Form 3160-3	 O	CD Hobbs		A APPROVED No. 1004-0137
DEPARTMENT	ED STATES F OF THE INTERIOR LAND MANAGEMENT	HOBBS C	5. Lease Serial No. 21 NM LC 029405-B	October 31, 2014
APPLICATION FOR PE	RMIT TO DRILL OR RE		6. If Indian, Alloted N/A	e or Tribe Name
la. Type of work: 🚺 DRILL	REENTER	RECEIV	JED 7 If Unit or CA Age N/A	reement, Name and No.
Ib. Type of Well: Oil Well Gas Well	Other Single	Zone Multiple Zone		
2. Name of Operator ConocoPhillips Company	<2178	ろりフ	9-API Well No.	5-41014
^{3a.} Address P.O. Box 51810 Midland, Texas 79710-1810	3b. Phone No. <i>(inc.)</i> 432-688-6913	ude area code)	10. Field and Pool, or Maljamar; Yeso W	
4. Location of Well (Report location clearly and in ac)	11. Sec., T. R. M. or Sec. 17, T17S, R3	Blk. and Survey or Area
At surface UL L, Sec. 17, T17S, R32E; 216 At proposed prod. zone UL L, Sec. 17, T17S,			1 0e0. 17, 1170, No	22
14. Distance in miles and direction from nearest town of Approximately 3 miles south of Maljamar, New	r post office*		12. County or Parish Lea County	13. State NM
 15. Distance from proposed* 430' FWL property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No. of acres 1 1601.96	in lease 17. Spa 40 ac	acing Unit dedicated to this res	well
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Proposed Dep 6954' TVD/MD		M/BIA Bond No. on file 0085	
21. Elevations (Show whether DF, KDB, RT, GL, etc 3992' GL	22 Approximate 03/01/2013	date work will start*	23. Estimated durati 20 days	on
5552 62	24. Attachm	ents	20 00,0	
The following, completed in accordance with the require	ements of Onshore Oil and Gas Orde	r No.1, must be attached t	o this form:	
 Well plat certified by a registered surveyor. A Drilling Plan. 		Item 20 above).	ations unless covered by a	n existing bond on file (see
3. A Surface Use Plan (if the location is on National SUPO must be filed with the appropriate Forest Serv		Operator certification Such other site specific BLM.	information and/or plans a	as may be required by the
25. Signature SUSAND. Maunde	Name (Prin Susan B.			Date 15 2
Title Senior Regulatory Specialist	0			
Approved by (Signature)	Name (Pri	nted/Typed)	···	EB 2 0 2013
Title FIELD MANAGER	Office	CARLSBAD FIEL	DOFFICE	
Application approval does not warrant or certify that th conduct operations thereon. Conditions of approval, if any, are attached.			subject lease which would ROVAL FOR TV	
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 12 States any false, fictitious or fraudulent statements or re	212, make it a crime for any person person person and the person a	knowingly and willfully its jurisdiction.	to make to any department	or agency of the United
(Continued on page 2)	.	F	Roswell Contro	illed Water Basin
			V.T. 1	2
	· ·	· · · · · · · ·	KElzsli	/

SEE ATTACHED FOR CONDITIONS OF APPROVAL

٠j

Approval Subject to General Requirements & Special Stipulations Attached

FEB 27 2013

Drilling Plan ConocoPhillips Company <u>Maljamar; Yeso, west</u>

Ruby Federal #18

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The ranges of depths for the formation tops, thicknesses, and planned Total Depths for all the wells to be drilled under this Master Drilling Plan are presented in the table below.

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depth FT TVD	Contents
Quaternary	Surface	Fresh Water
Rustler	742	Anhydrite
Salado (top of salt)	915	1962Salt
Tansill (base of salt)	1917	Gas, Oil and Water
Yates	2099	Gas, Oil and Water
Seven Rivers	2389	Gas, Oil and Water
Queen	3025	Gas, Oil and Water
Grayburg	3465	Gas, Oil and Water
San Andres	3827	Gas, Oil and Water
Glorieta	5300	Gas, Oil and Water
Paddock	5379	Gas, Oil and Water
Blinebry	5777	Gas, Oil and Water
Tubb	6754	Gas, Oil and Water
Deepest estimated perforation	6754	Deepest estimated perf. is ~ Top of Tubb
Total Depth (maximum)	6954	200' below deepest estimated perforation

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

2. Proposed casing program:

Туре	Hole Size	M	Interval ID RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str	1	Safety Fa lated per Co Corporate (nocoPhillips
Туре	(in)	From	То	(inches)	(lb/ft)			(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	767' – 812'	8-5/8	24#	J-55	STC	2950	1370	244	1.23	5.85	2.09
Prod	7-7/8	0	6899' – 6944'	5-1/2	17#	L-80	LTC ·	7740	6290	338	1.15	2.04	1.69

The casing will be suitable for H₂S Service.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Design (Safety) Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	812	24	2950	1370	244000	8.5	8.22	3.82	12.52	14.39
Production Casing	6944	17	7740	6290	338000	10	2.14	1.74	2.86	3.38

Casing Design (Safety) Factors - Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Corporate Criteria for Minimum Design Factors

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

Type Surface Casing (8-5/8" 24# J-55 STC)	Depth V 812	<u>Nt</u> 24	. MIY 2950	1370		Pipe Yi 38100		<u>Burs</u> 5	1.23	ollapse 5.85	2.09	ר				
Production Casing (5-1/2" 17# L-80 LTC)	6944	17		6290		39700			1.15	2.04	1.69					
<u>Burst Design (Safety) Factors – ConocoPhil</u>	lips Criteria															
The maximum internal (burst) load on the Surface Casing	g occurs when t															
maximum internal (burst) load on the Production Casing of	-				e maximum allov	vable wo	rking pressure	e								
(MAWP) is the pressure that would fit ConocoPhillips Co Surface Casing Test Pressure =	1000 p		n Design Fact	ors.												
Surface Rated Working Pressure =	3000 p															
Surface Casing Burst Design Factor = Bur Production Casing MAWP for the Fracture	-			-		Design Fa	ctor									
urface Casing Burst Design Factor:	-						-									
Designed CSFG (Test Pressure + MWP)	≤ ([1000]. +	422)/(812	х	1	0.052) -	0.5	≤	33.18			
MPSP (CSFG - GG)		x	0.052	X	33.18	•	81.2		=	1320						
MPSP (PPTD - GG)		х	0.052	х	8.55	-	694.4		=	2393						
MPSP (0.375 x BHP)		х	6944	×	0.052	× =	<u>8.55</u> 1401	-J *	=	1158						
MPCS (CSFG) Bust Design Factor		x I	0.052 2393	× =	33.18 1.23	-	1401									
oduction Casing Burst Design Factor:	- 2000	'	2000		1.23											
MPSP (SRWP)	= 3000															
MPSP (PPTD - GG)		x	0.052	х	8.55	-	694.4		-	2393						
MPSP (0.375 x BHP)		x	6944	х	0.052,	x	8.55	_J '	=	1158						
Burst Design Factor (Max. MPSP)		1	3000	, ≓	2.58											
MAWP for the Fracture Stimulation	= 7740	/	1.15] =	6730											
casing to surface, and therefore the external pressure outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor	gradient. Collapse Rating J	/(Cement C	Column Hydro:	static P	ressure – Displ				sure)							
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor =	gradient. Collapse Rating / = Collapse Ratin	/ (Cement C ng / Maximu	Column Hydro:	static P	ressure – Displ			atic Pres	sure) + (512	х	0.052	X	<u>13.</u>	<u> </u>	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor urface Casing Collapse Design Factor: Collapse Design Factor Collapse Design Factor	gradient. Collapse Rating / = Collapse Ratin = 1370	/(Cement C	Column Hydro: Im Possible Po	static P pre Pre:	ressure – Displ ssure	acement I	Fluid Hydrosta	atic Pres		512	ж	0.052	×	[13.	6) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor urface Casing Collapse Design Factor: Collapse Design Factor Collapse Design Factor: roduction Casing Collapse Design Factor:	gradient, Collapse Rating / = Collapse Ratin = 1370 = 1370	/ (Cement C ng / Maximu / {[[/	Column Hydro un Possible Po 300 234	static P ore Pres	ressure – Displ ssure 0.052 5.85	acement f	Fluid Hydroste	itic Pres		512	ж	0.052	×	[<u>13</u> .	<u>6)</u> -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor Inface Casing Collapse Design Factor: Collapse Design Factor Collapse Design Factor	gradient, Collapse Rating / = Collapse Ratin = 1370 = 1370 = 6290	/(Cement C ng /Maximu /{[(Column Hydro: Im Possible Po	static P ore Pre:	ressure – Displ ssure 0.052	acement I	Fluid Hydrosta	itic Pres		512	X	0.052	X	13.	5])-	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Unface Casing Collapse Design Factor: Collapse Design Factor Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor Collapse Design Factor	gradient. Collapse Rating / = Collapse Ratin = 1370 = 1370 = 6290 = 6290	/(Cement C ng / Maximu / {[[(/ /	Colurn Hydro Im Possible Po 300 234 8.55 3087	static P pre Pres X = X	ressure – Displ ssure 0.052 5.85 0.052	acement f	Fluid Hydroste	itic Pres		512	х	0.052	×	<u>13</u> .	<u>6</u>) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor urface Casing Collapse Design Factor: Collapse Design Factor Collapse Design Factor: collapse Design Factor: Collapse Design Factor: Collapse Design Factor	gradient. Collapse Rating / = Collapse Ratin = 1370 = 1370 = 6290 = 6290 mocoPhillips	/(Cement C ng / Maximu / {[(/ / <u>Criteria</u>	Column Hydro Im Possible Po 300 234 8.55 3087	static P pre Pres =] x =	ressure – Displ ssure 0.052 5.85 0.052 2.04	acement f	Fluid Hydroste	itic Pres		512	х	0.052	x	<u>13.</u>	<u>6</u>) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor	gradient. Collapse Rating / = Collapse Ratin = 1370 = 1370 = 6290 = 6290 mocoPhillips to get stuck and xial Design Factor	/(Cement C ng / Maximu / {[(/ / / : <u>Criteria</u> pulled on t or	Column Hydro Im Possible Po 300 234 8.55 3087	static P pre Pres =] x =	ressure – Displ ssure 0.052 5.85 0.052 2.04	acement f	Fluid Hydroste	itic Pres		512	х	0.052	X	<u>13.</u>	6) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor	gradient. Collapse Rating = Collapse Ratin = 1370 = 1370 = 6290 = 6290 mocoPhillips to get stuck and xial Design Fact ad - Air VM of the	/(Cement C ng / Maximu / {[(/ / c <u>Criteria</u> pulled on t or : String	Column Hydro Im Possible Po 300 234 8.55 3087	static P pre Pres =] x =	ressure – Displ ssure 0.052 5.85 0.052 2.04	acement f	Fluid Hydroste	itic Pres		512	х	0.052	X	<u>13.</u>	6) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor	gradient. Collapse Rating = Collapse Ratin = 1370 = 1370 = 6290 = 6290 mocoPhillips to get stuck and xial Design Fact ad - Air VM of the	/(Cement C ng / Maximu / {[(/ / c <u>Criteria</u> pulled on t or : String	Column Hydro Im Possible Po 300 234 8.55 3087	static P pre Pres =] x =	ressure – Displ ssure 0.052 5.85 0.052 2.04	acement f	Fluid Hydroste	itic Pres		512	х	0.052	X	13.	6)-	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor collapse Design Factor	gradient. Collapse Rating = Collapse Ratin = 1370 = 1370 = 6290 = 6290 mocoPhillips to get stuck and xial Design Fact ad - Air VM of the	/(Cement C ng / Maximu / {[(/ / c <u>Criteria</u> pulled on t or : String	Column Hydro Im Possible Po 300 234 8.55 3087	static P pre Pres =] x =	ressure – Displ ssure 0.052 5.85 0.052 2.04	acement f	Fluid Hydroste	itic Pres		512	ж	0.052	x	<u>13.</u>	6) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor collapse Design Factor	gradient. Collapse Rating / = Collapse Ratin = 1370 = 1370 = 6290 = 6290 mocoPhillips to get stuck and xial Design Factor sd - Air VM of the coad - Air VM of the	/(Cement C ng / Maximu / {[(/ / c <u>Criteria</u> pulled on t or : String	Column Hydro Im Possible Po 300 234 8.55 3087	static P pre Pres =] x =	ressure – Displ ssure 0.052 5.85 0.052 2.04	acement f	Fluid Hydroste	itic Pres		512	ж	0.052	x	13.	6) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor roduction Casing Collapse Design Factor Collapse Design Factor	gradient. Collapse Rating / = Collapse Ratin = 1370 = 1370 = 6290 = 6290 mocoPhillips to get stuck and xial Design Fact ad - Air W1 of the coad - Air W1 of the	/(Cement C ng / Maximu / {[(/ / c <u>Criteria</u> pulled on t or : String	Column Hydro Im Possible Po 300 234 8.55 3087	static P pre Pres =] x =	ressure – Displ ssure 0.052 5.85 0.052 2.04 k.	acement f	Fluid Hydroste	itic Pres		512	ж	0.052	×	13.	6) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor Maximum Atlowable HookLod Overpull Margin (Air Wt) = Maximum Allowable Hook Lo Coverpull Margin (Bouyant) = Maximum Allowable Hook Lo Unface Casing (Minimum Pipe Yield) Max Hookload (Bouyant) + Overpull Tensile Design Factor	gradient. Collapse Rating / = Collapse Ratin = 1370 = 1370 = 6290 = 6290 = 6290 mocoPhillips to get stuck and xital Design Fact ad - Air Wi of the coad - Air Wi of the = 19488 = 100,000 = 397000	/(Cement C ng / Maximu / {[(/ / c <u>Criteria</u> pulled on t or : String	Column Hydro im Possible Po 234 8.55 3087 to try to get it (19488 116959	static P pre Pres =] x =	ressure – Dispi ssure 0.052 5.85 0.052 2.04 k. 0.870 3.39	acement f	Tuid Hydroste	itic Pres		512	х	0.052	×	<u>13.</u>	5_)-	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor Maximum Allowable Hookload - Joint Strength Rating / A Overpull Margin (&ir Wt) = Maximum Allowable Hook Lee Overpull Margin (Bouyant) = Maximum Allowable Hook Lee Overpull Margin (Bouyant) = Maximum Allowable Hook L Unface Casing (Minimum Pipe Yield) Max Hookload (Air Wt) Max Hookload (Air Wt) Max Hookload (Air Wt) Max Hookload (Dougant) + Overpull Tensile Design Factor	gradient. Collapse Rating / = Collapse Ratin = 1370 = 1370 = 6290 = 6290 = 6290 mocoPhillips to get stuck and xital Design Fact ad - Air Wi of the coad - Air Wi of the = 19488 = 100,000 = 397000	/(Cement C g / Maximu / {[(/ / / putled on t or : String he String + (Column Hydro Im Possible Po 234 8,55 3087 to try to get it	static P ore Pre: =] X =] X = unstuc	ressure – Displ ssure 0.052 5.85 0.052 2.04 k.	acement f	Fluid Hydroste	itic Pres		512	х	0.052	×	<u>13.</u>	5) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor Maximum Allowable Hook Lee Overpull Margin (Air Wt) Max Hookload (Bouyant) + Overpull Max Hookload (Air Wt) Max Hookload (Bouyant) + Overpull Tensile Design Factor Actual Overpull Margin to Satisfy COP min DF roduction Casing (Minimum Pipe Yield)	gradient. Collapse Rating / = Collapse Ratin = 1370 = 6290 = 6290 mocoPhillips to get stuck and xial Design Factor ad - Air W1 of the coad - Air W1 of the = 19488 = 100,000 = 397000 = 397000	/(Cement C g / Maximu / {[(/ / / putled on t or : String he String + (Column Hydro im Possible Po 234 8.55 3087 to try to get it (19488 116959	static P ore Pre: =] X =] X = unstuc	ressure – Dispi ssure 0.052 5.85 0.052 2.04 k. 0.870 3.39	acement f	Tuid Hydroste	itic Pres		512		0.052	×	13.	5) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor Maximum Atlowable Hook Loa Overpull Margin (Bouyart) = Maximum Allowable Hook Loa	gradient. Collapse Rating , = Collapse Ratin = 1370 = 1370 = 6290 = 6290 mocoPhillips to get stuck and xial Design Fact ad - Air VM of the coad - Air VM of the 19488 = 100,000 = 397000 = 397000 = 118048	/(Cement C g / Maximu / {[(/ / criteria t pulled on t or : String he String + (/	Column Hydro Im Possible Po 234 8.55 3087 to try to get it 116959 1.40	static P re Pre: X = unstuc X = -	ressure – Displ ssure 0.052 5.85 0.052 2.04 k. 0.870 3.39 16959	acement f	Tuid Hydroste	itic Pres		512		0.052	x	13.	5) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor Maximum Allowable Hooklood - Joint Strength Rating / A Overpull Margin (Air Wt) = Maximum Allowable Hook Lee Overpull Margin (Bouyant) = Maximum Allowable Hook Lee Overpull Margin (Bouyant) = Maximum Allowable Hook Lee Overpull Margin (Bouyant) + Overpull Max Hookload (Air Wt) Max Hookload (Air Wt)	gradient. Collapse Rating / = Collapse Ratin = 1370 = 6290 = 6290 mocoPhillips to get stuck and xial Design Factor xid - Air W1 of the coad - Air W1 of the = 19488 = 100,000 = 397000 = 118048 = 100,000 = 381000	/(Cement C g / Maximu / {[(/ / criteria t pulled on t or : String he String + (/	Column Hydro im Possible Po 234 8.55 3087 to try to get it (19488 116959	static P ore Pre: =] X =] X = unstuc	ressure – Dispi ssure 0.052 5.85 0.052 2.04 k. 0.870 3.39	acement h X X) = =	Tuid Hydroste	itic Pres		512	х.	0.052	×	<u>13</u> .	5) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor Maximum Allowable Hookload - Joint Strength Rating / A Overpull Margin (&ir Wt) = Maximum Allowable Hook Lee Overpull Margin (Bouyent) = Maximum Allowable Hook Lee Overpull Margin (Bouyent) = Maximum Allowable Hook Lee Overpull Margin To Satisfy COP min DF roduction Casing (Minimum Pipe Yield) Max Hookload (Bouyant) + Overpull Max Hookload (Bouyent) + Overpull Max Hookload (Air Wt) Max Hookload (Bouyent) + Overpull Max Hookload (Douyent) + Overpull Max Hookload (Douyent) + Overpull Max Hookload (Douyent) + Overpull	gradient. Collapse Rating / = Collapse Ratin = 1370 = 6290 = 6290 mocoPhillips to get stuck and xial Design Factor sci – Air Wi of the coad - Air Wi of the = 19488 = 100,000 = 397000 = 118048 = 100,000 = 381000	/ (Cement C g / Maximu / {[(/ / t pulled on 1 or : String he String + (/ / + (Column Hydro im Possible Po 234 8.55 3087 to try to get it 116959 1.40	static P Pre:	ressure – Displ ssure 0.052 5.85 0.052 2.04 k. 0.870 3.39 16959	acement h X X) = =	Tuid Hydroste	itic Pres		512	х	0.052	×	13.	5_)-	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor Maxinum Allowable Hook Loe Overpull Margin (Bouyart) = Maximum Allowable Hook	gradient. Collapse Rating / = Collapse Rating / = 1370 = 1370 = 6290 = 6290 mocoPhillips to get stuck and xial Design Factr ad - Air W1 of the coad - Air W1 of the coad - Air W1 of the = 19488 = 100,000 = 397000 = 118048 = 100,000 = 381000 = 381000	/(Cement C g / Maximu / {[(/ / t puted on t or String he String + (/ / / / / / / / / / / / /	Column Hydro im Possible Po 234 8.55 3087 to try to get it 16959 1.40 (118048 200025	static P Pre:	ressure – Dispk ssure 0.052 5.85 0.052 2.04 k. 0.870 3.39 16959 , 0.847 1.90	x x x) = = ;) =	Tuid Hydroste <u>14.8</u> 6944 116959 266612 200025	itic Pres		512	ж	0.052	¥	<u>13.</u>	5_)-	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor: Collapse Design Factor: Collapse Design Factor: Collapse Design Factor: Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor Max Hookload (Air Wt) Max Hookload (Bouyant) + Overpull Max Hookload (Bouyant) + Overpull Tensile Design Factor Actual Overpull Margin to Satisfy COP min DF roduction Casing (Minimum Pipe Yield) Max Hookload (Bouyant) + Overpull Tensile Design Factor Actual Overpull Margin to Satisfy COP min DF urface Casing (Minimum Jit Strength) Max Hookload (Air Wt)	gradient. Collapse Rating / = Collapse Rating / = 1370 = 1370 = 6290 = 6290 to get stuck and xital Design Fact ad - Air VM of the coad - Air VM of the = 19488 = 100,000 = 397000 = 118048 = 100,000 = 381000 = 381000 = 19488	/ (Cement C ng / Maximu / {[(/ / putled on t or : String he String + (/ / / / /	Column Hydro im Possible Po 234 8.55 3087 to try to get it 116959 1.40 118048 200025 1.40	static P Pre: x = x = x = x = x = x = - x = -	ressure – Displ ssure 0.052 5.85 0.052 2.04 k. 0.870 3.39 16959 0.847 1.90 100025	acement I x x) = =) = =	Tuid Hydrosts 14.8 6944 116959 266612 200025 172117	itic Pres		512	ж		×	<u>13.</u>	5_)-	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor Maxinum Allowable Hookloed - Joint Strength Rating / A Overpull Margin (Air WI) = Maximum Allowable Hook Lee Overpull Margin (Bouyant) = Maximum Allowable Hook Lee Overpull Margin (Bouyant) = Maximum Allowable Hook Lee Overpull Margin to Satisfy COP min DF roduction Casing (Minimum Pipe Yield) Max Hookload (Air WI) Max Hookload (Air WI)	gradient. Collapse Rating / = Collapse Rating / = 1370 = 1370 = 6290 = 6290 mocoPhillips to get stuck and xial Design Facto cd - Air W1 of the coad - Air W1 of the coad - Air W1 of the = 19488 = 100,000 = 397000 = 381000 = 381000 = 19488 = 100,000	/(Cement C g / Maximu / {[(/ / t pulled on t or : String he String + (/ / / + (/ / / / / / / / / / / / /	Column Hydro im Possible Po 234 8.55 3087 to try to get it 16959 1.40 118048 200025 1.40 19488	static P x = x = x = unstuc x = - x x x x x x x x x x x x x	ressure – Dispk ssure 0.052 5.85 0.052 2.04 k. 0.870 3.39 16959 , 0.847 1.90 100025 0.870	x x x) = = ;) =	Tuid Hydroste <u>14.8</u> 6944 116959 266612 200025	itic Pres		512	ж		Χ	13.	<u>6</u>) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor Maxinum Allowable HookLee Overpull Margin (Air Wi) = Maxinum Allowable Hook Lee Overpull Margin (Bouyant) = Maxinum Allowable Hook Lee Overpull Margin (Bouyant) = Maxinum Allowable Hook L Unface Casing (Minimum Pipe Yield) Max Hookload (Bouyant) + Overpull Tensile Design Factor Actual Overpull Margin to Satisfy COP min DF ruface Casing (Minimum Jt Strength) Max Hookload (Air Wi) Max Hookload (Bouyant) + Overpull Tensile Design Factor	gradient. Collapse Rating / = Collapse Rating / = 1370 = 1370 = 6290 = 6290 mocoPhillips to get stuck and xital Design Factor ad - Air VM of the coad - Air VM of the = 397000 = 397000 = 118048 = 100,000 = 381000 = 19488 = 100,000 = 244000	/ (Cement C ng / Maximu / {[(/ / putled on t or : String he String + (/ / / / /	Column Hydro im Possible Po 234 8.55 3087 to try to get it 16959 1.40 (118048 200025 1.40 (118048 200025 1.40	static P Pre: x = x = x = x = x = x = - x = -	ressure – Dispk ssure 0.052 5.85 0.052 2.04 k. 0.870 3.39 16959 0.847 1.90 100025 0.870 2.09	acement I x x) = =) = =	Tuid Hydroste <u>14.8</u> 6944 116959 266612 200025 172117 116959	itic Pres		512	ж	0.052	×	<u>13.</u>	5) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor Maxinum Allowable Hook Loe Overpull Margin (Bouyant) = Maximum Allowable Hook Loe Overpull Margin (Bouyant) = Maximum Allowable Hook Loe Overpull Margin (Bouyant) + Overpull Tensile Design Factor Actual Overpull Margin to Satisfy COP min DF urface Casing (Minimum Pipe Yield) Max Hookload (Bouyant) + Overpull Tensile Design Factor Actual Overpull Margin to Satisfy COP min DF urface Casing (Minimum Jt Strength) Max Hookload (Air Wi) Max Hookload (Air Wi)	gradient. Collapse Rating / = Collapse Rating / = 1370 = 1370 = 6290 = 6290 mocoPhillips to get stuck and xital Design Factor ad - Air VM of the coad - Air VM of the = 397000 = 397000 = 118048 = 100,000 = 381000 = 19488 = 100,000 = 244000	/(Cement C g / Maximu / {[(/ / / / / / / / / / / / /	Column Hydro im Possible Po 234 8.55 3087 to try to get it 16959 1.40 118048 200025 1.40 19488	static P x = x = x = unstuc x = - x x x x x x x x x x x x x	ressure – Dispk ssure 0.052 5.85 0.052 2.04 k. 0.870 3.39 16959 , 0.847 1.90 100025 0.870	x x) = =) = =) =	Tuid Hydrosts 14.8 6944 116959 266612 200025 172117	itic Pres		512	х		×	<u>13.</u>	5) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor Collapse Design Factor Actual Overpull Margin (Air Wt) Max Hookload (Air Wt) Max Hookload (Air Wt) Max Hookload (Air Wt) Max Hookload (Car Wt) Max Hookload (Car Wt) Max Hookload (Bouyant) + Overpull Tensile Design Factor Actual Overpull Margin to Satisfy COP min DF urface Casing (Minimum Jt Strength) Max Hookload (Bouyant) + Overpull Tensile Design Factor Actual Overpull Margin to Satisfy COP min DF urface Casing (Minimum Jt Strength) Max Hookload (Bouyant) + Overpull Tensile Design Factor Actual Overpull Margin to Satisfy COP min DF urface Casing (Minimum Jt Strength) Max Hookload (Air Wt) Max Hookload (Air Wt) Max Hookload (Air Wt) Max Hookload (Air Wt)	gradient. Collapse Rating / = Collapse Rating / = 1370 = 1370 = 6290 = 6290 mocoPhillips to get stuck and xial Design Facto cd - Air W1 of the coad - Air W1 of the coad - Air W1 of the = 19488 = 100,000 = 397000 = 381000 = 381000 = 381000 = 19488 = 100,000 = 244000 = 244000 = 244000 = 118048	/(Cement C g / Maximu / {[(/ / t puted on t or String he String he String + (/ / / / / / / / / / / / /	Column Hydro im Possible Po 234 8.55 3087 to try to get it 16959 1.40 118048 200025 1.40 19468 116959 1.40	static P x = x = x = unstuc x = - x x x x x x x x x x x x x	ressure – Displ ssure 0.052 5.85 0.052 2.04 k. 0.870 3.39 16959 , 0.847 1.90 100025 0.870 2.09 16959	acement I X X X) = =) = =) = =	Tuid Hydroste 14.8 6944 116959 266612 200025 172117 116959 157327	itic Pres		512	ж	0.052	x	13.	5) -	359
outside of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Max Hookload (Eauyant) + Overpull Max Hookload (Bouyant) + Overpull Max Hookload (Bouyant) + Overpull Max Hookload (Bouyant) + Overpull Max Hookload (Bouyant) + Overpull Max Hookload (Air Wt) Max Hookload (Air Wt) Ma	gradient. Collapse Rating / = Collapse Rating / = 1370 = 6290 = 6290 mocoPhillips to get stuck and xital Design Factor xital D	/(Cement C g / Maximu / {[(/ / (/ / criteria tputted on t or String he String + (/ / / + (/ / / + (/ / / / + (/ / / / / + (/ / / / / / / / / / / / /	Column Hydro im Possible Po 234 8.55 3087 to try to get it 16959 1.40 118048 200025 1.40 118048 116959 1.40	static P pre Pre: x = x = x = - x = - x = - x = - x = - x	ressure – Displ ssure 0.052 5.85 0.052 2.04 k. 0.870 3.39 16959 0.847 1.90 100025 2.09 16959 0.847	x x) = =) = =) =	Tuid Hydroste <u>14.8</u> 6944 116959 266612 200025 172117 116959	itic Pres		512	ж	0.052	×	<u>13</u> .	5 .))-	359
outskie of the casing which we estimate to be 8.55 ppg Surface Casing Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Maxinum Allowable Hookloed - Joint Strength Rating / A Overpull Margin (Bouyert) = Maximum Allowable Hook Lee Overpull Margin (Bouyert) = Vield) Max Hookload (Bouyant) + Overpull Tensile Design Factor Actual Overpull Margin to Satisfy COP min DF Furface Casing (Minimum Jt Strength) Max Hookload (Bouyant) + Overpull Tensile Design Factor Actual Overpull Margin to Satisfy COP min DF Surface Casing (Minimum Jt Strength) Max Hookload (Air Wt) Max Hookload (Air Wt)	gradient. Collapse Rating / = Collapse Rating / = 1370 = 6290 = 6290 = 6290 mocoPhillips to get stuck and xial Design Factor ad - Air W1 of the cod - Air W1 of the = 19488 = 100,000 = 397000 = 118048 = 100,000 = 19488 = 100,000 = 244000 = 244000 = 118048 = 100,000 = 338000	/(Cement C g / Maximu / {[(/ / t puted on t or String he String he String + (/ / / / / / / / / / / / /	Column Hydro im Possible Po 234 8.55 3087 to try to get it 16959 1.40 118048 200025 1.40 19468 116959 1.40	static P	ressure – Displ ssure 0.052 5.85 0.052 2.04 k. 0.870 3.39 16959 , 0.847 1.90 100025 0.870 2.09 16959	acement I X X X) = =) = =) = =	Tuid Hydroste 14.8 6944 116959 266612 200025 172117 116959 157327	itic Pres		512	х	0.052	×	13.	5_)-	359

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing & Cementing Program: 8-5/8" 24# J-55 STC

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	Intervals Ft MD		9		k	Additives	Yield ft ³ /sx
Lead	Class C	Surface	467' – 512'	13.6	350	595	4%Bentonite 2%CaCl2 .125%Polyflake 0.2% antifoam Excess =230% based on gauge hole volume	1.70
Tail	Class C	467' – 512'	767' – 812'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing & Cementing Program: 5-1/2" 17# L-80 LTC

The intention for the cementing program for the Production Casing is to:

- Place the Tail Slurry from the casing shoe to a point approximately 200' above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	5200'	11.8	1000	2640	 10% Bentonite 8 lbs/sx Salt 0.4% Fluid loss additive 0.125% LCM if needed Excess = 220% or more if needed based on gauge hole volume 	2.64
Tail	Class H	5200'	6899' — 6944'	16.4	650	696	 0.2% Fluid loss additive 0.3% Dispersant 0.15% Retarder 0.2% Antifoam Excess = 100% or more if needed based on gauge hole volume 	1.07

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide. (Date: 9/25/2012)

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volume presented above are estimates based on gauge 7-7/8" hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- Rotating Head
- Annular BOP, 11" 3M
- Blind Ram, 11" 3M
- Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to the approved stack working pressure of 3000 psi isolated by test plug. Annular type preventers will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. **See Attached BOPE Schematic.** The BOPE may be configured to use flexible hose. Pressure test data and hose specification information will be provided in the variance request to BLM prior to site construction.

5. Proposed Mud System

The mud systems that are proposed for use are as follows:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud	8.5 - 9.0	28 – 40	N.C.	N.C.	120 – 160
Surface Casing Point to TD	Brine (Saturated NaCl ₂)	10	29	N.C.	10 – 11	1250 - 2500
Conversion to Mud at TD	Brine Based Mud (NaCl ₂)	10	34 – 45	5 – 10	10 – 11	0 - 1250

Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14. The gases shall be piped into the flare system. Gas detection equipment and pit level flow monitoring equipment will be on location. ConocoPhillips Company will maintain sufficient mud and weighting material on location at all times.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. Also, we propose an option to not mud up leaving only brine in the hole.

(Date: 9/25/2012)

- 6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Mud logging planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 2500': Resistivity, Density, and Gamma Ray
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Formation pressure data (XPT) on electric line if needed (optional)
 - Rotary Sidewall Cores on electric line if needed (optional)
 - BHC or Dipole Sonic if needed (optional)
 - Spectral Gamma Ray if needed (optional)

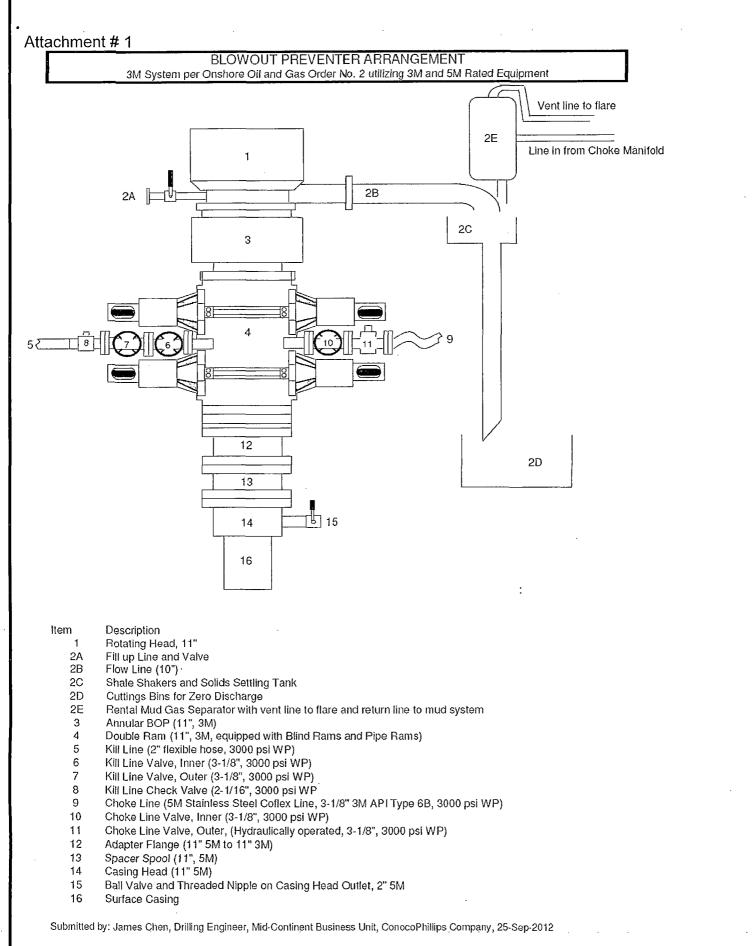
• Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S (PPM)	Gas Rate (MCFD)	ROE 100 PPM	ROE 500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27
Yeso Group	400	433	34	15

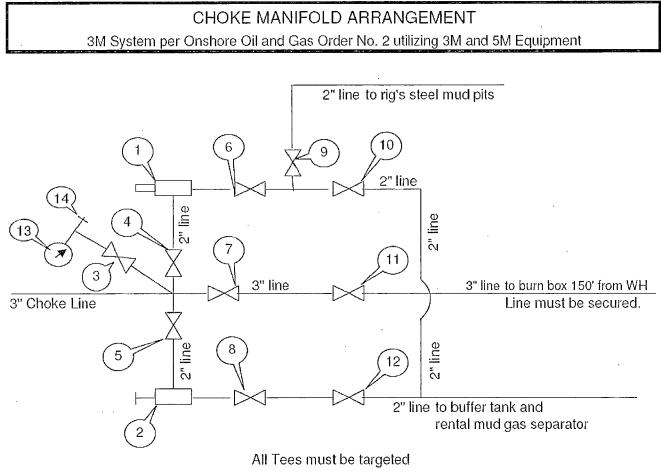
ConocoPhillips will comply with the provisions of Oil and Gas Order #6

8. Anticipated starting date and duration of operations:


Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill these wells begin from late 2012 through the 2013 after receiving approval of the APD.

Attachments:

- Attachment # 1 BOP and Choke Manifold Schematic 3M System
- Attachment # 2 Diagram of Choke Manifold Equipment


Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 25 September 2012

Federal 18_(Tubb)_v1.09-26-12.doc (Date: 9/27/2012)

Attachment # 2

Item Description

- 1 Remote Controlled Hydraulically Operated Adjustable Choke, 2-1/16", 3M
- 2 Manual Adjustable Choke, 2-1/16", 3M
- 3 Gate Valve, 2-1/16" 5M
- 4 Gate Valve, 2-1/16" 5M
- 5 Gate Valve, 2-1/16" 5M
- 6 Gate Valve, 2-1/16" 5M
- 7 Gate Valve, 3-1/8" 3M
- 8 Gate Valve, 2-1/16" 5M
- 9 Gate Valve, 2-1/16" 5M
- 10 Gate Valve, 2-1/16" 5M
- 11 Gate Valve, 3-1/8" 3M
- 12 Gate Valve, 2-1/16" 5M
- 13 Pressure Gauge
- 14 2" hammer union tie-in point for BOP Tester

We will test each valve to 3000 psi from the upstream side.

Drawn by: Steven O. Moore Chief Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 25-Sept-2012

Federal 18_(Tubb)_v1.09-26-12.doc (Date: 9/27/2012)

Page 8 of 8

Request for Variance ConocoPhillips Company

Lease Number: NM LC 029405B Well: RUBY FEDERAL #18 Location: SEC 17, T17S, R32E Date: 09-27-12

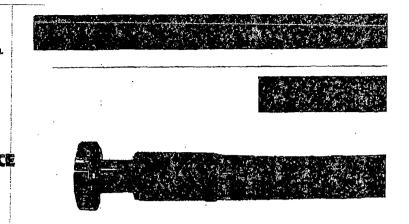
Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

Attachments:


- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

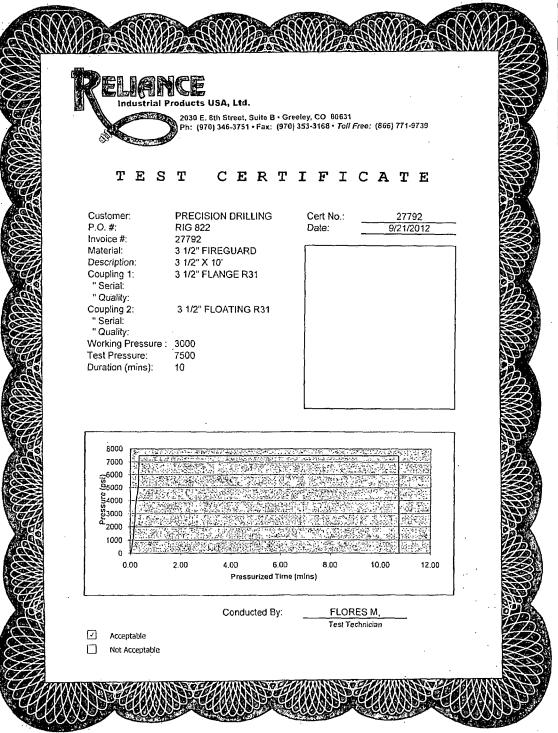
Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 27 September 2012

Attachment # 1

CE oducta USA.

Reliance Eliminator Choke & Kill


This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos. Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

Non	n, ID	N	om OD	Weig	ght	Min Be	nd Radius	Max	WP
in.	mm.	in.	mm	lb/ft	kg/m	in.	mm.	psi	Mpa
3	76.2	5,11	129.79	14.5	21.46	48	1219.2	5000	34.4
3-1/2	88.9	5.79	147.06	20.14	29.80	54	1371.6	5000	34.4
		2 4 N							
S 8 8 3 4			1 - CO						
		i di se i c Serre	n se			. ·		· · ·	
Fittings			Flanges	3	Har	nmer Un	lions	Othe	r
Fittings RC4X5055		R35 -	Flanges 3-1/8 5000# A			nmer Un tion Configu		Othe P Threaded C	
-			-	PI Type 6B					onnect
RC4X5055			3-1/8 5000# A	PI Type 6B				P Threaded C	onnect ck

Attachment # 2

Closed Loop System Design, Operating and Maintenance, and Closure Plan

ConocoPhillips Company Well: Ruby Federal #18 Location: Sec. 17, T17S, R32E Date: 09-25-12

ConocoPhillips proposes the following plan for design, operating and maintenance, and closure of our proposed closed loop system for the above named well:

1. We propose to use a closed loop system with steel pits, haul-off bins, and frac tanks for containing all cuttings, solids, mud, water, brine, and liquids. We will not dig a pit, nor will we use a drying pad, nor will we build an earth pit above ground level, nor will we dispose of or bury any waste on location.

All drilling waste and all drilling fluids (fresh water, brine, mud, cuttings, drill solids, cement returns, and any other liquid or solid that may be involved) will be contained on location in the rig's steel pits or in hauloff bins or in frac tanks as needed. The intent is as follows:

- We propose to use the rigs's steel pits for containing and maintaining the drilling fluids.
- We propose to remove cuttings and drilled solids from the mud by using solids control equipment and to contain such cuttings and drilled solids on location in haul-off bins.
- We propose that any excess water that may need to be stored on location will be stored in tanks.

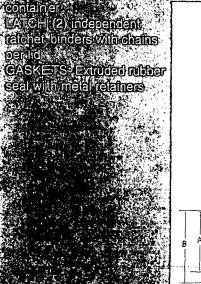
The closed loop system components will be inspected daily by each tour and any need repairs will be made immediately. Any leak in the system will be repaired immediately, and any spilled liquids and/or solids will be cleaned immediately, and the area where any such spill occurred will be remediated immediately.

2. Cuttings and solids will be removed from location in haul-off bins by an authorized contractor and disposed of at an authorized facility. For this well, we propose the following disposal facility:

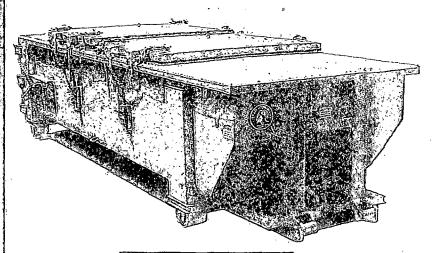
Controlled Recovery Inc, 4507 West Carlsbad Hwy, Hobbs, NM 88240, P.O. Box 388; Hobbs, New Mexico 88241 Toll Free Phone: 877.505.4274, Local Phone Number: 432.638.4076

The physical address for the plant where the disposal facility is located is Highway 62/180 at mile marker 66 (33 miles East of Hobbs, NM and 32 miles West of Carlsbad, NM).

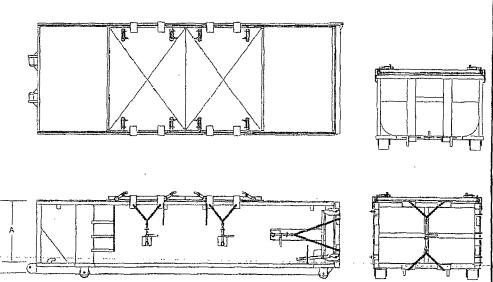
The Permit Number for CRI is R9166


A photograph showing the type of haul-off bins that will be used is attached.

- 3. Mud will be transported by vacuum truck and disposed of at Controlled Recovery Inc at the facility described above.
- 4. Fresh Water and Brine will be hauled off by vacuum truck and disposed of at an authorized salt water disposal well. We propose the following for disposal of fresh water and brine as needed:
 - Nabors Well Services Company, 3221 NW County Rd; Hobbs, NM 88240, PO 5208 Hobbs, NM, 88241, Permit SWD 092. (Well Location: Section 3, T19S R37E)
 - Basic Energy Services, P.O. Box 1869; Eunice, NM 88231 Phone Number: 575.394.2545, Facility located at Hwy 18, Mile Marker 19; Eunice, NM.


James Chen Drilling Engineer Office: 832.486.2184 Cell: 832.678.1647 SPECIFICATIONS

FLOOR: 3/16" PL one pièce CROSSiMEMBER 3:x 4 1 channel 16 center


CROSSMEMBER: 3x24.1 channel.16: on center WALLS: 3/16' PL solid welded with tubing is possible line thooks DOOR: 3/16' PL with tubing trame. FRONT: 3/16' PL with tubing trame. FRONT: 3/16' PL with tubing trame. FRONT: 3/16' PL stant formed! PICK 'U'F': Standard celle with 22' x.6' x.1/42' rails: pursest a receiver ossmen Door WHEELS: 10 DIAX 9 bord with rease fittings DOOR: 4/16', Stindgaardent retenst binderst wath drains: ventbell second latch CASKETIS: E indecide bord second latch CASKETIS: E indecide bord out with metal retenses. WEEDS: All welds continuous except sub-structure: crossmen ber MISH: Coaled this be and out with direct to recail rust indiciting each to enamel color coats by DRONTESTINCE: Full capacity static test DIMENSIONS: 22-44' tang (21'48' firstdo), 99 wide (82' inside), see drawfing for helpfilt OPTIONS' Steel of tubbast and specific parts Amair of the transfer of tubbast and specific parts and cannel support are: UDS V(2) 68' × 90' an atel for fing filds sprifting loaded is sign? ROLLE RS 14' Vericover cliens with delfa bearing support integritings OPENIINCE (2) for 'x 82' openings with 8' clivice center com container a tubbast and clivice center com container a tubbast actioner structure of tubbast actioner structure of tubbast actioner and crease structures with 8' clivice center com container a tubbast actioner structure of tubbast actioner structure of tubbast actioner structure of tubbast actioner action container a tubbast actioner structure of tubbast actioner of tubbast actioner of tubbast actioner of tubbas

Heavy Duty Split Metal Rolling Lid

CONT.	A	В
20 YD	41	53
25 YD 30 YD	53	65
30 YD	65	77

