Breitburn Operating LP Jalmat Sands Unit Water Injection Unit Battery Work Plan

Section 14, Township 22S, Range 35E Lea County, New Mexico

September 16, 2019

Prepared for:

Maverick Resources P.O. BOX 678 Andrews, TX 79714

By:

Safety & Environmental Solutions, Inc. 703 East Clinton Street Hobbs, New Mexico 88240 (575) 397-0510

TABLE OF CONTENTS

I.	COMPANY CONTACTS	1
II.	BACKGROUND	1
III.	SURFACE AND GROUND WATER	1
IV.	CHARACTERIZATION	1
V.	WORK PERFORMED	2
VI.	ACTION PLAN	2
VII.	FIGURES & APPENDICES	3
F	igure 1 – Site Map	4
A	ppendix A – C-141	5
A	ppendix B – Groundwater	6
A	ppendix C – Analytical Results	7

I. Company Contacts

Representative	Company	Telephone	E-mail
Thomas Haigood	Maverick Resources	(432) 523-1807	Thomas.haigood@mavresources.com
Bob Allen	SESI	(575) 397-0510	ballen@sesi-nm.com

II. Background

Safety and Environmental Solutions, Inc., hereinafter referred to as (SESI) was engaged by Maverick Resources to assess a spill at the Jalmat Sands Unit Water Injection Tank Battery. The spill area was mapped using a handheld Juno 3B. According to the mapped area the spill impacted approximately 514 square yards of pad area. This site is situated in Section 14, Township 22S, and Range 35E.

According to the C-141: A pump malfunctioned, not allowing the movement of water to the injection well. This caused the tanks to overfill. 90% of the fluid was captured inside the containment area. Maverick took proactive measures by dispatching a vac truck to recover the fluid. Some fluid overflowed the containment traversing the lease road. There was no impact to pasture areas.

III. Surface and Ground Water

There is no record of groundwater in the immediate vicinity of the site location. Further research of the New Mexico Office of the State Engineer records indicates the average depth to groundwater for the area to be 185' bgs., as documented for the depth to water in Section 14.

IV. Characterization

The target cleanup levels are determined using the NMAC 19.15.29 revisions dated July 24, 2018. The soil screening criteria presented below, and the applicable Recommended Remediation Action Levels (RRAL) for depths to groundwater >300' are 10 parts per million (ppm) Benzene, 50 ppm combined Benzene, Toluene, Ethyl Benzene, and Total Xylenes (BTEX), and 2,500 ppm Total Petroleum Hydrocarbons (TPH). Characterization of vertical extent of chloride concentration to a level of 20,000 Mg/kg, furthermore 600 mg/kg (PPM) is also required for pasture impact.

Table 1 Closure Criteria for Soils Impacted by a Release					
Minimum depth below any point within the horizontal boundary of the release to ground water less than 10,000 mg/l	Constituent	Method*	Limit**		
TDS					
<50 feet	Chloride***	EPA 300.0 or SM4500 Cl B	600 mg/kg		
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015B	100 mg/kg		
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg		
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg		
51 feet-100 feet	Chloride***	EPA 300.0 or SM4500 Cl B	10,000 mg/kg		
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015B	2,500 mg/kg		
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg		
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg		
>100 feet	Chloride***	EPA 300.0 or SM4500 Cl B	20,000 mg/kg		
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015B	2,500 mg/kg		
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg		

V. Work Performed

On August 16, 2019 SESI personnel, were on site to advance soil auger holes, and map the spill area. Five auger hole locations were designated and flagged in order to delineate the spill area vertically, and horizontally. Soil samples were grabbed at surface and one-foot increments and field tested for Total Petroleum Hydrocarbons and Chlorides. All soil samples were properly packaged, preserved and transported to Hall Environmental Analysis Laboratory of Albuquerque, NM via chain of custody, and analyzed for TPH (total petroleum hydrocarbons) (Method 8015M), BTEX, and Chlorides (Method SM4500CI-B). The lab results are recapped in the following table:

Breitburn Operating LP									
Jalmat Sands Unit Battery									
	S	oil Sample	Results: Car	dinal Labora	tories Septe	mber 03, 2019			
SAMPLE ID	Benzene	Toluene	Ethyl-	Total	Total	Chlorides	TPH	TPH	EXT
			benzene	Xylenes	BTEX		GRO	DRO	DRO
SP-1 Surface	ND	ND	ND	ND	ND	790	ND	2400	2400
SP-1 @ 1ft	ND	ND	ND	ND	ND	ND	ND	ND	ND
SP-2 Surface	ND	ND	ND	ND	ND	41000	ND	1000	1000
SP-2 @ 1ft	ND	ND	ND	ND	ND	160	ND	ND	ND
SP-3 Surface	ND	ND	ND	ND	ND	510	ND	19000	15000
SP-3 @ 1ft	ND	ND	ND	ND	ND	1400	ND	260	810
SP-4 Surface	ND	ND	ND	ND	ND	1900	ND	14000	11000
SP-4 @ 1ft	ND	ND	ND	ND	ND	1000	ND	210	380
SP-5 Surface	ND	ND	ND	ND	ND	2500	ND	14000	11000
SP-5 @ 1ft	ND	ND	ND	ND	ND	630	ND	170	170

VI. Action Plan

The results of the samples listed above indicate no BTEX present in any of the samples. SESI proposes to excavate the pad area, and interior of the berm to the extent that Recommended Remediation Levels are < 20,000 ppm for the Chloride Constituency, and < 2,500 ppm for Total Petroleum Hydrocarbons.

The horizontal extent of contamination will be determined by side wall samples to be taken at the time of excavation. Vertical remediation will be documented with bottom soil grab sample laboratory confirmation of RL's. It is estimated that a 1' bgs excavation will be necessary for the removal of impacted caliche. All contaminated soil will be transported to an NMOCD approved facility and documented via disposal manifests. The pad and interior bermed area will be backfilled with like material and returned to grade. Upon completion of approved remediation activity; all necessary closure documentation will be submitted to the appropriate regulatory agencies, and parties of concern.

VII. Figures & Appendices

Figure 1 - Site Map Appendix A – C-141 Appendix B – Groundwater Appendix C – Analytical Results Appendix D – Photo Documentation

Figure 1 Site Map

Legend

- 孝 Jalmat Battery
- stine Measure
- Sample Positions
- 🖉 Spill Area

70 ft

Appendix A C-141 District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Mayerick Natural Resources, LLCD	OGRID 370080
Contact Name Thomas Haigood	Contact Telephone (432)701-7802
Contact email: Thomas.haigood@mavresources.com	Incident # (assigned by OCD)
Contact mailing address PO Box 678 Andrews, TX	

Location of Release Source

Latitude 32,398801	Longitude103.336184	
(NAD 83 in de	(NAD 83 in decimal degrees to 5 decimal places)	
Site Name Jalmat Sands Unit Water Injection Unit	Site Type Tank Battery	

Site Name Jalmat Sands Unit Water Injection Unit	Site Type Tank Battery
Date Release Discovered 07-02-19	API# (if applicable)

Unit Letter	Section	Township	Range	County
В	14	22S	35E	Lea

Surface Owner: X State Federal Tribal X Private (Name:

Nature and Volume of Release

Materia	d(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)75	Volume Recovered (bbls)80
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
🗌 Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release: The pump malfunctioned, not allowing movement of water to the injections well. This caused the tanks to over fill. 90% of the fluid was captured in the containment area, and a vac truck was dispatched to recover the fluid. Some fluid overflowed the containment traversing the lease road. An environmental company has been contacted to remediate the area in accordance with NMOCD guidelines.

Form	C-141

Page 2

П

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC? If YES, for what reason(s) does the responsible party consider this a major release?

Yes 🛛 No			
If YES, was immedia	te notice given to the OCD?	By whom? To whom?	When and by what means (phone, email, etc)

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name Thomas Haigood	Title: HSE Coordinator
Signature:	Date: 07/08/19
email: Thomas.haigood@mavresources.com	Telephone: _(432)701-7802

OCD Only

Received by:

Date:

Form C-141 Page 3 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>185 (ft bgs)</u>
Did this release impact groundwater or surface water?	🗌 Yes 🗽 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 💽 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗴 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗴 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes ᡵ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes X No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🔝 No
Are the lateral extents of the release within 300 feet of a wetland?	🗋 Yes 🗴 No
Are the lateral extents of the release overlying a subsurface mine?	Yes X No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗴 No
Are the lateral extents of the release within a 100-year floodplain?	🗋 Yes 🗴 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗴 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

Field data
 Data table of soil contaminant concentration data

Depth to water determination

Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release

Boring or excavation logs

Photographs including date and GIS information

Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

	Form C-141	State of New Me	exico	Incident ID	
	Page 4	Oil Conservation D	Division	District RP	
				Facility ID	
				Application ID	
, ,	I hereby certify that the i regulations all operators public health or the envin failed to adequately inve addition, OCD acceptance and/or regulations.	nformation given above is true and com- are required to report and/or file certain ronment. The acceptance of a C-141 rep stigate and remediate contamination that be of a C-141 report does not relieve the	plete to the best of my knowled release notifications and perform ort by the OCD does not relieve t pose a threat to groundwater, s operator of responsibility for co	ge and understand that pursuar m corrective actions for release e the operator of liability shoul urface water, human health or ompliance with any other feder	nt to OCD rules and es which may endanger ld their operations have the environment. In 'al, state, or local laws
	Printed Name Thoma	s Haigood	Title: HS	E Coordina	tor
	Signature:	elf?	Date: <u>07/</u>	08/19	
	email: Thomas.ha	igood@mavresources.com	Telephone: (432)701-7802	
î N	OCD Only				
	Received by:		Date:		
		16			

Form C-141 Page 5 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.								
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 								
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.								
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.								
Extents of contamination must be fully delineated.								
Contamination does not cause an imminent risk to human health, the environment, or groundwater.								
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.								
Printed Name Thomas Haigood Title: HSE Coordinator								
Signature: Date: 07/08/19 email: Thomas.haigood@mavresources.com Telephone: _(432)701-7802								
OCD Only								
Received by: Date:								
Approved in Approved with Attached Conditions of Approval Denied Deferral Approved								
Signature: Date:								

Appendix B Groundwater

Wat	er	Col	ur	n	n/		/er	age	Dep	th to V	Vater	•
(R=POD replaced, O=orpha C=the fil closed)	has been ned, e is	ı (qu (qu	arters	are are	1=NV smalle	V 2=N est to l	E 3=SW argest)	4=SE) (NAD8	3 UTM in mete	ers)	(In feet)	
	POD			_								
Code	Sub- basin	County	Q Q 64 16	Q 4	Sec	Tws	Rno	x	v	Denth Well Der	W hthWater Col	ate lum
cout	CP	LE	4	4	06	22S	35E	650422	3587591*	62		. un
	СР	LE	2	1	34	22S	35E	654553	3580819*	98		
	СР	LE	2	2	20	22S	35E	652089	3584000* 🦲	96		
	СР	LE	2	2	14	22S	35E	656891	3585687* 🧧	215	185	
									Average Depth	to Water:	185 feet	t
									Minin	num Depth:	185 feet	t
									Maxim	um Depth:	185 feet	t
D	250											
	Wat (R=POD replaced, O=orpha: C=the fil closed) Code	(R=POD has beer replaced, O=orphaned, C=the file is closed) POD Sub- Code basin CP CP CP CP	New M Water Col (R=POD has been replaced, O=orphaned, C=the file is (qu closed) (qu POD Sub- Code basin County CP LE CP LE CP LE CP LE	New Mexit Water Colum (R=POD has been replaced, O=orphaned, C=the file is (quarters - closed) (quarters - (quarters	New Mexico Water Colum (R=POD has been replaced, O=orphaned, C=the file is (quarters are closed) (quarters are (quarters are (quarters are (quarters are (quarters are (quarters are CP LE 4 4 CP LE 2 1 CP LE 2 2 CP LE 2 2	New Mexico C Water Column/ (R=POD has been replaced, O=orphaned, C=the file is closed) (quarters are I=NV (quarters are smaller smal	New Mexico Offi Water Column/A (R=POD has been replaced, O=orphaned, C=the file is closed) (quarters are smallest to I POD Sub- Q Q Q Q Q Vector Code basin County 64 16 4 See Tws CP LE 4 4 06 22S CP LE 2 1 34 22S CP LE 2 2 10 22S CP LE 2 2 14 22S CP LE 2 2 14 22S	New Mexico Office of Water Column/Aver (R=POD has been replaced, O=orphaned, C=the file is (quarters are smallest to largest) POD Sub- Q Q Q Code basin County 64 16 4 Sec Tws Rng CP LE 4 4 06 228 35E CP LE 4 4 06 228 35E CP LE 2 1 34 228 35E CP LE 2 2 1 34 228 35E CP LE 2 1 4 228 35E	New Mexico Office of the Water Column/Average (R=POD has been replaced, O=orphaned, C=the file is closed) (quarters are 1=NW 2=NE 3=SW 4=SE) (NAD8 POD Sub- Q Q Q Colspan="2">X Code basin County 64 16 4 Sec Tws Rng X CP LE 4 4 06 228 35E 650422 CP LE 2 1 34 228 35E 654553 CP LE 2 2 20 228 35E 652089 CP LE 2 2 14 228 35E 656891	New Mexico Office of the State E Water Column/Average Dep (R=POD has been replaced, O=orphaned, (quarters are 1=NW 2=NE 3=SW 4=SE) (NAD83 UTM in meta POD Sub- Q Q Q Code basin County 64 16 4 Sec Tws Rng X Y CP LE 4 4 06 22S 35E 650422 3587591* CP LE 2 1 34 22S 35E 650422 35880819* CP LE 2 2 20 22S 35E 650433 3580819* CP LE 2 2 2 20 22S 35E 656891 3585687* Other State E Werage Depth Minin Maxim	New Mexico Office of the State Engineer Water Column/Average Depth to V (R=POD has been replaced, O=orphaned, C=the file is (quarters are 1=NW 2=NE 3=SW 4=SE) closed) (quarters are smallest to largest) (NAD83 UTM in meters) POD Sub- Q Q Q Code basin County 64 16 4 Sec Tws Rng X Y DepthWellDep CP LE 4 4 06 22S 35E 650422 3587591* 6 CP LE 2 1 34 22S 35E 650422 3587591* 6 CP LE 2 2 1 34 22S 35E 650422 3587591* 6 CP LE 2 1 34 22S 35E 650422 3587591* 6 CP LE 2 1 34 22S 35E 650422 3587591* 6 CP LE 2 2 1 34 22S 35E 65089 3584000* 96 CP LE 2 2 2 14 22S 35E 656891 3585687* 215 Average Depth to Water: Maximum Depth:	New Mexico Office of the State Engineer Water Column/Average Depth to Water (R=POD has been replaced, O-orphaned, C=the file is (quarters are smallest to largest) (NAD83 UTM in meters) (In feet) POD Sub- Q Q Q W Odd basin County 64 16 4 Sec Tws Rng X Y DepthWellDepthWater Col Code Depth (CP LE 4 4 0 06 228 35E 650422 3587591*) 62 CP LE 2 1 34 228 35E 650422 3587591* 62 CP LE 2 1 34 228 35E 650422 3587591* G CP LE 2 1 34 228 35E 65089 3584000* 98 CP LE 2 2 2 14 228 35E 656891 3585687* 215 185 Average Depth to Water: 185 feet Maximum Depth: 185 feet

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/11/19 2:13 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER Appendix C Analytical Results

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 03, 2019

Rebecca Pons Safety & Environmental Solutions PO Box 1613 Hobbs, NM 88241 TEL: (575) 397-0510 FAX: (575) 393-4388

RE: Jalmat battery

OrderNo.: 1908C20

Dear Rebecca Pons:

Hall Environmental Analysis Laboratory received 10 sample(s) on 8/21/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1908C20** Date Reported: **9/3/2019**

CLIENT:	Safety & Environmental Solution	As Client Sample ID: SP1-Surface									
Project:	Jalmat battery		Collection Date: 8/16/2019								
Lab ID:	1908C20-001	Matrix: SOIL		Receiv	ved Dat	e: 8/2	21/2019 9:02:00 AM				
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch			
EPA MET	HOD 300.0: ANIONS						Analyst	CAS			
Chloride		790	60		mg/Kg	20	8/27/2019 5:12:01 AM	47069			
EPA MET	HOD 8015M/D: DIESEL RANGE	E ORGANICS					Analyst	BRM			
Diesel Ra	ange Organics (DRO)	2400	100		mg/Kg	10	8/28/2019 9:44:02 AM	47038			
Motor Oil	Range Organics (MRO)	2400	500		mg/Kg	10	8/28/2019 9:44:02 AM	47038			
Surr: D	NOP	0	70-130	S	%Rec	10	8/28/2019 9:44:02 AM	47038			
EPA MET	HOD 8015D: GASOLINE RANG	E					Analyst	NSB			
Gasoline	Range Organics (GRO)	ND	4.7		mg/Kg	1	8/25/2019 8:48:23 AM	47024			
Surr: E	3FB	88.7	77.4-118		%Rec	1	8/25/2019 8:48:23 AM	47024			
EPA MET	HOD 8021B: VOLATILES						Analyst	NSB			
Benzene		ND	0.023		mg/Kg	1	8/25/2019 8:48:23 AM	47024			
Toluene		ND	0.047		mg/Kg	1	8/25/2019 8:48:23 AM	47024			
Ethylben	zene	ND	0.047		mg/Kg	1	8/25/2019 8:48:23 AM	47024			
Xylenes,	Total	ND	0.093		mg/Kg	1	8/25/2019 8:48:23 AM	47024			
Surr: 4	-Bromofluorobenzene	88.7	80-120		%Rec	1	8/25/2019 8:48:23 AM	47024			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 14

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/3/2019

CLIENT:	Safety & Environmental Soluti	ons	ns Client Sample ID: SP1 @1ft						
Project:	Jalmat battery		(Collection Dat	e: 8/1	6/2019			
Lab ID:	1908C20-002	Matrix: SOIL		Received Date	e: 8/2	21/2019 9:02:00 AM			
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA MET	HOD 300.0: ANIONS					Analyst	CAS		
Chloride		ND	60	mg/Kg	20	8/27/2019 5:24:26 AM	47069		
EPA MET	HOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst	BRM		
Diesel R	ange Organics (DRO)	ND	9.7	mg/Kg	1	8/28/2019 7:53:48 AM	47038		
Motor Oi	I Range Organics (MRO)	ND	49	mg/Kg	1	8/28/2019 7:53:48 AM	47038		
Surr: [DNOP	99.2	70-130	%Rec	1	8/28/2019 7:53:48 AM	47038		
EPA MET	HOD 8015D: GASOLINE RANG	GE				Analyst	NSB		
Gasoline	Range Organics (GRO)	ND	4.8	mg/Kg	1	8/24/2019 8:57:19 PM	47024		
Surr: E	3FB	89.0	77.4-118	%Rec	1	8/24/2019 8:57:19 PM	47024		
EPA MET	HOD 8021B: VOLATILES					Analyst	NSB		
Benzene		ND	0.024	mg/Kg	1	8/24/2019 8:57:19 PM	47024		
Toluene		ND	0.048	mg/Kg	1	8/24/2019 8:57:19 PM	47024		
Ethylben	zene	ND	0.048	mg/Kg	1	8/24/2019 8:57:19 PM	47024		
Xylenes,	Total	ND	0.097	mg/Kg	1	8/24/2019 8:57:19 PM	47024		
Surr: 4	1-Bromofluorobenzene	89.4	80-120	%Rec	1	8/24/2019 8:57:19 PM	47024		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 14

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/3/2019

CLIENT: Safety & Environmental Solution	ns Client Sample ID: SP2 Suface							
Project: Jalmat battery	Collection Date: 8/16/2019							
Lab ID: 1908C20-003	Matrix: SOIL		Recei	ved Dat	e: 8/2	1/2019 9:02:00 AM		
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 300.0: ANIONS						Analyst	CAS	
Chloride	41000	3000		mg/Kg	1E+	- 8/28/2019 5:05:52 AM	47069	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	BRM	
Diesel Range Organics (DRO)	1000	99		mg/Kg	10	8/28/2019 8:15:49 AM	47038	
Motor Oil Range Organics (MRO)	1000	500		mg/Kg	10	8/28/2019 8:15:49 AM	47038	
Surr: DNOP	0	70-130	S	%Rec	10	8/28/2019 8:15:49 AM	47038	
EPA METHOD 8015D: GASOLINE RANGE						Analyst	NSB	
Gasoline Range Organics (GRO)	ND	4.9		mg/Kg	1	8/25/2019 10:22:14 AM	47024	
Surr: BFB	88.5	77.4-118		%Rec	1	8/25/2019 10:22:14 AM	47024	
EPA METHOD 8021B: VOLATILES						Analyst	NSB	
Benzene	ND	0.025		mg/Kg	1	8/25/2019 10:22:14 AM	47024	
Toluene	ND	0.049		mg/Kg	1	8/25/2019 10:22:14 AM	47024	
Ethylbenzene	ND	0.049		mg/Kg	1	8/25/2019 10:22:14 AM	47024	
Xylenes, Total	ND	0.099		mg/Kg	1	8/25/2019 10:22:14 AM	47024	
Surr: 4-Bromofluorobenzene	88.4	80-120		%Rec	1	8/25/2019 10:22:14 AM	47024	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

Page 3 of 14

S % Recovery outside of range due to dilution or matrix

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/3/2019

CLIENT:	Safety & Environmental Solution	ns Client Sample ID: SP2 @1ft								
Project:	Jalmat battery	Collection Date: 8/16/2019								
Lab ID:	1908C20-004	Matrix: SOIL		Received Dat	e: 8/2	21/2019 9:02:00 AM				
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA MET	HOD 300.0: ANIONS					Analyst	CAS			
Chloride		160	60	mg/Kg	20	8/27/2019 5:49:14 AM	47069			
EPA MET	HOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	BRM			
Diesel R	ange Organics (DRO)	ND	9.5	mg/Kg	1	8/28/2019 8:37:54 AM	47038			
Motor Oi	I Range Organics (MRO)	ND	47	mg/Kg	1	8/28/2019 8:37:54 AM	47038			
Surr: [DNOP	95.5	70-130	%Rec	1	8/28/2019 8:37:54 AM	47038			
EPA MET	HOD 8015D: GASOLINE RANGE					Analyst	NSB			
Gasoline	Range Organics (GRO)	ND	4.6	mg/Kg	1	8/24/2019 10:32:42 PM	47024			
Surr: E	3FB	93.8	77.4-118	%Rec	1	8/24/2019 10:32:42 PM	47024			
EPA MET	HOD 8021B: VOLATILES					Analyst	NSB			
Benzene		ND	0.023	mg/Kg	1	8/24/2019 10:32:42 PM	47024			
Toluene		ND	0.046	mg/Kg	1	8/24/2019 10:32:42 PM	47024			
Ethylben	zene	ND	0.046	mg/Kg	1	8/24/2019 10:32:42 PM	47024			
Xylenes,	Total	ND	0.092	mg/Kg	1	8/24/2019 10:32:42 PM	47024			
Surr: 4	4-Bromofluorobenzene	93.2	80-120	%Rec	1	8/24/2019 10:32:42 PM	47024			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 14

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1908C20** Date Reported: **9/3/2019**

CLIENT:	Safety & Environmental S	Solutions	ns Client Sample ID: SP3-Surface									
Project:	Jalmat battery		Collection Date: 8/16/2019									
Lab ID: 1908C20-005 Analyses		Matrix: SOIL	Received Date: 8/21/2019 9:02:00 AM									
		Result	RL	Qual	Units	DF	Date Analyzed	Batch				
EPA MET	HOD 300.0: ANIONS						Analyst	CAS				
Chloride		510	60		mg/Kg	20	8/27/2019 6:01:38 AM	47069				
EPA MET	HOD 8015M/D: DIESEL R	ANGE ORGANICS					Analyst	BRM				
Diesel Ra	ange Organics (DRO)	19000	950		mg/Kg	100	8/28/2019 8:59:57 AM	47038				
Motor Oil Range Organics (MRO)		15000	4700		mg/Kg	100	8/28/2019 8:59:57 AM	47038				
Surr: D	NOP	0	70-130	S	%Rec	100	8/28/2019 8:59:57 AM	47038				
EPA MET	HOD 8015D: GASOLINE	RANGE					Analyst	NSB				
Gasoline	Range Organics (GRO)	ND	4.9		mg/Kg	1	8/24/2019 10:56:29 PM	47024				
Surr: E	BFB	102	77.4-118		%Rec	1	8/24/2019 10:56:29 PM	47024				
EPA MET	HOD 8021B: VOLATILES						Analyst	NSB				
Benzene		ND	0.025		mg/Kg	1	8/24/2019 10:56:29 PM	47024				
Toluene		ND	0.049		mg/Kg	1	8/24/2019 10:56:29 PM	47024				
Ethylben	zene	ND	0.049		mg/Kg	1	8/24/2019 10:56:29 PM	47024				
Xylenes,	Total	ND	0.099		mg/Kg	1	8/24/2019 10:56:29 PM	47024				
Surr: 4	-Bromofluorobenzene	98.3	80-120		%Rec	1	8/24/2019 10:56:29 PM	47024				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 14

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1908C20** Date Reported: **9/3/2019**

CLIENT:	Safety & Environmental Solution	ns	ns Client Sample ID: SP3 @ 1ft								
Project:	Jalmat battery	Collection Date: 8/16/2019									
Lab ID: 1908C20-006		Matrix: SOIL		Recei	ved Dat	e: 8/2	21/2019 9:02:00 AM				
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch			
EPA MET	HOD 300.0: ANIONS						Analyst:	CAS			
Chloride		1400	60		mg/Kg	20	8/27/2019 6:14:02 AM	47069			
EPA MET	HOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst:	BRM			
Diesel Range Organics (DRO)		260	94		mg/Kg	10	8/28/2019 9:22:04 AM	47038			
Motor Oil Range Organics (MRO)		810	470		mg/Kg	10	8/28/2019 9:22:04 AM	47038			
Surr: E	DNOP	0	70-130	S	%Rec	10	8/28/2019 9:22:04 AM	47038			
EPA MET	HOD 8015D: GASOLINE RANG	E					Analyst:	NSB			
Gasoline	Range Organics (GRO)	ND	4.9		mg/Kg	1	8/24/2019 11:44:01 PM	47024			
Surr: E	3FB	92.2	77.4-118		%Rec	1	8/24/2019 11:44:01 PM	47024			
EPA MET	HOD 8021B: VOLATILES						Analyst:	NSB			
Benzene		ND	0.024		mg/Kg	1	8/24/2019 11:44:01 PM	47024			
Toluene		ND	0.049		mg/Kg	1	8/24/2019 11:44:01 PM	47024			
Ethylben	zene	ND	0.049		mg/Kg	1	8/24/2019 11:44:01 PM	47024			
Xylenes,	Total	ND	0.098		mg/Kg	1	8/24/2019 11:44:01 PM	47024			
Surr: 4	I-Bromofluorobenzene	91.5	80-120		%Rec	1	8/24/2019 11:44:01 PM	47024			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 14

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/3/2019

CLIENT:	Safety & Environmental Solu	tions	Cl	ient Sa	ample II	D: SP4	4- Surface	
Project:	Jalmat battery		(Collect	ion Dat	e: 8/1	6/2019	
Lab ID:	1908C20-007	Matrix: SOIL		Recei	ved Dat	e: 8/2	1/2019 9:02:00 AM	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA MET	HOD 300.0: ANIONS						Analyst	CAS
Chloride		1900	59		mg/Kg	20	8/27/2019 4:28:55 PM	47084
EPA MET	HOD 8015M/D: DIESEL RAN	GE ORGANICS					Analyst	JME
EPA METHOD 8015M/D: DIESEL RANGE Diesel Range Organics (DRO) Motor Oil Range Organics (MRO)		14000	970		mg/Kg	100	8/28/2019 8:00:12 AM	47038
Motor Oil	Range Organics (MRO)	11000	4800		mg/Kg	100	8/28/2019 8:00:12 AM	47038
Surr: D	NOP	0	70-130	S	%Rec	100	8/28/2019 8:00:12 AM	47038
EPA MET	HOD 8015D: GASOLINE RAM	NGE					Analyst	NSB
Gasoline	Range Organics (GRO)	ND	4.9		mg/Kg	1	8/25/2019 11:09:00 AM	47024
Surr: E	BFB	85.7	77.4-118		%Rec	1	8/25/2019 11:09:00 AM	47024
EPA MET	HOD 8021B: VOLATILES						Analyst	NSB
Benzene		ND	0.025		mg/Kg	1	8/25/2019 11:09:00 AM	47024
Toluene		ND	0.049		mg/Kg	1	8/25/2019 11:09:00 AM	47024
Ethylben	zene	ND	0.049		mg/Kg	1	8/25/2019 11:09:00 AM	47024
Xylenes,	Total	ND	0.098		mg/Kg	1	8/25/2019 11:09:00 AM	47024
Surr: 4	-Bromofluorobenzene	85.2	80-120		%Rec	1	8/25/2019 11:09:00 AM	47024

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 14

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1908C20 Date Reported: 9/3/2019

CLIENT: Safety & Environmental Solution	ns Client Sample ID: SP4 @1 ft								
Project: Jalmat battery	Collection Date: 8/16/2019								
Lab ID: 1908C20-008	Matrix: SOIL		Received Date	e: 8/2	21/2019 9:02:00 AM				
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst:	CAS			
Chloride	1000	60	mg/Kg	20	8/27/2019 4:41:20 PM	47084			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst:	JME			
Diesel Range Organics (DRO)	210	8.5	mg/Kg	1	8/28/2019 10:50:33 AM	47038			
Motor Oil Range Organics (MRO)	380	43	mg/Kg	1	8/28/2019 10:50:33 AM	47038			
Surr: DNOP	102	70-130	%Rec	1	8/28/2019 10:50:33 AM	47038			
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst:	NSB			
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/25/2019 12:32:32 AM	47024			
Surr: BFB	101	77.4-118	%Rec	1	8/25/2019 12:32:32 AM	47024			
EPA METHOD 8021B: VOLATILES					Analyst:	NSB			
Benzene	ND	0.024	mg/Kg	1	8/25/2019 12:32:32 AM	47024			
Toluene	ND	0.049	mg/Kg	1	8/25/2019 12:32:32 AM	47024			
Ethylbenzene	ND	0.049	mg/Kg	1	8/25/2019 12:32:32 AM	47024			
Xylenes, Total	ND	0.097	mg/Kg	1	8/25/2019 12:32:32 AM	47024			
Surr: 4-Bromofluorobenzene	101	80-120	%Rec	1	8/25/2019 12:32:32 AM	47024			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 14

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/3/2019

CLIENT:	Safety & Environmental So	olutions	Cl	ient Sa	mple II	D:SP:	5-Surface			
Project:	Jalmat battery		Collection Date: 8/16/2019							
Lab ID:	1908C20-009	Matrix: SOIL	Matrix: SOIL Received Date: 8/21/2019 9:02:0							
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch		
EPA MET	HOD 300.0: ANIONS						Analyst	CAS		
Chloride		2500	150		mg/Kg	50	8/30/2019 3:16:08 AM	47084		
EPA MET	HOD 8015M/D: DIESEL RA	NGE ORGANICS					Analyst	JME		
Diesel Range Organics (DRO)		14000	900		mg/Kg	100	8/28/2019 8:48:55 AM	47038		
Motor Oil Range Organics (MRO)		11000	4500		mg/Kg	100	8/28/2019 8:48:55 AM	47038		
Surr: D	DNOP	0	70-130	S	%Rec	100	8/28/2019 8:48:55 AM	47038		
EPA MET	HOD 8015D: GASOLINE R	ANGE					Analyst	NSB		
Gasoline	Range Organics (GRO)	ND	4.9		mg/Kg	1	8/25/2019 12:56:36 AM	47024		
Surr: E	3FB	118	77.4-118	S	%Rec	1	8/25/2019 12:56:36 AM	47024		
EPA MET	HOD 8021B: VOLATILES						Analyst	NSB		
Benzene		ND	0.024		mg/Kg	1	8/25/2019 12:56:36 AM	47024		
Toluene		ND	0.049		mg/Kg	1	8/25/2019 12:56:36 AM	47024		
Ethylben	zene	ND	0.049		mg/Kg	1	8/25/2019 12:56:36 AM	47024		
Xylenes,	Total	ND	0.098		mg/Kg	1	8/25/2019 12:56:36 AM	47024		
Surr: 4	I-Bromofluorobenzene	104	80-120		%Rec	1	8/25/2019 12:56:36 AM	47024		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 14

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1908C20** Date Reported: **9/3/2019**

CLIENT:	Safety & Environmental Solution	ns	Cl	ient Sample II	D: SP	P5 @1 ft					
Project:	Jalmat battery	Collection Date: 8/16/2019									
Lab ID: 1908C20-010 Analyses		Matrix: SOIL	Received Date: 8/21/2019 9:02:00 AM								
		Result	RL	Qual Units	DF	Date Analyzed	Batch				
EPA MET	THOD 300.0: ANIONS					Analyst	CAS				
Chloride		630	60	mg/Kg	20	8/27/2019 5:30:57 PM	47084				
EPA MET	THOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: JME				
Diesel R	ange Organics (DRO)	170	10	mg/Kg	1	8/28/2019 9:13:19 AM	47038				
Motor Oi	I Range Organics (MRO)	170	51	mg/Kg	1	8/28/2019 9:13:19 AM	47038				
Surr: [DNOP	116	70-130	%Rec	1	8/28/2019 9:13:19 AM	47038				
ЕРА МЕТ	HOD 8015D: GASOLINE RANGI	E				Analyst	NSB				
Gasoline	Range Organics (GRO)	ND	5.0	mg/Kg	1	8/25/2019 1:45:15 AM	47024				
Surr: E	BFB	101	77.4-118	%Rec	1	8/25/2019 1:45:15 AM	47024				
ЕРА МЕТ	THOD 8021B: VOLATILES					Analyst	: NSB				
Benzene		ND	0.025	mg/Kg	1	8/25/2019 1:45:15 AM	47024				
Toluene		ND	0.050	mg/Kg	1	8/25/2019 1:45:15 AM	47024				
Ethylben	izene	ND	0.050	mg/Kg	1	8/25/2019 1:45:15 AM	47024				
Xylenes,	Total	ND	0.099	mg/Kg	1	8/25/2019 1:45:15 AM	47024				
Surr: 4	4-Bromofluorobenzene	98.5	80-120	%Rec	1	8/25/2019 1:45:15 AM	47024				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 14

S % Recovery outside of range due to dilution or matrix

1908C20

03-Sep-19

Client:	Safety &	Environmental Soluti	ions							
Project:	Jalmat ba	ttery								
Sample ID:	MB-47069	SampType: MBLK	т	estCode: EPA Metho	d 300.0: Anions	6				
Client ID:	PBS	Batch ID: 47069		RunNo: 62418						
Prep Date:	8/26/2019	Analysis Date: 8/27/2	2019	SeqNo: 2122979	Units: mg/K	g				
Analyte		Result PQL SF	PK value SPK Ref Va	al %REC LowLimi	t HighLimit	%RPD	RPDLimit	Qual		
		110								
Sample ID:	LCS-47069	SampType: LCS	Т	estCode: EPA Metho	d 300.0: Anions	5				
Client ID:	LCSS	Batch ID: 47069		RunNo: 62418						
Prep Date:	8/26/2019	Analysis Date: 8/27/2	2019	SeqNo: 2122980	Units: mg/K	g				
Analyte		Result PQL SF	PK value SPK Ref Va	al %REC LowLimi	t HighLimit	%RPD	RPDLimit	Qual		
Chloride		14 1.5	15.00 0	95.9 90) 110					
Sample ID:	: MB-47084	SampType: mblk	т	estCode: EPA Metho	d 300.0: Anions	5				
Client ID:	PBS	Batch ID: 47084		RunNo: 62447						
Prep Date:	8/27/2019	Analysis Date: 8/27/2	2019	SeqNo: 2124844	Units: mg/K	g				
Analyte		Result PQL SF	PK value SPK Ref Va	al %REC LowLimi	t HighLimit	%RPD	RPDLimit	Qual		
Chloride		ND 1.5								
Sample ID:	: LCS-47084	SampType: Ics	т	estCode: EPA Metho	d 300.0: Anions	5				
Client ID:	LCSS	Batch ID: 47084		RunNo: 62447						
Prep Date:	8/27/2019	Analysis Date: 8/27/2	2019	SeqNo: 2124845	Units: mg/K	g				
Prep Date: Analyte	8/27/2019	Analysis Date: 8/27/2 Result PQL SF	2 019 PK value SPK Ref Va	SeqNo: 2124845 al %REC LowLimi	Units: mg/K t HighLimit	g %RPD	RPDLimit	Qual		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 14

WO#:	1908C20

03-Sep-19

Client:	Safety &	Environme	ental Sc	olutions							
Project:	Jalmat b	attery									
Sample ID:	LCS-47038	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID:	LCSS	Batch	וD: 47	038	F	RunNo: 6	2445				
Prep Date:	8/26/2019	Analysis D	ate: 8/	27/2019	S	SeqNo: 2	123537	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range C	Organics (DRO)	52	10	50.00	0	105	63.9	124			
Surr: DNOP		4.8		5.000		96.8	70	130			
Sample ID:	Sample ID: MB-47038 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics										
Client ID:	PBS	Batch	Batch ID: 47038			RunNo: 62445					
Prep Date:	8/26/2019	Analysis D	ate: 8/	27/2019	S	SeqNo: 2	123538	Units: mg/k	íg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range C	Organics (DRO)	ND	10								
Motor Oil Rang	e Organics (MRO)	ND	50								
Surr: DNOP		11		10.00		108	70	130			
Sample ID:	LCS-47122	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Die	esel Rang	e Organics	
Client ID:	LCSS	Batch	ו ID: 47	122	F	RunNo: 6	2465				
Prep Date:	8/28/2019	Analysis D	ate: 8/	29/2019	S	SeqNo: 2	127327	Units: %Re	C		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		4.8		5.000		96.1	70	130			
Sample ID:	MB-47122	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Rang	e Organics	
Client ID:	PBS	Batch	ו ID: 47	122	F	RunNo: 6	2465				
Prep Date:	8/28/2019	Analysis D	ate: 8/	29/2019	5	SeqNo: 2	127328	Units: %Re	C		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		10		10.00		101	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#:	1908C20
	03-Sep-19

Client: Safe	ty & Environm	ental So	olutions							
Project: Jalm	at battery									
Sample ID: MB-47024	Samp	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8015D: Gaso	oline Rang	e	
Client ID: PBS	Batc	h ID: 47	024	F	RunNo: 6	2394				
Prep Date: 8/23/2019	Analysis [Date: 8/	24/2019	S	SeqNo: 2	120907	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRC)) ND	5.0								
Surr: BFB	930		1000		93.3	77.4	118			
Sample ID: LCS-47024	Samp	Гуре: LC	s	Tes	tCode: El	PA Method	8015D: Gaso	oline Rang	e	
Client ID: LCSS	Batc	Batch ID: 47024 RunNo: 62394								
Prep Date: 8/23/2019	Analysis [Date: 8/	24/2019	S	SeqNo: 2	120908	Units: mg/H	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRC)) 22	5.0	25.00	0	88.1	80	120			
Surr: BFB	1100		1000		106	77.4	118			
Sample ID: 1908C20-001	AMS Samp	Гуре: М	6	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: SP1-Surface	Batc	h ID: 47	024	F	RunNo: 6	2396				
Prep Date: 8/23/2019	Analysis [Date: 8/	25/2019	5	SeqNo: 2	120965	Units: mg/H	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRC) 20	4.9	24.30	0	84.0	69.1	142			
Surr: BFB	970		971.8		100	77.4	118			
Sample ID: 1908C20-001	AMSD Samp	Гуре: М	SD	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: SP1-Surface	Batc	h ID: 47	024	F	RunNo: 6	2396				
Prep Date: 8/23/2019	Analysis [Date: 8/	25/2019	S	SeqNo: 2	120966	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRC) 20	4.9	24.34	0	83.6	69.1	142	0.283	20	
Surr: BFB	980		973.7		101	77.4	118	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#:	1908C20

Client: Project:	Safety & Jalmat ba	Environm ttery	ental So	olutions							
Sample ID:	MR-47024	Samo			Too	tCodo: El	PA Mothod	8021B: Vola	tilos		
		Botol	туре. М.		103	TestCode: EPA Method 8021B: Volatiles					
Dren Deter	FB3			024	ſ		2394				
Prep Date:	8/23/2019	Analysis L	Jale: 8/	24/2019			120945	Units: mg/r	vg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
loluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, I otal		ND	0.10	4 0 0 0				100			
Surr: 4-Brom	nofluorobenzene	0.93		1.000		92.7	80	120			
Sample ID:	LCS-47024	SampT	Гуре: LC	S	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID:	LCSS	Batc	h ID: 47	024	F	RunNo: 6 2	2394				
Prep Date:	8/23/2019	Analysis E	Date: 8/	24/2019	S	SeqNo: 2 '	120946	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.99	0.025	1.000	0	99.5	80	120			
Toluene		1.0	0.050	1.000	0	103	80	120			
Ethylbenzene		1.0	0.050	1.000	0	103	80	120			
Xylenes, Total		3.1	0.10	3.000	0	104	80	120			
Surr: 4-Brom	nofluorobenzene	0.95		1.000		94.7	80	120			
Sample ID:	Sample ID: 1908C20-002AMS SampType: MS TestCode: EPA Method 8021B: Volatiles										
Client ID:	SP1 @1ft	Batc	h ID: 47	024	F	RunNo: 6 2	2394				
Prep Date:	8/23/2019	Analysis E	Date: 8/	24/2019	ŝ	SeqNo: 2	120949	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		1.0	0.024	0.9737	0.01163	106	76	123			
Toluene		1.1	0.049	0.9737	0.009302	111	80.3	127			
Ethylbenzene		1.1	0.049	0.9737	0	115	80.2	131			
Xylenes, Total		3.3	0.097	2.921	0.01744	114	78	133			
Surr: 4-Brom	nofluorobenzene	0.95		0.9737		97.4	80	120			
Sample ID: 1908C20-002AMSD SampType: MSD TestCode: EPA Method 8021B: Volatiles											
Client ID:	SP1 @1ft	Batc	h ID: 47	024	F	RunNo: 6 2	2394				
Prep Date:	8/23/2019	Analysis E	Date: 8/	24/2019	S	SeqNo: 2	120950	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.96	0.023	0.9225	0.01163	103	76	123	8.73	20	
Toluene		1.0	0.046	0.9225	0.009302	107	80.3	127	8.80	20	
Ethylbenzene		1.0	0.046	0.9225	0	110	80.2	131	9.55	20	
Xylenes, Total		3.1	0.092	2.768	0.01744	110	78	133	9.07	20	
Surr: 4-Brom	nofluorobenzene	0.91		0.9225		98.8	80	120	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Client Name: Safety Env Solutions Work Order Number: 19080220 RoptNo: 1 Received By: Isaleh Ortiz 8/21/2019 9:02:00 AM IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	HALI ENVI ANAI LABO	RONMENT LYSIS DRATORY	AL	Hall TEL W	Environmen A : 505-345-39 ebsite: www	ial Analys 4901 Ibuquerqu 75 FAX: 1 hallenvir	is Laboratory Hawkins NE 105-345-4107 105-345-4107	sar	nple Log-In (Check List
Received By: Isaih Ortiz B21/2019 9:02:00 AM Image: Completed By: Completed By: Leah Baca B21/2019 12:41:38 PM July Small Reviewed By: Chain of Custody No No Not Present 1. is Chain of Custody complete? Yes No Not Present . 2. How was the sample delivered? Courier Courier . . 3. Was an attempt made to cool the samples? Yes No Na . 4. Were all samples received at a temperature of >0° C to 5.0°C Yes No Na . 5. Sample(s) in proper container(s)? Yes No Na . 7. Are samples (except VOA and ONG) propenty preserved? Yes No Na . 9. VOA viats have zero headspace? Yes No Na . 10. Were any sample containers received broken? Yes No . . 11. Does paperwork match bottle labels? Yes No . . . 13. is id car what analyses were requested? Yes No 14. Were all holding times able to	Client Name:	Safety Env	Solutions	Work (Order Numb	er: 1908	C20		RcptN	o: 1
Chain of Custody 1. is Chain of Custody complete? Yes No Not Present 2. How was the sample delivered? Courier Log In 3. Was an attempt made to cool the samples? Yes No NA 3. Was an attempt made to cool the samples? Yes No NA 4. Were all samples received at a temperature of >0° C to 6.0°C Yes No NA 5. Sample(s) in proper container(s)? Yes No NA 6. Sufficient sample volume for indicated test(s)? Yes No Na 7. Are samples (except VOA and ONG) properly preserved? Yes No Na 9. VOA viais have zero headspace? Yes No Ma 9 10. Were any sample containers received broken? Yes No In comparison of custody? 12. Are matrices correctly identified on Chain of Custody? Yes No In preserved 13. Is i clear what analyses were requested? Yes No No Industored? 14. Were all holding times able to be met? Yes No Na In Person 15. Mas client notified of all discrepancies with this order? Yes	Received By: Completed By: Reviewed By:	Isaiah Ort : Leah Bac: ENM	iz a	8/21/201 8/21/201 8/77	9 9:02:00 A 9 12:41:38 3/19	M PM	Ĺ	I-C al SBre	n n	
Log In 3. Was an attempt made to cool the samples? Yes No NA 4. Were all samples received at a temperature of >0° C to 6.0°C Yes No NA 5. Sample(s) in proper container(s)? Yes No NA 6. Sufficient sample volume for indicated test(s)? Yes No NA 7. Are samples (except VOA and ONG) properly preserved? Yes No NA 8. Was preservative added to bottles? Yes No NA 9. VOA vials have zero headspace? Yes No No Na 10. Were any sample containers received broken? Yes No No Ma 11. Does paperwork match bottle labels? Yes No Introduct the state set of the met? Yes No Adjusted? 12. Are matrices correctly identified on Chain of Custody? Yes No Adjusted? Adjusted? 13. Is it clear what analyses were requested? Yes No Na Paperaon 14. Were all holding (if applicable) Is was client notified of all discrepancies with this order? Yes No NA Paperaon 15. Was client notified: Person Notified:	<u>Chain of Cu</u> 1. Is Chain of (2. How was the	stody Custody comp e sample deliv	lete? ered?			Yes <u>Couri</u>	⊻ er	No 🗌	Not Present	
4. Were all samples received at a temperature of >0° C to 6.0°C Yes No NA 5. Sample(s) in proper container(s)? Yes No No 6. Sufficient sample volume for indicated test(s)? Yes No No 7. Are samples (except VOA and ONG) properly preserved? Yes No NA 8. Was preservative added to bottles? Yes No NA 9. VOA vials have zero headspace? Yes No No No 10. Were any sample containers received broken? Yes No Wo Ma 11. Does paperwork match bottle labels? Yes No Wo # of preserved bottles checked 11. Does paperwork match bottle labels? Yes No Indiusc checked for pH: (c2 or r12 unless not Adjusted?) 12. Are matrices correctly identified on Clustody? Yes No Indiusc checked by: DAS 3/21 14. Were all holding times able to be met? Yes No Indiusc checked by: DAS 3/21 15. Was client notified of all discrepancies with this order? Yes No NA In Person Regarding:	<u>Log In</u> 3. Was an atte	mpt made to c	ool the sample	es?		Yes		No 🗌	NA 🗌	
6. Sufficient sample volume for indicated test(s)? Yes No 7. Are samples (except VOA and ONG) properly preserved? Yes No 8. Was preservative added to bottles? Yes No 9. VOA vials have zero headspace? Yes No 10. Were any sample containers received broken? Yes No 11. Does paperwork match bottle labels? Yes No 12. Are matrices correctly identified on Chain of Custody? Yes No 13. Is it clear what analyses were requested? Yes No 14. Were all holding times able to be met? Yes No 15. Was client notified of all discrepancies with this order? Yes No 15. Was client notified of all discrepancies with this order? Yes No 16. Additional remarks: Na Person Notified: 17. Cooler Information Condition Seal Intact	 Were all san Sample(s) ir 	nples received	at a temperat	ure of >0° C to	96.0°C	Yes		No 🗌	na 🗆	
9. VOA vials have zero headspace? Yes No No VOA Vials ✓ 10. Were any sample containers received broken? Yes No ✓ # of preserved bottles otherked for pH: 11. Does paperwork match bottle labels? Yes No ✓ # of preserved bottles otherked for pH: 11. Does paperwork match bottle labels? Yes No ✓ # of preserved bottles otherked for pH: 12. Are matrices correctly identified on Chain of Custody? Yes No ✓ Adjusted? 13. Is it clear what analyses were requested? Yes No Checked by: DAD 3/2: 14. Were all holding times able to be met? Yes No Checked by: DAD 3/2: Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes No NA ✓ 15. Was client notified: Date Date	6. Sufficient sa7. Are samples8. Was preserv	mple volume for (except VOA)	or indicated tea and ONG) proj bottles?	st(s)? perly preserved	1?	Yes Yes		No 🗌 No 🔲 No 🔽	NA 🗔	
11. Does paperwork match bottle labels? Yes ✓ No bottles checked for pH: (<2 or 12 unless not	9. VOA vials ha 10, Were any sa	ave zero heads ample containe	pace? irs received br	oken?		Yes Yes		No 🗌 No 🗹	No VOA Vials 🗹	
12. Are matrices correctly identified on Chain of Custody? Yes ✓ No ✓ 13. Is it clear what analyses were requested? Yes ✓ No ✓ 14. Were all holding times able to be met? Yes ✓ No Checked by: DAD 8/2 14. Were all holding times able to be met? Yes ✓ No Checked by: DAD 8/2 14. Were all holding times able to be met? Yes ✓ No Checked by: DAD 8/2 (If no, notify customer for authorization.) Special Handling (if applicable) No NA ✓ 15. Was client notified:	11. Does paperw (Note discrep	vork match bot pancies on cha	tle labels? in of custody)			Yes		No 🗌	bottles checked for pH:	or >12 unless noted)
Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes No NA Image: Client notified: Client Instructions: Client Instructions: Cooler Information 16. Additional remarks: 17. Cooler Information Cooler No Temp %C Condition Seal Intact Seal No Seal Date Signed By	12. Are matrices 13. Is it clear wh 14. Were all hold (If no, notify	at analyses we at analyses we ding times able customer for a	tified on Chain are requested? to be met? uthorization.)	of Custody?		Yes Yes Yes		No 🗌 No 🗍 No 🗍	Checked by:	DAD 8/23/1
15. Was client notified of all discrepancies with this order? Yes No NA ✓ Person Notified: Date	Special Hand	lling (if app	licable)				_		_	
	15. Was client n Person By Wh Regan Client 16. Additional n 17. <u>Cooler Info</u> Cooler N	notified of all di n Notified: hom: ding: Instructions: emarks: prmation 0 Temp °C 2.7	Condition	Seal Intact Yes	Date Via:	Yes	L] il Dhon	No	NA ☑	

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com www.hallenvironmental.com www.hallenvironmental.com 1901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Tel. 505-345-3975 Request	PPL 80150(0K0) DK0) M(K0) 8081 Pesticides/8082 PCB's EDB (Method 504.1) PPHs by 8310 or 8270SIMS RCRA 8 Metals C F, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ 8260 (VOA) 8270 (Semi-VOA) 10tal Coliform (Present/Absent) Total Coliform (Present/Absent)				
und Time: dard <u>Rush</u> lame: <i>Lunort Burttley</i> :: <i>4V-019-04</i>	RELE PONS RELE PONS Ers 2 Englading CP1 2 3 ~ 01 (c) 2.1 * (8021) Freservative 2.1 * 0.1 (c) 2.1 * (8021) Freservative 2.1 * 0.1 (c) 2.1 * (17) Freservative 2.1 * 0.1 (c) 2.1 * (17) Type 1000000000000000000000000000000000000	Qres -001 116 84111 1 1	000- 700- 700- 700- 700- 700- 700- 700-	7777	Via. Date Time Remar Via. Date Time Remar V. Via. Date Time
Chain-of-Custody Record Turn-Arou It: ビンシンエ Broject Na ng Address: 203 を とんいひものし、 のんから Project #:	I or Fax#: (9名子 た 2 0 55 37 - 43m, tay Project Ma C Package: andard Level 4 (Full Validation) アルト andard Az Compliance Sampler: 4 On Ice On Ice Simpler: Antitation: Other On Ice On Ice Coole DD (Type) Atrix Sample Name Container	PM KPI-Suctace Stuck	1 202 0 14 000 1 1 202 0 14 1 202 0 14 1 4 1 4 1 4 1 4 1 4 1 4 1 4	V Spit Sudder V	Time: Relinquished by: Received by:

Appendix D Site Photos

Maverick Resources Jalmat Sands Unit Injection Battery

Maverick Resources Jalmat Sands Unit Injection Battery

