<u></u>			
TVD of target	12,012'	Pilot hole depth	N/A
MD at TD:	22,311'	Deepest expected fresh water:	300

1. Geologic Formations

Basin

Formation	Depth (TVD) from KB	SSTVD (ft.)	Water/Mineral Bearing/Target Zone	Hazards *
Quaternary Fill	Surface	0	Water	talistik olike Ist lohidi olike tasiy
Base of Fresh Water	300	300	Water	
Rustler	1,119	2060	Water	
Top of Salt / Salado	1,279	1900	Mineral	
Castile	2,629	550	Mineral	
Delaware Top / Base	4,229	-1050	0 & G	/
Salt				
Ford Shale	4,354	-1175	0 & G	
Cherry Canyon	5,154	-1975	0 & G	
Brushy Canyon	6,629	-3450	0 & G	
Bone Springs	8,029	-4850	0 & G	
Bone Springs 3 rd Carb	10,339	-1760	0 & G	
WolfCamp	11,379	-8200	0 & G	
WolfCamp 1	11,604	-8425	0 & G	

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

ConocoPhillips Company respectfully requests to approve the following 3-string casing and cementing program with the 8-5/8" casing set in the Bone Spring 3rd Carb. The intent for the casing and cementing program:

- Drill 14-3/4" surface hole to Rustler.
- Drill 10-5/8" hole from Rustler to Bone Spring 3rd Carb with the same density mud (OBM or Saturated Brine).
- Case and cement the well with 11-3/4" surface, 10-5/8" intermediate and 5-1/2" production casing (3-strings).
- Isolate the Salt & Delaware utilizing Annulus Casing Packer and Stage Tool with 2-Stage Cement or Remediate with Bradenhead Squeeze if necessary.
- Bring cement for 11-3/4" casing and 8-5/8" casing to surface. Cement 5-1/2" casing to lap inside 8-5/8" casing shoe.
- 5-1/2" TXP buttress Casing Connection in 7-7/8" OH for minimum of 0.422 in clearance per Onshore Oil and Gas Order #2 III.B.

Hole	Casing Interval		Csg. Size	Csg. Size Weight Grade	Conn.	SF	SF	SF	
Size	From	То		(lbs)			Collapse	Burst	Tension
14.75"	0	1170	11.75"	47.0	J55	BTC	2.89	5.87	15.4
10.875"	0	11420	8.625"	32.0	P110	BTC	**2.04	1.55	3.53
7.875"	0	22311	5.5"	20.0	P110	TXP	1.48	1.69	2.25
	•			BLM N	Ainimum S	Safety Factor	1.125	1.00	1.6 Dry 1.8 Wet

**COP Collapse Design: 1/3 Partial Evacuation to the next casing depth (TVD).

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y ·
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	Y
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	Y
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Option 1:

Casing	# Sks	Wt.lb/ gal	Yld ,ft3/ sack	H20 gal/sk	500# Comp. Strength (Estimated	Slurry Description		
- 40 ⁻¹					hõūrs)			
Surf.	470	13.5	1.68	8.94	8	Lead: Class C + 4.0% Bentonite + 0.2% Anti-		
					-	Foam + 2.0% CaCl2 +0.1251b/sk LCM + 0.1% Dispersant.		
	240	14.8	1.35	6.38	7	Tail: Class C + 0.2% Anti-Foam + 0.1% Lost		
					<u> </u>	Circ Control		
Inter.	800	11.0	2.7	16.5	18	Lead: Class C 75.00 lb/sk BWOB D049 + 1.00		
						% BWOB D013 Retarder + 10.00 % BWOB		
				1		DU20 Extender + 0.02 gal/sk VBWOB D04/		
						Anti toam + 2.00 % BWOB D154 Extender +		
	670	10.6	1.00	6.00		U.15 % BWOB D208 Viscosifier		
	570	13.5	1.29	6.02	/	1 all: Class C / $5.00 \text{ lb/sk BWOB D049} + 0.50$		
						70 BWOB D013 Related + 1.00 % BWOB D020 Extender + 3.00 lb/sk WBWOB D042		
						Extender + 0.02 gal/sk VBWOB D042		
						f_{0} for $m + 0.10$ % BWOB D065 Dispersant +		
						0.13 lb/sk WBWOB D130 Lost Circulation +		
						0.30 % BWOB D238 Fluid loss		
		L	L	l .	1	× * * * * * * * * * * * * * * * * * * *		
Prod.	2290	16.4	1.08	4.38	10	Tail: Class H + 1.00 % BWOB D020 Extender		
						+ 0.02 gal/sk VBWOB D047 Anti Foam +		
						0.10 % BWOB D065 Dispersant + 0.15 %		
						BWOB D255 Fluid loss + 0.30 % BWOB		
					l	D800 Retarder		
	DV/ACP Tool: NO							

Option 2:

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H ₂ 0 gal/sk	500# Comp. Strength (Estimated hours)	Slurry Description
Surf.	470	13.5	1.68	8.94	8	Lead: Class C + 4.0% Bentonite + 0.2% Anti- Foam + 2.0% CaCl2 +0.125lb/sk LCM + 0.1% Dispersant.
	240	14.8	1.35	6.38	7	Tail: Class C + 0.2% Anti-Foam + 0.1% Lost Circ Control
Inter.	370	11.0	2.7	16.5	18	Lead: Class C 75.00 lb/sk BWOB D049 + 1.00 % BWOB D013 Retarder + 10.00 % BWOB D020 Extender + 0.02 gal/sk VBWOB D047 Anti foam + 2.00 % BWOB D154 Extender + 0.15 % BWOB D208 Viscosifier

3 Drilling Plan

	570	13.5	1.29	6.02	7	Tail: Class C 75.00 lb/sk BWOB D049 + 0.50 % BWOB D013 Retarder + 1.00 % BWOB D020 Extender + 3.00 lb/sk WBWOB D042 Extender + 0.02 gal/sk VBWOB D047Anti foam + 0.10 % BWOB D065 Dispersant + 0.13 lb/sk WBWOB D130 Lost Circulation + 0.30 % BWOB D238 Fluid loss
					DV/ACP To	ool: 4,200'
	420	11.0	3.10	19.03	15	2nd Stage Lead: Class 'C' + 2.00 % BWOB
						Extender + 3.40 lb/sk WBWOB D042 Extender
						+ 0.02 gal/sk VBWOB D047 Anti Foam +
				:	1	2.00 % BWOB D079 Extender + 5.00 %
						BWOB D154 Extender + 1.00 % BWOB
						S001 CaCl2
Prod.	2290	16.4	1.08	4.38	10	Tail: Class H + 1.00 % BWOB D020 Extender
			1			+ 0.02 gal/sk VBWOB D047 Anti Foam +
						0.10 % BWOB D065 Dispersant + 0.15 %
						BWOB D255 Fluid loss + 0.30 % BWOB
					L	D800 Retarder
					DV/ACP 7	Tool: NO

DV tool depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	% Excess in OH
Surface	0'	>100%
Intermediate	0'	>30%
Production	10,200'	>15%

1

Include Pilot Hole Cementing specs: NO PILOT HOLE. Pilot hole depth $\underline{N/A}$ KOP

Plug ; top	Plug Bottom	% Excess	No. Sacks	Wt. lb/gal	Yld ft3/sack	Water gal/sk	Slurry Description and Cement Type
						``````````````````````````````````````	

#### 4. Pressure Control Equipment

N	A variance is requested for the use of a diverter on the surface casing.	See attached for
IN .	schematic.	

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		Tested to:
			Annular	x	50% of working pressure
	11" or 13-5/8"	10M	Blind Ram	X	
10-5/8"			Pipe Ram	x	100% of working processing
			Double Ram	x	100% of working pressure
			Other*		
			Annular	X	50% of working pressure
7-7/8"	11" or 13-5/8"	10M	Blind Ram	x	
			Pipe Ram	X	100% of working processing
			Double Ram	Х	100% of working pressure
			Other*		

*Specify if additional ram is utilized.

Note: A 11" or 13-5/8" BOPE will be utilize depending on availability and Rig Substructure Clearance.

BOP/BOPE will be isolated from the casing and tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. BOPE controls will be installed prior to drilling under the surface casing and will be used until the completion of drilling operations. The intermediate interval and the production interval will be tested per 10M working system requirements.

Pipe rams will be operationally checked each 24-hour period. Choke manifold will have one remotely operated valve and a manual adjustable valve in front of the choke manifold, as detailed in the Onshore Order 2. It currently contains one 10M hydraulic choke for a total of three choke branches (two manual and one hydraulic). Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

A Spudder Rig may be used to drill the surface and/or intermediate hole for economical reason depending on availability.

The wellhead will be installed and tested as soon as the surface casing is cemented. Prior to drilling out the surface casing, ConocoPhillips shall nipple up a 10M BOPE & choke arrangement with 10M components and test to the rated working pressure of a 10M BOPE system as it is subjected to the maximum anticipated surface pressure 5790 psi. The pressure test to MASP and 50% for annular shall be performed with a test plug after installing the casing head and nippling up the 5M BOPE system prior to drilling out the surface casing.

However, ConocoPhillips shall nipple up a 10M BOPE with 5M Annular Preventer if drilling out surface casing with Primary Rig.

Y	Formation integrity test will be performed per Onshore Order #2.					
ļ	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or					
	greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in					
	accordance with Onshore Oil and Gas Order #2 III.B.1.i.					
	A variance is requested for the use of a flexible choke line from the BOP to Choke					
v	Manifold. See attached for specs and hydrostatic test chart.					
Y	• See attached data sheet & certification.					
	N Are anchors required by manufacturer?					
Y	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after					
	installation on the surface casing which will cover testing requirements for a maximum of					
	30 days. If any seal subject to test pressure is broken the system must be tested.					
	See attached schematic.					

#### 5. Mud Program

Depth		Туре	Weight (ppg)	Viscosity	Water Loss
From To					
0	1,170	Spud Mud	8.34 - 8.6	32-36	N/C
0	11,420	Cut-Brine or OBM	8.6-9.4	30-40	≤5
0	22,311	Oil Base Mud	9.5-13.5	30-40	≤5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	PVT/MDTotco/Visual Monitoring
of fluid?	

#### 6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
x	GR from 200' above KOP to TD (GR as part of the BHA while drilling).
	No Logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain
	Coring? If yes, explain
x	Dry samples taken 30' from intermediate 1 casing point to TD.

Add	itional logs planned	Interval
	Resistivity	
	Density	
	CBL	
x	Mud log	
	PEX	

#### 7. Drilling Conditions

r		1
Condition	Specify what type and where?	

BH Pressure at deepest TVD		843	2 psi		ño.
Abnormal Temperature	2007 - 2007 - 2007 - 2007	ľ	<b>J</b> o		a da territori
Mitigation measure for abnorn	nal conditions.	Describe. Lost	circulation	material/sw	eeps/mud
scavengers.	an a	이러 귀엽 물법을 가지?			

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If
 H2S is detected in concentrations greater than 100 ppm, the operator will comply with the
 provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured
 values and formations will be provided to the BLM.
 N
 H2S is present
 Y
 H2S Plan attached

#### 8. Other facets of operation

Is this a walking operation? If yes, describe. Yes, please see below. Will be pre-setting casing? If yes, describe. Yes, please see below.

#### Spudder Rig and Batch Drilling Operations:

A blind flange cap of the same pressure rating as the wellhead will be secured to seal the wellbore on all casing strings. Pressure will be monitored via flanged port tied to a needle valve and pressure gauge to monitor pressures on each wellhead section and a means for intervention will be maintained while the drilling rig is not over the well.

Drilling Plan

. . . . . . . .

CARLESS TO A

#### Attachments:

Attachment#1: Directional Plan.

Attachment#2: Wellbore Casing & Cementing Schematic.

Attachment #3: Special (Premium) Connections.

Attachment#4: Wellhead Schematic.

Attachment #5: BOP Schematic.

Attachment #6: Choke Schematic.

Attachment #7: Flex Hose Documentation.

Attachment #8: Rig Layout.

**Option 2:** 

Casing	# Sks	Wt.lb/	Ýld	H ₂ 0	500#	Slurry Description
		gal	ft3/	gal/sk	Comp.	
			sack		Strength	
					(Estimated	
	and a second				hours)	
Surf.	470	13.5	1.68	8.94	8	Lead: Class C + 4.0% Bentonite + 0.2% Anti-
						Foam + 2.0% CaCl2 +0.125lb/sk LCM + 0.1%
						Dispersant.
	240	14.8	1.35	6.38	7	Tail: Class C + 0.2% Anti-Foam + 0.1% Lost
						Circ Control
Inter.	370	11.0	2.7	16.5	18	Lead: Class C 75.00 lb/sk BWOB D049 + 1.00
						% BWOB D013 Retarder + 10.00 % BWOB
						D020 Extender + 0.02 gal/sk VBWOB D047
						Anti foam + 2.00 % BWOB D154 Extender +
					1	0.15 % BWOB D208 Viscosifier
	570	13.5	1.29	6.02	7	<b>Tail:</b> Class C 75.00 lb/sk BWOB D049 + 0.50
						% BWOB D013 Retarder + 1.00 % BWOB
	Í					D020 Extender + 3.00 lb/sk WBWOB D042
						Extender + 0.02 gal/sk VBWOB D047Anti
			1			foam + 0.10 % BWOB D065 Dispersant +
			1			0.13 lb/sk WBWOB D130 Lost Circulation +
						0.30 % BWOB D238 Fluid loss
			1		DV/ACP To	pol: 4,200'
	420	11.0	3.10	19.03	15	<b>2nd Stage Lead:</b> Class 'C' + 2.00 % BWOB
						Extender + 3.40 lb/sk WBWOB D042 Extender
						+ 0.02 gal/sk VBWOB D047 Anti Foam +
						2.00 % BWOB D079 Extender + 5.00 %
						BWOB D154 Extender + 1.00 % BWOB
· ···· · ·····························						S001 CaCl2
Prod.	2290	16.4	1.08	4.38	10	Tail: Class H + 1.00 % BWOB D020 Extender
						+ 0.02 gal/sk VBWOB D047 Anti Foam +
· ·						0.10 % BWOB D065 Dispersant + 0.15 %
1						BWOB D255 Fluid loss + 0.30 % BWOB
	ļ					D800 Retarder
<u> </u>					DV/ACP 1	Fool: NO

# **FMSS**

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

#### APD ID: 10400015588

Operator Name: CÓNOCOPHILLIPS COMPANY

Submission Date: 07/13/2017

Highlighted data reflects the most recent changes

11/16/2017

lling Plan Data Report

Well Name: ZIA HILLS 19 FEDERAL COM

Well Type: OIL WELL

Well Number: 104H

Show Final Text

Well Work Type: Drill

## Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	QUATERNARY	3179	0	0		NONE	No
2	RUSTLER	2060	1119	1119	DOLOMITE,ANHYDRIT E	NONE	No
3	SALADO	. 1900	1279	1279	SALT	NONE	No
4	CASTILE	550	2629	2629	SALT	NONE	No
5	DELAWARE	-1050	4229	4229	SANDSTONE	NATURAL GAS,OIL	No
6	CHERRY CANYON	-1975	5154	5154	SANDSTONE	NATURAL GAS,OIL	No
7	BRUSHY CANYON	-3450	6629	6629	SANDSTONE	NATURAL GAS,OIL	No
8	BONE SPRINGS	-4850	8029	8029	SANDSTONE	NATURAL GAS,OIL	No
9	BONE SPRING 1ST	-6025	9204	9204	SANDSTONE	NATURAL GAS,OIL	No
10	BONE SPRING 2ND	-6700	9879	9879	SANDSTONE	NATURAL GAS, OIL	No
11	BONE SPRING 3RD	-7160	10339	10339	LIMESTONE	NATURAL GAS,OIL	NoN
12	WOLFCAMP	-8200	11379	11379	LIMESTONE,SHALE,SA NDSTONE	NATURAL GAS,OIL	Yes

#### Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M

Rating Depth: 22311

Equipment: Rotating Head, Annular Preventer, Pipe/Blind Rams, Kill Lines, Choke Lines, Adapter Spool

**Requesting Variance? YES** 

Variance request: A variance to use flexible choke line(s) from the BOP to Choke Manifold. Testing certificate is attached in "Flexhose Variance data" document. A variance to use a mulitbowl wellhead system. Please see attached in section 8 of drilling plan.

Testing Procedure: BOP/BOPE will be isolated from the casing and tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. BOPE controls will be installed prior to drilling

#### Operator Name: CONOCOPHILLIPS COMPANY

Well Name: ZIA HILLS 19 FEDERAL COM

Well Number: 104H

under the surface casing and will be used until the completion of drilling operations. The intermediate interval and the production interval will be tested per 10M working system requirements. See attached "Drill Plan" document.

#### Choke Diagram Attachment:

Zia_Hills_19_Pad_1_Choke_Manifold_07-11-2017.pdf

#### **BOP Diagram Attachment:**

Zia_Hills_19_Pad_1_BOPE_07-11-2017.pdf

**Section 3 - Casing** 

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	11.75	NEW	API	N	0	1170	0	1170	-8833	- 10003	1170	J-55	47	BUTT	2.89	5.87	DRY	15.4	DRY	15.4
2	INTERMED IATE	10.8 75	8.625	NEW	API	N	0	11420	0	10410	-8833	- 19243	11420	P- 110	32	BUTT	2.04	1.55	DRY	3.53	DRY	3.53
3	PRODUCTI ON	7.87 5	5.5	NEW	API	N	0	22311	0	22311	-8833	- 31144	22311	P- 110	20	OTHER - TXP	1.48	1.69	DRY	2.25	DRY	2.25

#### **Casing Attachments**

Casing ID: 1 String Type:SURFACE

**Inspection Document:** 

Spec Document:

**Tapered String Spec:** 

#### Casing Design Assumptions and Worksheet(s):

ZIA_HILLS_19_Fed_COM_104H_csg_design_07-11-2017.pdf

Operator Name: CONOCOPHILLIPS COMPANY Well Name: ZIA HILLS 19 FEDERAL COM

Well Number: 104H

#### **Casing Attachments**

Casing ID: 2

String Type:INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

ZIA_HILLS_19_Fed_COM_104H_csg_design_07-11-2017.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

**Tapered String Spec:** 

Casing Design Assumptions and Worksheet(s):

Zia_Hills_19_Pad_1__Production_csg_specification_07-05-2017.pdf

ZIA_HILLS_19_Fed_COM_104H_csg_design_07-11-2017.pdf

Section	4 - Ce	emen	ť								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1170	470	1.68	13.5	789.6	100	Class C	+ 4.0% Bentonite + 0.2% Anti-Foam + 2.0% CaCl2 +0.125lb/sk LCM + 0.1% Dispersant.
SURFACE	Tail			- -	240	1.35	14.8	324	100	Class C	+ 0.2% Anti-Foam + 0.1% Lost Circ Control
INTERMEDIATE	Lead		0	1142 0	800	2.7	11	2160	30	Class C	75.00 lb/sk BWOB D049 + 1.00 % BWOB D013 Retarder + 10.00

Page 3 of 6

Operator Name: (		OPHIL			NY						
Well Name: ZIA F	IILLS 19	9 FEDE	RAL (	COM			Wel				
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
					,						% BWOB D020 Extender + 0.02 gal/sk VBWOB D047 Anti foam + 2.00 % BWOB D154 Extender + 0.15 % BWOB D208 Viscosifier
INTERMEDIATE	Tail				570	1.29	13.5	735	30	Class C	75.00 lb/sk BWOB D049 + 0.50 % BWOB D013 Retarder + 1.00 % BWOB D020 Extender + 3.00 lb/sk WBWOB D042 Extender + 0.02 gal/sk VBWOB D047Anti foam + 0.10 % BWOB D065 Dispersant + 0.13 lb/sk WBWOB D130 Lost Circula + 0.30 % BWOB D238 Fluid loss
PRODUCTION	Lead		0	2231 1	0	0	0	0	0	no lead	no lead.
PRODUCTION	Tail				2330	1.08	16.4	2516	15	Class H	+ 1.00 % BWOB D020 Extender + 0.02 gal/sk VBWOB D047 Anti Foam + 0.10 % BWOB D065 Dispersant + 0.15 % BWOB D255 Fluid loss + 0.30 % BWOB D800 Retarder

#### Section 5 - Circulating Medium

#### Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

#### Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. See attached "Drill Plan" for additional information.

Describe the mud monitoring system utilized: Closed-loop mud system using steel mud containers will be on location. Mud monitoring of any changes in levels (gains or losses) will use Pressure Volume Temperature, Pason, Visual Observations. See attached "Drill Plan" for additional information.

#### Operator Name: CONOCOPHILLIPS COMPANY

Well Name: ZIA HILLS 19 FEDERAL COM

Well Number: 104H

#### **Circulating Medium Table** sqft) Additional Characteristics Density (Ibs/cu ft) Strength (lbs/100 Max Weight (Ibs/gal) Min Weight (Ibs/gal) Bottom Depth Viscosity (CP) Salinity (ppm) Filtration (cc) Top Depth Mud Type Н Gel 0 1170 SPUD MUD 8.34 8.6 0 1142 **OIL-BASED** 8.6 9.4 0 MUD **OIL-BASED** 0 2231 9.5 13.5 MUD 1

#### Section 6 - Test, Logging, Coring

#### List of production tests including testing procedures, equipment and safety measures:

Production tests will be conducted multiple times per week, through a test separator, during first months following completion. Thereafter, tests will be less frequently. See attached "Drill Plan" for additional information.

#### List of open and cased hole logs run in the well:

GR

#### Coring operation description for the well:

No coring operation is planned, at this time.

#### Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8432

Anticipated Surface Pressure: 5789.36

Anticipated Bottom Hole Temperature(F): 205

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

ZIA_HILLS_19_PAD_1_H2S_C_Plan_06-30-2017.pdf

**Operator Name: CONOCOPHILLIPS COMPANY** 

Well Name: ZIA HILLS 19 FEDERAL COM

Well Number: 104H

Zia_Hills_19_Pad_1_Rig_Layout_07-05-2017.pdf

#### Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Zia_Hills_19_Federal_COM_104H_Directional_Plan_06-30-2017.pdf Zia_Hills_19_Federal_COM_104H_Section_View_07-13-2017.pdf Zia_Hills_19_Federal_COM_104H_Wellbore_Schematic_20170830100601.pdf

Other proposed operations facets description:

#### Other proposed operations facets attachment:

Zia_Hills_19_Pad_1_Drill_Waste_Containment_06-30-2017.pdf Zia_Hills_19_Pad_1_Gas_Capture_Plan_07-05-2017.pdf Zia_Hills_19_Federal_COM_104H_Drilling_Plan.pdf_20170915092940.pdf Option_2_for_cement_plan_20170915092953.pdf

#### Other Variance attachment:

Zia_Hills_19_Pad_1_Generic_WH_06-30-2017.pdf Zia_Hills_19_Pad_1_Flexhose_Variance_07-05-2017.pdf Zia_Hills_19_Pad_1_Running_Procedure_2_20170915093007.pdf

#### Zia Hills 19 Federal Pad 1



The 10M Choke Manifold & Valves will be tested to rated working pressure.

*Choke manifold will have one remotely operated valve and a manual adjustable valve in front of the choke manifold, as detailed in the Onshore Order 2. It currently contains one 10M hydraulic choke for a total of three choke branches (two manual and one hydraulic).

Zia Hills 19 Federal Pad 1



- Item
- Description Rotating Head, 13-5/8" 1
  - Fill up Line and Valve 2A
  - 2B Flow Line (10")
  - 2C Shale Shakers and Solids Settling Tank
  - 2D Cuttings Bins for Zero Discharge
  - 2E Rental Mud Gas Separator with vent line to flare and return line to mud system
  - Annular BOP (13-5/8", 5M) 3
  - Double Ram (13-5/8", 5M, Blind Ram top x Pipe Ram bottom) 4
  - 5 Kill Line (2" flexible hose, 5M)
  - Kill Line Valve, Inner (2-1/16", 5M) 6
  - Kill Line Valve, Outer (2-1/16", 5M) 7
  - Kill Line Check Valve (2-1/16", 5M) 8
  - Choke Line (3-1/8", 5M Stainless Steel Coflex Line) 9
  - Choke Line Valve, Inner (3-1/8", 5M) 10
  - Choke Line Valve, Outer (3-1/8", Hydraulically operated, 5M) 11
  - Spacer Spool (13-5/8", 5M) 12
  - 13 Casing Head (13-5/8" 5M)
  - Ball Valve and Threaded Nipple on Casing Head Outlet, 2" 5M 14
  - 15 Surface Casing



- - Rotating Head 1
- 2A Fill up Line and Valve
- 2B
- 2C
- 2D 2E
- Flow Line (10") Shale Shakers and Centrifuges Cuttings Bins for Zero Discharge Mud Gas Separator with vent line to flare and return line to mud system
- 3
- Annular Preventer (11", 10M) Double Ram (11", 10M, Pipe Ram top x Blind Ram bottom) Drilling Spool (11" 10M) Single Ram (11", 10M, Pipe Rams) 4
- 5
- 4C
- 6
- Kill Line Gate Valve, Inner (2-1/16", 10M) 7
- Kill Line Gate Valve, Outer (2-1/16", 10M)
- 8 Kill Line Check Valve (2-1/16, 10M) 9
- 10
- CoFlex Choke Line (4-1/16", 10M) Choke Line Gate Valve, Inner (4-1/16", 10M) Choke Line Hydraulically Operated Gate Valve, Outer, (4-1/6" 10M w/ Double Acting 11
- 12 HCR) Drilling Spool Adapter (11", 10M)



- 8 Kill Line Check Valve (2-1/16, 10M)
- 9 CoFlex Choke Line (4-1/16", 10M)
- 10 Choke Line Gate Valve, Inner (4-1/16", 10M)
- 11 Choke Line Hydraulically Operated Gate Valve, Outer, (4-1/6" 10M w/ Double Acting HCR)
- 12 Drilling Spool Adapter (13-5/8", 10M)

# **Bill of Materials**

**NOTE** Contact your Cameron representative for replacement part inquiries. Cameron personnel can check the latest revision of the assembly bill-of-material to obtain the appropriate and current replacement part number.

#### SERVICE TOOLS

- Item QtyDescriptionST11Conversion Assy; Casing<br/>Head Torque Tool, f/ 'MN-<br/>DS' w/ Lift Plate, 13-3/8 In<br/>API 8Rnd Short Thread<br/>Casing Box Thread Top X<br/>.750-10UNC (16) Bolt Pat-<br/>tern Btm, (8) Torque Pins,<br/>Min Bore: 12.605<br/>Part# 2143701-75ST1A1Conversion Body; Lift Plate
- for Casing Head Torque Tool w/ Exrt 14.75 Stub ACMERng Thd and (2) OD O-ring Seals Part# 2143700-76
- ST2 1 Assy; Test Plug, Type "C" 13-5/8" Nom f/ Use In Cactus Head w/ WQ Seal 4-1/2" IF Box X 4-1/2" IF Pin Btm, w/ Weep Hole On Top Portion Of Test Plug Part# 2247044-01-01
- ST3 1 Weldment and Assy; Wear Bushing Running & Retrieving Tool IC-2,13-5/8" Nom x 4-1/2" IF Box Btm x Top Part# 2301310-02
- ST4 1 Assy; Wear Bushing, f/ 13-5/8"Nom 10K Type 'Mn-Ds' Housing, Installed w/ (4) O-Rings & (4) Welded Stop Lugs Min Bore: 12.615 Part# 2367788-02
- ST5 1 Assy; Running Tool, 13-5/8" Nom, w/ 8-5/8 BC Box Thd Top x 10.000-4TPI LH Stub Acme Running Thd Btm, C/ W Single O-Ring and (3) Centralizing Ribs, Min Bore: 8.00 Part# 2161757-98-01
- ST6 1 Assy; Jetting Tool, 13-5/8" Nom Compact Housing, Type 'SSMC' Part# 2125914-01

#### SERVICE TOOLS

- Item Qty Description ST7 1 Running Tool, 'MN-DS' Type f/ 13-5/8" Nom Packoff Support Bushing w/ 4-1/2" API IF Thd Top x 4-1/2" API IF Thd Top x 4-1/2" API IF Thd Btm and 12.375" 4-TPI LH Stub Acme Thd, Safe Working Load: 275K Lbf Part# 2017712-10-01
- ST8 1 Assy; Test Plug, Type 'IC', 11" Nom 4-1/2" IF Box X Pin Btm, w/ Weep Hole On Top Portion Of Test Plug, w/(2)Dovetail Seal Grooves Part# 2247042-07-01
- ST9 1 Weldment and Assembly, Retrieving Tool, 11" In Nom x 4-1/2" IF Box Btm x Top, Min Bore: 4.19" Part# 2367902-01-01
- ST10 1 Assy; Wear Bushing, f/ 11" Nom Type 'MN-DS', Min Bore: 8.910" Part# 2125720-06
- ST11 1 Assy; Rotating Fluted Mandrel Hanger Running Tool, TSDS-S; 11 Nom X 7.500-4TPI Stub ACME Thd Btm X 5-1/2 23 Lb/Ft TSH Blue Box Thd Top, w/ 1/8-27 NPT Test Port Part# 2161757-83-01
- ST12 1 Running Tool; F/ 11 Nom SealAssemblyw/4-1/2API IF Thd Top X 2-7/8 API IF Thd Btm and 9.875-4 TPI LH Stub ACME Thd Part# 2017712-15-01
- ST13 1 Assy; Casing Head Running Tool; 14.750-4 TPI LH Internal Stub ACME Thd Btm X 11-3/4 API 8Rnd Short Thd Casing Box Thd Top; Min Bore: 11.359 Part# 2254468-04-01
- ST14 1 Assy; Low Pressure Adapter; 24.00 OD X22.740 ID Part# 2222008-06-01

#### EMERGENCY EQUIPMENT

Item Qty Description

- E1 1 Assy; MN-DS-IC-1 Casing Slip, 13-5/8 Nom X 8-5/8 Casing; w/ Holes F/ Antirotation Pins, (Control Height) Part# 2161741-09-01
- E2 1 Assy; Emergency Bushing Packoff Support, 'MN-DS', 13-5/8, w/ 13-5/8 Dovetail; 8-5/8 'T' Seals, w/ Internal and External Lockring Prep; 10K Service Part# 2161673-20-01
- E3 1 Assy; Casing Hanger, IC-2. 11" x 5-1/2", (f/ 10K Above and Below) Part# 2357372-01-01
- E4 1 Assy.'NX'BushingNom11" x5-1/2" OD Csg w/ Integral Bit Guide Part# 2161829-02-01

#### CAPPING FLANGE

Item Qty Description

- TA1 1 Assy; Capping Flg, 7-1/16" API 10K BX-156 Std'd Blind Top x 13-5/8" API 10K BX-159 Std'd Btm, w/ One 1-13/16" API 10K BX-151 Std'd Side Outlet, w/ 1-13/16" API Vr Thd, w/ 11"'NX' Btm Prep, Oal: 12" Part# 2392883-03-01
- TA2 1 Assy 'NX' Bushing Nom 11" w/ 7" OD Csg Part# 608783-17
- TA3 1 Gate Valve, Manual, Model FLS, 1-13/16 Bore, 10K Psi, 1-13/16 API FIg x FIg Part# 141510-41-91-01



13-5/8" 10K MN-DS System 20" x 11-3/4" x 8-5/8" x 5-1/2" Casing Program RP-003766 Rev 01 Page 11 DS-TenarisHydril TenarisXP BTC-5.500-20.000-P110

Page 1 of 2 Zia Hills 19 Federal Pad #1

# **Production Casing Specification Sheet**

For the latest performance data, always visit our website: www.tenaris.com

August 29 2016



**Connection**: TenarisXP® BTC Casing/Tubing: CAS Coupling Option: REGULAR

Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110 Min. Wall Thickness: 87.5 %

	······································			Standard Drift	······
Nominal OD	<b>5.500</b> in.	Nominal Weight	20.00 lbs/ft	Diameter	<b>4.653</b> in.
Nominal ID	4 779 in	Wall Thielesses	0.261	Special Drift	NI / A
Nominal 10	<b>4.770</b> III.	Wall Inickness	U.301 ID,	Diameter	N/A
Plain End Weight	<b>19.83</b> lbs/ft				
		PERFOR	MANCE		
Body Yield	<b>541</b> × 1000 lbc	Internal Viold	13620 oci	CMYE	110000 pc
Strength	<b>641</b> x 1000 lbs		12030 psi	SMIS	110000 ps
Collapse	<b>11100</b> psi				

			GEOMET	RY		-						
	Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.						
	Critical Section Area	<b>5.828</b> sq. in.	Threads per in.	5.00	Make-Up Loss	<b>4.204</b> in.						
3	PERFORMANCE											
	Tension Efficiency	100 %	Joint Yield Strength	<b>641</b> x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	<b>12630</b> psi						
	Structural Compression Efficiency	100 %	Structural Compression Strength	<b>641</b> x 1000 Ibs	Structural Bending ^(<u>2</u>)	<b>92</b> °/100 ft						
	External Pressure 11100 psi Capacity											
•		E	STIMATED MAKE-U	P TORQUES	1)							
	Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	<b>13770</b> ft-lbs						
			OPERATIONAL LIM	IT TORQUES								
	Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs	<u> </u>							

Туре	1	Depth	Depth	Csg	Wt	MIY	Coł	Tensile	Drill Fluid										,			
Surface Casing		MD 1170	1170	length ft 1170	4	7 30	70 151	0 73700	0 8.6					Uses TVD!!!								
Intermediate 1 Casing Intermediate 2 Casing	-	10410	10379	10410	3	2 78	60 . 342	100600	9.4													
Production 1 Casing Production 2 Casing		22311	12012	22311	2	9 126	30 1110	0 64100	012					t								
Burst Design (Sa Burst Design (Safety) SFb = P( / BHP	fety) F Factor, S	<b>actors – I</b> Fb	BL <u>M Crit</u>	teria					Collaps Colapse SFc = Pc	e Design ( Design (Safety / (MW x .052	Safety) F /) Factor: Si x Ls)	actors – BL ⁼c	M Criter	ia	Joint S SFI = F	Strength D trength Design	esign (Saf (Safety) Facto	ety) Factors or: SF1	- BLM	Criteria		
Where •	h is the r	ated pipe Bu	rst (Minimu	im Internal Yi	eld) Pros	sure in pour	ds per squar	a inch (psi)	Whore	• Po	c is the rate	l pipe Collapse	Pressure in	pounds per square	Whore (psi)	• •	] is the rated	pipa Joint Stren	gth in pou	nds (lbs)		
The Minimum Accepte	SHP is bo ble Burs	nttom hole pr I Design (Sal	essure in p fety) Factor	ounds per sq r SFb = 1,0	uare incl	n (psi)				• M) • Ls	W is mud w i is the <del>l</del> engi	eight in pounds In of the string in	s per gallon n feet (ft)	(gqq)	The Mi	• V nimum Accepta	Vt is the weig ble Joint Stre	ht of the casing righ Design (S	string in po afety) Facto	ounds(lbs) or SFT≂1.6 dry	or 1,8 buoyar	nt
Surface Casing									The Mirun	num Acceptab	e Collapse	Design (Safety	) Factor SF	c = 1.125	Surface Ca	sing						
SFt	<b>)</b> =	3070	1	523	=	5.87			Surface Casi	ng 1510	,	500		2.80	SFiDry =	737000	· / , ,	54990	=	13.4	\'-	15.4
Intermediate 1 Casing					٤				art-	1510	'	525		2.09	SFI BOUYANL -	131000	, (	34330	Ŷ.	0.863	). <del>-</del>	13.4
SFt	) =	7860	/	5073	=	1.55			Intermediate SFc =	1 Casing 3420	7	5073	=	0.67	Intermediat SFi Dry =	1006000	1	333120	=	3.02	, 	2 52
SFI	) =	0	1	0	<i>= '</i>	#DIV/01			Intermediate	2 Casing					SFI Bouyant =	1008000	/ (	333120	x	0.650	) =	3.53
Production 1 Casing	_	10000	,	7405	~	4.60			SFc =	0	1	0	=	#DIV/01	Intermediat SFi Dry =	te 2 Casing 0	1,,	0	=	#DIV/0!	·	4DB ((0)
, Sri	), <i>-</i>	12030	'	/490	= .	1.63			SFc =	11100	1	7495	=	1.48	SPI Bouyant =	U	/ (	Ū	x	1.000	) =	HDIA/0
Production 2 Casing SFt	) =	. 0	1	0	-	#DIV/0!			Production 2	Casing	,	•			Production SFiDry =	1 Casing 641000	1.,	348348	÷	1.84	\ -	
									SFC=	. 0	· ·	U	-	#017/01	SFI Bouyant 4	64 1000	/ (	346340	x	0.017	, <b>)</b> –	2.23
:														I	Production SFi Dry = SFi Bouyant =	2 Casing 0 0	1. 7 (	0 0	= x .	#DIV/0! 1.000	) =	#DIV/01
. •																						· ·
														,							`	
•														i i	•						• •	
									· · ·												· •	
· *							•								÷.,					÷		
																	· .					· .
					. •				1	**					· · ·							,
									•													
														1								
														x								
																					*	
																				×		

.

туре	Dépth	Depth	Csg	WYt	MIY	Col	lénsile	Drai Fiuld
	MD	TVD	length ft					
Surface Casing	1170	1170	1170	47	3070	1510	737000	8.6
Intermediate 1 Casing	10410	10379	10410	32	7860	3420	1006000	9.4
Intermediate 2 Casing	0	0	0					
Production 1 Casing	22311	12012	22311	29	12630	11100	641000	12
Production 2 Casing								

#### Burst Design (Safety) Factors - BLM Criteria

Burst Design (Safety) Factor: SFb SFb = Pi/BHP

Where ·

Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (psi)

BHP is bottom hole pressure in pounds per square inch (psi)

The Minimum Acceptable Burst Design (Safety) Factor SFb = 1.0

Surface Casing	SFb =	3070	,	523	=	5.87
Intermodiate 1 Ca	sing SFb =	7860	1	5073	.=	1.55
Intermediate 2 Ca	sing SFb =	0	1.	Ó	=	#DIV/01
Production 1 Cas	ing SFb =	12630	1	7495	=	1.69
Production 2 Cas	ing SFb=	0	,	Ō	=	#DIV/0!

Collapse Design (Safety) Factors - BLM Criteria Collapse Design (Safety) Factor; SFc

1

1

#### SFc = Pc / (MW x .052 x i.s)

1510

3420

0 1

0 1

Where

Surface Casing

SFc =

SFc =

SFc =

SFc =

Intermediate 1 Casing

Intermediate 2 Casing

Production 1 Casing SFc = 11100

Production 2 Casing

Po is the rated pipe Collapse Pressure in pounds per square inch (psi)

523

5073

0

7495

n

MW is mud weight in pounds per gallen (ppg)

Uses TVD!!!!

2.89

#DIV/0!

1,48

#DIV/01

-

z 0.67

=

Ls is the longth of the string in feet (ft)

The Minimum Acceptable Collapse Design (Safety) Factor SFc = 1,125

Joint Strength Design (Safety) Factors - BLM Criteria Joint Strength Design (Safety) Factor: SFt SFt = Fj / Wt,

Where

 Fj is the rated pipe Joint Strength in pounds (lbs) • Wr is the weight of the casing string in pounds (lbs)

The Minimum Acceptable Joint Strength Design (Safety) Factor SFT ~ 1.6 dry or 1.8 buoyant

Surface Casing SFIDry = 737000 1 54990 13.4 = SFi Bouyant = 737000 / ( 54990 0.869 ) = 15.4 х Intermediate 1 Casing 333120 3.02 SFi Dry = 1006000 1 = SFi Bouyant = 1006000 / ( 333120 х 0.856 ) = 3,53

Intermediat	e 2 Casing						
SFiDry =	0	. /	0	=	#DIV/01		
SFi Bouyant =	0	1	0	×	1.000	) =	#DIV/0
Production	1 Casing						
SFí Dry =	641000	1	348348	=	1.84		
SFi Bouyant =	641000	/ (	348348	×	0.817	) =	2.25
Production	2 Casing						
SEi Dry =	ō	1	0	-	#DIV/01		

) =

#DIV/01

#### SFi Bouyant = 0 1.000 ×

$\frac{MO}{SFP} = \frac{10410}{10279} \frac{11070}{10410} \frac{1170}{10277} \frac{1170}{10410} \frac{1170}{1027} \frac{1170}{1021} \frac{1170}{1$	Туре	Depth	Depth	Csg	Wt	MIY	Col	Tensile	Drill Fluid												•	
Surface Casing thermediate 1 Casing $1701 1700 1700 1770 47 3070 1510 737000 8.6 11000000 120 100000 120 1000000 120 1000000 120 1000000 120 1000000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 10000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 100000 120 1$		MD	TVD	lenath ft										Uses TVD!!!	!!							
10410   10279   10410   227   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   22   1201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   2	Surface Casing	1170	1170	1170	47	307	0 1510	737000	8.6									· .				
$\frac{1}{12311} \frac{1}{12312} \frac{1}{23311} \frac{1}{2312} \frac{1}{23311} \frac{1}{23312} \frac{1}{$	Intermediate 1 Casing	10410	10379	10410	32	786	0 3420	1006000	9.4													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Intermediate 2 Casing	. 0	0	0	)																	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Production 1 Casing	22311	12012	22311	29	1263	0 11100	641000	12													
Site of Sit	Production 2 Casing																					
Burst Design (Safety) Factors SFb         Joint Strongth Design (Safety) Factors SFb         Joint Strongth Design (Safety) Factors SFb           Burst Design (Safety) Factors SFb         Joint Strongth Design (Safety) Factors SFb         Joint Strongth Design (Safety) Factors SFb           SFb = P/ (MP         Where         Joint Strongth Design (Safety) Factors SFb         Joint Strongth Design (Safety) Factors SFb           Note the probability Colspan="2">Joint Strongth Design (Safety) Factor SFb         Joint Strongth Design (Safety) Factor SFb           Joint Strongth Design (Safety) Factor SFb         Joint Strongth Design (Safety) Factor SFb           Marker Lessing Safety) Factor SFb           Strongth Design (Safety) Factor SFb         Joint Strongth Design (Safety) Factor SFb           Strongth Design (Safety) Factor SFb         Joint Strongth Design (Safety) Factor SFC           Strongth Design (Safety) Factor SFb         Joint Strongth Design (Safety) Factor SFC         Joint Strongth Design (Safety) Factor SFC           Strongth Design (Safety) Factor SFC         Joint Strongth Design (Safety) Factor SFC         Joint Strongth Design (Safety) Factor SFC           Strongth Design (Safety) Factor SFC         Joint Strongth Design (Safety) Factor SFC																						
	Burst Design (Safe	ty) Factors –	BLM Cr	iteria					Colla	pse Design	(Safety)	Factors - BLI	M Criter	a	Joint St	rength Dos	sign (Safe	ty) Factor	s – BLM	Criteria		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Burst Design (Safety) Fac	tor: SFb							Collaps	e Design (Safet	v) Factor: S	Fc			Joint Stren	igth Design (S	Safety) Facto	r: SFt				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SFb = Pi/BHP								SFc = 1	Pc/(MW x.052	×Ls)				SFt = Fj / \	Nt;						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Where								Where						Whore							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• Piis	the rated pipe Bu	urst (Minim	um Internal Yi	eld) Press	ure in pounds	s per square	inch (psi)		• P	c is the rate	d pipe Collapse P	ressure in	pounds per square	re inch (psl)	• F] I	is the rated p	ipe Joint Stre	ngth in poui	nds (lbs)		
The Mannum Acceptable Buris Design (Salety) Factor SFb = 1.0 The Mannum Acceptable Duris Design (Salety) Factor SFb = 1.0 Surface Casing SFb = $3070$ / $523$ = $5.87$ Surface Casing SFb = $7860$ / $5073$ = $1.55$ Intermediate 1 Casing SFb = $7860$ / $5073$ = $1.55$ Intermediate 1 Casing SFb = $7860$ / $0$ = $\#DIV/0!$ Intermediate 2 Casing SFb = $12630$ / $7495$ = $1.69$ Production 1 Casing SFb = $12630$ / $7495$ = $1.69$ Production 2 Casing SFb = $0$ / $0$ = $\#DIV/0!$ Production 2 Casing SFb = $0$ / $0$ = $\#DIV/0!$ Production 2 Casing SFb = $0$ / $0$ = $\#DIV/0!$ Production 2 Casing SFb = $0$ / $0$ = $\#DIV/0!$ The Mannum Acceptable Justing is feet (f). The Mannum Acceptable Justing SFb = 1.263 SFi Dary = $737000$ / $54990$ = $13.4$ SFi Dary = $737000$ / $(54990)$ x $0.869$ ) = $15.4$ SFi Dary = $737000$ / $(54990)$ x $0.866$ ) = $3.53$ SFi Dary = $1006000$ / $(333120$ = $3.02$ SFi Dary = $1006000$ / $(333120$ = $3.02$ SFi Dary = $1006000$ / $(333120$ x $0.866$ ) = $3.53$ SFi Dary = $1006000$ / $(333120$ x $0.866$ ) = $3.53$ SFi Dary = $1006000$ / $(333120$ x $0.866$ ) = $3.53$ SFi Dary = $0$ / $0$ = $\#DIV/0!$ Production 1 Casing SFi Dary = $0$ / $0$ = $\#DIV/0!$ SFi Dary = $0$ / $0$ / $0$ = $\#DIV/0!$ SFi Dary = $0$ / $0$	• BHF	° is bottom holo p	rossura in	pounds per so	quaro inch	(psi)				• M	IW is mud v	weight in pounds p	por gallon	PPy)		<ul> <li>Wt</li> </ul>	t is the weigh	it of the casing	string in po	ounds (lbs)		
$Srface Casing \\ SFb = 3070 / 523 = 5.87 \\ SFb = 3070 / 523 = 5.87 \\ SFc = 1510 / 523 = 2.89 \\ SFc = 1510 / 523 = 2.89 \\ SFc = 0 / 5073 = 1.55 \\ Intermediate 1 Casing \\ SFc = 3420 / 5073 = 0.67 \\ SFc = 0 / 5073 = 0.67 \\ SFc = 0 / 0 = #DIV/0! \\ Intermediate 2 Casing \\ SFb = 12630 / 7495 = 1.69 \\ SFc = 0 / 0 = #DIV/0! \\ SFc = 0 / 0 = #DIV/0!$	The Minimum Acceptable	Burst Design (Sa	ofety) Facto	orSFb ≈ 1,0						• L:	s is the leng	th of the string in	feet (ft)		The Minm	um Acceptabl	le Join Stren	ngth Design (S	afety) Facto	or SFT = 1,6 dry o	r 1,8 buoya	nt
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									The Ma	nimum Acceptat	ble Collapse	Design (Safety)	Factor SF	= 1.125								
$ SFb = 3070 \ / 523 = 5.87 \qquad Surface Casing \\ SFc = 1510 \ / 523 = 2.89 \qquad SFi \ Dry = 73700 \ / 5490 = 13.4 \\ SFc = 1510 \ / 523 = 2.89 \qquad SFi \ Bouyant = 73700 \ / (5490 = 13.4 \\ SFb = 73700 \ / (5490 = 13.4 \\ SFc = 1510 \ / 523 = 2.89 \qquad SFi \ Bouyant = 73700 \ / (5490 = 13.4 \\ SFi \ Bouyant = 73700 \ / (5490 = 13.4 \\ SFb = 73700 \ / (5490 = 10.67 \\ SFb = 100600 \ / (333120 = 3.02 \\ SFi \ Bouyant = 1006000 \ / (333120 = 3.02 \\ SFi \ Bouyant = 1006000 \ / (333120 = 3.02 \\ SFi \ Bouyant = 1006000 \ / (333120 = 3.02 \\ SFi \ Bouyant = 1006000 \ / (333120 = 3.02 \\ SFi \ Bouyant = 1006000 \ / (333120 = 3.02 \\ SFi \ Bouyant = 1006000 \ / (333120 = 3.02 \\ SFi \ Bouyant = 1006000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0 = 4000 \ / (0$	Surface Casing														Surface Casir	ng 🛛						
$SF_{0} = 1510 / 523 = 2.89 \qquad SFi Bouyant = 737000 / (54990 \times 0.869) = 15.4$ Intermediate 1 Casing $SF_{0} = 7860 / 5073 = 1.55 \qquad Intermediate 1 Casing SF_{0} = 3.02 \qquad SFi Bouyant = 1006000 / 333120 = 3.02 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 1006000 / (333120 \times 0.856)) = 3.53 \qquad SFi Bouyant = 0 / (0 \times 1.000)) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000)) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 641000 / (348348 \times 0.817) = 2.25 \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi Bouyant = 0 / (0 \times 1.000) = #DIV/0! \qquad SFi $	SFb =	3070	1	523	= `	5.87			Surface Ca	sing					SFiDny≃	737000	1	54990	• =	13.4		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									SFc =	1510	1	523	=	2,89	SFi Bouyant =	737000	1.(	54990	x	0.869	) =	15.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Intermediate 1 Casing																					
$SF_{C} = 3420 / 5073 = 0.67 \qquad SF_{IDV} = 1006000 / 333120 = 3.02 \\ SF_{IDV} = 1006000 / (333120 \times 0.856) = 3.53 \\ SF_{IDV} = 0 / 0 = \#DIV/0! \qquad intermediate 2 Casing \\ SF_{C} = 0 / 0 = \#DIV/0! \qquad SF_{IDV} = 1006000 / (333120 \times 0.856) = 3.53 \\ SF_{IDV} = 1006000 / (333120 \times 0.856) = 3.53 \\ SF_{IDV} = 0 / 0 = \#DIV/0! \qquad SF_{IDV} = 1006000 / (333120 \times 0.856) = 3.53 \\ SF_{IDV} = 0 / 0 = \#DIV/0! \qquad SF_{IDV} = 1006000 / (333120 \times 0.856) = 3.53 \\ SF_{IDV} = 0 / 0 = \#DIV/0! \qquad SF_{IDV} = 1006000 / (333120 \times 0.856) = 3.53 \\ SF_{IDV} = 0 / 0 = \#DIV/0! \qquad SF_{IDV} = 1006000 / (333120 \times 0.856) = 3.53 \\ SF_{IDV} = 0 / 0 = \#DIV/0! \qquad SF_{IDV} = 100600 / (333120 \times 0.856) = 3.53 \\ SF_{IDV} = 0 / (0 \times 1000) = \#DIV/0! \\ SF_{IDV} = 0 / (0 \times 1000) = \#DIV/0! \\ SF_{IDV} = 0 / (0 \times 1000) / (348348 \times 0.817) = 2.25 \\ Production 2 Casing \\ SF_{IDV} = 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 / 0 / 0 = \#DIV/0! \\ SF_{IDV} = 0 / 0 / 0 / 0 / 0 / 0 = \#DIV/0! \\ SF_{ID$	SFb =	7860	1	5073	=	1.55			Intermedia	te 1 Casing					Intermediate '	I Casing						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									SFc =	3420	1	5073	=	0.67	SFiDry= 1	006000	1	333120	=	3.02		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Intermediate 2 Casing						•								SFi Bouyant = 1	006000	-1 (	333120	x	0,856	) =	3,53
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SFb =	0	1	0	=	#DIV/0!			Intermediat	le 2 Casing												
SFi Dry = 0 / 0 = #DIV/0!         SFi Dry = 0 / 0 = #DIV/0!         SFi Dry = 0 / 0 = #DIV/0!         SFi Dry = 1.69       Production 1 Casing         SFb = 12630 / 7495 = 1.69       Production 1 Casing       SFi Bouyant = 0 / (0 x 1.000) = #DIV/0!         Production 2 Casing         SFb = 0 / 0 = #DIV/0!       Production 2 Casing       SFi Dry = 641000 / 348348 = 1.84         SFb = 0 / 0 = #DIV/0!       SFi Bouyant = 641000 / (348348 x 0.817) = 2.25         Production 2 Casing       SFi Dry = 641000 / (348348 x 0.817) = 2.25         SFi Dry = 0 / 0 = #DIV/0!       SFi Bouyant = 0 / (0 x 1.000) = #DIV/0!       SFi Dry = 0 / 0 = #DIV/0!	· · · · · · · · · · · · · · · · · · ·								SFc =	0	1	0	=	#DIV/0!	Intermediate 2	2 Casing						
SFb =       12630       7495       =       1.69       Production 1 Casing SFc =       SFi Bouyant =       0       (       0       ×       1.000       ) =       #DIV/0!         Production 2 Casing SFb =       0       0       =       #DIV/0!       Production 2 Casing SFc =       0       7495       =       1.48       Production 1 Casing SFi Dry =       641000       /       348348       =       1.84         SFb =       0       0       =       #DIV/0!       SFi Bouyant =       641000       /       348348       ×       0.817       ) =       2.25         Production 2 Casing SFi Dry =       0       /       0       =       #DIV/0!       SFi Bouyant =       0       /       0       =       #DIV/0!         SFi Bouyant =       0       /       0       =       #DIV/0!       SFi Bouyant =       0       /       0       =       #DIV/0!         SFi Bouyant =       0       /       0       =       #DIV/0!       SFi Bouyant =       0       /       0       =       #DIV/0!       SFi Bouyant =       0       /       0       =       #DIV/0!       SFi Bouyant =       0       /       0       =       #DIV/0!       SFi Bouya	Production 1 Casing														SFiDry =	0	1	0	=	#DIV/01		
SFc = 11100 / 7495 = 1.48         SFb = 0 / 0 = #DIV/0!       Production 2 Casing         SFb = 0 / 0 = #DIV/0!       Production 2 Casing         SFc = 0 / 0 = #DIV/0!       SFi Bouyant = 641000 / (348348 x 0.817 ) = 2.25         Production 2 Casing       SFi Dry = 0 / 0 = #DIV/0!         SFi Dry = 0 / 0 = #DIV/0!       SFi Dry = 0 / 0 = #DIV/0!         SFi Dry = 0 / 0 = #DIV/0!       SFi Dry = 0 / 0 = #DIV/0!	SFb =	12630	1	7495	=	1.69			Production	1 Casing					SFi Bouyant =	0	/ (	0	x	1.000	} =	#DIV/01
Production 2 Casing         Production 2 Casing         Production 2 Casing         SFi Dry = 641000         / 348348         = 1.84           SFb =         0         0         = #DIV/0!         SFi Dry = 641000         / 348348         = 1.84           SFc =         0         0         = #DIV/0!         SFi Bouyant = 641000         / (348348         x         0.817         > = 2.25           Production 2 Casing           SFic =         0         0         = #DIV/0!           SFic Dry =         0         0         = #DIV/0!           SFic Dry =         0         / (0         x         1.000         ) = #DIV/0!									SFc =	11100	1	7495	¥	1.48				`				
SFb =       0       0       =       Div/0!       Production 2 Casing SFc =       0       0       =       641000       /       348348       =       1.84         SFc =       0       0       =       #Div/0!       SFi Bouyant =       641000       /       348348       x       0.817       ) =       2.25         Production 2 Casing SFi Dry =       0       /       0       /       0       #Div/0!         SFi Bouyant =       0       /       0       =       #Div/0!       SFi Bouyant =       0       /       0       =       #Div/0!	Production 2 Casing														Production 1	Casing						
SFc= 0 / 0 = #DIV/01 SFiBouyant= 641000 / (348348 x 0.817 ) = 2.25 Production 2 Casing SFi Dry = 0 / 0 = #DIV/01 SFi Bouyant = 0 / (0 x 1.000 ) = #DIV/01	SFb =	0	1	0	=	#DIV/01			Production	2 Casing					SFi Dry =	641000	1	348348	=	1.84		
Production 2 Casing SFi Dry = 0 / 0 = #DIV/0} SFi Bouvant = 0 / ( 0 × 1.000 ) = #DIV/0!	-								SFc =	0	1	0	=	#DIV/01	SFi Bouyant =	641000	1 (	348348	×	0.817	} =	2.25
Production 2 Casing SFi Dry = 0 / 0 = #DIV/0! SFi Bouvant = 0 / ( 0 × 1.000 ) = #DIV/0!																						
SFiDry = 0 / 0 = #DIV/0} SFiBouvant = 0 / ( 0 × 1.000 ) = #DIV/0															Production 2	Casing					•	
SFiBouvant = 0 / ( 0 x 1.000 ) = #DIV/0!															SFi Dry =	ō	1	0	=	#DIV/01		
															SFi Bouyant =	0	1 (	0	×	1.000	) =	#D(V/0!



#### ZIA HILLS 19 FEDERAL PAD #1

# SPECIFICATIONS

FLOOR: 3/16" PL one piece CROSS MEMBER: 3 x 4.1 channel 16" on center

WALLS: 3/16" PL solid welded with tubing top, insi de liner hooks

DOOR: 3/16" PL with tubing frame FRONT: 3/16" PL slant formed PICK U P: Standard cable with 2" x 6" x 1/4" rails, gu sset at each crossmember WHEELS: 10 DIA x 9 long with rease fittings DOOR LATCH: 3 Independent ratchet binders with chains, vertical second latch GASKE TS: Extruded rubber seal with metal retainer s

WELDS: All welds continuous except substructur e crossmembers

FINISH: Coated inside and out with direct to metal, rust inhibiting acrylic enamel color coat HYDROTESTING: Full capacity static test DIMEN SIONS: 22°-11' long (21'-8" inside), 99" wide (88" inside), see drawing for height OPTIONS: Steel grit blast and special paint, Ampliroll, Heil and Dino pickup ROOF: 3/16" PL roof panels with tubing and

channel support frame

LIDS: (2) 68" x 90" metal rolling lids spring loaded. self raising

ROLLERS: 4" V-groove rollers with delrin bearings and grease fittings OPENING: (2) 60" x 82" openings

with 8" divider centered on container

LATCH :(2) independent ratchet binders with chains per lid

GASKETS: Extruded rubber seal with metal retainers

# Heavy Duty Split Metal Rolling Lid



CONT.	A	B
20 YD	41	53
25 YD	53	65
30 YD	65	77



31

CONTITECH RUBBER	No: QC-DB-	45/2012
Industrial Kft.	Page:	9/50

# Continental & CONTITECH

#### Hose Data Sheet

CRI Order No.	516273
Customer	ContiTech Beattie Co.
Customer Order No	PO5438 STOCK
Item No.	3
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4 1/16" API SPEC 6A TYPE 6BX FOR 10000 PSIBX155 RING GROOVE
Type of coupling other end	FLANGE 4 1/16" API SPEC 6A TYPE 6BX FOR 10000 PSI BX155 RING GROOVE
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psł
Test Pressure	15 000 psi
Safely Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL RESISTANT
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design.temperature [°C]	100
Min.cesign temperature [°C)	-20
MBR operating [m]	1,60
MBR storage [m]	1,40
Type of packing	WOODEN CRATE ISPM-15

Quinenial 4 CONTITECH

/

0C-UR-	45/2012
Page:	7/50

Fluid Technology

Quality Document

	LITY CONT	ROL CERTIFIC	ATE		CERT. N	l*:	184				
PURCHASER:	ContiTech B	eattie Co.			P.Q. Nº:		00543	8			
CONTITECH ORDER Nº:	516273	HOSE TYPE:	3"	ID		Choke	and Kill H	ose			
HOSE SERIAL Nº:	61477	NOMINAL / AC	TUAL LEN	GTH:		10,6	7 m / 10,7	71 m			
W.P. 68,9 MPa	10000 ры	T.P. 103,4	MPa	15000 psi Duration			: 60	min			
See attachment. (1 page) î 10 mm ≈ 10 Min											
-→ 10 mm = 20	MPa										
COUPLINGS Type		Senal Nº			Quality	_	н	oal Nº			
3" coupling with	1017	78 10173		A	ISI 4130		20231				
4 1/16" 10K API Flange	e end			A	ISI 4130		3	33051			
NOT DESIG	GNED FOR W	ELL TESTI	1G				APISp	ec 16 C			
						Te	nperatu	re rate:"B"			
All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMATY: We hereby certify that the stown item/sequipment septied by us are in curlemity with the terms, conditions and severifications of the blove Purchaser Order and that these item/sequipment were labricated inspected											
		COUNTRY OF OR	IIGIN HUN	GARY/E	EU						
Date: 30. January 2012.	Inspector		Quality	Contr	h L	ContiTec Industr Juality Co	h Rubber ici Kfr. atrol Dept.	G			
Conflor-Factor Jatana Ar Floor (2000)200 200 Be-Gan HOrago (Cong & Brend) Internet at 05, Stepp: 10.006 Ear (39, 40, 406 704 Gapta) Cong San (40, 40, 40, 40, 40, 40, 40, 40, 40, 40,											



# **System Drawing**



13-5/8" 10K MN-DS System 20" x 11-3/4" x 8-5/8" x 5-1/2" Casing Program

AMERON

A Schlumberger Company

RP-003766 Rev 01 Page 9

## **Bill of Materials**

**NOTE:** Contact your Cameron representative for replacement part inquiries. Cameron personnel can check the latest revision of the assembly bill-of-material to obtain the appropriate and current replacement part number.

#### **MN-DS HOUSING**

**RP-003766** 

**Rev 01** 

Page 10

#### MN-DS HOUSING

ltem	Qty	Description	ltem	Qty	Description		ltem	Qty	Description
A1	<ul> <li>Conversion; Casing Head Housing, Type 'Mn-Ds', 10K, 13-5/8 Nom 10K Oec BX-159w/20.500-4TPILH Stub Acme Top f/ Internal Snap Ring x 13-3/8 SOW Btm w/ Four Grout Ports, w/ (2) Upper 1-13/16 API 10K BX-151 Outlets w/1- 1/4 API Vr Thds Part# 2031060-48-02</li> </ul>		Α7	1	Assy; Seal Packoff f/ 11 Nom Type 'Mn-Ds', w/ 9.875-4TPI LH Stub Acme Thd w/ 7.75 Dbl 'T' Seals At ID and Dovetails At OD Part# 2217588-05-03		A20 A21	1	VR Plug 1-1/4 LP Thd, 1-13/16 2K - 10K Part# 2222164-01-01 Gate Valve, Manual, Model FLS, 1-13/16 Bore, 10K Psi 1-13/16 API Elo x Elo
			A8	1	Gate Valve, Manual, Model M Pow-R-Seal, 2-1/16 Bore, 5K Psi Psi, 2-1/16 API Flg x Flg Part# 2148451-31-22		A22	2	Part# 141510-41-91-01 Companion Flange, 1-13/16 API 10K w/ 2" API Line Pipe, 5000 Psi WP Part# 142359-01-03-02
A2	1	Body, Bushing Reduc- er,13-3/8 SOW x 11-3/4 SOW	A9	2	Companion Flange, 2-1/16 API 5K x 2" API LP Thd Part# 142362-01-03-02		A23	1	Ring Gasket, BX-159 Part# 702003-15-92
A 2	1	Part# 2310058-03-01	A10	4	Bull Plug 2" LP w/1/2 NPT x 3.750" Lg				
AJ	1	Casing (.375 C.S. Casing) To Accept Low Pressure Adapter Part# 2329761-07-01	A11	2	Part# 007481-01 Bleeder Fitting, Plug 1/2 NPT 4140 Nace Part# 2738068-02				
A4	1	Casing Hanger, Mandrel, Type 'Mn-Ds', 13-5/8 Nom x 8-5/8 API BC Box Thd	A12	2	Needle Valve, 1/2 NPT 10000 Psi Part# 006818-23				
		Btm x 10.000-4TPI L.H Stub Acme Running Thd, Min Bore: 8.000, 10,000	A13	1	Pressure GaugE 0-5M Liquid Filled Part# Y52100-00300791				
I		Psi Max Working Pressure, 700,000 Lbs Max Hanging	A14	3	Ring Gasket, R-24 Part# 702001-24-02				
		Part# 2345509-17	A15	8	Stud w/(2) Nuts 7/8" x 6" Lg				
A5	1	Assy; Packoff Support Bushing, Type MN-DS', 13-5/810K, w/13-5/8 Nom Dovetail Seal, and 9-5/8 Nom 'T' Seal and w/ Inter- nal and External Lock Ring	A16	1	Part# Y51201-20220301 VR Plug 1-1/2 In 11-1/2 TPI -3/4 TPF 'Vee' Tubing Thd, 2-1/16 2K - 10K Part# 2222164-02-01				
		Prep, Min. Bore 8.835 Part# 2161673-01-01	A17	3	Ring Gasket, BX-151 Part# 702003-15-12				
A6	1	Rotating Mandrel Hanger, Type 'MN-DS'; 11 Nom, 5-1/2 20 Lb/Ft Tenaris XP	Á18	8	Stud w/(2) Nuts, 3/4"-10 x 5-1/4" Lg Part# Y51201-20120201		-		
		Buttress Box Thd Btm X 7.500- 4 TPI Stub ACME Running Thd w/ 5.010 OD type 'H' BPV Thd w/ 7 Nom Slick Neck Top, w/ FLow-by Slots; Min Bore: 4.754 Part# 2345649-49-01	A19	1	Pressure Gauge 0-10M Liquid Filled Part# Y52100-00301391				

13-5/8" 10K MN-DS System 20" x 11-3/4" x 8-5/8" x 5-1/2" Casing Program



**MN-DS HOUSING** 

Zia Hills 19 Federal COM 104H

# **Attachment #2 - Wellbore Schematic**



ConocoPhillips