NOBBS OCD				A	75-13	3-467
HOL & 2013		· · · · ·		1. 1. 2010		
MAY 28 C				EOD EOD	M ADDDOU	/ED
(March 2012)				OME	M APPROV 3 No. 1004-01	ED 137 2014
RECEIVE UNITED STATES	3	OCD Hobb	S .	5 Lease Serial No)	
DEPARTMENT OF THE BUREAU OF LAND MAN	INTERIOR JAGEMENT	7		NM LC 029405B	J,	
APPLICATION FOR PERMIT TO	DRILL OF	R REENTER		6. If Indian, Allot N/A	ee or Tribe	Name
la. Type of work:	ER			7 If Unit or CA Ag	greement, N	lame and No.
Ib. Type of Well: 🔽 Oil Well 🗔 Gas Well 🗍 Other	لکا ہے	ngle Zone 🔲 Multi	nle Zone	8. Lease Name and Ruby Federal #23	d Well No. 3 < 3	8653
2 Name of Operator Concere Phillips Company				9. API Well No.		
Conocor maps company	۲	(21781"	17	30-025- 4	196	
^{3a.} Address P.O. Box 51810 Midland, Texas 79710-1810	3b. Phone No 432-688-6). (include area code) 913		10. Field and Pool, c Maljamar; Yeso V	or Explorato Vest 🔨	34450
4. Location of Well (Report location clearly and in accordance with an	ty State requirem	nents.*)		11. Sec., T. R. M. or	Blk. and St	rvey or Area
At surface 1815' FSL and 2170' FWL; UL K, Sec. 18, T1	7S, R32E			Sec. 18, T17S, R	32E	
At proposed prod. zone 1815' FSL and 2170' FWL; UL K, S	Sec. 18, T17	S, R32E		-		
14. Distance in miles and direction from nearest town or post office* Approximately 3 miles south of Maljamar, New Mexico				12. County or Parish Lea County	1	13. State NM
15. Distance from proposed* 1815' FSL	16. No. of a	acres in lease	17. Spacin	g Unit dedicated to thi	s well	
property or lease line, ft.	1001.9		40			
(Also to nearest drig. unit line, if any)	10 Dronous	d Donth	20 BI M/E	BIA Bond No. on file		
 Distance from proposed location* Approximately 770' to nearest well, drilling, completed, applied for, on this lease, ft. 	6925' MD/	TVD	ES 0085			
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3957' GL	22. Approxit	mate date work will sta 3	. <u>.</u>	23. Estimated durat 10 days	ion	
	24. Attac	chments				
The following, completed in accordance with the requirements of Onshor	re Oil and Gas	Order No.1, must be a	ttached to thi	is form:		
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover t Item 20 above).	he operation	ns unless covered by a	n existing	bond on file (se
3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office).	Lands, the	 5. Operator certific 6. Such other site BLM. 	cation specific info	ormation and/or plans	as may be i	required by the
25. Signature	Name	(Printed/Typed)	<u></u>		Date	
Sugar B. Mounder	Susa	n B. Maunder			2-0	22-20
Title Senior Regulatory Specialist						
Approved by (Signature) /s/George MacDonell	Name	(Printed/Typed /s/G	eorge I	MacDonell	Date	AY 222
Title FIELD MANAGER	Office	CARLSBAD	FIELD OF	FICE		
Application approval does not warrant or certify that the applicant hold conduct operations thereon. Conditions of approval, if any, are attached.	ls legal or equit	table title to those righ	ts in the subj	ject lease which would	FOR T	applicant to WO YEAI
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a cr States any false, fictitious or fraudulent statements or representations as t	rime for any pe to any matter w	erson knowingly and vithin its jurisdiction.	willfully to m	ake to any department	or agency	of the United
(Continued on page 2)			Rosv	vell Controll	truction ed Wa	s on page 2) ter Basin
		,			. 1	^
				KE.	30/1	3
				19 1		
Al Subject to Generate SFF A	TTAC	HEN EAD		07	I	

Drilling Plan ConocoPhillips Company <u>Maljamar; Yeso, west</u>

Ruby Federal #23

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The ranges of depths for the formation tops, thicknesses, and planned Total Depths for all the wells to be drilled under this Master Drilling Plan are presented in the table below.

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depths FT MD	Contents
Quaternary	Surface	Fresh Water
Rustler	678	Anhydrite
Salado (top of salt)	849	Salt
Tansill	1851	Gas, Oil and Water
Yates	2066	Gas, Oil and Water
Seven Rivers	2349	Gas, Oil and Water
Queen	2989	Gas, Oil and Water
Grayburg	3409	Gas, Oil and Water
San Andres	3789	Gas, Oil and Water
Glorieta	5252	Gas, Oil and Water
Paddock	5329	Gas, Oil and Water
Blinebry	5674	Gas, Oil and Water
Tubb	6725	Gas, Oil and Water
Deepest estimated perforation	6725	Deepest estimated perf. is ~ Top of Tubb
Total Depth (maximum)	6925	200' below deepest estimated perforation

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

(Date: February 22, 2013) Ruby Federal #23

2. Proposed casing program:

÷

L

Tuno	Hole Size	N	Interval ID RKB (ft)	OD	Wt	Gr	Gr	Gr	Corre	MIY	IY Col	Col Jt Str	Safety Factors Calculated per ConocoPhillips Corporate Criteria		
туре	(in)	From	То	(inches)	(lb/ft)			(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant		
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA		
Alt. Cond	20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA		
Surf	12-1/4	0	75 07 03'748 "	8-5/8	24#	J-55	STC	2950	1370	244	1.24	6.31	2.11		
Prod	7-7/8	0	6870' – 6915'	5-1/2	17#	L-80	LTC	7740	6290	338	1.15	2.05	1.69		

The casing will be suitable for H_2S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Design (Safety) Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	748	24	2950	1370	244000	8.5	8.92	4.14	13.59	15.62
Production Casing	6915	17	7740	6290	338000	10	2.15	1.75	2.88	3.39

Casing Design (Safety) Factors – Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Co	proorate Criteria	for Minimum	Design Factors
-------------------	-------------------	-------------	----------------

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

Page 2 of 9

Tuno	Dàinth Mit MIY	Col. It Str. Dine Yiel M	nM Durnt Collanse Te		
Surface Casing (8-5/8" 24# J-55 STC)	748 24 295	50 1370 244000 381000	8.5 1.24 6.31	nsile_ -2.11	
Production Casing (5-1/2" 17#L'80 LTC)	6915 17 774	0 6290 338000 397000	10 1.15 2.05	<u>-1.69</u>	
Burst Design (Safety) Factors - ConocoPhillips	<u>s Criteria</u>				
The maximum internal (durst) load on the Production Casing occ	urs during the fracture stimulation y	sted to 1000 psi (pressured up to 110 where the maximum allowable working	IO psi) . The pressure	i de la companya da serie da s	
(MAVVP) is the pressure that would lit ConocoPhillips Corport	rate Criteria for Minimum Design Fac	stors			
Surface Casing Lest Pressure = Surface Rated Working Pressure =	1000 psi 3000 psi				
Surface Casing Burst Design Factor = Burst F	Rating / Maximum Pressure during C	asing Pressure Test			
Production Casing MAWP for the Fracture Stin	mulation = Minimum Internal Yelld / Pr	roduction Casing Burst Design Factor			sentine Sentine SentingS
Surface Casing Burst Design Factor:		n friða í skala þeiði fersti ferska sem A Standarí skild skala skild skild skild skild skild skild skild skild			
Designed CSFG (Test Pressure + MWP) = MPSP (CSFG - GG) =	749 1000 +	389)/(748 35 01	x 0.052)- (0.5 <mark>∶≲ 35.21</mark>	
MPSP (PPTD - GG) =	6915 x .0.052	x 8.55	74.0 – 12383 591.5. = 2383		
MPSP (0.375 x BHP) =	0.375 x 6915	x 0.052 x L	8.55 = 1153		
Bust Design Factor =	2950 / 2383		1 3/U "(\$		
Production Casing Burst Design Factor:					
MPSP(PPTD: (GC) =		x 8.55	a91.5 = 2383		
MPSP (0.375 x BHP) =	0.375 x 6915	x 0.052 x	8.55		
MAWP for the Fracture Stimulation =	7740 7740 7769 <u>7769 5000</u> 7740 7)		li ka Ma ang Kapitan ang Kapitan Tinggan sa kapitan ang Kapitan	
Collanse Design (Safety) Factors - ConocoPhi	Illins Criteria				
The maximum collapse load on the Surface Casing occurs w	when the pressure is released offer	bumping the plug on the surface casir	ng cement	in a start and a start and a start and a start	
Job. The maximum collapse load on the production casing oc casing to surface, and therefore the external pressure profi	curs with the well is pumped off or	production. We plan to cement the p	roduction		
outside of the casing which we estimate to be 8.55 ppg grac	dient.	10 Guarte ino per o presente e			
Surface Casing Collapse Design Factor = Colla Production Casing Collapse Design Factor = Cr	apse Reting / (Cement Column Hydro	static Pressure - Displacement Fluid I	lýdrostatic Pressure)		
richard and a second seco	Jildhao Lignin 🦓 / Lineville Line Line Line Line Line Line Line Lin	DIG Pressure	an a	يندي الأربية المراجع وقد ما تتريية الإربيان	
Surface Casing Collapse Design Factor:	100 JUL 0701	ີ ດີດເວັດ ເຊິ່ງ		0.050	
Collapse Design Factor =	1370 / 217	_ x 0,002 * = 6.31	<u>[4.8]</u>) T (1110	X U.U52 X L	<u>1.6</u>]) - 331
Production Casing Collapse Design Factor:	6000 // <u>855</u>	T a ánsa a straig			
Collapse Design Factor ≓'	6290 / 3074	_ x u.uo∠ ⇒ 2.05 ×	,915 -)	an an an an the same start	
		and a second			
Joint Strength Design (Safety) Factors - Conoc	coPhillips Criteria				
The maximum axial (tension) load occurs if casing were to ge	et stuck and pulled on to try to get it	unstuck.			
Maximum Allowable Hookload = Joint Strength Rating / Avia L Overpull Margin (Air Wt) = Maximum Allowable Hook Load - A	Jesign Factor Air Wt of the String				
Overpull Margin (Bouyant) = Maximum Allowable Hook Load -	Air Wt of the String				
Surface Casing (Minimum Pipe Yield)					
Max Hookload (Air Wt) =	17952				
Max Hookload (Houyant) + Overpuil = 1 Tensile Design Factor =	100,000 ++ (17952 397000 / 115622,	x (0.870) = ,11; = (3.43	5622		
Actual Overpull Margin to Satisfy COP min DF =	397000 /. 1.40] 15622 = 267	/949		
Production Casing (Minimum Pipe Yield) Max Hookload (Air Wt) =	117555				
Max Hookload (Bouyant) + Overpull = 1	100,000 + (117555	x 0.847) = 199	9608		
Actual Overnull Mardin to Satisfy COP min DF =	381000 / / 199606 / 381000 / 1,40	= 1.91 1 99608 = 177	2626		
Surface Casing (Minimum Jt Strength)			n de la companya de Novembra de la companya de la company Novembra de la companya de la company		
Max Hookload (Air VVI) = Max Hookload (Bouvant) + Overpull = .1	17952 100 000 + (17952	• 0 870) = 115	(C))		
Tensile Design Factor =	244000 / 115622	.=	022		
Actual Overpull Margin to Satisfy COP min DF =	244000	15622 💥 🗄 📩 158	1663		
Max Hookload (Air WI) =	117555				
Max Hooktoad (Bouyant) + Overpull = 1 Tensile Design Factor =	00,000 + (117555	x 0.847) = .199	608		
Actual Overpull Margin to Satisfy COP min DF =	338000 / 1.40	99608 = 141	821		
del 1973 - Frank her in de la anti-					New States

. a 1

3. Proposed cementing program:

.

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing & Cementing Program: 8-5/8" 24# J-55 STC

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	Inter Ft	vals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	Class C	Surface	403' – 448'	13.6	350	595	4%Bentonite 2%CaCl2 .125%Polyflake 0.2% antifoam Excess =230% based on gauge hole volume	1.70
Tail	Class C	403' – 448'	703' – 748'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing & Cementing Program: 5-1/2" 17# L-80 LTC

The intention for the cementing program for the Production Casing is to:

- Place the Tail Slurry from the casing shoe to a point approximately 200' above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	Inter Ft	vals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	5200'	11.8	1000	2640	10% Bentonite 8 Ibs/sx Salt 0.4% Fluid loss additive 0.125% LCM if needed Excess = 220% or more if needed based on gauge hole volume	2.64
Tail	Class H	5200'	6870' – 6915'	16.4	650	696	 0.2% Fluid loss additive 0.3% Dispersant 0.15% Retarder 0.2% Antifoam Excess = 100% or more if needed based on gauge hole volume 	1.07

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide. (Date: February 22, 2013) Ruby Federal #23 ConocoPhillips respectfully requests an additional option to our cementing program. The intention of this alternative is to accommodate additional isolation of the Grayburg-San Andres formation with cement.

Alternate 5-1/2" Production Casing & Cementing Program – TXI/LW Option for Grayburg-San Andres:

The intention for cementing of the Production Casing is to:

- Place the Tail Slurry from the casing shoe to the top of the Grayburg-San Andres formation,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	inter Ft	rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	3000'	11.8	500	1300	10% Bentonite 8 lbs/sx Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 200% or more if needed based on gauge hole volume	2.6
Tail	TXI/LW	3000'	6800' - 7000' 6915	13.2	1300	1820	0.5% Fluid loss additive 0.10% Retarder 0.2% Antifoam 0.125 lb/sx LCM if needed Excess = 150% or more if needed based on gauge hole volume	1.40

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volume presented above are estimates based on gauge 7-7/8" hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

4. Pressure Control Equipment:

A <u>11° 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- o Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to the approved stack working pressure of 3000 psi isolated by test plug. Annular type preventers will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. See Attached

(Date: February 22, 2013) Ruby Federal #23

Page 5 of 9

BOPE Schematic. A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System

.

The mud systems that are proposed for use are as follows:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud	8.5 - 9.0	28 – 40	N.C.	N.C.	120 – 160
Surface Casing Point to TD	Brine (Saturated NaCl ₂)	10	29	N.C.	10 – 11	1250 - 2500
Conversion to Mud at TD	Brine Based Mud (NaCl ₂)	10	34 – 45	5 – 10	10 – 11	0 - 1250

Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14. H2S Monitoring Alarm installed at the possum belly could be set as low as 5 to 10 ppm and go into high alarm. The gases shall be piped into the flare system. Gas detection equipment and pit level flow monitoring equipment will be on location. A percentage flow paddle installed in the flow line measures relative amount of mud flowing in non-pressurized return line. There are 4 mud probes in the system. One probe is installed in each of the individual tanks to measure the volume of the drilling fluid in individual mud and trip tanks at the well site. The mud probe data is collected by the Pit Volume Totalizer (PVT) system and the information is available real-time via display in the dog house and the company representative's office on location. ConocoPhillips Company will maintain sufficient mud and weighting material on location if hole conditions warrant.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. Also, we propose an option to not mud up leaving only brine in the hole.

(Date: April 3, 2013) Ruby Federal #23

6. Logging, Coring, and Testing Program: See COA

٤

- a. No drill stem tests will be done
- b. Mud logging planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 2500': Resistivity, Density, and Gamma Ray
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Formation pressure data (XPT) on electric line if needed (optional) .
 - Rotary Sidewall Cores on electric line if needed (optional)
 - BHC or Dipole Sonic if needed (optional) •
 - Spectral Gamma Ray if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered. ø
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - 0 The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F. 0
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented 0 in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S (PPM)	Gas Rate (MCFD)	ROE 100 PPM	ROE 500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27
Yeso Group	400	433	34	15

ConocoPhillips will comply with the provisions of Oil and Gas Order #6

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill these wells is late 2013 after receiving approval of the APD.

Attachments:

- Attachment # 1 BOP and Choke Manifold Schematic 3M System
- Attachment # 2 Diagram of Choke Manifold Equipment

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 27 August 2012

(Date: February 22, 2013) Ruby Federal #23

(Date: February 22, 2013) Ruby Federal #23 Attachment # 2

Drawn by: Steven O. Moore Chief Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 25-Sept-2012

(Date: February 22, 2013) Ruby Federal #23

Page 9 of 9

Request for Variance

ConocoPhillips Company

Lease Number: NM LC 029405B Well: Ruby Federal #23 Location: Sec. 18, T17S, R32E Date: 02-22-13

Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Attachment # 1

となける

Reliance Eliminator Choke & Kill

This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

in. mm. in. mm lb/ft kg/m in. mm. psi Mpa 3 76.2 5.11 129.79 14.5 21.46 48 1219.2 5000 34.4 3=1/2 88:9 5.79 147.06 20.14 29.80 54 1371.6 5000 34.4 Fittings Flanges Hammer Unions Other RC4X5055 R35 - 3-1/8 5000# API Type 6B All Union Configurations LP Threaded Connecti Graylock RC4X5055 R31 - 3-1/8 3000# API Type 6B Custom Ends Custom Ends Custom Ends	Nom, ID			Nom OD We		Weig	iht	Min Bend Radius		18	Max WP	
3 76.2 5.11 129.79 14.5 21.46 48 1219.2 5000 34.4 3:-1/2 88:9 5.79 147.06 20.14 29.80 54 1371.6 5000 34.4 Fittings RC4X5055 R35 - 3-1/8 5000# API Type 6B All Union Configurations LP Threaded Connecting Graylock RC4X5055 R31 - 3-1/8 3000# API Type 6B All Union Configurations LP Threaded Connecting Graylock RC4X5055 R31 - 3-1/8 3000# API Type 6B All Union Configurations LP Threaded Connecting Graylock	in.	mm.	in		mm	lb/ft	kg/m	in.	mm.		psi	Мра
3-1/2 88:9 5.79 147:06 20.14 29:80 54 1371.6 5000 34.4 Fittings Flanges Hammer Unions Other RC4X5055 R35 - 3-1/8 5000# API Type 6B All Union Configurations LP Threaded Connecti Graylock RC4X5055 R31 - 3-1/8 3000# API Type 6B Custom Ends	. 3	76.2	5.	11 -	129.79	14.5	21.46	48	1219.	2	5000	34.47
Fittings Flanges Hammer Unions Other RC4X5055 R35 - 3-1/8 5000# API Type 6B All Union Configurations LP Threaded Connecti RC3X5055 R31 - 3-1/8 3000# API Type 6B All Union Configurations LP Threaded Connecti RC4X5575 Custom Ends Custom Ends	3-1/2	88.9	5.	79· ·	147.06	20.14	29.80	54	1371.	6	5000	34.47
Fittings Flanges Hammer Unions Other RC4X5055 R35 - 3-1/8 5000# API Type 6B All Union Configurations LP Threaded Connectingraylock RC3X5055 R31 - 3-1/8 3000# API Type 6B Custom Ends	No. of States and states and					:						
Fittings Flanges Hammer Unions Other RC4X5055 R35 - 3-1/8 5000# API Type 6B All Union Configurations LP Threaded Connecti RC3X5055 R31 - 3-1/8 3000# API Type 6B Custom Ends	$G_{1,2}^{(1)} \to G_{2}^{(1)}$			n â he	1999 - 2999 - 299 299 - 299 200 - 200 200 - 200 200 - 200 200 200 - 200 200 200 - 200							
FittingsFlangesHammer UnionsOtherRC4X5055R35 - 3-1/8 5000# API Type 6BAll Union ConfigurationsLP Threaded ConnectiRC3X5055R31 - 3-1/8 3000# API Type 6BGraylockGraylockRC4X5575Custom Ends		1. Sale	e.,		·							
RC4X5055 R35 - 3-1/8 5000# API Type 6B All Union Configurations LP Threaded Connecti RC3X5055 R31 - 3-1/8 3000# API Type 6B Graylock RC4X5575 Custom Ends	Fittings			Flanges			Har	Hammer Unions			Othe	r
RC3X5055 R31 - 3-1/8 3000# API Type 6B Graylock RC4X5575 Custom Ends	RC4X5055		R35	- 3-1/	8 5000# A	PI Type 6B	All Ur	nion Config	urations	LP Th	readed C	Connectio
RC4X5575 Custom Ends	RC3X5055		R31	- 3-1/	8 3000# A	PI Type 6B					Graylo	ck
	RC4X5575									1	Custom E	Ends
						•						

Attachment # 2

