	8.0	0.1	%		9.0			11.8	20	
Duplicate (P7J2403-DUP2)	Sou	rce: 7J23002-	36	Prepared &	& Analyzed:	: 10/24/17				
% Moisture	11.0	0.1	%		10.0			9.52	20	
Duplicate (P7J2403-DUP3)	Sou	rce: 7J23004-	03	Prepared &	& Analyzed:	: 10/24/17				
% Moisture	4.0	0.1	%		5.0			22.2	20	R2
Duplicate (P7J2403-DUP4)	Sou	rce: 7J23006-	05	Prepared &	& Analyzed:	: 10/24/17				
% Moisture	4.0	0.1	%		5.0			22.2	20	R2
Batch P7J2505 - *** DEFAULT PREP ***										
LCS (P7J2505-BS1)				Prepared &	& Analyzed:	: 10/25/17				
Chloride	413	1.00	mg/kg wet	400		103	80-120			
LCS Dup (P7J2505-BSD1)				Prepared &	& Analyzed:	: 10/25/17				
Chloride	416	1.00	mg/kg wet	400	-	104	80-120	0.761	20	
Duplicate (P7J2505-DUP1)	Sou	rce: 7J19018-	02	Prepared &	& Analyzed:	: 10/25/17				
Chloride	938	28.4	mg/kg dry		937			0.0910	20	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7J2505 - *** DEFAULT PREP ***										
Duplicate (P7J2505-DUP2)	Sour	ce: 7J23004	-03	Prepared &	Analyzed:	10/25/17				
Chloride	2.79	1.05	mg/kg dry		2.68			3.85	20	
Matrix Spike (P7J2505-MS1)	Sour	ce: 7J19018	-02	Prepared &	Analyzed:	10/25/17				
Chloride	3380	28.4	mg/kg dry	2270	937	107	80-120			
Batch P7J2603 - *** DEFAULT PREP ***										
Blank (P7J2603-BLK1)				Prepared &	Analyzed:	10/26/17				
Chloride	ND	1.00	mg/kg wet							
LCS (P7J2603-BS1)				Prepared &	Analyzed:	10/26/17				
Chloride	427	1.00	mg/kg wet	400		107	80-120			
LCS Dup (P7J2603-BSD1)				Prepared &	Analyzed:	10/26/17				
Chloride	426	1.00	mg/kg wet	400		106	80-120	0.190	20	
Duplicate (P7J2603-DUP1)	Sour	ce: 7J23004	-13	Prepared &	Analyzed:	10/26/17				
Chloride	ND	1.10	mg/kg dry		ND				20	
Duplicate (P7J2603-DUP2)	Sour	ce: 7J24001	-06	Prepared &	Analyzed:	10/26/17				
Chloride	5860	29.8	mg/kg dry		5730			2.21	20	
Matrix Spike (P7J2603-MS1)	Sour	ce: 7J23004	-13	Prepared &	Analyzed:	10/26/17				
Chloride	1190	1.10	mg/kg dry	1100	ND	108	80-120			

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7J2313 - General Preparation (GC)										
Blank (P7J2313-BLK1)				Prepared:	10/23/17 A	nalyzed: 10	/24/17			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	124		"	100		124	70-130			
Surrogate: o-Terphenyl	71.6		"	50.0		143	70-130			S-GC
LCS (P7J2313-BS1)				Prepared:	10/23/17 Ai	nalyzed: 10	/24/17			
C6-C12	1200	25.0	mg/kg wet	1000		120	75-125			
>C12-C28	1170	25.0	"	1000		117	75-125			
Surrogate: 1-Chlorooctane	124		"	100		124	70-130			
Surrogate: o-Terphenyl	69.5		"	50.0		139	70-130			S-GC
LCS Dup (P7J2313-BSD1)				Prepared:	10/23/17 A	nalyzed: 10	/24/17			
C6-C12	1220	25.0	mg/kg wet	1000		122	75-125	1.76	20	
>C12-C28	1190	25.0	"	1000		119	75-125	1.86	20	
Surrogate: 1-Chlorooctane	128		"	100		128	70-130			
Surrogate: o-Terphenyl	70.7		"	50.0		141	70-130			S-GC
Calibration Blank (P7J2313-CCB1)				Prepared:	10/23/17 A	nalyzed: 10	/24/17			
C6-C12	13.0		mg/kg wet							
>C12-C28	10.6		"							
Surrogate: 1-Chlorooctane	122		"	100		122	70-130			
Surrogate: o-Terphenyl	69.8		"	50.0		140	70-130			S-GC
Calibration Blank (P7J2313-CCB2)				Prepared:	10/23/17 Ai	nalyzed: 10	/24/17			
C6-C12	12.8		mg/kg wet							
>C12-C28	14.1		"							
Surrogate: 1-Chlorooctane	122		"	100		122	70-130			
Surrogate: o-Terphenvl	70.0		"	50.0		140	70-130			S-GC

Permian Basin Environmental Lab, L.P.

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7J2313 - General Preparation (GC)										
Calibration Check (P7J2313-CCV1)				Prepared:	10/23/17 A	nalyzed: 10	/24/17			
C6-C12	556	25.0	mg/kg wet	500		111	85-115			
>C12-C28	501	25.0	"	500		100	85-115			
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	61.9		"	50.0		124	70-130			
Calibration Check (P7J2313-CCV2)				Prepared:	10/23/17 A	nalyzed: 10	/24/17			
C6-C12	529	25.0	mg/kg wet	500		106	85-115			
>C12-C28	507	25.0	"	500		101	85-115			
Surrogate: 1-Chlorooctane	114		"	100		114	70-130			
Surrogate: o-Terphenyl	64.0		"	50.0		128	70-130			
Calibration Check (P7J2313-CCV3)				Prepared:	10/23/17 A	nalyzed: 10	/25/17			
C6-C12	563	25.0	mg/kg wet	500		113	85-115			
>C12-C28	570	25.0	"	500		114	85-115			
Surrogate: 1-Chlorooctane	123		"	100		123	70-130			
Surrogate: o-Terphenyl	64.0		"	50.0		128	70-130			
Matrix Spike (P7J2313-MS1)	Sou	ırce: 7J20002	-03	Prepared:	10/23/17 At	nalyzed: 10	/24/17			
C6-C12	1210	30.9	mg/kg dry	1230	13.2	96.7	75-125			
>C12-C28	1130	30.9	"	1230	20.9	90.1	75-125			
Surrogate: 1-Chlorooctane	137		"	123		111	70-130			
Surrogate: o-Terphenyl	79.1		"	61.7		128	70-130			
Matrix Spike Dup (P7J2313-MSD1)	Soi	urce: 7J20002	-03	Prepared:	10/23/17 A	nalyzed: 10	/24/17			
C6-C12	1180	30.9	mg/kg dry	1230	13.2	94.9	75-125	1.94	20	
>C12-C28	1130	30.9	"	1230	20.9	90.2	75-125	0.0799	20	
Surrogate: 1-Chlorooctane	146		"	123		118	70-130			
Surrogate: o-Terphenyl	73.3		"	61.7		119	70-130			

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7J2408 - General Preparation (GC)										
Blank (P7J2408-BLK1)				Prepared: 1	10/24/17 Ar	alyzed: 10	/25/17			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	102		"	100		102	70-130			
Surrogate: o-Terphenyl	56.9		"	50.0		114	70-130			
LCS (P7J2408-BS1)				Prepared: 1	10/24/17 Ar	alyzed: 10	/25/17			
C6-C12	1000	25.0	mg/kg wet	1000		100	75-125			
>C12-C28	959	25.0	"	1000		95.9	75-125			
Surrogate: 1-Chlorooctane	123		"	100		123	70-130			
Surrogate: o-Terphenyl	60.5		"	50.0		121	70-130			
LCS Dup (P7J2408-BSD1)				Prepared: 1	10/24/17 Ar	alyzed: 10	/25/17			
C6-C12	928	25.0	mg/kg wet	1000		92.8	75-125	7.90	20	
>C12-C28	935	25.0	"	1000		93.5	75-125	2.51	20	
Surrogate: 1-Chlorooctane	126		"	100		126	70-130			
Surrogate: o-Terphenyl	58.3		"	50.0		117	70-130			
Calibration Blank (P7J2408-CCB1)				Prepared: 1	10/24/17 Ar	alyzed: 10	/25/17			
C6-C12	15.2		mg/kg wet							
>C12-C28	9.00		"							
Surrogate: 1-Chlorooctane	107		"	100		107	70-130			
Surrogate: o-Terphenyl	62.4		"	50.0		125	70-130			
Calibration Check (P7J2408-CCV1)				Prepared: 1	10/24/17 Ar	alyzed: 10	/25/17			
C6-C12	563	25.0	mg/kg wet	500		113	85-115			
>C12-C28	570	25.0	"	500		114	85-115			
Surrogate: 1-Chlorooctane	123		"	100		123	70-130			
Surrogate: o-Terphenyl	64.0		"	50.0		128	70-130			

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7J2408 - General Preparation (GC)										
Calibration Check (P7J2408-CCV2)				Prepared:	10/24/17 At	nalyzed: 10	/26/17			
C6-C12	525	25.0	mg/kg wet	500		105	85-115			
>C12-C28	488	25.0		500		97.6	85-115			
Surrogate: 1-Chlorooctane	121		"	100		121	70-130			
Surrogate: o-Terphenyl	62.8		"	50.0		126	70-130			
Calibration Check (P7J2408-CCV3)				Prepared:	10/24/17 At	nalyzed: 10	/26/17			
C6-C12	526	25.0	mg/kg wet	500		105	85-115			
>C12-C28	511	25.0	"	500		102	85-115			
Surrogate: 1-Chlorooctane	129		"	100		129	70-130			
Surrogate: o-Terphenyl	63.8		"	50.0		128	70-130			
Matrix Spike (P7J2408-MS1)	Sou	rce: 7J24009	-21	Prepared:	10/24/17 At	nalyzed: 10	/26/17			
C6-C12	4610	137	mg/kg dry	1100	5290	NR	75-125			
>C12-C28	1340	137		1100	669	60.9	75-125			
Surrogate: 1-Chlorooctane	111		"	110		101	70-130			
Surrogate: o-Terphenyl	48.7		"	54.9		88.7	70-130			
Matrix Spike Dup (P7J2408-MSD1)	Sou	rce: 7J24009	-21	Prepared:	10/24/17 At	nalyzed: 10	/26/17			
C6-C12	4600	137	mg/kg dry	1100	5290	NR	75-125	NR	20	
>C12-C28	1310	137		1100	669	58.6	75-125	3.85	20	
Surrogate: 1-Chlorooctane	114		"	110		104	70-130			
Surrogate: o-Terphenyl	52.4		"	54.9		95.4	70-130			

Notes and Definitions

S-GC	Surrogate recovery out	side of control limits.	The data was accept	ted based on valid reco	very of the remaining surrogate.

R2 The RPD exceeded the acceptance limit.

- BULK Samples received in Bulk soil containers
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike

Report Approved By:

Dup Duplicate

Bun Barron

Date: 10/30/2017

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

								0
	- WHAND DELIVERED NCTO				401	11-51-1		
		OTHER []	e)	CEIVED BY: (Signatur	ه RE	DATETIME	/:(Signature)	RELINQUISHED
Ü	CUSTODY SEALS - D BROKEN WINTACT D NOT USE				ŕ		.(จมูกสนาย)	REMINIONEL
	RECEIVING TEMP: 5.0 THERM #		e)	SEIVED BY: (Signatur	R		'(Cimpture)	
		TURN AROUND TIME	e)	CEIVED BY: (Signatur	REO	DATE/TIME	:(Signature)	RELINQUISHED BY
								TOTAL
			XX			/ 11:40	رک ا	5-12
	x		XX			20:1	14	5.21
			XX			12:55	67	5-20
			××			12:50	12	5-19
			XX			12:15		S-18
			XX			1:20	0	S-17
			×			12:10	9	31-5
	×		XX			11:45	\$	S-15
	×		××		-	/ 10:35	ر ر	9-14
			XX			11:30	6	51-5
			××			00:11	L	5-12
			XX			11:10	ـــــــــــــــــــــــــــــــــــــ	11-S
			XX			12:30	5	01-5
	5, 1×		××			11:20	2	5 A
			× ×	×	-	120 12:30	0	8-S
		x 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	10/1×/0/01	- - (aunx #			Sample I.D.
	AN AN AN AN AN AN AN AN ANTES		A	ICI INO₃ I₂SO₄ CE INPR	of C	1	-	Field
	A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 00 0 0 0 0 0 0 0 0	C Harris	i D RESE	onta		J	NM
	1 1 <td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>st cer</td> <td>NaOH</td> <td>iners</td> <td></td> <td></td> <td>TIME ZONE: Time zone/State:</td>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	st cer	NaOH	iners			TIME ZONE: Time zone/State:
	100 100 100 100 100 100 100 100 100 100					OT=OTHER	A=AIR	
			• •	PRESERVATION		P≃PAINT SL=SLUDGE	S=SOIL W=WATER	TRRP report?
1	1-01 COLLECTOR: GF L	OJECT #: 17-017						Data Reported to:
Pa	NAME: DECKED LEAK	ECT LOCATION OR N	PROJE	432-687-0901	-		tes, Inc.	SSOCIO
je 27 (LAB WORK ORDER #7383004	11/52101	200 DATE: PO #:	 Marienfeld, Ste. ۸: المحمد TY 70701 	507 1		-	
of 2								

CHAIN-OF-CUSTOD

fruten								
HAND DELIVERED								(H)
CARRIER BILL #					909	23-10		RELINGOISHER DI (SI
CUSTODY SEALS - D BROKEN WINTACT D NOT USED	2 DAY		- RV- (Signature)			DATEN	matura)	
RECEIVING TEMP: HERM #:			D BY: (Signature)	RECEIVE	IME	DATEN	gnature)	REVINQUISHED BY:(SI
LABORATORY USE ONLY:	TURN AROUND TIME		D BY: (Signature)	RECEIVE	JIME	DATE/	Unature)	RELINQUISHED BY:(Si
								TOTAL
						-		
						-	· ·	
			1981					
							-	
				-				
						:		
		××	×	-	S	0 12:00	1.1015	S-24
) Y	×		v	Ø 11:50	10/2	2-23
×		× <		•	p			3
SALT OF A SALT O		ANNA X X X X X X X X X X X X X X X X X X	HNO ₃ H ₂ SO ₄ ICE UNPRESE	# of Conta HCI	Matrix	le Time	Lab # Da	Field Sample I.D.
1 1 <td></td> <td>es</td> <td>NaOH [</td> <td>iners</td> <td></td> <td></td> <td></td> <td>TIME ZONE: Time zone/State:</td>		es	NaOH [iners				TIME ZONE: Time zone/State:
	1000 C C C C C C C C C C C C C C C C C C		ESERVATION	ק	• •	9=PAINT SL=SLUDGE OT=OTHER	S=SOIL	TRRP report?
	OJECT #: 17-017 1*						<u></u>	Data Reported to:
ME: DECKER LEAK	CT LOCATION OR NAI	PROJE	2-687-0901	Midio 43;			Consultants	I SSOCIQTE
LAB WORK ORDER #: g		200 PO #: _	arienfeld, Ste. 2	507 N. M				A arson &
PAGE 2 OF 2 of	L1 / 22/01	DATE:			,		on another may be a	
CHAIN-OF-CUSTOD 28				•				

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Targa Decker Leak Project Number: 17-0177-01 Location:

Lab Order Number: 7L05010

NELAP/TCEQ # T104704516-16-7

Report Date: 12/07/17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
S-1 5'-6'	7L05010-01	Soil	12/05/17 10:10	12-05-2017 15:45
S-1 10'-11'	7L05010-02	Soil	12/05/17 10:13	12-05-2017 15:45
S-1 15'-16'	7L05010-03	Soil	12/05/17 10:15	12-05-2017 15:45
S-1 20'-21'	7L05010-04	Soil	12/05/17 10:16	12-05-2017 15:45
S-2 5'-6'	7L05010-05	Soil	12/05/17 10:39	12-05-2017 15:45
S-2 10'-11'	7L05010-06	Soil	12/05/17 10:43	12-05-2017 15:45
S-2 15'-16'	7L05010-07	Soil	12/05/17 10:47	12-05-2017 15:45

S-1 5'-6'

		7L05	010-01 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin F	Environme	ntal Lab, l	L .P.				
General Chemistry Paramete	rs by EPA / Standard Methods								
Chloride	13.5	1.08	mg/kg dry	1	P7L0604	12/06/17	12/07/17	EPA 300.0	
% Moisture	7.0	0.1	%	1	P7L0601	12/06/17	12/06/17	ASTM D2216	
Project Number: Targa Decker Leak Project Number: 17-017-01 Project Manager: Mark Larson

S-1 10'-11'

7L05010-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes				
Permian Basin Environmental Lab, L.P.													
General Chemistry Parameters by E	PA / Standard Methods												
Chloride	10.3	1.09	mg/kg dry	1	P7L0604	12/06/17	12/07/17	EPA 300.0					
% Moisture	8.0	0.1	%	1	P7L0601	12/06/17	12/06/17	ASTM D2216					

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710	Fax: (432) 6	87-0456										
S-1 15'-16' 7L05010-03 (Soil)												
Analyte	Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note											
Permian Basin Environmental Lab, L.P.												
General Chemistry Parameters by EP	A / Standard Method	5										

1.08 mg/kg dry

%

0.1

2.56

7.0

P7L0604

P7L0601

12/06/17

12/06/17

12/07/17

12/06/17

1

1

EPA 300.0

ASTM D2216

Permian Basin Environmental Lab, L.P.

Chloride

% Moisture

Project Number: Targa Decker Leak Project Number: 17-0177-01 Project Manager: Mark Larson

S-1 20'-21'

7L05010-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes				
Permian Basin Environmental Lab, L.P.													
General Chemistry Parameters by EP	A / Standard Methods												
Chloride	ND	1.09	mg/kg dry	1	P7L0604	12/06/17	12/07/17	EPA 300.0					
% Moisture	8.0	0.1	%	1	P7L0601	12/06/17	12/06/17	ASTM D2216					

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Fax: (432) 6	587-0456						
		S 7L050	-2 5'-6')10-05 (So	il)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	nvironme	ntal Lab, L	P.				
General Chemistry Parameters by E	PA / Standard Method	5							
Chloride	ND	1.06	mg/kg dry	1	P7L0604	12/06/17	12/07/17	EPA 300.0	

%

1

P7L0601

12/06/17

ASTM D2216

12/06/17

0.1

6.0

Permian Basin Environmental Lab, L.P.

% Moisture

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710	Fax: (432) 6	87-0456							
		S-2 7L050	2 10'-11')10-06 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	an Basin E	nvironme	ntal Lab, I	P .				
General Chemistry Parameters by E	<u>PA / Standard Methods</u>	1.08	mg/kg drv	1	P7L0604	12/06/17	12/07/17	EPA 300.0	

%

1

P7L0601

12/06/17

12/06/17

ASTM D2216

0.1

7.0

Permian Basin Environmental Lab, L.P.

% Moisture

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710	Fax: (432) 6	87-0456										
S-2 15'-16' 7L05010-07 (Soil)												
Analyte	Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes											
Permian Basin Environmental Lab, L.P.												
General Chemistry Parameters by EP	A / Standard Method	S										

1.06 mg/kg dry

%

0.1

ND

6.0

P7L0604

P7L0601

12/06/17

12/06/17

12/07/17

12/06/17

1

1

EPA 300.0

ASTM D2216

Permian Basin Environmental Lab, L.P.

Chloride

% Moisture

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7L0601 - *** DEFAULT PREP ***										
Blank (P7L0601-BLK1)				Prepared &	Analyzed:	12/06/17				
% Moisture	ND	0.1	%							
Duplicate (P7L0601-DUP1)	Sou	rce: 7L05002	-18	Prepared &	Analyzed:	12/06/17				
% Moisture	11.0	0.1	%		12.0			8.70	20	
Duplicate (P7L0601-DUP2)	Sou	rce: 7L05009	-01	Prepared &	Analyzed:	12/06/17				
% Moisture	4.0	0.1	%		5.0			22.2	20	
Batch P7L0604 - *** DEFAULT PREP ***										
Blank (P7L0604-BLK1)				Prepared:	2/06/17 A	nalyzed: 12	2/07/17			
Chloride	ND	1.00	mg/kg wet							
LCS (P7L0604-BS1)				Prepared:	2/06/17 A	nalyzed: 12	2/07/17			
Chloride	420	1.00	mg/kg wet	400		105	80-120			
LCS Dup (P7L0604-BSD1)				Prepared:	2/06/17 A	nalyzed: 12	2/07/17			
Chloride	426	1.00	mg/kg wet	400		107	80-120	1.55	20	
Duplicate (P7L0604-DUP1)	Sou	rce: 7L05003	-01	Prepared: 1	2/06/17 A	nalyzed: 12	2/07/17			
Chloride	10800	54.3	mg/kg dry		10800			0.509	20	
Duplicate (P7L0604-DUP2)	Sou	rce: 7L05010	-01	Prepared: 1	2/06/17 A	nalyzed: 12	2/07/17			
Chloride	12.9	1.08	mg/kg dry		13.5			4.55	20	
Matrix Spike (P7L0604-MS1)	Sou	rce: 7L05003	-01	Prepared:	2/06/17 A	nalyzed: 12	2/07/17			
Chloride	16500	54.3	mg/kg dry	5430	10800	104	80-120			

DUIN

Notes and Definitions

DULK	Samples received in Burk son containers
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported

Commissional in Duille and in commission

- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike

Report Approved By:

Dup Duplicate

nen Barron

Date: 12/7/2017

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

۲			\frown			signi generation 🗖		. 1	i					-						<u></u>							
5 0		RELIN		8	REL	TOTAL	-						ĺ	2	N N	N N		<u>?</u> {		ク	Sar	Time :	∏ Ye	Data I	J		
<u>n</u>		QUISH	HSIDD		Helno									<u>,</u>	5	γ	20,	5.	5	ß	Field mple I.[IE ZON zone/St	ss repo	Report	Enviro		l
	-	ED BY:		5										-110		ຣ໌	21		÷	6 <u> </u>		E: ate;	Νο Ι	ed to:		on a	<i>.</i>
		(Signat	Signar		(Signat									2	6	n	2	فر	3	_	La b		S=SC W=W		al Con	o ∎	
		ure)	ure)		ure)															_	#		ATER		Inc		
				1	61					ŀ		E		\vdash						2/05	Date		P SL: ■	8	(vî 4		
		D	. ç		, A D	<u>5</u> , 5								5	ю.	10	ē	6	6	10	Π		PAINT =SLUD =OTHE	S			
		ATE/TIN												Ч	5	ίς Ω	91	j.	ى ت	10	me		ភ័ណ្ណ	2			
		Ē	Ē		ΠE									۲						S	Matri			5	,		
		RE	Ē		REO						-								-		# of Conta	iners		<u> S</u>		507	e.
	4				CEIVED		 							1							HCI		R	2	Midla 43:	Z ™	
		N BX) BY: (-														NaOH	ESER		Ind, T 2-687	arien	
	K	Signatu		Signafu	Signatu									۲						5					-0901	eld, S	
		ᡗᢪ᠍ ᢣᢩ	~,		(e)			_													UNPRESI	ERVED	Ž		01	њ. 20	
							 -														Rap III	23	×.	╞			
		5					 														C4 5 7 9 5 6 0 1 8 1 9 1 0 0 1 8 1 8 1 0			A PF	ROJ	DATE:	
		OTH	, _, , _, , _,		TUF																40C 93 6 140	5 1005 0 15 1005		OUE(
		R			RN ARO																	50	(3) I I I I I I I I I I I I I I I I I I I		OCA	2 - 0	
				-	DUND -																606-1870 10-00-00-00-00-00-00-00-00-00-00-00-00-0	ALL CON	Ň		TION	S,	
					TIME																	8157	THO AND	ļģ	ORN	Ľ	-
	Анд	Ц С	CUST	RECE	LABC																CALLS I	PCR)	1015 - 1005 - 10		AME:	_	
	ND DE	RRIER	ODY S	IVING	RATO		 														PC CAR			ĮQ	1		
	LIVER	BILL	EALS	TEMP	RY US		 												-		644 0 X 5 5 0	100			La la		<u>೧</u>
3	₿	-	ШВ										-	۲						4	CALOS ANT	AL STO		ß		DRD	ΗA
200			ROKEN	<u> </u>	/ .≺		 														4		A CLAN		non		N-
		•		THERN																	L.C.		ALCON CR	R:	67	PA	ЧЧ П
			TACT	- #																	E	$\langle \rangle$		VC			Ċ
					÷				×													\searrow	X			2	LSI
			T USE																		TES		$\backslash \rangle$	╢┏	Page	- ī	
			0												Ļ									╎┖			Ī

L~1Jon

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Lea City, NM/Decker Project Number: 17-0177-01 Location: NM

Lab Order Number: 8K07007

NELAP/TCEQ # T104704516-17-8

Report Date: 11/08/18

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

Project: Lea City, NM/Decker Project Number: 17-0177-01 Project Manager: Mark Larson

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
S-25	8K07007-01	Soil	11/06/18 08:10	11-07-2018 09:15

S-25

8K07007-01 (Soil)											
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
	Perm	ian Basin F	Environmer	ital Lab, l	L .P.						
General Chemistry Parameters by EPA / S	tandard Method	s									
% Moisture	10.0	0.1	%	1	P8K0801	11/08/18	11/08/18	ASTM D2216			
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M									
C6-C12	ND	27.8	mg/kg dry	1	P8K0707	11/07/18	11/07/18	TPH 8015M			
>C12-C28	ND	27.8	mg/kg dry	1	P8K0707	11/07/18	11/07/18	TPH 8015M			
>C28-C35	ND	27.8	mg/kg dry	1	P8K0707	11/07/18	11/07/18	TPH 8015M			
Surrogate: 1-Chlorooctane		104 %	70-1	30	P8K0707	11/07/18	11/07/18	TPH 8015M			
Surrogate: o-Terphenyl		113 %	70-1	30	P8K0707	11/07/18	11/07/18	TPH 8015M			
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	11/07/18	11/07/18	calc			

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P8K0801 - *** DEFAULT PREP ***										
Blank (P8K0801-BLK1)				Prepared &	Analyzed:	11/08/18				
% Moisture	ND	0.1	%							
Duplicate (P8K0801-DUP1)	Sourc	e: 8K07003-	09	Prepared &	Analyzed:	11/08/18				
% Moisture	16.0	0.1	%		16.0			0.00	20	
Duplicate (P8K0801-DUP2)	Sourc	e: 8K07005-	12	Prepared &	Analyzed:	11/08/18				
% Moisture	10.0	0.1	%		10.0			0.00	20	
Duplicate (P8K0801-DUP3)	Sourc	e: 8K07007-	01	Prepared &	Analyzed:	11/08/18				
% Moisture	9.0	0.1	%		10.0			10.5	20	

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

	D li	Reporting	T T 1	Spike	Source	WDEG	%REC	DDD	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P8K0707 - TX 1005										
Blank (P8K0707-BLK1)				Prepared &	z Analyzed	: 11/07/18				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	55.8		"	50.0		112	70-130			
LCS (P8K0707-BS1)				Prepared &	z Analyzed	: 11/07/18				
C6-C12	939	25.0	mg/kg wet	1000		93.9	75-125			
>C12-C28	950	25.0	"	1000		95.0	75-125			
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	53.0		"	50.0		106	70-130			
LCS Dup (P8K0707-BSD1)				Prepared &	z Analyzed	: 11/07/18				
C6-C12	1140	25.0	mg/kg wet	1000		114	75-125	19.2	20	
>C12-C28	904	25.0	"	1000		90.4	75-125	4.97	20	
Surrogate: 1-Chlorooctane	113		"	100		113	70-130			
Surrogate: o-Terphenyl	53.7		"	50.0		107	70-130			
Matrix Spike (P8K0707-MS1)	Sou	rce: 8K07007	7-01	Prepared: 1	1/07/18 A	nalyzed: 11	/08/18			
C6-C12	1050	27.8	mg/kg dry	1110	21.6	92.2	75-125			
>C12-C28	1050	27.8	"	1110	14.8	93.5	75-125			
Surrogate: 1-Chlorooctane	132		"	111		119	70-130			
Surrogate: o-Terphenyl	60.0		"	55.6		108	70-130			
Matrix Spike Dup (P8K0707-MSD1)	Sou	rce: 8K07007	7-01	Prepared: 1	1/07/18 A	nalyzed: 11	/08/18			
C6-C12	1110	27.8	mg/kg dry	1110	21.6	98.2	75-125	6.35	20	
>C12-C28	1030	27.8	"	1110	14.8	91.6	75-125	2.08	20	
Surrogate: 1-Chlorooctane	132		"	111		119	70-130			
Surrogate: o-Terphenyl	64.4		"	55.6		116	70-130			

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

un Barron Report Approved By:

Date: <u>11/8/2018</u>

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

						7 7 7 7	LABORATORY:
		Jezy ,	Junto V	X7.0	1-11		
	2 DAYE	ionature)	RECEIVED BY: (S			/-/Signature)	
CINTODY SEALS - D BROKEN DINTACT D NOT USED		ignature)	RECEIVED BY: (S	ITIME .	DATE	(:(Signature)	RELINQUISHED BY
LABORATORY USE ONLY:	NORMAL	ignature)	RECEIVED BY: (S	19 Cg		((Signature)	RELINQUISHED
							TOTAL
						`	
		۲ ۲ ۲		s	1/2/18 08:1		5-25
	12/20/20/20/20/20/20/20/20/20/20/20/20/20	ICE UNPF	# of C HCI HNO ₃ H ₂ SO	Matrix	Date Time	Lab #	Field Sample I.D.
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		RESS					MIN/NM
		SERVE	iners NaOH		0100	7SH	TIME ZONE: Time zone/State:
		D			OT=OTHER	A=AIR	Ves VINO
		ATION	PRESERV		P=PAINT	S=SOIL	TRRP report?
	ROJECT # 1						Data Reported to:
ME: Leo Cty, NM/ Nechy []	ECT LOCATION OR NAI	901 PROJ	432-687-09			tal Consultants	
		1, Ste. 200 PO#:	7 N. Marientek	50			Aarson 8
PAGE 0F 7	612018	DATE					
CHAIN-OF-CUSTO							
Nº 0328							

Appendix D

Boring Logs

			BORING	RECORD		
		Start: 10:05	NO	Ŋ	PID READING SAMP	PLE REMARKS
GEOLOGIC	DEPTH	Finish: 10:16	CRIPTIC		PPM X_1	BACKGROUND → PID READING
UNIT		DESCRIPTION LITHOLOGIC	DES(GRAF		
	0	Sand, 7.5YR 6/4, Light Brown, Fine Grain, Quartz Dominant,	SW			
	5 —	Sub-Rounded - Angular Grains, Well Graded	Caliaba		1	<u>5</u> 10:10 <u> </u>
	-	Caliche, 7.5YR 7/4, Pink, Fine Grain, Quartz Dominant, Rounded Grains	Calicite			
	10				2	10:13
	13 — 	Sand, 7.5YR 6/3, Light Brown,			3	- 10:15
		Fine Grain, Quartz Dominant, Rounded Grains, Well Graded	SW			
	20				4	20 10:16
		TD: 21'				-
	25—					
						-
	30					
						-
	35—					
						-
	40					
						-
						-
10 01	NE CONTINU	JOUS AUGER SAMPLER	BLE (TIME	OF BORING)	JOB NUMBER :1 HOLE DIAMETER :	<u>7-0177-01</u> 5"
	IDISTURBEI	D SAMPLE + PENETROP E (24 HRS) NR NO RECOV	METER (TOI	NS/ SQ. FT)		y, NM
			PODINO		LAI GEOLOGIST : 5.J	SDC
Aarson &	nc.	12-5-17	BURING	момвек : 5-1	DRILLING METHOD :	_ · ~

			BORING	RECORD		
		Start: 10:35	NO	g	PID READING SAMPLE REMARKS	
GEOLOGIC UNIT	DEPTH	Finish: 10:50	SCRIPTI		PPM X 1 2 14 16 18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		DESCRIPTION LITHOLOGIC	DE	GR∕		PPM PPM
	0	Sand, 7.5YR 6/4, Light Brown, Medium-Fine Grain, Quartz Dominant, Angular - Sub-Rounded Grains,	SW			
	5 —	Well Graded				
		Caliche, 7.5YR 7/4, Pink, Well Indurated, Quartz Dominated,	Caliche			_
	10	Rounded 7.5YR 8/2, Pinkish White			<u>2</u> <u>10</u> 10:43	_
	13 _					
	15	Sand, 7.5YR 6/3, Light Brown,	sw		<u>3</u> 15 10:47	_
		Fine Grain, Quartz Dominant, Well Graded				_
		TD: 16'	/			
	20—					_
	_					_
	25—					
						_
	_					
	30—					_
						-
	_					_
	35—					
						-
	_					
	40					_
						-
	_					_
	I	I			<u>17-0177-01</u>	
	NE CONTINU	JOUS AUGER SAMPLER - WATER T.	ABLE (TIME	OF BORING)	HOLE DIAMETER : 5"	-
	DISTURBEI	D SAMPLE + PENETRC	METER (TO	NS/ SQ. FT)	LOCATION :	
— w	ATER TABLI	E (24 HRS) NR NO RECO	VERY		LAI GEOLOGIST : S.J.	
∧arson & ==		DRILL DATE :	BORING	NUMBER :	DRILLING CONTRACTOR :SDC	_
Associates,	nc.	12-5-17		S-2	DRILLING METHOD :	

Appendix E

Photographs

Source of Release Viewing North

Source of Release

Release Area Viewing from South to North

Soil Sample Location S-1 Viewing South

Release Area Viewing South from Soil Sample Location S-2

Release Area Viewing South from Soil Sample Location S-3

Release Area Viewing South from Soil Sample Location S-5

Release Area Viewing South from Soil Sample Location S-7

Release Area after Microblaze[®] Application Viewing North, September 25, 2017

Release Area after Microblaze[®] Application Viewing North, September 25, 2017

Release Area after Microblaze[®] Application Viewing North, September 25, 2017

Release Point Viewing Northeast, November 7, 2018

Release Point Viewing North, November 7, 2018

Release Point Viewing Northwest, November 7, 2018

Central Release Area Viewing East, November 7, 2018

Central Release Area Viewing Northeast, November 7, 2018

Central Release Area Viewing North, November 7, 2018

Appendix F

Final C-141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe. NM 87505

State of New Mexico Energy Minerals and Natural **Resources Department**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

)

Responsible Party

Responsible Party Targa Midstream Services, L.P.	OGRID 24650
Contact Name Cindy Klein	Contact Telephone 575-631-7093
Contact email Cklein@targaresources.com	Incident # (assigned by OCD) 1RP-4787
Contact mailing address P.O. Box 67, Monument, NM 8826	5

Location of Release Source

Latitude 33.2495 North

(NAD 83 in decimal degrees to 5 decimal places)

Site Name NGL Release	Site Type gas and pipeline liquids
Date Release Discovered 8/5/2017	API# (if applicable)

Unit Letter	Section	Township	Range	County
C,G	28	12S	38E	Lea

Surface Owner: X State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
X Produced Water	Volume Released (bbls) 7 bbls	Volume Recovered (bbls) N/A
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
X Natural Gas	Volume Released (Mcf) 425	Volume Recovered (Mcf) N/A
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Targa's 6" poly pipeline was discovered leaking as the result of external corrosion on a 2" valve. The line was isolated, blown down and a new valve was installed.

Form C-141 Page 2 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	
19 15 29 7(A) NMAC?	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

X The source of the release has been stopped.

X The impacted area has been secured to protect human health and the environment.

x Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

X All free liquids and recoverable materials have been removed and managed appropriately.

o ...

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Cindy Klein	Title:	
Signature: Cridy Klein	Date: 11/09/18 Telephone:	
email: Cklein@targaresources.com	575-631-7093	
OCD Only		
Received by:	Date:	

Form C-141 Page 3 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>18</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	Yes X No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	X Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	Yes X No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗶 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	X Yes No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	Yes X No
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No
Are the lateral extents of the release overlying a subsurface mine?	Yes X No
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes X No
Are the lateral extents of the release within a 100-year floodplain?	Yes X No
Did the release impact areas not on an exploration, development, production, or storage site?	Yes X No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

X Field data

- X Data table of soil contaminant concentration data
- X Depth to water determination
- X Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- X Boring or excavation logs
- X Photographs including date and GIS information
- X Topographic/Aerial maps
- X Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141	State of New Mexico	Lucident ID		
Deco 4	Oil Conservation Division	Incident ID		
Page 4	OII COIISCI VALIOII DIVISIOII	District RP		
		Facility ID		
		Application ID		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Cindy Klein Signature: Cuidy Klein Title: ES&H Supervisor Bate: 11/09/18 email: Cklein@targaresources.com				
OCD Only				
Received by:	REVIEWED By Olivia Yu at 7:42 am, Nov 14, 2018	Date:		

Form C-141 Page 5 State of New Mexico Oil Conservation Division

Remediation Plan Checklist: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

 X Detailed description of proposed remediation technique X Scaled sitemap with GPS coordinates showing delineation points X Estimated volume of material to be remediated X Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC X Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 			
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.			
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.			
Extents of contamination must be fully delineated.			
Contamination does not cause an imminent risk to human health, the environment, or groundwater.			
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file which may endanger public health or the environment. The accepta liability should their operations have failed to adequately investigat surface water, human health or the environment. In addition, OCD responsibility for compliance with any other federal, state, or local Printed Name: Cindy Klein Signature: Cuidy Klein email: Cklein@targaresources.com	te to the best of my knowledge and understand that pursuant to OCD certain release notifications and perform corrective actions for releases unce of a C-141 report by the OCD does not relieve the operator of e and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of laws and/or regulations. 		
REVIEWED			
By Olivia Yu at 7:42 am, Nov 14, 2018	Date:		
Approved Approved with Attached Conditions of	Approval Denied Deferral Approved		
Signature:	Date:		
Form C-141 Page 6 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

X A scaled site and sampling diagram as described in 19.15.29.11 NMAC

X Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

X Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

X Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Cindy	Klein	Title: <u>F</u>	ES&H Supervisor
Signature:	in llein	Date: <u>1</u>	<u>11/09/18</u> Telephone:
email:Cklein@targa	resources.com	<u>575-63</u>	31-7093

OCD Only	
Received by:	Date:

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

ON	
Closure Approved by:	Date:
Printed Name: APPROVED By Olivia Yu at 7:42 am, Nov 14, 2018	Title: