ITED STATES TMENT OF THE INTERIOR FORM APPROVED OMB No. 1004-0137 Expires October 31, 2014

5. Lease Serial No.

| BOREAU OF LAND MA                                                                                                                                  |                    | NMNM019452                                     |                      |                                           |               |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------|----------------------|-------------------------------------------|---------------|------------------------|
| APPLE TION FOR PERMIT TO                                                                                                                           |                    |                                                |                      | 6. If Indian, Allotee                     | or Tribe l    | Name                   |
| la. Type of work:  DRILL  REEN                                                                                                                     | ΓER                |                                                |                      | 7 If Unit or CA Agr                       | eement, Na    | me and No.             |
| lb. Type of Well: Oil Well Gas Well Other                                                                                                          |                    | Single Zone  Multip                            | ole Zone             | 8. Lease Name and<br>STONEWALL 28 F       |               | ( <b>3214</b><br>1709H |
| 2. Name of Operator EOG RESOURCES INCORPORATED                                                                                                     | (7                 | 7377)                                          |                      | 9. API Well No.                           | -4            | 4,926                  |
| 3a. Address<br>1111 Bagby Sky Lobby2 Houston TX 77002                                                                                              |                    | Phone No. (include area code)<br>3)651-7000    |                      | 10. Field and Pool, or<br>RED HILLS / WC- |               | 1                      |
| 4. Location of Well (Report location clearly and in accordance with a                                                                              | iny State          | requirements.*)                                |                      | 11. Sec., T. R. M. or F                   | 31k. and Sur  | vey or Area            |
| At surface NWNE / 200 FNL / 2601 FEL / LAT 32.1952                                                                                                 |                    |                                                | 7000                 | SEC 28 / T24S / R                         | 34E / NN      | <b>1</b> P             |
| At proposed prod. zone SWSE / 230 FSL / 2310 FEL / LA                                                                                              | 1. 32.1            | 6/40/1 / LONG -103.4/3/                        | 7883                 | 12.0                                      |               | 10.00                  |
| 14. Distance in miles and direction from nearest town or post office* 17 miles                                                                     | •                  |                                                |                      | 12. County or Parish<br>LEA               |               | 13 State<br>NM         |
| 15. Distance from proposed* location to nearest 200 feet property or lease line, ft. (Also to nearest drig. unit line, if any)                     | 16.<br><b>28</b> 0 | No. of acres in lease                          | 17. Spacin<br>320    | g Unit dedicated to this                  | well          |                        |
| <ol> <li>Distance from proposed location*<br/>to nearest well, drilling, completed, 279 feet<br/>applied for, on this lease, ft.</li> </ol>        |                    | Proposed Depth<br>239 feet / 22314 feet        | 20. BLM/I<br>FED: NI | BIA Bond No. on file                      |               |                        |
| 21. Elevations (Show whether DF, KDB, RT, GL, etc.)                                                                                                | 22                 | Approximate date work will star                | rt*                  | 23. Estimated duration                    | n             |                        |
| 3497 feet                                                                                                                                          | 06                 | /01/2018                                       |                      | 25 days                                   |               |                        |
|                                                                                                                                                    | 24                 | . Attachments                                  |                      | <del></del>                               |               |                        |
| The following, completed in accordance with the requirements of Onsh                                                                               | ore Oil            | and Gas Order No.1, must be at                 | ttached to the       | is form:                                  | •             | * 1                    |
| Well plat certified by a registered surveyor.     A Drilling Plan.     A Surface Use Plan (if the location is on National Forest System Surveyor). | n Lands            | Item 20 above). 5. Operator certific           | ation                | ns unless covered by an                   |               |                        |
| SUPO must be filed with the appropriate Forest Service Office).                                                                                    |                    | BLM.                                           | specific into        | ormation and/or plans a                   | s may be re   | equired by the         |
| 25. Signature (Electronic Submission)                                                                                                              |                    | Name (Printed/Typed) Stan Wagner / Ph: (432)   | 686-3689             |                                           | Date 01/31/2  | 2018                   |
| Title Regulatory Specialsit                                                                                                                        |                    |                                                |                      |                                           |               |                        |
| Approved by (Signature) (Electronic Submission)                                                                                                    |                    | Name (Printed/Typed) Christopher Walls / Ph: ( | 575)234-2            | 234                                       | Date 05/07/2  | 2018                   |
| Title<br>Petroleum Engineer                                                                                                                        |                    | Office<br>CARLSBAD                             |                      |                                           |               |                        |
| Application approval does not warrant or certify that the applicant ho conduct operations thereon.  Conditions of approval, if any, are attached.  | lds lega           | l or equitable title to those righ             | ts in the sub        | ject lease which would                    | entitle the a | pplicant to            |

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Continued on page 2)

And Rec 06/27/18

\*(Instructions on page 2)

proval Date: 05/07/2018

### INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

### **NOTICES**

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

**Approval Date: 05/07/2018** 

### **Additional Operator Remarks**

### **Location of Well**

1. SHL: NWNE / 200 FNL / 2601 FEL / TWSP: 24S / RANGE: 34E / SECTION: 28 / LAT: 32.1952467 / LONG: -103.4747784 ( TVD: 0 feet, MD: 0 feet )

PPP: SWSE / 1220 FSL / 2309 FEL / TWSP: 24S / RANGE: 34E / SECTION: 28 / LAT: 32.1846 / LONG: -103.4738 ( TVD: 12239 feet, MD: 16041 feet )

PPP: NWNE / 330 FNL / 2307 FEL / TWSP: 24S / RANGE: 34E / SECTION: 28 / LAT: 32.1948885 / LONG: -103.4738287 ( TVD: 12195 feet, MD: 12311 feet )

BHL: SWSE / 230 FSL / 2310 FEL / TWSP: 24S / RANGE: 34E / SECTION: 33 / LAT: 32.1674071 / LONG: -103.4737883 ( TVD: 12239 feet, MD: 22314 feet )

### **BLM Point of Contact**

Name: Katrina Ponder

Title: Geologist Phone: 5752345969

Email: kponder@blm.gov

(Form 3160-3, page 3)

### **Review and Appeal Rights**

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)



APD ID: 10400026542

Well Type: OIL WELL

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT** 

# **Application Data Report**

Submission Date: 01/31/2018

**Operator Name: EOG RESOURCES INCORPORATED** 

Well Name: STONEWALL 28 FED COM

Well Work Type: Drill

Well Number: 709H



**Show Final Text** 

### Section 1 - General

APD ID:

10400026542

Tie to previous NOS?

Submission Date: 01/31/2018

**BLM Office: CARLSBAD** 

User: Stan Wagner

Title: Regulatory Specialsit

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM019452

Lease Acres: 280

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

**Permitting Agent? NO** 

**APD Operator: EOG RESOURCES INCORPORATED** 

Operator letter of designation:

### **Operator Info**

**Operator Organization Name: EOG RESOURCES INCORPORATED** 

Operator Address: 1111 Bagby Sky Lobby2

**Zip:** 77002

**Operator PO Box:** 

**Operator City: Houston** 

State: TX

**Operator Phone:** (713)651-7000

**Operator Internet Address:** 

### **Section 2 - Well Information**

Well in Master Development Plan? NO

Mater Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: STONEWALL 28 FED COM

Well Number: 709H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: RED HILLS

Pool Name: WC-025 S2433361

UPPER WOLFCAMP

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Well Name: STONEWALL 28 FED COM

Well Number: 709H

**Describe other minerals:** 

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO

New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name: STONEWALL 28 FED COM Number: 707H/708H/709H

Well Class: HORIZONTAL

Number of Legs: 1

Well Work Type: Drill

Well Type: OIL WELL

**Describe Well Type:** 

Well sub-Type: INFILL

Describe sub-type:

Distance to town: 17 Miles

Distance to nearest well: 279 FT

Distance to lease line: 200 FT

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat:

Stonewall 28\_FC\_709H\_signed\_C\_102\_20180131091345.pdf

Well work start Date: 06/01/2018

**Duration: 25 DAYS** 

### **Section 3 - Well Location Table**

Survey Type: RECTANGULAR

**Describe Survey Type:** 

Datum: NAD83

**Vertical Datum: NAVD88** 

Survey number:

|                  |         |              |          |              |      |       | ٠       |                   | •              |                      |        |                   |          |            |                |               |           |           |
|------------------|---------|--------------|----------|--------------|------|-------|---------|-------------------|----------------|----------------------|--------|-------------------|----------|------------|----------------|---------------|-----------|-----------|
|                  | NS-Foot | NS Indicator | EW-Foot  | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract | Latitude       | Longitude            | County | State             | Meridian | Lease Type | Lease Number   | Elevation     | MD        | QVT       |
| SHL<br>Leg<br>#1 | 200     | FNL          | 260<br>1 | FEL          | 248  | 34E   | 28      | Aliquot<br>NWNE   | 32.19524<br>67 | -<br>103.4747<br>784 | LEA    | NEW<br>MEXI<br>CO |          | F          | NMNM<br>019452 | 349<br>7      | 0         | 0         |
| KOP<br>Leg<br>#1 | 50      | FNL          | 232<br>4 | FEL          | 248  | 34E   | 28      | Aliquot<br>NWNE   | 32.19564<br>96 | -<br>103.4738<br>8   | LEA    | NEW<br>MEXI<br>CO |          | F          | NMNM<br>019452 | -<br>825<br>6 | 117<br>59 | 117<br>53 |
| PPP<br>Leg<br>#1 | 330     | FNL          | 230<br>7 | FEL          | 248  | 34E   | 28      | Aliquot<br>NWNE   | 32.19488<br>85 | -<br>103.4738<br>287 | LEA    | NEW<br>MEXI<br>CO |          | F          | NMNM<br>019452 | -<br>869<br>8 | 123<br>11 | 121<br>95 |



### U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

## Drilling Plan Data Report

APD ID: 10400026542

Submission Date: 01/31/2018

Well Type: OIL WELL

**Operator Name: EOG RESOURCES INCORPORATED** 

Well Name: STONEWALL 28 FED COM

Well Number: 709H

**Show Final Text** 

Well Work Type: Drill

### **Section 1 - Geologic Formations**

| Formation | 1::              |           | True Vertical | Measured |             |                   | Producing |
|-----------|------------------|-----------|---------------|----------|-------------|-------------------|-----------|
| ID :      | Formation Name   | Elevation | Depth         | Depth    | Lithologies | Mineral Resources | Formation |
| 1         | PERMIAN          | 3497      | 0             | 0        | ALLUVIUM    | NONE              | No        |
| 2         | RUSTLER          | 2376      | 1121          | 1121     | ANHYDRITE   | NONE              | No        |
| 3         | TOP OF SALT      | 2129      | 1368          | 1368     | SALT        | NONE              | No        |
| 4         | BASE OF SALT     | -1571     | 5068          | 5068     | SALT        | NONE              | No        |
| 5         | LAMAR            | -1839     | 5336          | 5336     | LIMESTONE   | NONE              | No        |
| 6         | BELL CANYON      | -1881     | 5378          | 5378     | SANDSTONE   | NATURAL GAS,OIL   | Yes       |
| 7         | CHERRY CANYON    | -2814     | 6311          | 6311     | SANDSTONE   | NATURAL GAS,OIL   | Yes       |
| 8         | BRUSHY CANYON    |           | 7804          | 7804     | SANDSTONE   | NATURAL GAS,OIL   | Yes       |
| 9         | BONE SPRING LIME | -5669     | 9166          | 9166     | LIMESTONE   | NONE              | No        |
| 10        | BONE SPRING 1ST  | -6679     | 10176         | 10176    | SANDSTONE   | NATURAL GAS,OIL   | Yes       |
| 11        | BONE SPRING 2ND  | -7159     | 10656         | 10656    | SANDSTONE   | NATURAL GAS,OIL   | Yes       |
| 12        | BONE SPRING 3RD  | -8196     | 11693         | 11693    | SANDSTONE   | NATURAL GAS,OIL   | No        |
| 13        | WOLFCAMP         | -8608     | 12105         | 12105    |             | NATURAL GAS,OIL   | Yes       |

### **Section 2 - Blowout Prevention**

Well Name: STONEWALL 28 FED COM Well Number: 709H

Pressure Rating (PSI): 10M

Rating Depth: 12239

**Equipment:** The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (10000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & preventer (2000-psi WP).

Requesting Variance? YES

Variance request: Variance is requested to use a 5000 psi annular BOP with the 10000 psi BOP stack. Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line). Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation. Centralizers will be placed in the 9-7/8" hole interval at least one every third joint. Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

**Testing Procedure:** Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 10000/250 psig and the annular preventer to 5000/250 psig. The surface casing will be tested to 1500 psi for 30 minutes. Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 10000/250 psig and the annular preventer to 5000/250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

### **Choke Diagram Attachment:**

Stonewall\_28\_Fed\_Com\_709H\_10\_M\_Choke\_Manifold\_20180131084509.pdf

Stonewall\_28\_Fed\_Com\_709H\_Co\_Flex\_Hose\_Certification\_20180131084510.PDF

Stonewall 28 Fed Com 709H Co Flex\_Hose Test Chart 20180131084510.pdf

### **BOP Diagram Attachment:**

Stonewall\_28\_Fed\_Com\_709H\_10\_M\_BOP\_Diagram\_20180131084532.pdf

Stonewall\_28\_Fed\_Com\_709H\_EOG\_BLM\_10M\_Annular\_Variance\_\_\_4\_String\_20180131084533.pdf

### Section 3 - Casing

| Casing ID | String Type      | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing<br>length MD | Grade .    | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF |
|-----------|------------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|--------------------------------|------------|--------|------------|-------------|----------|---------------|----------|--------------|---------|
| 1         | SURFACE          | 17.5      | 13.375   | NÉW       | API      | N              | 0          | 1150          | 0           | 1150           | 3497        | 2347           | 1150                           | J-55       | 54.5   | STC        | 1.12<br>5   | 1.25     | BUOY          | 1.6      | BUOY         | 1.6     |
| 2         | INTERMED<br>IATE | 12.2<br>5 | 9.625    | NEW       | API      | N              | 0          | 4000          | o           | 4000           | 3497        | -503           | 4000                           | J-55       | 40     | LTC        | 1.12<br>5   | 1.25     | BUOY          | 1.6      | BUOY         | 1.6     |
| 3         | INTERMED<br>IATE | 12.2<br>5 | 9.625    | NEW       | API      | N              | 4000       | 5100          | 4000        | 5100           | -503        | -1603          | 1100                           | HCK<br>-55 | 40     | LTC        | 1.12<br>5   | 1.25     | BUOY          | 1.6      | BUOY         | 1.6     |

Well Name: STONEWALL 28 FED COM

Well Number: 709H

| Casing ID | String Type      | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing length MD | Grade       | Weight | Joint Type                | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF |
|-----------|------------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|-----------------------------|-------------|--------|---------------------------|-------------|----------|---------------|----------|--------------|---------|
| 1         | PRODUCTI<br>ON   | 6.75      | 5.5      | NEW       | API      | N              | 0          | 10800         | 0           | 10800          | 3497        | -7303          | 10800                       | OTH<br>ER   |        | OTHER -<br>DWC/C-IS<br>MS | 1.12<br>5   | 1.25     | BUOY          | 1.6      | BUOY         | 1.6     |
| 5         | INTERMED<br>IATE | 8.75      | 7.625    | NEW       | API      | N              | 0          | 11300         | 0 .         | 11300          | 3497        | -7803          |                             | HCP<br>-110 |        |                           | 1.12<br>5   | 1.25     | BUOY          | 1.6      | BUOY         | 1.6     |
|           | PRODUCTI<br>ON   | 6.75      | 5.5      | NEW       | API      | N              | 10800      | 22315         | 10800       | 12239          | -7303       |                | 11515                       | OTH<br>ER   |        | OTHER -<br>VAM SFC        | 1.12<br>5   | 1.25     | BUOY          | 1.6      | BUOY         | 1.6     |

### **Casing Attachments**

| Casing | יתו | 1 |
|--------|-----|---|
| Casinu | w.  |   |

String Type: SURFACE

**Inspection Document:** 

**Spec Document:** 

**Tapered String Spec:** 

Casing Design Assumptions and Worksheet(s):

Stonewall\_28\_Fed\_Com\_709H\_BLM\_Plan\_20180131085423.pdf

Casing ID: 2

**String Type:**INTERMEDIATE

Inspection Document:

**Spec Document:** 

**Tapered String Spec:** 

Casing Design Assumptions and Worksheet(s):

See\_previously\_attached\_Drill\_Plan\_20180131085438.pdf

**Operator Name: EOG RESOURCES INCORPORATED** Well Name: STONEWALL 28 FED COM Well Number: 709H **Casing Attachments** String Type: INTERMEDIATE Casing ID: 3 **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): See previously\_attached\_Drill\_Plan\_20180131085453.pdf Casing ID: 4 String Type: PRODUCTION **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): See\_previously\_attached\_Drill\_Plan\_20180131085515.pdf Stonewall\_28\_Fed\_Com\_709H\_5.500in\_20.00\_VST\_P110EC\_DWC\_C\_IS\_MS\_20180131085515.pdf Casing ID: 5 String Type: INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Stonewall\_28\_Fed\_Com\_709H\_7.625in\_29.70\_P110HC\_FXL\_20180131085536.pdf

See\_previously\_attached\_Drill\_Plan\_20180131085535.pdf

Well Name: STONEWALL 28 FED COM

Well Number: 709H

### **Casing Attachments**

Casing ID: 6

String Type: PRODUCTION

**Inspection Document:** 

**Spec Document:** 

**Tapered String Spec:** 

### Casing Design Assumptions and Worksheet(s):

See\_previously\_attached\_Drill\_Plan\_20180131085551.pdf

Stonewall\_28\_Fed\_Com\_709H\_5.500in\_20.00\_VST\_P110EC\_VAM\_SFC\_20180131085551.pdf

| Section | 1 - | Cam | ant |
|---------|-----|-----|-----|
| SECTION | _   |     |     |

| String Type | Lead/Tail | Stage Tool<br>Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type | Additives |
|-------------|-----------|---------------------|--------|-----------|--------------|-------|---------|-------|---------|-------------|-----------|
| PRODUCTION  | Lead      |                     | 0      | 0         | 0            | 0     | 0       | 0     | 0       | 0           | 0         |

| INTERMEDIATE | Lead |   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|--------------|------|---|---|---|---|---|---|---|---|---|---|
|              |      | f |   |   |   |   |   |   |   |   | • |

| SURFACE      | Lead | 0    | 1150 | 600  | 1.73 | 13.5 | 1038 | 25 | Class C | Lead: Class C + 4.0%<br>Bentonite + 0.6% CD-<br>32 + 0.5% CaCl2 + 0.25<br>lb/sk Cello-Flake (TOC<br>@ Surface) |
|--------------|------|------|------|------|------|------|------|----|---------|----------------------------------------------------------------------------------------------------------------|
| SURFACE      | Tail | 1150 | 1150 | 200  | 1.34 | 14.8 | 268  | 25 | Class C | Tail: Class C + 0.6%<br>FL-62 + 0.25 lb/sk<br>Cello-Flake + 0.2%<br>Sodium Metasilicate                        |
| INTERMEDIATE | Lead | 0    | 5100 | 1780 | 2.2  | 12.7 | 3916 | 25 | Class C | Lead: Class C + 0.15%<br>C-20 + 11.63 pps Salt +<br>0.1% C-51 + 0.75% C-<br>41P (TOC @ Surface)                |
| INTERMEDIATE | Tail | 5100 | 5100 | 200  | 1.12 | 16   | 224  | 25 | Class C | Tail: Class C + 0.13%<br>C-20                                                                                  |

Well Name: STONEWALL 28 FED COM

Well Number: 709H

| String Type  | Lead/Tail | Stage Tool<br>Depth | Top MD    | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% . | Cement type | Additives                                                                                  |
|--------------|-----------|---------------------|-----------|-----------|--------------|-------|---------|-------|-----------|-------------|--------------------------------------------------------------------------------------------|
| INTERMEDIATE | Lead      |                     | 4600      | 1130<br>0 | 340          | 2.72  | 11.5    | 924   | 25        |             | Lead: Class C + 0.40%<br>D013 + 0.20% D046 +<br>0.10% D065 + 0.20%<br>D167 (TOC @ 4,600')  |
| INTERMEDIATE | Tail      | -:                  | 1130<br>0 | 1130<br>0 | 210          | 1.12  | 16      | 235   | 25        | Class H     | Tail: Class H + 94.0 pps<br>D909 + 0.25% D065 +<br>0.30% D167 + 0.02%<br>D208 + 0.15% D800 |
| PRODUCTION   | Lead      |                     | 1080<br>0 | 2231<br>5 | 950          | 1.26  | 14.1    | 1197  | 25        | Class H     | Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 10,800')             |

### **Section 5 - Circulating Medium**

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: (A) A Kelly cock will be kept in the drill string at all times. (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times. (C) H2S monitoring and detection equipment will be utilized from surface casing point to TD.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure and stroke rate.

### **Circulating Medium Table**

| Top Depth | Bottom Depth | Mud Type          | Min Weight (Ibs/gal) | Max Weight (lbs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | ЬН | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics |  |
|-----------|--------------|-------------------|----------------------|----------------------|---------------------|-----------------------------|----|----------------|----------------|-----------------|----------------------------|--|
| 1130<br>0 | 1223<br>9    | OIL-BASED<br>MUD  | 10                   | 14                   |                     |                             |    |                |                | :               |                            |  |
| 1150      | 5100         | SALT<br>SATURATED | 10                   | 10.2                 |                     |                             |    |                |                |                 |                            |  |

Well Name: STONEWALL 28 FED COM Well Number: 709H

| Top Depth | Bottom Depth | Mud Type           | Min Weight (Ibs/gal) | Max Weight (lbs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | Hd | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics |  |
|-----------|--------------|--------------------|----------------------|----------------------|---------------------|-----------------------------|----|----------------|----------------|-----------------|----------------------------|--|
| 5100      | 1130<br>0    | OIL-BASED<br>MUD   | 8.7                  | 9.4                  |                     |                             |    |                |                |                 |                            |  |
| 0         | 1150         | WATER-BASED<br>MUD | 8.6                  | 8.8                  |                     |                             |    |                |                |                 |                            |  |

### Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Open-hole logs are not planned for this well.

List of open and cased hole logs run in the well:

DS

Coring operation description for the well:

None

### **Section 7 - Pressure**

**Anticipated Bottom Hole Pressure: 8909** 

**Anticipated Surface Pressure: 6216.42** 

Anticipated Bottom Hole Temperature(F): 181

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Stonewall 28 Fed Com 709H H2S Plan Summary 20180131085730.pdf

Well Name: STONEWALL 28 FED COM Well Number: 709H

### **Section 8 - Other Information**

### Proposed horizontal/directional/multi-lateral plan submission:

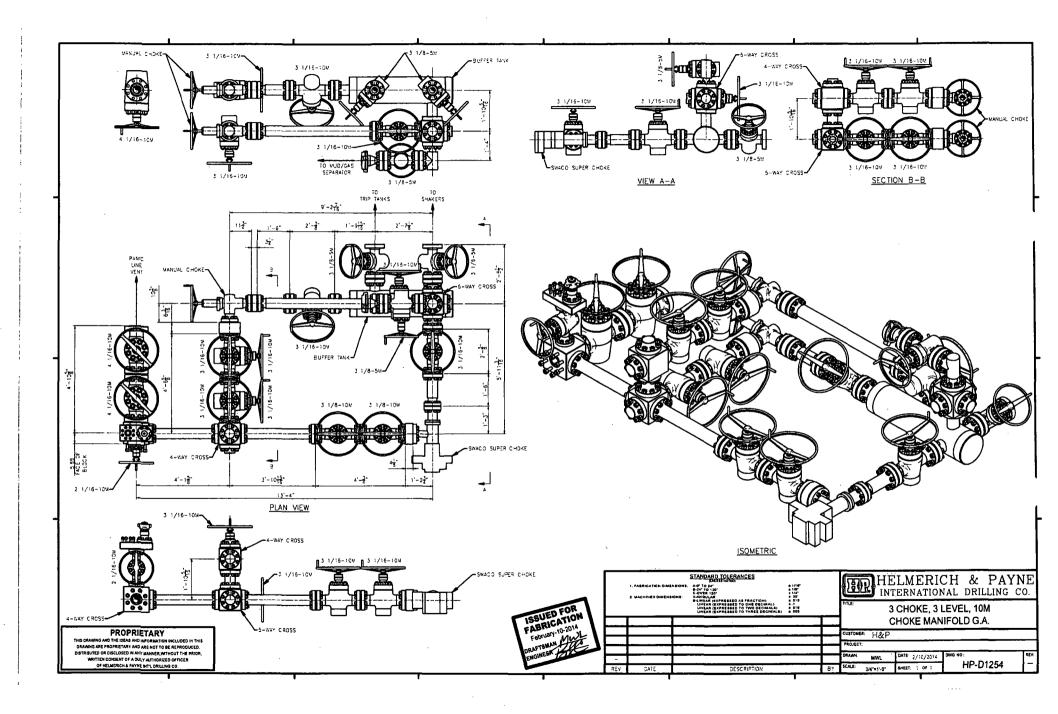
 $Stonewall\_28\_Fed\_Com\_709H\_Planning\_Report\_20180131085812.pdf$ 

Stonewall\_28\_Fed\_Com\_709H\_Wall\_Plot\_20180131085812.pdf

### Other proposed operations facets description:

### Other proposed operations facets attachment:

 $Stonewall\_28\_Fed\_Com\_709H\_Proposed\_Wellbore\_20180131085837.pdf$ 


 $Stonewall\_28\_Fed\_Com\_709H\_Rig\_Layout\_20180131085837.pdf$ 

Stonewall\_28\_Fed\_Com\_709H\_Wellhead\_Cap\_20180131085837.pdf

Stonewall28FC\_GCP\_20180131090705.pdf

### Other Variance attachment:

Stonewall 28 Fed Com 709H EOG BLM 10M Annular Variance 4 String 20180131085847.pdf



Manufacturer: Midwest Hose & Specialty

Serial Number: SN#90067

Length: 35'

Size: OD = 8" ID = 4"

Ends: Flanges Size: 4-1/16"

WP Rating: 10,000 psi Anchors required by manfacturer: No

### MIDWEST

### HOSE AND SPECIALTY INC.

| INTERNA                           | L HYDROST                | ATIC TEST           | REPOR                   | T      |  |
|-----------------------------------|--------------------------|---------------------|-------------------------|--------|--|
|                                   |                          |                     |                         |        |  |
| Customer:                         |                          |                     | P.O. Numb               |        |  |
| CACTUS                            | RIG #123                 |                     |                         |        |  |
| }                                 | Asset # N                | 110761              |                         |        |  |
|                                   | HOSE SPECI               | FICATIONS           |                         |        |  |
| Type: CHOKE LIN                   | IE                       |                     | Length:                 | 35'    |  |
| I.D. 4                            | ' INCHES                 | O.D.                | 8"                      | INCHES |  |
| WORKING PRESSURE                  | TEST PRESSUR             | E                   | BURST PRES              | SURE   |  |
| 10,000 PSI                        | 15,000                   | PSI                 |                         | PSI    |  |
|                                   | COUP                     | LINGS               |                         | ٠.     |  |
| Type of End Fitting<br>4 1/16 10K | FLANGE                   |                     | -                       |        |  |
| Type of Coupling:                 |                          | MANUFACTU           | RED BY                  |        |  |
| SWEDGED                           |                          | MIDWEST HO          | SE & SPECIA             | LTY    |  |
|                                   | PROC                     | EDURE               |                         |        |  |
| Hose assemb                       | ly pressure tested w     | ith water at ambier | nt temperature .        |        |  |
| TIME HELD A                       | TTEST PRESSURE           | ACTUAL E            | SURST PRESSL            | IRE:   |  |
| •                                 | MIN.                     |                     |                         | 0 PSI  |  |
| COMMENTS:<br>SN#90067             | M10761                   |                     |                         |        |  |
|                                   | vered with stain!        |                     |                         |        |  |
|                                   | h fire resistant v       |                     |                         |        |  |
|                                   | ated for 1500 de         | grees complet       |                         | eyes   |  |
| Date:<br>6/6/2011                 | Tested By:<br>BOBBY FINK |                     | Approved: MENDI JACKSON |        |  |



### **Internal Hydrostatic Test Graph**

**Customer: CACTUS** 

SALES ORDER# 90067

**Verification** 

### **Hose Specifications**

**Hose Type** C & K LD. **Working Pressure** 

Length 35' <u>O.D.</u> **Burst Pressure** 

Die Size 6.62" Hose Serial #

**Type of Fitting** 

4 1/16 10K

**Coupling Method** Swage Final O.D. 6.68" **Hose Assembly Serial #** 

10000 PSI 90067 Standard Safety Multiplier Applies **Pressure Test** 18000 16000 14000 12000

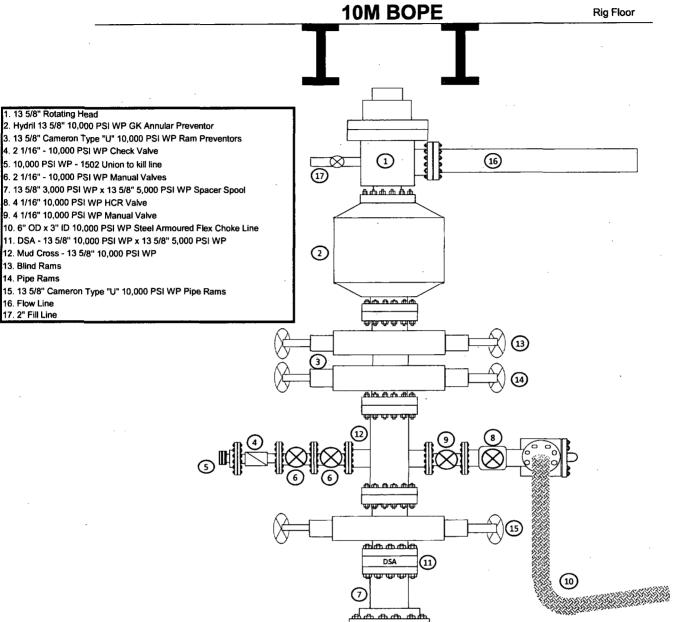
10000 PSI 8000 :.. i: 6000 4000 2000 I:OJAM **Time in Minutes** 

**Test Pressure** 15000 PSI

Time Held at Test Pressure 11 1/4 Minutes

**Actual Burst Pressure** 

Peak Pressure 15439 PSI


**Comments:** Hose assembly pressure tested with water at ambient temperature.

Tested By: Bobby Fink

Approved By: Mendi Jackson

Mendi Jackson

# Exhibit 1 EOG Resources

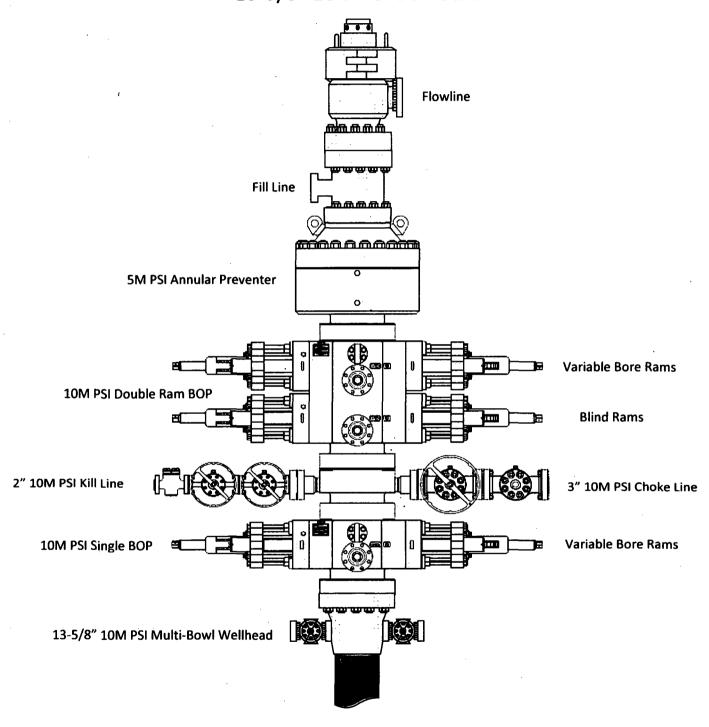


# 10,000 PSI BOP Annular Variance Request

EOG Resources request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOP).

### 1. Component and Preventer Compatibility Tables

The tables below outlines the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.


| 12-1/4" Intermediate Hole Section 10M psi requirement  |                     |            |            |                                              |            |  |  |  |  |  |  |
|--------------------------------------------------------|---------------------|------------|------------|----------------------------------------------|------------|--|--|--|--|--|--|
| Component OD Primary Preventer RWP Alternate Preventer |                     |            |            |                                              |            |  |  |  |  |  |  |
| Drillpipe                                              | 5.000" or<br>4.500" | Annular    | 5M         | Upper 3.5 - 5.5" VBR<br>Lower 3.5 - 5.5" VBR | 10M<br>10M |  |  |  |  |  |  |
| HWDP                                                   | 5.000" or<br>4.500" | Annular    | 5M         | Upper 3.5 - 5.5" VBR<br>Lower 3.5 - 5.5" VBR | 10M<br>10M |  |  |  |  |  |  |
| Jars                                                   | 6.500"              | Annular    | 5 <b>M</b> | Upper 3.5 - 5.5" VBR<br>Lower 3.5 - 5.5" VBR | 10M<br>10M |  |  |  |  |  |  |
| DCs and MWD tools                                      | 6.500" - 8.000"     | Annular    | 5M         | -                                            | -          |  |  |  |  |  |  |
| Mud Motor                                              | 8.000" - 9.625"     | Annular    | 5M         | -                                            | -          |  |  |  |  |  |  |
| 1 <sup>st</sup> Intermediate casing                    | 9.625"              | Annular    | 5M         | -                                            | -          |  |  |  |  |  |  |
| Open-hole                                              | -                   | Blind Rams | 10M        | -                                            | -          |  |  |  |  |  |  |

| 8-3/4" Intermediate Hole Section 10M psi requirement |                 |                          |     |                        |     |  |  |  |  |  |  |
|------------------------------------------------------|-----------------|--------------------------|-----|------------------------|-----|--|--|--|--|--|--|
| Component                                            | OD              | <b>Primary Preventer</b> | RWP | Alternate Preventer(s) | RWP |  |  |  |  |  |  |
| Drillpipe                                            | 5.000" or       | Annular                  | 5M  | Upper 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
|                                                      | 4.500"          |                          |     | Lower 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
| HWDP                                                 | 5.000" or       | Annular                  | 5M  | Upper 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
|                                                      | 4.500"          |                          |     | Lower 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
| Jars                                                 | 6.500"          | Annular                  | 5M  | Upper 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
|                                                      |                 |                          |     | Lower 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
| DCs and MWD tools                                    | 6.500" - 8.000" | Annular                  | 5M  | •                      | -   |  |  |  |  |  |  |
| Mud Motor                                            | 6.750" - 8.000" | Annular                  | 5M  | -                      | -   |  |  |  |  |  |  |
| 2 <sup>nd</sup> Intermediate casing                  | 7.625"          | Annular                  | 5M  | -                      | -   |  |  |  |  |  |  |
| Open-hole                                            | -               | Blind Rams               | 10M | <del>-</del> ,         | -   |  |  |  |  |  |  |

| 6-3/4" Production Hole Section  10M psi requirement |                 |                   |     |                        |     |  |  |  |  |  |  |
|-----------------------------------------------------|-----------------|-------------------|-----|------------------------|-----|--|--|--|--|--|--|
| Component                                           | OD              | Primary Preventer | RWP | Alternate Preventer(s) | RWP |  |  |  |  |  |  |
| Drillpipe                                           | 4.500"          | Annular           | 5M  | Upper 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
|                                                     |                 |                   |     | Lower 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
| HWDP                                                | 4.500"          | Annular           | 5M  | Upper 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
|                                                     |                 |                   |     | Lower 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
| DCs and MWD tools                                   | 4.750" - 5.500" | Annular           | 5M  | Upper 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
|                                                     |                 | ,                 |     | Lower 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
| Mud Motor                                           | 4.750" - 5.500" | Annular           | 5M  | Upper 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
|                                                     |                 |                   |     | Lower 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
| Mud Motor                                           | 5.500" – 5.750" | Annular           | 5M  | -                      | -   |  |  |  |  |  |  |
| Production casing                                   | 5.500"          | Annular           | 5M  | Upper 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
|                                                     |                 |                   |     | Lower 3.5 - 5.5" VBR   | 10M |  |  |  |  |  |  |
| Open-hole                                           | •               | Blind Rams        | 10M | -                      | -   |  |  |  |  |  |  |

VBR = Variable Bore Ram

## EOG Resources 13-5/8" 10M PSI BOP Stack



### 2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the EOG Resources drilling supervisor's office on location, and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

### General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
  - a. SIDPP and SICP
  - b. Pit gain
  - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

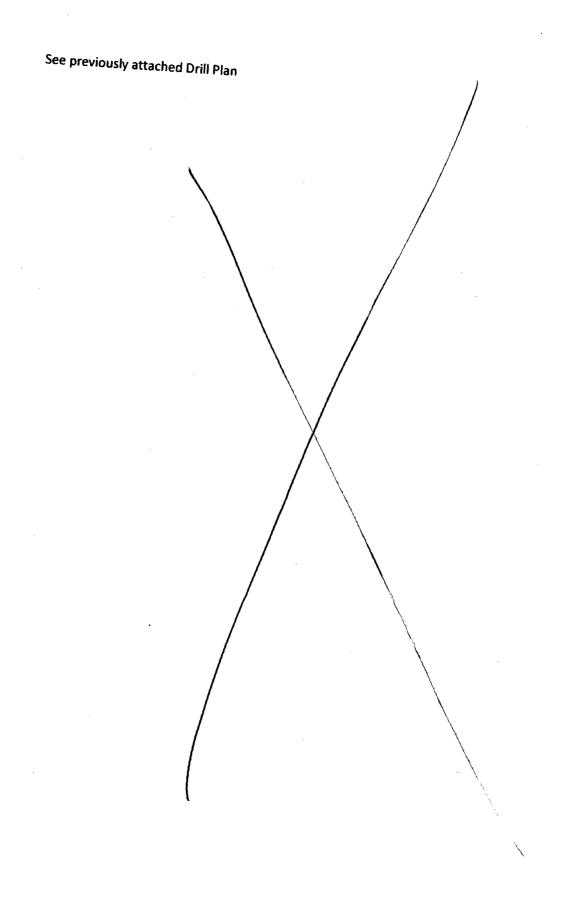
### General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
  - a. SIDPP and SICP
  - b. Pit gain
  - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

### General Procedure While Running Production Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string

- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
  - a. SIDPP and SICP
  - b. Pit gain
  - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.


### General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
  - a. SICP
  - b. Pit gain
  - c. Time
- 6. Regroup and identify forward plan

### General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
  - a. Perform flowcheck, if flowing:
  - b. Sound alarm (alert crew)
  - c. Stab full opening safety valve and close
  - d. Space out drill string with tool joint just beneath the upper variable bore rams.
  - e. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
  - f. Confirm shut-in
  - g. Notify toolpusher/company representative
  - h. Read and record the following:
    - i. SIDPP and SICP
    - ii. Pit gain
    - iii. Time
  - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
  - a. Sound alarm (alert crew)
  - b. Stab crossover and full opening safety valve and close
  - c. Space out drill string with upset just beneath the upper variable bore rams.
  - d. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
  - e. Confirm shut-in
  - f. Notify toolpusher/company representative
  - g. Read and record the following:
    - i. SIDPP and SICP

- ii. Pit gain
- iii. Time
- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
  - a. Sound alarm (alert crew)
  - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
  - c. If impossible to pick up high enough to pull the string clear of the stack:
  - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
  - e. Space out drill string with tooljoint just beneath the upper variable bore ram.
  - f. Shut-in using upper variable bore ram. (HCR and choke will already be in the closed position.)
  - g. Confirm shut-in
  - h. Notify toolpusher/company representative
  - i. Read and record the following:
    - i. SIDPP and SICP
    - ii. Pit gain
    - iii. Time
  - j. Regroup and identify forward plan



|                   | MO-F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page                                                                  | MCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |                     |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------|
|                   | MO-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~ -                                                                   | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-Nov                                                              | 16                  |
| Metal <b>O</b> nc | Connection D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Connection Data Sheet                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                     |
|                   | - Connection b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uta Sileet                                                            | Rev.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                  |                     |
| •                 | Geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                  |                     |
|                   | e e on e nya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Imperi                                                                | <u>ial</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>S.I.</u>                                                        | ,                   |
|                   | Pipe Body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                     |
|                   | Grade Service and in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PANOHCYA                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PagoHeat                                                           | C Supple            |
|                   | Pipe OD (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 5/8                                                                 | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 193.68                                                             | mm                  |
| MO-FXL            | Weight * Two as a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-7-29-70 PM                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,440.25                                                           | kg/m                |
|                   | Actual weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.04                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43.26                                                              | kg/m                |
|                   | Wall Thickness ((tr) 140)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 19.53 A                                                          | a kmm               |
|                   | Pipe ID (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.875                                                                 | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 174.63                                                             | mm                  |
|                   | Pipelbody/cross/section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10007                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    | i mmi               |
|                   | Drift Dia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.750                                                                 | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 171.45                                                             | mm                  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                     |
|                   | Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       | TO RECEIVE A STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***************************************                            | w/#5=191.4          |
|                   | Box(OD)(W))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 174.63                                                             |                     |
| T                 | Makerup Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.875                                                                 | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | # 107#16##                                                         | mm                  |
|                   | Box Critical Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8/33/5                                                             |                     |
| Вох               | STORY THE STORY OF THE STORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    | Linking             |
| critical          | Thread Taper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       | 1/10/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70                                                                 |                     |
|                   | Number of Threads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | 1 / 10 ( 1.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                     |
|                   | INDIMPEROJETITI GAOSTER!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                     |
|                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                     |
|                   | Figure 1 and the first the |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                     |
| lake P            | FOREITEDIED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                     |
| 23                | Performance Propertie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es for Pine Roch                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                  |                     |
| 25                | T CHOIMENOC T TOPCIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | متنتون ومعروض وواوعها كالرواد والأراط المادة                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the second                                                     | P[7] [8]            |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.21                                                              | MPa                 |
| Pin               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | متنتون ومعروض وواوعها كالرواد والأراط المادة                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.21                                                              | MPa                 |
|                   | M.LY.P. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.760                                                                | psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74.21                                                              |                     |
| Pin<br>critical   | M.I.Y.P. *1 Salar Sp. Sp. Sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       | psi<br>ELD Stren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.21<br>(0.7/6)<br>gth of Pipe bo                                 | edy<br>dy           |
| Pin<br>critical   | M.I.Y.P. *1  Note S.M.Y.S.= Sp. M.I.Y.P. = Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.760                                                                | psi<br>ELD Stren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.21  (6.7/6) gth of Pipe body e of Pipe body                     | edy<br>dy           |
| Pin<br>critical   | M.I.Y.P. *1  Note S.M.Y.S.= Sp. M.I.Y.P. = Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.760<br>ecified Minimum Yi<br>nimum Internal Yie<br>SB P110HC (YS=1 | psi<br>ELD Stren<br>Id Pressure<br>25~140ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.21  (6.7/6) gth of Pipe body e of Pipe body                     | edy<br>dy           |
| Pin<br>critical   | M.I.Y.P. *1  Note S.M.Y.S.= Sp. M.I.Y.P. = Mi *1 Based on V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.760<br>ecified Minimum Yi<br>nimum Internal Yie<br>SB P110HC (YS=1 | psi<br>ELD Stren<br>Id Pressure<br>25~140ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.21  (6.7/6) gth of Pipe body e of Pipe body                     | edy<br>dy           |
| Pin<br>critical   | M.I.Y.P. *1  Note S.M.Y.S.= Sp. M.I.Y.P. = Mi  *1 Based on V  Performance Propertie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ecified Minimum Yienimum Internal Yiens For Connection 747 kip        | psi  <br> ELD Stren<br> d Pressure<br> 25~140ksi<br> on<br> s ( 70% (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 74.21  (6.7/6) gth of Pipe body e of Pipe body                     | edy<br>dy           |
| Pin<br>critical   | M.I.Y.P. *1  Note S.M.Y.S.= Sp. M.I.Y.P. = Mir *1 Based on V  Performance Propertie  Min. Compression Yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ecified Minimum Yienimum Internal Yiens For Connection 747 kip        | psi  <br>  psi  <br> ELD Strendd Pressure<br> 25~140ksi<br>  psi   psi  <br>                | 74.21 gth of Pipe body e of Pipe body ) of S.M.Y.S.                | dy                  |
| Pin<br>critical   | M.I.Y.P. *1  Note S.M.Y.S. Sp. M.I.Y.P. Min  *1 Based on V  Performance Propertion  Min. Compression Yield  External Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ecified Minimum Yienimum Internal Yiens For Connection 747 kip        | psi  <br> ELD Strented Pressure<br> 25~140ksi<br> 25~140ksi<br> 01<br> s ( 70% 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.21  gth of Pipe body )  of S.M.Y.S.)  f Collapse S              | dy                  |
| Pin<br>critical   | M.I.Y.P. *1  Note S.M.Y.S.= Sp. M.I.Y.P. = Mir *1 Based on V  Performance Propertie  Min. Compression Yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ecified Minimum Yienimum Internal Yiens For Connection 747 kip        | psi  <br>  psi  <br> ELD Strendd Pressure<br> 25~140ksi<br>  psi   psi  <br>                | 74.21  gth of Pipe body )  of S.M.Y.S.)  f Collapse S              | dy                  |
| Pin<br>critical   | M.I.Y.P. *1  Note S.M.Y.S. Sp. M.I.Y.P. Min  *1 Based on V  Performance Propertion  Min. Compression Yield  External Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ecified Minimum Yienimum Internal Yiens For Connection 747 kip        | psi  <br> ELD Strented Pressure<br> 25~140ksi<br> 25~140ksi<br> 01<br> s ( 70% 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.21  gth of Pipe body )  of S.M.Y.S.)  f Collapse S              | dy                  |
| Pin<br>critical   | M.I.Y.P. *1  Note S.M.Y.S.= Sp. M.I.Y.P. = Mir *1 Based on V  Performance Propertie  Min. Compression Yield  External Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.760 ecified Minimum Yies SB P110HC (YS=1 es for Connecti           | psi  <br> ELD Strented Pressure<br> 25~140ksi<br> 25~140ksi<br> 01<br> s ( 70% 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.21  gth of Pipe body )  of S.M.Y.S.)  f Collapse S              | dy                  |
| Pin<br>critical   | M.I.Y.P. *1  Note S.M.Y.S. Sp. M.I.Y.P. Min  *1 Based on V  Performance Propertion  Min. Compression Yield  External Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.760 ecified Minimum Yies SB P110HC (YS=1 es for Connecti           | psi  <br>  ELD Stren<br> dd Pressure<br> 25~140ksi<br> on<br> s ( 70% c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74.21  gth of Pipe body )  of S.M.Y.S.)  f Collapse S              | dy                  |
| Pin<br>critical   | M.I.Y.P. *1  Note S.M.Y.S. = Sp. M.I.Y.P. = Mir *1 Based on V  Performance Propertie  Min. Compression Yield  External Pressure  Recommended Torque  Opti.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.760  10.760  ecified Minimum Yies SB P110HC (YS=1 es for Connecti  | psi  <br>  psi  <br>  ELD Stren<br>  dd Pressurd<br>  25~140ksi<br>  on<br>  s ( 70% (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74.21 gth of Pipe body e of Pipe body ) of S.M.Y.S.)  f Collapse S | dy<br>btrength      |
| Pin<br>critical   | M.I.Y.P. *1  Note S.M.Y.S. = Sp. M.I.Y.P. = Mir *1 Based on V  Performance Propertie  Min. Compression Yield  External Pressure  Recommended Torque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.760  10.760  ecified Minimum Yies SB P110HC (YS=1 es for Connecti  | psi  <br>  psi  <br>    psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi  <br>  psi | 74.21 gth of Pipe body e of Pipe body ) of S.M.Y.S.)  f Collapse S | dy<br>/<br>Strength |

See previously attached Drill Plan

### 1. GEOLOGIC NAME OF SURFACE FORMATION:

Permian

### 2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

| Rustler                           | 1,121'  |
|-----------------------------------|---------|
| Top of Salt                       | 1,368'  |
| Base of Salt                      | 5,068'  |
| Base Anhydrite                    | 5,336'  |
| Lamar                             | 5,336'  |
| Bell Canyon                       | 5,378'  |
| Cherry Canyon                     | 6,311'  |
| Brushy Canyon                     | 7,804   |
| Bone Spring Lime                  | 9,166'  |
| 1 <sup>st</sup> Bone Spring Sand  | 10,176' |
| 2 <sup>nd</sup> Bone Spring Shale | 10,394' |
| 2 <sup>nd</sup> Bone Spring Sand  | 10,656' |
| 3 <sup>rd</sup> Bone Spring Carb  | 11,188' |
| 3 <sup>rd</sup> Bone Spring Sand  | 11,693' |
| Wolfcamp                          | 12,105  |
| TD                                | 12,239' |

### 3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

| Upper Permian Sands               | 0- 400° | Fresh Water |
|-----------------------------------|---------|-------------|
| Cherry Canyon                     | 6,311'  | Oil         |
| Brushy Canyon                     | 7,804'  | Oil         |
| 1st Bone Spring Sand              | 10,176' | Oil         |
| 2 <sup>nd</sup> Bone Spring Shale | 10,394' | Oil         |
| 2 <sup>nd</sup> Bone Spring Sand  | 10,656' | Oil         |
| 3 <sup>rd</sup> Bone Spring Carb  | 11,188' | Oil         |
| 3 <sup>rd</sup> Bone Spring Sand  | 11,693' | Oil         |
| Wolfcamp                          | 12,105' | Oil         |
|                                   |         |             |

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 13.375" casing at 1,150' and circulating cement back to surface.

See previously attached Drill Plan

### 4. CASING PROGRAM - NEW

| Hole<br>Size | Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Csg<br>OD | Weight | Grade   | Conn        | DF <sub>min</sub><br>Collapse | DF <sub>min</sub><br>Burst | DF <sub>min</sub><br>Tension |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|---------|-------------|-------------------------------|----------------------------|------------------------------|
| 17.5"        | 0 – 1,150'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.375"   | 54.5#  | J55     | LTC         | 1.125                         | 1.25                       | 1.60                         |
| 12.25"       | 0 – 4,000'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.625"    | 40#    | J55     | LTC         | 1.125                         | 1.25                       | 1.60                         |
| 12.25"       | 4,0 <mark>00' – 5,100' – 5,100' – 5,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,100' – 6,</mark> | 9.625"    | 40#    | HCK55   | LTC         | 1.125                         | 1.25                       | 1.60                         |
| 8.75"        | 0 – 11,300'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.625"    | 29.7#  | HCP-110 | FXL         | 1.125                         | 1.25                       | 1.60                         |
| 6.75"        | 0' - 10,800'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.5"      | 20#    | P-110EC | DWC/C-IS MS | 1.125                         | 1.25                       | 1.60                         |
| 6.75"        | 10,800'-22,315'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.5"      | 20#    | P-110EC | VAM SFC     | 1.125                         | 1.25                       | 1.60                         |

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive the annular clearance requirements for the 5-1/2" casing by 7-5/8" casing annulus to the proposed top of cement.

### **Cementing Program:**

| Depth             | No.<br>Sacks | Wt.<br>ppg | Yld<br>Ft³/ft | Mix<br>Water<br>Gal/sk | Slurry Description                                                                                               |
|-------------------|--------------|------------|---------------|------------------------|------------------------------------------------------------------------------------------------------------------|
| 13-3/8"<br>1,150° | 600          | 13.5       | 1.73          | 9.13                   | Lead: Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl <sub>2</sub><br>+ 0.25 lb/sk Cello-Flake (TOC @ Surface) |
|                   | 200          | 14.8       | 1.34          | 6.34                   | Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate                                   |
| 9-5/8"<br>5,100°  | 1780         | 12.7       | 2.20          | 11.64                  | Lead: Class C + 0.15% C-20 + 11.63 pps Salt + 0.1% C-51 + 0.75% C-41P (TOC @ Surface)                            |
|                   | 200          | 16.0       | 1.12          | 4.75                   | Tail: Class C + 0.13% C-20                                                                                       |
| 7-5/8"<br>11,300' | 340          | 11.5       | 2.72          | 15.70                  | Lead: Class C + 0.40% D013 + 0.20% D046 + 0.10% D065 + 0.20% D167 (TOC @ 4,600')                                 |
|                   | 210          | 16.0       | 1.12          | 4.74                   | Tail: Class H + 94.0 pps D909 + 0.25% D065 + 0.30% D167 + 0.02% D208 + 0.15% D800                                |
| 5-1/2"<br>22,315' | 950          | 14.1       | 1.26          | 5.80                   | Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 10,800')                                   |

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

### 5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (10,000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 10,000/250 psig and the annular preventer to 5,000/250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 10,000/250 psig and the annular preventer to 5000/250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

### 6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

The applicable depths and properties of the drilling fluid systems are as follows.

| Depth             | Type        | Weight (ppg) | Viscosity | Water Loss |
|-------------------|-------------|--------------|-----------|------------|
| 0 – 1,150'        | Fresh - Gel | 8.6-8.8      | 28-34     | N/c        |
| 1,150' – 5,100'   | Brine       | 10.0-10.2    | 28-34     | N/c        |
| 5,100' – 11,300'  | Oil Base    | 8.7-9.4      | 58-68     | N/c - 6    |
| 11,300' – 22,315' | Oil Base    | 10.0-14.0    | 58-68     | 3 - 6      |
| Lateral           |             | 1            |           |            |

The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized.

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

### 7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H<sub>2</sub>S monitoring and detection equipment will be utilized from surface casing point to TD.

### 8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions phase of operations.

## 9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 181 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 8,909 psig (based on 14.0 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

### 10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

(A) EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1000 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

### 11. WELLHEAD:

A multi-bowl wellhead system will be utilized.

After running the 13-3/8" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 10,000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 10,000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 10,000 psi.

The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi.

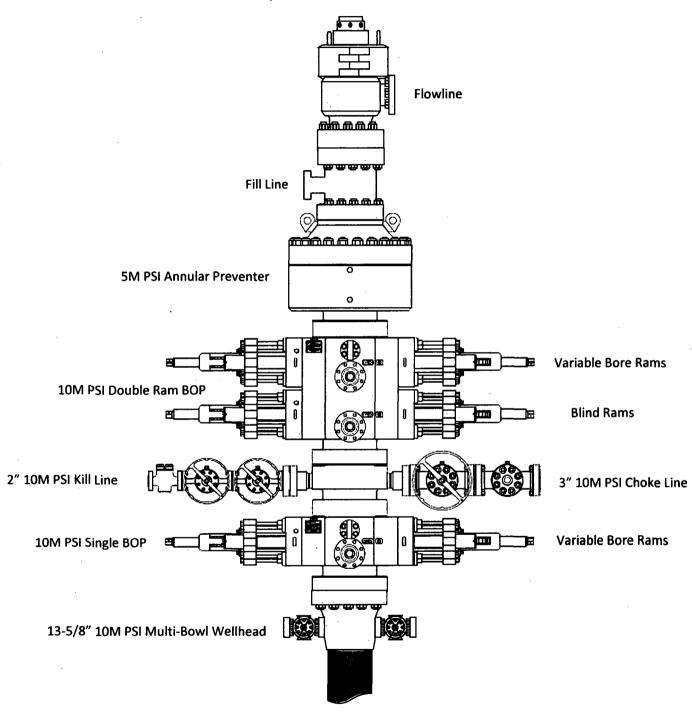
Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.

# 10,000 PSI BOP Annular Variance Request

EOG Resources request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOP).

### 1. Component and Preventer Compatibility Tables

The tables below outlines the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.


| 12-1/4" Intermediate Hole Section 10M psi requirement  |                 |            |     |                      |     |  |  |  |  |  |  |
|--------------------------------------------------------|-----------------|------------|-----|----------------------|-----|--|--|--|--|--|--|
| Component OD Primary Preventer RWP Alternate Preventer |                 |            |     |                      |     |  |  |  |  |  |  |
| Drillpipe                                              | 5.000" or       | Annular    | 5M  | Upper 3.5 - 5.5" VBR | 10M |  |  |  |  |  |  |
|                                                        | 4.500"          |            |     | Lower 3.5 - 5.5" VBR | 10M |  |  |  |  |  |  |
| HWDP                                                   | 5.000" or       | Annular    | 5M  | Upper 3.5 - 5.5" VBR | 10M |  |  |  |  |  |  |
|                                                        | 4.500"          |            |     | Lower 3.5 - 5.5" VBR | 10M |  |  |  |  |  |  |
| Jars                                                   | 6.500"          | Annular    | 5M  | Upper 3.5 - 5.5" VBR | 10M |  |  |  |  |  |  |
|                                                        |                 |            |     | Lower 3.5 - 5.5" VBR | 10M |  |  |  |  |  |  |
| DCs and MWD tools                                      | 6.500" - 8.000" | Annular    | 5M  | <del>-</del>         | -   |  |  |  |  |  |  |
| Mud Motor                                              | 8.000" - 9.625" | Annular    | 5M  | -                    | -   |  |  |  |  |  |  |
| 1 <sup>st</sup> Intermediate casing                    | 9.625"          | Annular    | 5M  | -                    | -   |  |  |  |  |  |  |
| Open-hole                                              | -               | Blind Rams | 10M | -                    | -   |  |  |  |  |  |  |

| 8-3/4" Intermediate Hole Section 10M psi requirement |                     |                   |     |                                              |            |  |  |  |
|------------------------------------------------------|---------------------|-------------------|-----|----------------------------------------------|------------|--|--|--|
| Component                                            | OD                  | Primary Preventer | RWP | Alternate Preventer(s)                       | RWP        |  |  |  |
| Drillpipe                                            | 5.000" or<br>4.500" | Annular           | 5M  | Upper 3.5 - 5.5" VBR<br>Lower 3.5 - 5.5" VBR | 10M<br>10M |  |  |  |
| HWDP                                                 | 5.000" or<br>4.500" | Annular           | 5M  | Upper 3.5 - 5.5" VBR<br>Lower 3.5 - 5.5" VBR | 10M<br>10M |  |  |  |
| Jars                                                 | 6.500"              | Annular           | 5M  | Upper 3.5 - 5.5" VBR<br>Lower 3.5 - 5.5" VBR | 10M<br>10M |  |  |  |
| DCs and MWD tools                                    | 6.500" - 8.000"     | Annular           | 5M  | •                                            | -          |  |  |  |
| Mud Motor                                            | 6.750" - 8.000"     | Annular           | 5M  | •                                            | -          |  |  |  |
| 2 <sup>nd</sup> Intermediate casing                  | 7.625"              | Annular           | 5M  | -                                            | -          |  |  |  |
| Open-hole                                            | -                   | Blind Rams        | 10M | -                                            | -          |  |  |  |

| 6-3/4" Production Hole Section 10M psi requirement |                 |                          |     |                        |     |  |  |  |
|----------------------------------------------------|-----------------|--------------------------|-----|------------------------|-----|--|--|--|
| Component                                          | OD              | <b>Primary Preventer</b> | RWP | Alternate Preventer(s) | RWP |  |  |  |
| Drillpipe                                          | 4.500"          | Annular                  | 5M  | Upper 3.5 - 5.5" VBR   | 10M |  |  |  |
|                                                    |                 |                          |     | Lower 3.5 - 5.5" VBR   | 10M |  |  |  |
| HWDP                                               | 4.500"          | Annular                  | 5M  | Upper 3.5 - 5.5" VBR   | 10M |  |  |  |
|                                                    |                 |                          |     | Lower 3.5 - 5.5" VBR   | 10M |  |  |  |
| DCs and MWD tools                                  | 4.750" - 5.500" | Annular                  | 5M  | Upper 3.5 - 5.5" VBR   | 10M |  |  |  |
|                                                    |                 |                          |     | Lower 3.5 - 5.5" VBR   | 10M |  |  |  |
| Mud Motor                                          | 4.750" – 5.500" | Annular                  | 5M  | Upper 3.5 - 5.5" VBR   | 10M |  |  |  |
|                                                    |                 |                          |     | Lower 3.5 - 5.5" VBR   | 10M |  |  |  |
| Mud Motor                                          | 5.500" – 5.750" | Annular                  | 5M  | -                      | -   |  |  |  |
| Production casing                                  | 5.500"          | Annular                  | 5M  | Upper 3.5 - 5.5" VBR   | 10M |  |  |  |
|                                                    |                 |                          |     | Lower 3.5 - 5.5" VBR   | 10M |  |  |  |
| Open-hole                                          | -               | Blind Rams               | 10M | -                      | -   |  |  |  |

VBR = Variable Bore Ram

# EOG Resources 13-5/8" 10M PSI BOP Stack



#### 2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the EOG Resources drilling supervisor's office on location, and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

#### General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
  - a. SIDPP and SICP
  - b. Pit gain
  - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

#### General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
  - a. SIDPP and SICP
  - b. Pit gain
  - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

#### General Procedure While Running Production Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string

- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
  - a. SIDPP and SICP
  - b. Pit gain
  - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

#### General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
  - a. SICP
  - b. Pit gain
  - c. Time
- 6. Regroup and identify forward plan

#### General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
  - a. Perform flowcheck, if flowing:
  - b. Sound alarm (alert crew)
  - c. Stab full opening safety valve and close
  - d. Space out drill string with tool joint just beneath the upper variable bore rams.
  - e. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
  - f. Confirm shut-in
  - g. Notify toolpusher/company representative
  - h. Read and record the following:
    - i. SIDPP and SICP
    - ii. Pit gain
    - iii. Time
  - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
  - a. Sound alarm (alert crew)
  - b. Stab crossover and full opening safety valve and close
  - c. Space out drill string with upset just beneath the upper variable bore rams.
  - d. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
  - e. Confirm shut-in
  - f. Notify toolpusher/company representative
  - g. Read and record the following:
    - i. SIDPP and SICP

- ii. Pit gain
- iii. Time
- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
  - a. Sound alarm (alert crew)
  - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
  - c. If impossible to pick up high enough to pull the string clear of the stack:
  - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
  - e. Space out drill string with tooljoint just beneath the upper variable bore ram.
  - f. Shut-in using upper variable bore ram. (HCR and choke will already be in the closed position.)
  - g. Confirm shut-in
  - h. Notify toolpusher/company representative
  - i. Read and record the following:
    - i. SIDPP and SICP
    - ii. Pit gain
    - iii. Time
  - j. Regroup and identify forward plan



U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT** 



APD ID: 10400026542

Submission Date: 01/31/2018

**Operator Name: EOG RESOURCES INCORPORATED** 

Well Name: STONEWALL 28 FED COM

Well Type: OIL WELL

Well Number: 709H

Well Work Type: Drill



**Show Final Text** 

#### Section 1 - Existing Roads

Will existing roads be used? YES

**Existing Road Map:** 

STONEWALL28FC709H vicinity 20180131085945.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

**Existing Road Improvement Description:** 

**Existing Road Improvement Attachment:** 

#### Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

**New Road Map:** 

Stonewall28FC infrastructure 20180131090022.pdf STONEWALL28FC709H\_padsite\_20180131090023.pdf STONEWALL28FC709H wellsite 20180131090024.pdf

New road type: RESOURCE

Length: 1833

Feet

Width (ft.): 24

Max slope (%): 2

Max grade (%): 20

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 24

New road access erosion control: Newly constructed or reconstructed roads will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road. We plan to grade and water twice a year.

New road access plan or profile prepared? NO

Well Name: STONEWALL 28 FED COM Well Number: 709H

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: 6" of Compacted Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: An adequate amount of topsoil/root zone will be stripped by dozer from the proposed well location and stockpiled along the side of the welllocation as depicted on the well site diagram / survey plat.

Access other construction information: .

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

#### **Drainage Control**

New road drainage crossing: OTHER

**Drainage Control comments:** No drainage crossings

Road Drainage Control Structures (DCS) description: N/A

Road Drainage Control Structures (DCS) attachment:

#### **Access Additional Attachments**

Additional Attachment(s):

#### **Section 3 - Location of Existing Wells**

**Existing Wells Map?** YES

Attach Well map:

STONEWALL28FC709H\_radius\_20180131090036.pdf

**Existing Wells description:** 

#### Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Stonewall 28 Fed Com central tank battery is located in the NE/4 of section 28-24S-34E

**Production Facilities map:** 

Well Name: STONEWALL 28 FED COM

Well Number: 709H

Stonewall28FC infrastructure 20180131090047.pdf

#### Section 5 - Location and Types of Water Supply

#### **Water Source Table**

Water source use type: OTHER

Water source type: RECYCLED

Describe type:

Source latitude:

Source longitude:

Source datum:

Water source permit type: WATER RIGHT

Source land ownership: STATE

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: STATE

Water source volume (barrels): 720000

Source volume (acre-feet): 92.80303

Source volume (gal): 30240000

Water source and transportation map:

Stonewall\_28\_FC\_Caliche\_and\_Water\_Map\_20180131090208.pdf

Water source comments:

New water well? NO

#### **New Water Well Info**

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

**Aquifer comments:** 

Aquifer documentation:

Well depth (ft):

Well casing type:

Well casing outside diameter (in.):

Well casing inside diameter (in.):

New water well casing?

Used casing source:

**Drilling method:** 

Drill material:

Grout material:

**Grout depth:** 

Casing length (ft.):

Casing top depth (ft.):

Well Production type:

**Completion Method:** 

Water well additional information:

Well Name: STONEWALL 28 FED COM Well Number: 709H

State appropriation permit:

**Additional information attachment:** 

#### **Section 6 - Construction Materials**

Construction Materials description: Caliche utilized for the drilling pad will be obtained either from an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "Flipping" the well location. A mineral material permit will be obtained from BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad.

**Construction Materials source location attachment:** 

Stonewall 28\_FC\_Caliche\_and\_Water\_Map\_20180131090224.pdf

#### **Section 7 - Methods for Handling Waste**

Waste type: DRILLING

Waste content description: Drill fluids and produced oil and water from the well during drilling and completion operations will be stored safely and disposed of properly in an NMOCD approved disposal facility. Garbage and trash produced during drilling and completion operations will be collected in a trash container and disposed of properly. Human waste and grey water will be properly contained of and disposed of properly. After drilling and completion operations; trash, chemicals, salts, frac sand, and other waste material will be removed and disposed of properly at a state approved disposal facility.

Amount of waste: 0

barrels

Waste disposal frequency: Daily

Safe containment description: Steel Tanks

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL

Disposal location ownership: COMMERCIAL

**FACILITY** 

Disposal type description:

Disposal location description: Trucked to NMOCD approved disposal facility

#### **Reserve Pit**

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Well Name: STONEWALL 28 FED COM Well Number: 709H

#### **Cuttings Area being used? NO**

Are you storing cuttings on location? YES

**Description of cuttings location** Closed Loop System. Drill cuttings will be disposed of into steel tanks and taken to an NMOCD approved disposal facility.

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

#### **Section 8 - Ancillary Facilities**

Are you requesting any Ancillary Facilities?: NO

**Ancillary Facilities attachment:** 

#### Comments:

#### Section 9 - Well Site Layout

#### Well Site Layout Diagram:

Stonewall\_28\_Fed\_Com\_709H\_Rig\_Layout\_20180131085905.pdf STONEWALL28FC709H\_padsite\_20180131090244.pdf STONEWALL28FC709H\_wellsite\_20180131090244.pdf

Comments: Wellsite, Padsite, Rig Layout

#### **Section 10 - Plans for Surface Reclamation**

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: STONEWALL 28 FED COM

Multiple Well Pad Number: 707H/708H/709H

#### Recontouring attachment:

STONEWALL28FC709H\_reclamation\_20180131090256.pdf

**Drainage/Erosion control construction:** Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.

**Drainage/Erosion control reclamation:** The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Well Name: STONEWALL 28 FED COM Well Number: 709H

1.35124

Well pad proposed disturbance

(acres): 4.46281

Road proposed disturbance (acres):

1.009917

Powerline proposed disturbance

(acres): 0

Pipeline proposed disturbance

(acres): 1.52663

Other proposed disturbance (acres): 0

Total proposed disturbance: 6.999357

Powerline interim reclamation (acres):

Pipeline interim reclamation (acres): 0.610652

Road interim reclamation (acres): 0

Other interim reclamation (acres): 0

Total interim reclamation: 1.961892

Well pad interim reclamation (acres): Well pad long term disturbance

(acres): 3.11157

Road long term disturbance (acres):

1.009917

Powerline long term disturbance

(acres): 0

Pipeline long term disturbance

(acres): 0.915978

Other long term disturbance (acres): 0

Total long term disturbance: 5.037465

Disturbance Comments: All Interim and Final reclamation is planned to be completed within 6 months. Interim within 6 months of completion and final within 6 months of abandonment plugging. Dual pad operations may after timing. Reconstruction method: In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads. Areas planned for interim reclamation will be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations including cuts and fills. To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites. Soil treatment: Re-seed according to BLM standards. All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, and that erosion is controlled.

Existing Vegetation at the well pad: Grass, forbs, and small woody vegetation, such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and respreads evenly on the site following topsoil respreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material, will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils.

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: All disturbed areas, including roads, pipelines, pads, will be recontoured to the contour existing prior to the initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation.

**Existing Vegetation Community at the road attachment:** 

Existing Vegetation Community at the pipeline: All disturbed areas, including roads, pipelines, pads, will be recontoured to the contour existing prior to the initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation.

**Existing Vegetation Community at the pipeline attachment:** 

Existing Vegetation Community at other disturbances: All disturbed areas, including roads, pipelines, pads, will be recontoured to the contour existing prior to the initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation.

**Existing Vegetation Community at other disturbances attachment:** 

|                |                 |                         | •                                   |
|----------------|-----------------|-------------------------|-------------------------------------|
|                |                 |                         | •                                   |
| lon native see | ed used? NO     | 1                       | •                                   |
| lon native see | ed description  | ·                       |                                     |
| eedling trans  | plant descript  | tion:                   |                                     |
| Vill seedlings | be transplant   | ed for this project? NO |                                     |
| eedling trans  | splant descript | tion attachment:        |                                     |
| Vill seed be h | arvested for u  | se in site reclamation? | NO                                  |
| eed harvest o  | description:    |                         |                                     |
| eed harvest o  | description att | achment:                |                                     |
| 4              |                 |                         |                                     |
| Seed M         | lanagemen       | t                       | •                                   |
|                |                 | ــــــــــا             |                                     |
| Seed           | Table           |                         |                                     |
| Seed type      | :               |                         | Seed source:                        |
| Seed name      | e:              |                         |                                     |
| Source na      | me:             |                         | Source address:                     |
| Source ph      | one:            |                         | •                                   |
| Seed cultiv    | var:            |                         |                                     |
| Seed use I     | location:       |                         |                                     |
| PLS pound      | ds per acre:    |                         | Proposed seeding season:            |
|                | Seed S          | ummary                  | Total pounds/Acre:                  |
| See            | ed Type         | Pounds/Acre             |                                     |
|                |                 |                         | •                                   |
| eed reclamat   | ion attachmen   | nt:                     |                                     |
| Operato        | or Contact/l    | Responsible Offic       | ial Contact Info                    |
| First Name:    | Stan            |                         | Last Name: Wagner                   |
| Phone: (432)   | )686-3689       |                         | Email: stan_wagner@eogresources.com |
| eedbed prep:   | :               |                         |                                     |
| eed BMP:       |                 |                         |                                     |
|                |                 | •                       |                                     |

Well Number: 709H

**Operator Name:** EOG RESOURCES INCORPORATED

Well Name: STONEWALL 28 FED COM

Existing invasive species? NO

Well Name: STONEWALL 28 FED COM Well Number: 709H

#### Existing invasive species treatment description:

#### Existing invasive species treatment attachment:

Weed treatment plan description: All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, erosion is controlled, and free of noxious weeds. Weeds will be treated if found.

Weed treatment plan attachment:

**Monitoring plan description:** Reclamation will be completed within 6 months of well plugging. All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, erosion is controlled, and free of noxious weeds.

Monitoring plan attachment:

Success standards: N/A

Pit closure description: NA

Pit closure attachment:

#### Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

**BIA Local Office:** 

**BOR Local Office:** 

**COE Local Office:** 

**DOD Local Office:** 

NPS Local Office:

**State Local Office:** 

Military Local Office:

**USFWS Local Office:** 

Other Local Office:

**USFS Region:** 

**USFS** Forest/Grassland:

**USFS Ranger District:** 

Well Name: STONEWALL 28 FED COM

Well Number: 709H

Fee Owner: Bert Madera

Fee Owner Address:

Phone: (575)631-4444

Email:

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: Agreement Surface Access Agreement Need description:

**Surface Access Bond BLM or Forest Service:** 

**BLM Surface Access Bond number:** 

**USFS Surface access bond number:** 

#### **Section 12 - Other Information**

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

#### **ROW Applications**

SUPO Additional Information: OnSite meeting conducted 11/14/17

Use a previously conducted onsite? NO

**Previous Onsite information:** 

#### Other SUPO Attachment

Stonewall28FC\_GCP\_20180131090524.pdf STONEWALL28FC709H\_location\_20180131090525.pdf SUPO\_Stonewall\_28\_Fed\_Com\_709H\_20180131090633.pdf

## Section 3 - Unlined Pits

Injection well mineral owner:

Would you like to utilize Unlined Pit PWD options? NO

| Produced Water Disposal (PWD) Location:                                                                |                                                        |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| PWD surface owner:                                                                                     | PWD disturbance (acres):                               |
| Unlined pit PWD on or off channel:                                                                     |                                                        |
| Unlined pit PWD discharge volume (bbl/day):                                                            |                                                        |
| Unlined pit specifications:                                                                            |                                                        |
| Precipitated solids disposal:                                                                          |                                                        |
| Decribe precipitated solids disposal:                                                                  |                                                        |
| Precipitated solids disposal permit:                                                                   |                                                        |
| Unlined pit precipitated solids disposal schedule:                                                     |                                                        |
| Unlined pit precipitated solids disposal schedule attachment                                           | :                                                      |
| Unlined pit reclamation description:                                                                   |                                                        |
| Unlined pit reclamation attachment:                                                                    |                                                        |
| Unlined pit Monitor description:                                                                       |                                                        |
| Unlined pit Monitor attachment:                                                                        |                                                        |
| Do you propose to put the produced water to beneficial use?                                            |                                                        |
| Beneficial use user confirmation:                                                                      |                                                        |
| Estimated depth of the shallowest aquifer (feet):                                                      |                                                        |
| Does the produced water have an annual average Total Dissorthat of the existing water to be protected? | olved Solids (TDS) concentration equal to or less than |
| TDS lab results:                                                                                       |                                                        |
| Geologic and hydrologic evidence:                                                                      |                                                        |
| State authorization:                                                                                   |                                                        |
| Unlined Produced Water Pit Estimated percolation:                                                      |                                                        |
| Unlined pit: do you have a reclamation bond for the pit?                                               |                                                        |
| Is the reclamation bond a rider under the BLM bond?                                                    |                                                        |
| Unlined pit bond number:                                                                               |                                                        |
| Unlined pit bond amount:                                                                               |                                                        |
| Additional bond information attachment:                                                                |                                                        |
| Section 4 - Injection                                                                                  |                                                        |
| Would you like to utilize Injection PWD options? NO                                                    |                                                        |
| Produced Water Disposal (PWD) Location:                                                                |                                                        |
| PWD surface owner:                                                                                     | PWD disturbance (acres):                               |
| Injection PWD discharge volume (bbl/day):                                                              |                                                        |

|                                                        |               | •                          |
|--------------------------------------------------------|---------------|----------------------------|
| Injection well type:                                   | •             |                            |
| Injection well number:                                 |               | Injection well name:       |
| Assigned injection well API number?                    |               | Injection well API number: |
| Injection well new surface disturbance (acres):        |               |                            |
| Minerals protection information:                       |               |                            |
| Mineral protection attachment:                         |               |                            |
| Underground Injection Control (UIC) Permit?            |               |                            |
| UIC Permit attachment:                                 |               |                            |
| Section 5 - Surface Discharge                          | :             |                            |
| Would you like to utilize Surface Discharge PWD option | <b>ns?</b> NO |                            |
| Produced Water Disposal (PWD) Location:                |               |                            |
| PWD surface owner:                                     |               | PWD disturbance (acres):   |
| Surface discharge PWD discharge volume (bbl/day):      |               |                            |
| Surface Discharge NPDES Permit?                        |               |                            |
| Surface Discharge NPDES Permit attachment:             |               |                            |
| Surface Discharge site facilities information:         |               |                            |
| Surface discharge site facilities map:                 |               |                            |
| Section 6 - Other                                      |               |                            |
| Would you like to utilize Other PWD options? NO        |               |                            |
| Produced Water Disposal (PWD) Location:                |               |                            |
| PWD surface owner:                                     |               | PWD disturbance (acres):   |
| Other PWD discharge volume (bbl/day):                  |               |                            |
| Other PWD type description:                            |               |                            |
| Other PWD type attachment:                             |               |                            |
| Have other regulatory requirements been met?           | •             |                            |
| Other regulatory requirements attachment:              |               |                            |
|                                                        |               |                            |
|                                                        |               |                            |
|                                                        |               |                            |
|                                                        | • •           |                            |
|                                                        | : :           |                            |
|                                                        | •             |                            |
|                                                        | •             |                            |



U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

# Bond Info Data Report

#### **Bond Information**

Federal/Indian APD: FED

**BLM Bond number: NM2308** 

**BIA Bond number:** 

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

**BLM** reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

**Reclamation bond amount:** 

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Well Name: STONEWALL 28 FED COM

Well Number: 709H

|                   | NS-Foot  | NS Indicator | EW-Foot  | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract | Latitude       | Longitude            | County | State             | Meridian          | Lease Type | Lease Number   | Elevation     | MD        | ΔVT       |
|-------------------|----------|--------------|----------|--------------|------|-------|---------|-------------------|----------------|----------------------|--------|-------------------|-------------------|------------|----------------|---------------|-----------|-----------|
| PPP<br>Leg<br>#1  | 122<br>0 | FSL          | 230<br>9 | FEL          | 248  | 34E   | 28      | Aliquot<br>SWSE   | 32.1846        | -<br>103.4738        | LEA    | NEW<br>MEXI<br>CO | NEW<br>MEXI<br>CO | F          | NMNM<br>015684 | -<br>874<br>2 | 160<br>41 | 122<br>39 |
| EXIT<br>Leg<br>#1 | 330      | FSL          | 230<br>9 | FEL          | 248  | 34E   | 33      | Aliquot<br>SWSE   | 32.16768<br>1  | -<br>103.4737<br>887 | LEA    | NEW<br>MEXI<br>CO | NEW<br>MEXI<br>CO | F          | NMNM<br>120363 | -<br>874<br>2 | 222<br>14 | 122<br>39 |
| BHL<br>Leg<br>#1  | 230      | FSL          | 231<br>0 | FEL          | 248  | 34E   | 33      | Aliquot<br>SWSE   | 32.16740<br>71 | -<br>103.4737<br>883 | LEA    | NEW<br>MEXI<br>CO | NEW<br>MEXI<br>CO | F          | NMNM<br>120363 | -<br>874<br>2 | 223<br>14 | 122<br>39 |



U.S. Department of the Interior BUREAU OF LAND MANAGEMENT



#### Section 1 - General

Would you like to address long-term produced water disposal? NO

#### **Section 2 - Lined Pits**

Would you like to utilize Lined Pit PWD options? NO

**Produced Water Disposal (PWD) Location:** 

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

**Lined pit Monitor description:** 

**Lined pit Monitor attachment:** 

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):



U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

# Poetator Certification Data Report 05/18/2018

### **Operator Certification**

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Stan Wagner

Signed on: 01/31/2018

Title: Regulatory Specialsit

Street Address: 5509 Champions Drive

City: Midland

State: TX

**Zip:** 79702

Phone: (432)686-3689

Email address: Stan\_Wagner@eogresources.com

#### Field Representative

Representative Name: James Barwis

Street Address: 5509 Champions Drive

City: Midland

State: TX

Zip: 79706

Phone: (432)425-1204

Email address: james barwis@eogresources.com