	don .	FI
Form 3160-3 (June 2015) DEPARTMENT OF THE INTI BUREAU OF LAND MANAG APPLICATION FOR PERMIT TO DRIN	HOBBS	FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018
DEPARTMENT OF THE INTI BUREAU OF LAND MANAG	ERIORMAN STRENED	5. Lease Serial No. NMNM114991
DEPARTMENT OF THE INTI BUREAU OF LAND MANAGE APPLICATION FOR PERMIT TO DRIL		6. If Indian, Allotee or Tribe Name
ia. Type of work: 🔽 DRILL 🗌 REEN		7. If Unit or CA Agreement, Name and No.
Ib. Type of Well: Oil Well Gas Well Other		8. Lease Name and Well No.
1c. Type of Completion: Hydraulic Fracturing Single	Zone Multiple Zone	GREEN WAVE 20-32 FED STATE GOM
2. Name of Operator DEVON ENERGY PRODUCTION COMPANY LP 6137	·)	9: API-Well No.
	Phone No. (include area code)	10, Field and Pool, or Exploratory 7280 BRADLEY / BONE SPRIING
4. Location of Well (Report location clearly and in accordance with	·	11. Sec., T. R. M. or Blk. and Survey or Area
At surface NWSE / 2381 FSL / 1734 FEL / LAT 32.028218	11 / LONG -103.4889487	SEC 20 × T265 / R34E / NMP
At proposed prod. zone LOT 2 / 2488 FNL / 2300 FEL / LAT	32.0003256 / LONG -103.4907503	
14. Distance in miles and direction from nearest town or post office*		12. County or Parish 13. State LEA NM
location to nearest 316.12 feet	No of acres in lease 17. Spacin 80 \$18	Unit dedicated to this well
18. Distance from proposed location* 19	. Proposed Depth 20/BLM/ 57516et / 22498 feet FED: CO	BIA Bond No. in file
3355 feet 04	Approximate date work will start*	23. Estimated duration 45 days
	4. Attachments	
The following, completed in accordance with the requirements of On (as applicable)	shore Oil and Gas Order No. 1, and the H	Aydraulic Fracturing rule per 43 CFR 3162.3-3
 Well plat certified by a registered surveyor. A Drilling Plan. 	Item 20 above).	is unless covered by an existing bond on file (see
3. A Surface Use Plan (if the location is on National Forest System La SUPO must be filed with the appropriate Forest Service Office).		mation and/or plans as may be requested by the
25. Signature (Electronic Submission) Title	Name (Printed/Typed) Rebecca Deal / Ph: (405)228-8429	Date 9 10/25/2018
Regulatory Compliance Professional		
Approved by (Signature) (Electronic Submission)	Name (Printed/Typed) Cody Layton / Ph: (575)234-5959	Date 03/22/2019
Title Assistant, Field Manager Lands & Minerals	Office CARLSBAD	
Application approval does not warrant or certify that the applicant ho applicant to conduct operations thereon. Conditions of approval, if any are attached.	Ids legal or equitable title to those rights	in the subject lease which would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make of the United States any false, fictitious or fraudulent statements or re		jurisdiction.
6 ch Be 05/30/19	D WITH CONDITIONS	Vit 104/19 06/04/19
(Continued on page 2)	Unit	*(Instructions on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U(\$.C. 396; 43 CRR \$160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

Approval Date: 03/22/2019

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

SHL: NWSE / 2381 FSL / 1734 FEL / TWSP: 26S / RANGE: 34E / SECTION: 20 / LAT: 32.0282181 / LONG: -103.4889487 (TVD: Offeet, MD: Offeet)
 PPP: SWSE / 2381 FSL / 2300 FEL / TWSP: 26S / RANGE: 34E / SECTION: 20 / LAT: 32.02823 / LONG: -103.49078 (TVD: 12002 feet, MD: 12019 feet)
 BHL: LOT 2 / 2488 FNL / 2300 FEL / TWSP: 26S / RANGE: 34E / SECTION: 32 / LAT: 32.0003256 / LONG: -103.4907503 (TVD: 12019 feet, MD: 22498 feet)

BLM Point of Contact

Name: Tenille Ortiz Title: Legal Instruments Examiner Phone: 5752342224 Email: tortiz@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior. Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	DEVON ENERGY PRODUCTION COMPANY LP
LEASE NO.:	NMNM114991
WELL NAME & NO.:	17H – GREEN WAVE 20-32 FED STATE COM
SURFACE HOLE FOOTAGE:	2381'/S & 1734'/E
BOTTOM HOLE FOOTAGE	2488'/N & 2300'/E
LOCATION:	SECTION 20, T26S, R34E, NMPM
COUNTY:	LEA

COA

H2S	C Yes	r No	
Potash	S None	C Secretary	C R-111-P
Cave/Karst Potential	C Low	C Medium	C High
Variance	C None	• Flex Hose	COther
Wellhead	Conventional	C Multibowl	Both
Other	☐4 String Area	Capitan Reef	WIPP
Other	Fluid Filled	Cement Squeeze	F ilot Hole
Special Requirements	☐ Water Disposal	COM	Г Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 820 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8**

Page 1 of 11

hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing shall be set at approximately 5200 feet is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Operator has proposed to pump down 13-3/8" X 9-5/8" annulus. <u>Operator must run</u> a CBL from TD of the 9-5/8" casing to surface. Submit results to BLM.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Page 2 of 11

Alternate Casing Design:

- 4. The 13-3/8 inch surface casing shall be set at approximately 820 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - f. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - h. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

5. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Cement excess is less than 25%, more cement might be required.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- c. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- d. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Cement excess is less than 25%, more cement might be required.

Page 3 of 11

Operator has proposed to pump down 13-3/8" X 8-5/8" annulus. <u>Operator must run</u> a CBL from TD of the 8-5/8" casing to surface. Submit results to BLM.

- 6. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Alternate Casing Design 2:

- 7. The 13-3/8 inch surface casing shall be set at approximately 820 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - i. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - j. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - k. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - 1. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

8. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

e. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.

Page 4 of 11

- f. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Operator has proposed to pump down 13-3/8" X 9-5/8" annulus. <u>Operator must run</u> a CBL from TD of the 9-5/8" casing to surface. Submit results to BLM.

- 9. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.

Option 2:

- Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

Page 5 of 11

- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> <u>on the sign.</u>

Page 6 of 11

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)

Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

Page 7 of 11

3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> hours. WOC time will be recorded in the driller's log.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

Page 8 of 11

8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the

Page 9 of 11

plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.
- C. DRILLING MUD

Page 10 of 11

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

) 1

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

.

Page 11 of 11

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME:	DEVON ENERGY PRODUCTION COMPANY LP
LEASE NO.:	NMNM
WELL NAME & NO.:	17H – GREEN WAVE 20-32 FED STATE COM
SURFACE HOLE FOOTAGE:	2381'/S & 1734'/E
BOTTOM HOLE FOOTAGE	2488'/N & 2300'/E
LOCATION:	SECTION 20, T26S, R34E, NMPM
COUNTY:	LEA

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
🔀 Special Requirements
Ground-level Abandoned Well Marker
Range
Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
Production (Post Drilling)
Well Structures & Facilities
Pipelines
Electric Lines
Interim Reclamation
Final Abandonment & Reclamation

Page 1 of 18

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 2 of 18

V. SPECIAL REQUIREMENT(S)

Build as you go pads No grading outside of the subpad.

Temporary Fence Crossing Requirement

Where entry is granted across a fence line, the fence must be braced and tied off on both sides of the passageway with H-braces prior to cutting. Once the work is completed, the fence will be restored to its prior condition, or better. Devon shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Cattle Guard Requirement

Where entry is granted across a fence line for an access road, the fence must be braced and tied off on both sides of the passageway with H-braces prior to cutting. Once the work is completed, the fence will be restored to its prior condition with an appropriately sized cattle guard sufficient to carry out the project. Any new or existing cattle guards on the access route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. Devon shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations. Once the road is abandoned, the fence would be restored to its prior condition, or better. Devon shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

During construction, Devon shall minimize disturbance to existing fences, water lines, troughs, windmills, and other improvements on public lands. Devon is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the grazing permittee/allottee prior to disturbing any range improvement projects. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

Devon would adhere to the following stipulations:

- Upon abandonment, a low profile abandoned well marker will be installed to prevent raptor perching.
- Devon would need to construct and maintain escape ramps according to the following criteria:
 - Earthen escape ramps would be required to be constructed to sufficiently support livestock at no more than a 30-degree slope and spaced no more than 500 feet apart.
 - If trench is left open under an 8-hour time period, it would not be required to have an escape ramp; however, before the trench is backfilled, Lucid would inspect the trench for wildlife and remove any species that are trapped at a distance of at least 100 yards away from the trench.
- Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all power line structures placed on this right-ofway, should they be necessary to ensure the safety of large perching birds. The holder without liability or expense shall make such modifications and/or additions to the United States.

 A BLM Wildlife Biologist must be contacted by Devon prior to construction activities to determine if the raptor nest is active. Raptors nest on special, natural habitat features, such as trees, large brush, cliff faces and escarpments, will be protected by not allowing surface disturbance within up to 200 meters of nests or by delaying activity for up to 90 days, or a combination of both. Exceptions to this requirement for raptor nests will be considered if the nests expected to be disturbed are inactive, the proposed activity is of short duration (e.g. habitat enhancement projects, fences, pipelines), and will not result in continuing activity in proximity to the nest.

Page 4 of 18

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Page 5 of 18

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

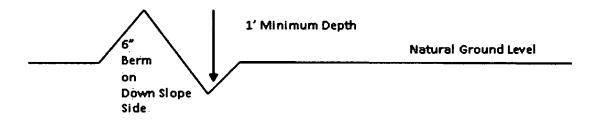
Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.


Drainage

Page 6 of 18

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

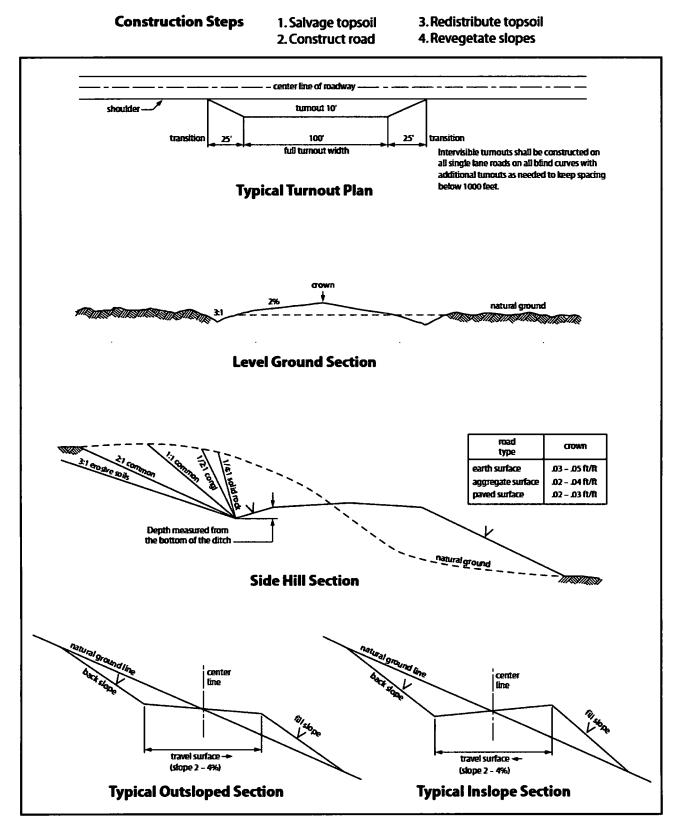
Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: 400' + 100' = 200' lead-off ditch interval 4%

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.


Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 7 of 18

Page 8 of 18

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Page 9 of 18

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

B. PIPELINES

BURIED PIPELINE STIPULATIONS

A copy of the application (Grant, APD, or Sundry Notice) and attachments, including conditions of approval, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C.6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

Page 10 of 18

4. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil or other pollutant, wherever found, shall be the responsibility of holder, regardless of fault. Upon failure of holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve holder of any responsibility as provided herein.

Page 11 of 18

5. All construction and maintenance activity will be confined to the authorized right-of-way.

6. The pipeline will be buried with a minimum cover of 36 inches between the top of the pipe and ground level.

7. The maximum allowable disturbance for construction in this right-of-way will be $\underline{30}$ feet:

- Blading of vegetation within the right-of-way will be allowed: maximum width of blading operations will not exceed **20** feet. The trench is included in this area. (*Blading is defined as the complete removal of brush and ground vegetation.*)
- Clearing of brush species within the right-of-way will be allowed: maximum width of clearing operations will not exceed <u>30</u> feet. The trench and bladed area are included in this area. (Clearing is defined as the removal of brush while leaving ground vegetation (grasses, weeds, etc.) intact. Clearing is best accomplished by holding the blade 4 to 6 inches above the ground surface.)
- The remaining area of the right-of-way (if any) shall only be disturbed by compressing the vegetation. (Compressing can be caused by vehicle tires, placement of equipment, etc.)

9. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

10. Vegetation, soil, and rocks left as a result of construction or maintenance activity will be randomly scattered on this right-of-way and will not be left in rows, piles, or berms, unless otherwise approved by the Authorized Officer. The entire right-of-way shall be recontoured to match the surrounding landscape. The backfilled soil shall be compacted and a 6 inch berm will be left over the ditch line to allow for settling back to grade.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

Page 12 of 18

12. The holder will reseed all disturbed areas. Seeding will be done according to the attached seeding requirements, using the following seed mix.

() seed mixture 1	() seed mixture 3
(X) seed mixture 2	() seed mixture 4
() seed mixture 2/LPC	() Aplomado Falcon Mixture

13. All above-ground structures not subject to safety requirements shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be color which simulates "Standard Environmental Colors" – Shale Green, Munsell Soil Color No. 5Y 4/2.

14. The pipeline will be identified by signs at the point of origin and completion of the right-ofway and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. All signs and information thereon will be posted in a permanent, conspicuous manner, and will be maintained in a legible condition for the life of the pipeline.

15. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder before maintenance begins. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway. As determined necessary during the life of the pipeline, the Authorized Officer may ask the holder to construct temporary deterrence structures.

16. Any cultural and/or paleontological resources (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

17. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes associated roads, pipeline corridor and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

18. <u>Escape Ramps</u> - The operator will construct and maintain pipeline/utility trenches that are not otherwise fenced, screened, or netted to prevent livestock, wildlife, and humans from becoming entrapped. At a minimum, the operator will construct and maintain escape ramps, ladders, or

Page 13 of 18

other methods of avian and terrestrial wildlife escape in the trenches according to the following criteria:

- a. Any trench left open for eight (8) hours or less is not required to have escape ramps; however, before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them at least 100 yards from the trench.
- b. For trenches left open for eight (8) hours or more, earthen escape ramps (built at no more than a 30 degree slope and spaced no more than 500 feet apart) shall be placed in the trench.

C. ELECTRIC LINES

STANDARD STIPULATIONS FOR OVERHEAD ELECTRIC DISTRIBUTION LINES

A copy of the grant and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq</u>. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

Page 14 of 18

4. There will be no clearing or blading of the right-of-way unless otherwise agreed to in writing by the Authorized Officer.

5. Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all powerline structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. Such modifications and/or additions shall be made by the holder without liability or expense to the United States.

Raptor deterrence will consist of but not limited to the following: triangle perch discouragers shall be placed on each side of the cross arms and a nonconductive perching deterrence shall be placed on all vertical poles that extend past the cross arms.

6. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

7. The BLM serial number assigned to this authorization shall be posted in a permanent, conspicuous manner where the power line crosses roads and at all serviced facilities. Numbers will be at least two inches high and will be affixed to the pole nearest the road crossing and at the facilities served.

8. Upon cancellation, relinquishment, or expiration of this grant, the holder shall comply with those abandonment procedures as prescribed by the Authorized Officer.

9. All surface structures (poles, lines, transformers, etc.) shall be removed within 180 days of abandonment, relinquishment, or termination of use of the serviced facility or facilities or within 180 days of abandonment, relinquishment, cancellation, or expiration of this grant, whichever comes first. This will not apply where the power line extends service to an active, adjoining facility or facilities.

10. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the

Page 15 of 18

Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

11. Special Stipulations:

- For reclamation remove poles, lines, transformer, etc. and dispose of properly.
- Fill in any holes from the poles removed.

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

Page 16 of 18

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well.

Page 17 of 18

Seed Mixture 2, for Sandy Sites

The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be <u>no</u> primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State law (s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. <u>When broadcasting the seed</u>, the pounds per <u>acre are to be doubled</u>. The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	l <u>b/acre</u>
Sand dropseed (Sporobolus cryptandrus)	1.0
Sand love grass (Eragrostis trichodes)	1.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

Page 18 of 18

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Rebecca Deal

Title: Regulatory Compliance Professional Street Address: 333 West Sheridan Avenue City: Oklahoma City State: OK

Zip: 73102

Signed on: 10/25/2018

Operator Certification Data Report

Phone: (405)228-8429

Email address: Rebecca.Deal@dvn.com

Field Representative

Representative Name: Travis Phibbs Street Address: 333 W SHERIDAN AVE City: OKC State: OK Phone: (575)748-9929 Email address: travis.phibbs@dvn.com

Zip: 73102

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

in the first of th

Zip: 73102

Application Data Report

APD ID: 10400035365

Submission Date: 10/25/2018

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Type: OIL WELL

Well Number: 17H Well Work Type: Drill ан 19 19 - Артан

03/25/2019

~

Show Final Text

APD ID: 10400035365 BLM Office: CARLSBAD	Tie to previous NOS? User: Rebecca Deal	Submission Date: 10/25/2018						
	Ilser: Rebecca Deal							
	User. Hebecca Deal	Title: Regulatory Compliance						
Federal/Indian APD: FED	Is the first lease penetrate	Professional Is the first lease penetrated for production Federal or Indian? FED						
Lease number: NMNM114991	Lease Acres: 1880							
Surface access agreement in place	ce? Allotted?	Reservation:						
Agreement in place? NO	Federal or Indian agreeme	nt:						
Agreement number:	· · ·	· · ·						
Agreement name:	,							
Keep application confidential? Ye	ES							
Permitting Agent? NO	APD Operator: DEVON EN	ERGY PRODUCTION COMPANY LP						
Operator letter of designation:								

Operator Info

Operator Organization	Name: DEVON	ENERGY PRODU	CTION COMPANY LF

Operator Address: 333 West Sheridan Avenue

Operator PO Box:

Operator City: Oklahoma City State: OK

Operator Phone: (800)583-3866

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? EXISTING	Mater Development Plan name: RATTLESNAKE 2 MDP							
Well in Master SUPO? NO	Master SUPO name:							
Well in Master Drilling Plan? NO	Master Drilling Plan name:							
Well Name: GREEN WAVE 20-32 FED STATE COM	Well Number: 17H	Well API Number:						
Field/Pool or Exploratory? Field and Pool	Field Name: BRADLEY Pool Name: BONE SPRIING							
		21						

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

Describe other minerals:																		
Is the proposed well in a Helium production area? N							N Use E	Existing W	'ell Pa	d? NO	Ne	ew s	surface o	disturi	bance	?		
Type of Weil Pad: MULTIPLE WELL							Multiple Well Pad Name: Number: 20-09 RATTLESNAKE MDP 1 PAD											
Well Class: HORIZONTAL								Der of Leg		IFAD								
Well Work Type: Drill																		
Well	Type:	OIL	WELL															
Desc	ribe V	Vell T	ype:							•								
Well	sub-T	ype:	INFILI	<u> </u>														
Desc	ribe s	ub-ty	pe:					•			· · ·							
	nce t								nearest v		FT	Dist	ance t	o le	ase line:	: 316.1	12 FT	
Rese	rvoir	well s	pacin	ig ass	ignec	l acre	s Mea	asurem	ent: 316 A	cres								
Well	•						_Stat	e_Com_	_17H_C_10	02_201810	25102	826.pd	f					
Well	work	start	Date:	04/01	/2020				Durat	i on: 45 D/	AYS							
· · ·	Sec	tion	3 - V	Vell	Loca	ation	Tat	ble										
						· · ·]									
	ey iyi ribe S			NGUL	АН													
Datu		-	, турс	.					Vertic	al Datum:	ΝΔΥΓ	188						
Surve									Vertie	ai Datain.								
				· ·								r						
NS-Foot NS Indicator EW-Foot EW Indicator Twsp Tange Range Section Aliquot/Lot/Tract							Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT		
SHL	238	FSL	173	FEL	26S	34E	20	Aliquot	32.02821	-	LEA		NEW	F	NMNM		0	0
Leg #1	1		4					NWSE	81	103.4889 487		MEXI CO	CO		114991	5		
		FSL	230	FEL	26S	34E	20	Aliquot	32.02823	•	LEA		NEW	F	NMNM	-	120	120
Leg #1	1		0					NWSE		103.4907 8		MEXI CO	MEXI CO		114991	864 7	19	02
							32.02823	- 103.4907 8	LEA		NEW MEXI CO	F	NMNM 114991	- 864 7	120 19	120 02		

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
EXIT Leg #1	100	FNL	230 0	FEL	26S	34E	32	Lot 2	32.00054 7	- 103.4907 5	LEA	NEW MEXI CO		S	STATE	- 922 0	224 98	125 75
BHL Leg #1	248 8	FNL	230 0	FEL	26S	34E	32	Lot 2	32.00032 56	- 103.4907 503	LEA	NEW MEXI CO	NEW MEXI CO	S	STATE	- 922 0	224 98	125 75

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400035365

Submission Date: 10/25/2018

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

Well Type: OIL WELL

Show Final Text

Well Work Type: Drill

Section 1 - Geologic Formations

Formation	Farmation Marra		True Vertical	1			Producing
ID 1	Formation Name	Elevation 3348	Depth 0	Depth 0	Lithologies SANDSTONE.OTHER :	Mineral Resources NONE	No
		3346			SURFACE	NONE	
2	RUSTLER	2653	695	695	SANDSTONE	NONE	No
3	TOP SALT	2283	1065	1065	SALT	NONE	No
4	BASE OF SALT	-1738	5085	5085	OTHER	NONE	No
5	BELL CANYON	-2002	5350	5350	SANDSTONE	NATURAL GAS,OIL	No
6	CHERRY CANYON	-3083	6430	6430	SANDSTONE	NATURAL GAS,OIL	No
7	BRUSHY CANYON	-4712	8060	8060	SANDSTONE	NATURAL GAS,OIL	No
8	BONE SPRINGS	-6267	9615	9615	SANDSTONE	NATURAL GAS,OIL	No
9	BONE SPRING 1ST	-7232	10580	10580	SANDSTONE	NATURAL GAS,OIL	No
10	BONE SPRING 2ND	-7792	11140	11140	SANDSTONE	NATURAL GAS,OIL	No
11	BONE SPRING 3RD	-8862	12210	12210	SANDSTONE	NATURAL GAS,OIL	Yes
12	WOLFCAMP	-9282	12630	12630	SHALE	NATURAL GAS, OIL	No

Section 2 - Blowout Prevention

Rating Depth: 12575

Requesting Variance? YES

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

Choke Diagram Attachment:

10M_BOPE_CHK_DR_CLS_RKL_20190306150625.pdf

BOP Diagram Attachment:

10M_BOPE_CHK_DR_CLS_RKL_20190306150634.pdf

	Rating Depth: 520	0	•	

Requesting Variance? YES

Choke Diagram Attachment:

5M_BOPE__CK_20190306150514.pdf

BOP Diagram Attachment:

5M_BOPE__CK_20190306150522.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	725	0	725			725	H-40		OTHER - BTC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5200	0	5200			5200	J-55		OTHER - BTC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
-	PRODUCTI ON	8.75	5.5	NEW	ΑΡΙ	N	0	22498	0	12575			22498	Р- 110			1.12 5	1.25	BUOY	1.6	BUOY	1.6

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

Casing ID:	1 String Type:SURFACE
Inspection	Document:
Spec Docu	ment:
Tapered St	ring Spec:
Casing Des	sign Assumptions and Worksheet(s):
Surf_(Csg_Ass_20181025103540.pdf
Casing ID: Inspection	2 String Type:INTERMEDIATE Document:
Spec Docu	ment:
Tapered St	ring Spec:
Casing Des	sign Assumptions and Worksheet(s):
Int_Ce	sg_Ass_20181009072743.pdf
Casing ID:	3 String Type: PRODUCTION
Inspection	Document:
Spec Docu	ment:
Tapered Sti	ring Spec:
	sign Assumptions and Worksheet(s):
Casing Des	

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	725	563	1.34	14.8	755	50	с	1% Calcium Chloride

	Lead	0	4700	1034	1.85	12.9	1914	30	С	(65:35) Class C Cement: Poz (Fly Ash): 6% BWOC Bentonite + 5% BWOW Sodium Chloride + 0.125 lbs/sks Poly-E-Flake
INTERMEDIATE	Tail	4700	5200	153	1.33	14.8	204	30	С	0.125 lbs/sack Poly-F- Flake
PRODUCTION	Lead	. 5000) 1188 4	665	3.27	.9	2174	25	TUNED	TUNED LITE
PRODUCTION	Tail	1188 4	8 2249 8	2793	1.2	14.5	3352	25	н	(50:50) Clas H Cement: Poz (Fly Ash) + 0.5% bwoc HALAD-344 + 0.4% bwoc CFR-3 + 0.2% BWOC HR-601 + 2% bwoc Bentonite

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
5200	2249 8	WATER-BASED MUD	8.4	10				12			
0	725	SPUD MUD	8.34	8.6				2			
725	5200	SALT SATURATED	9	10				2			

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will run GRMWD from TD to from KOP. Cement bond logs will be run in vertical to determine top of cement. Stated logs run will be in the Completion Report and submitted to the BLM. List of open and cased hole logs run in the well:

CALIPER,CBL,DS,GR,MUDLOG

Coring operation description for the well:

N/A

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4700

Anticipated Surface Pressure: 1933.5

Anticipated Bottom Hole Temperature(F): 175

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Green_Wave_20_32_Fed_State_Com_17H_H2S_PLAN_20181025104902.pdf

Well Name: GREEN WAVE 20-32 FED STATE COM

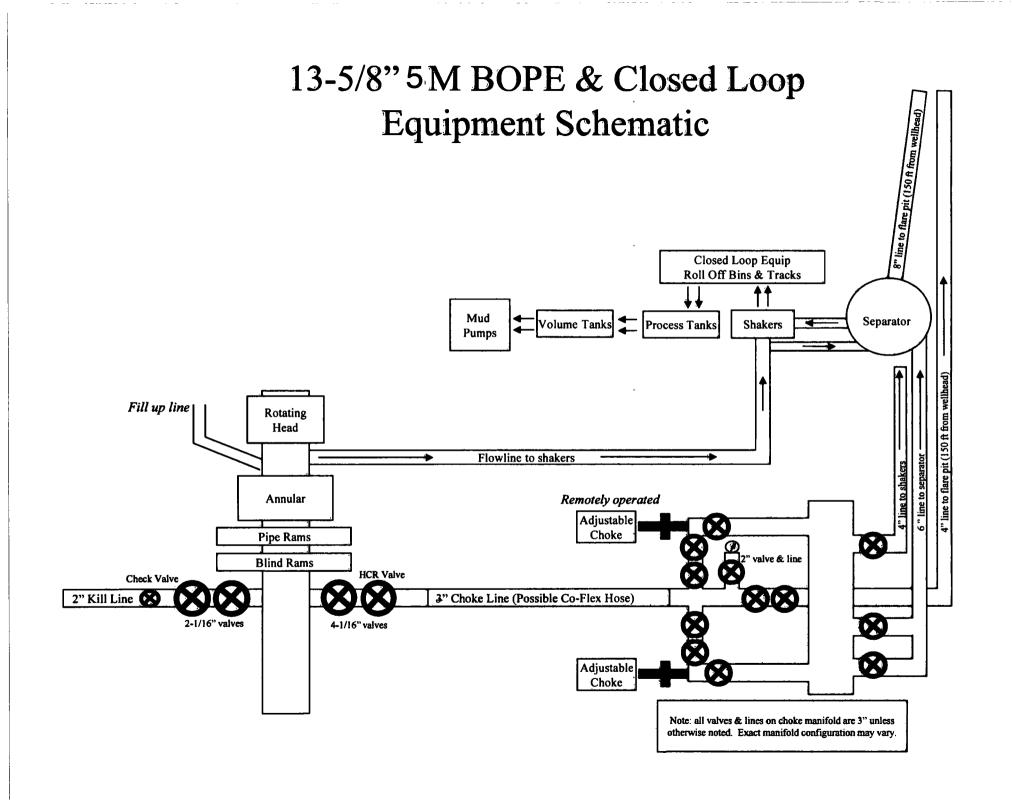
Well Number: 17H

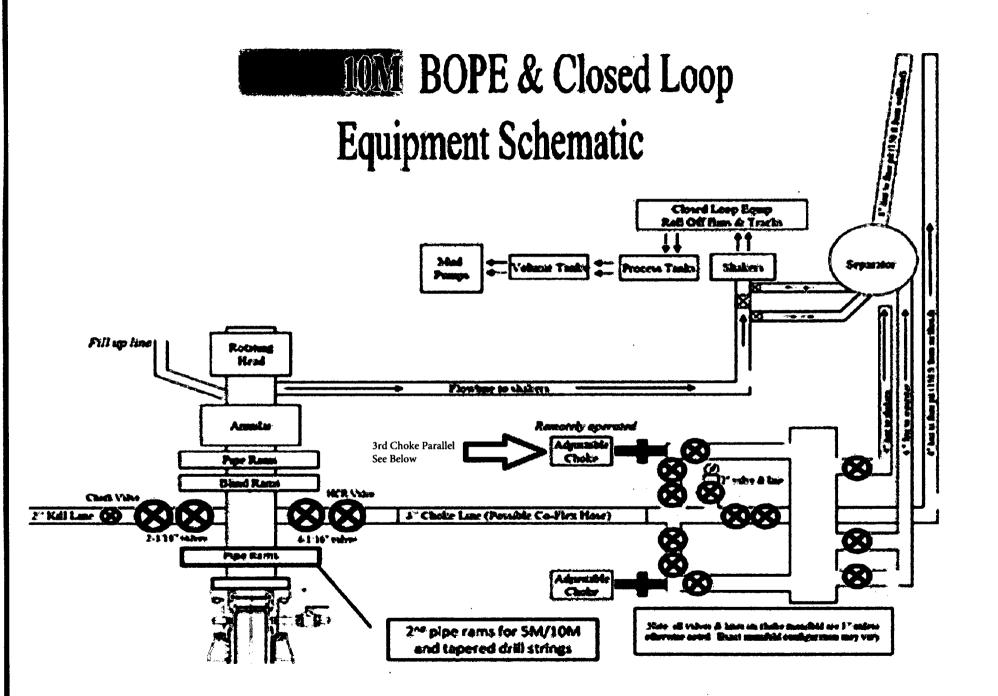
Section 8 - Other Information

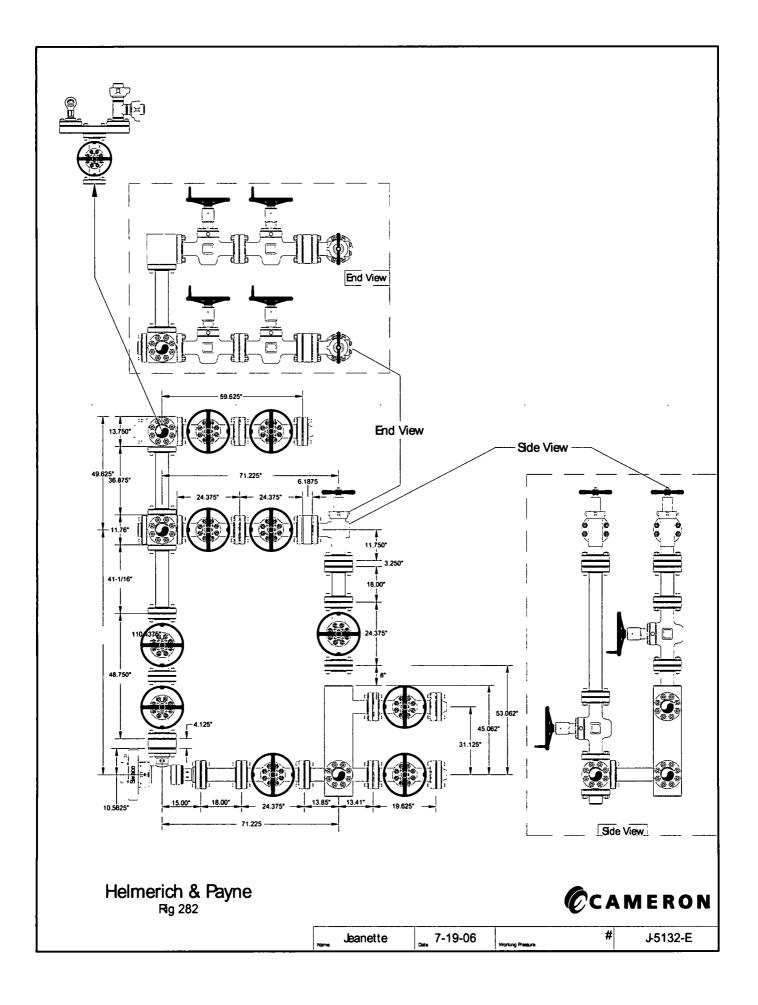
Proposed horizontal/directional/multi-lateral plan submission:

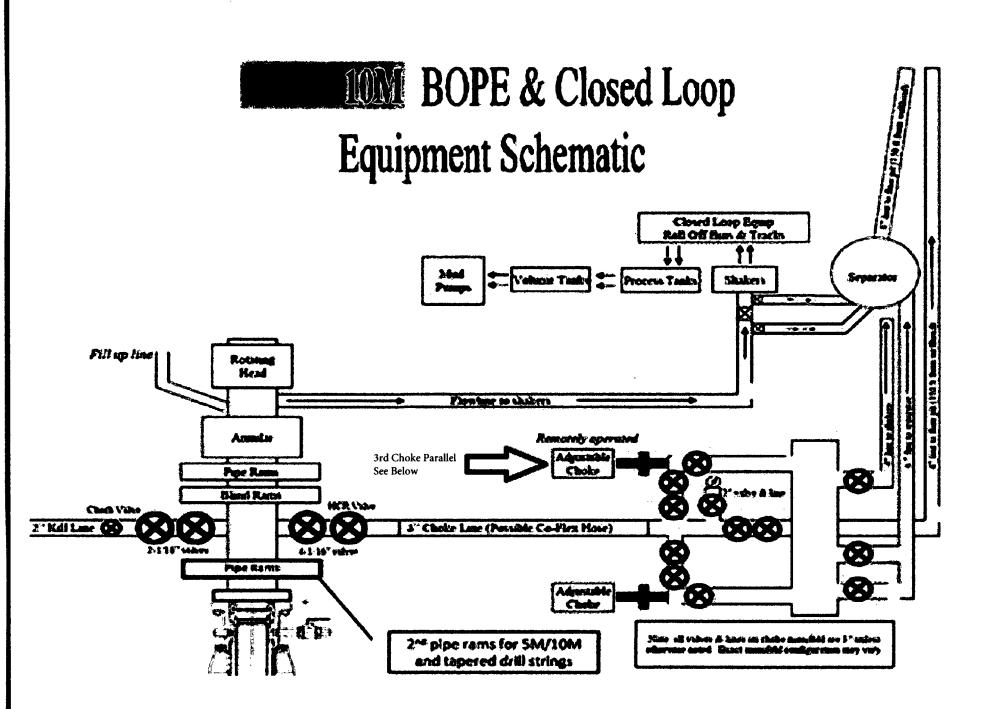
Green_Wave_20_32_Fed_State_Com_17H_DIR_SVY_20181025104936.pdf Green_Wave_20_32_Fed_State_Com_17H_Plot_20181025104936.pdf

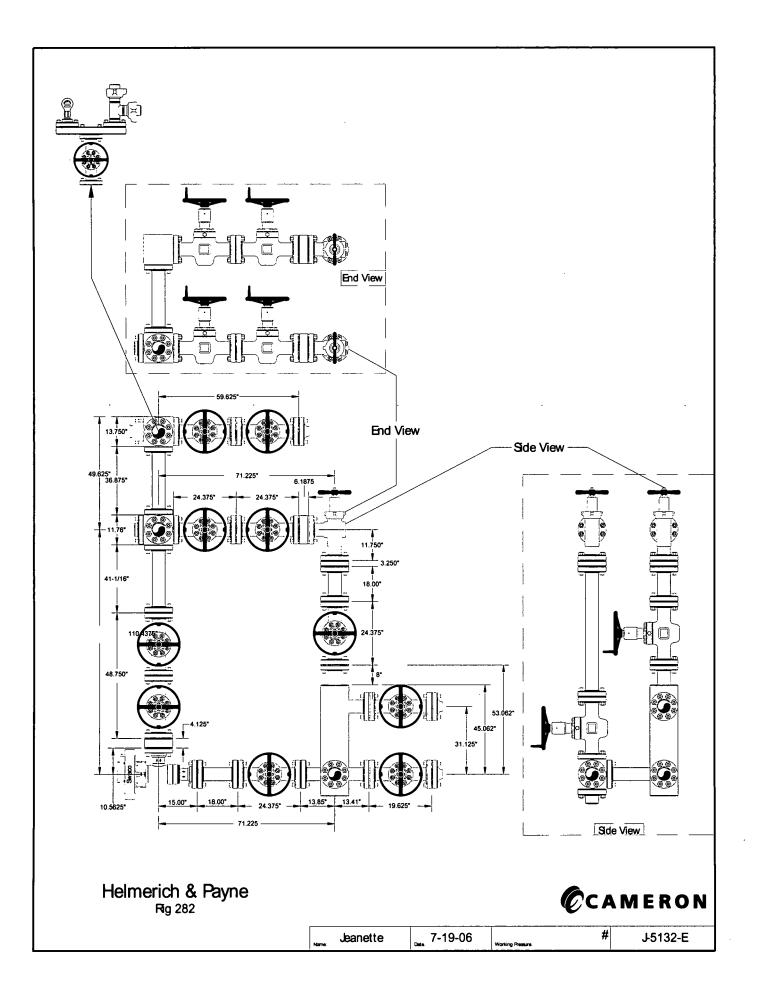
Other proposed operations facets description:

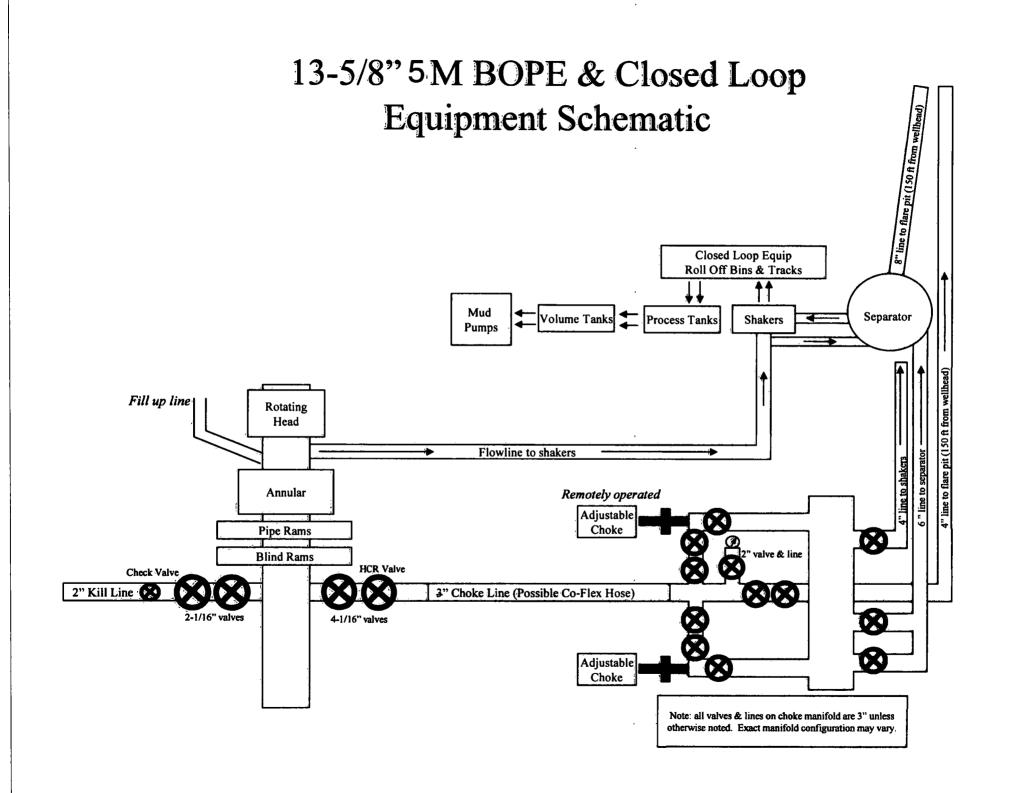

DRILLING PLAN DIRECTIONAL SURVEY PLOT MULTI-BOWL WELLHEAD MULTI-BOWL VERBIAGE GAS CAPTURE PLAN CLOSED LOOP DESIGN CO-FLEX VARIANCE ANTI-COLLISION PLAN SPUDDER RIG DOCUMENT

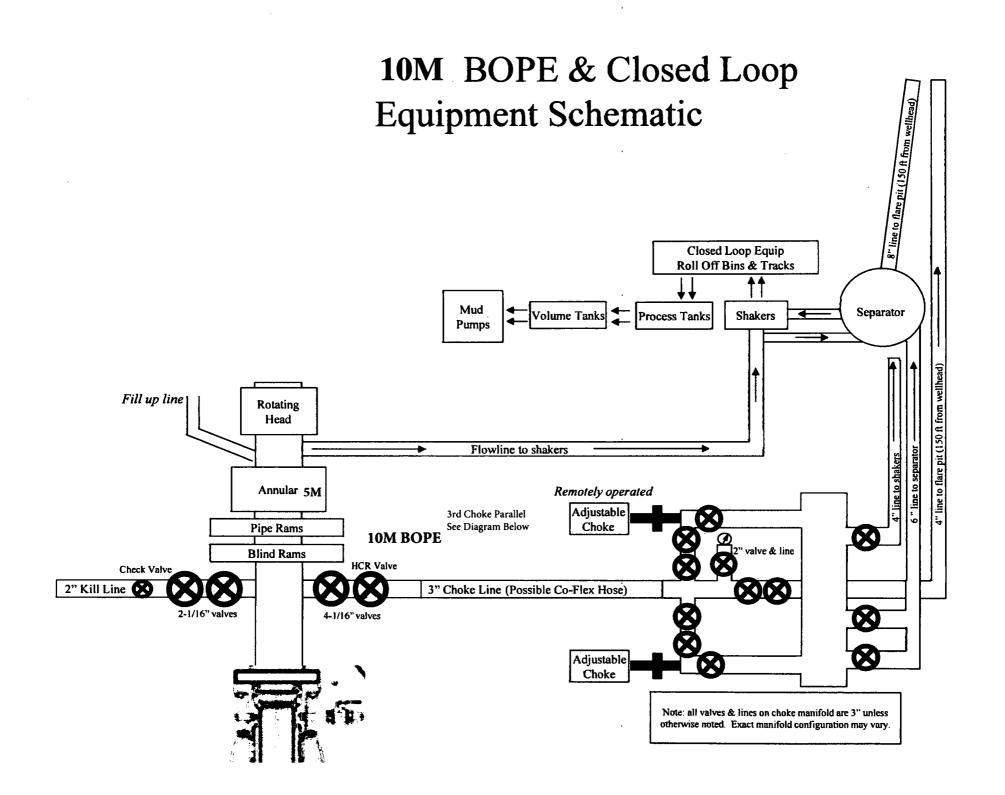

Other proposed operations facets attachment:

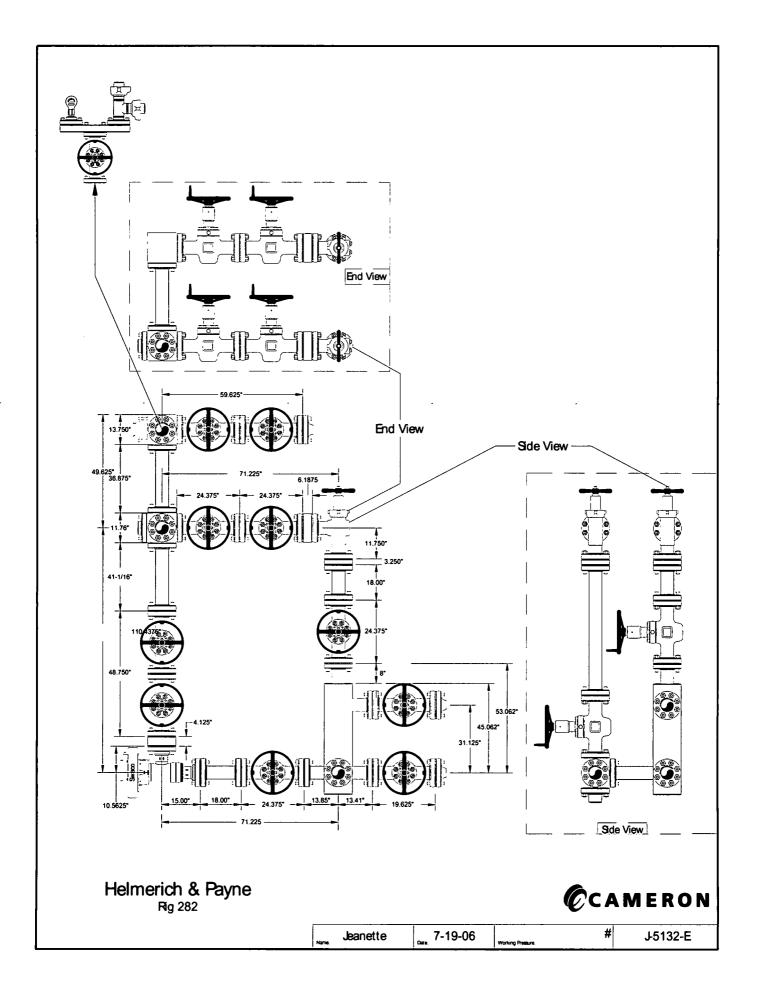

Spudder_Rig_Info_20180823120206.pdf Clsd_Loop_20180823120203.pdf Green_Wave_20_32_Fed_WP20_9_GCP_Form_20181025104950.pdf 5_500in_17_00__P110RY_DWC_C_20190306151139.pdf 8.625_32.00_L80HC_20190306151140.pdf 9.625_40__J_55_20190306151140.pdf 9.625_40__P110EC_BTC_V_M_4230_Collapse_20190306151141.pdf 13.375_48__H40_20190306151141.pdf MB_Wellhd_10M__SDT_1815_20190306151142.pdf MB_Wellhd_10M_2_20190306151143.pdf MB_Verb_10M_20190306151226.pdf Green_Wave_20_32_Fed_State_Com_17H_Drilling_Document_R1_20190306151805.pdf

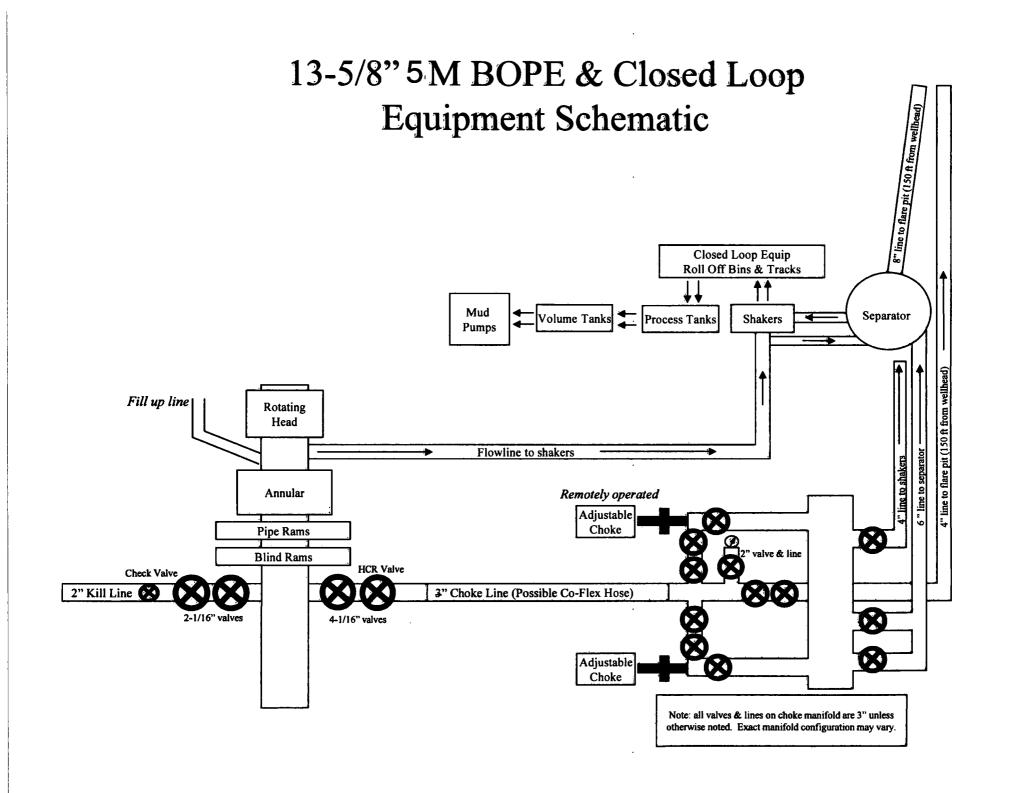

Other Variance attachment:

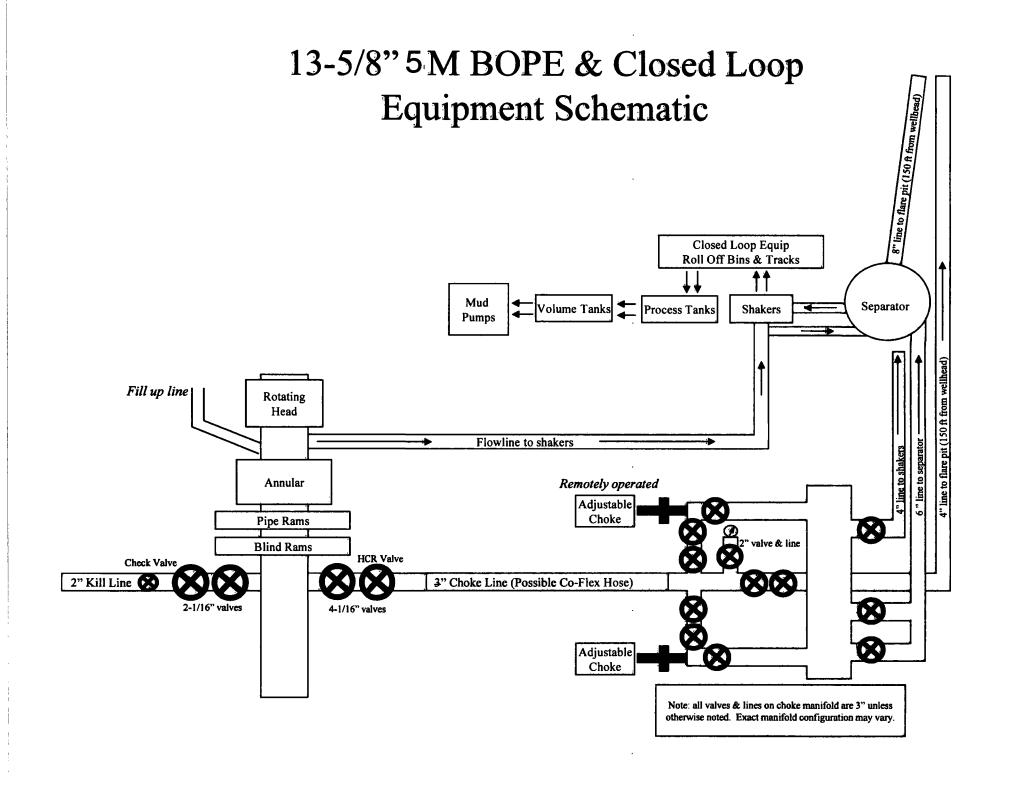

Co_flex_20180823120220.pdf 10M_BOPE_CHK_DR_CLS_RKL_20190306151243.pdf Annular_Preventer_Summary_20190306151244.pdf

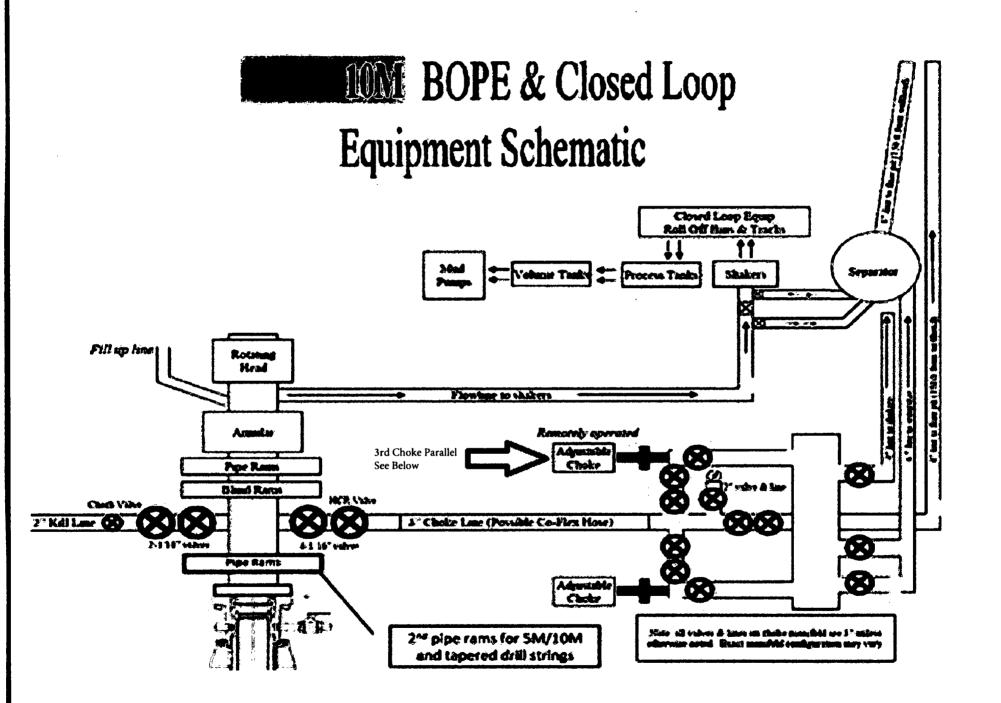


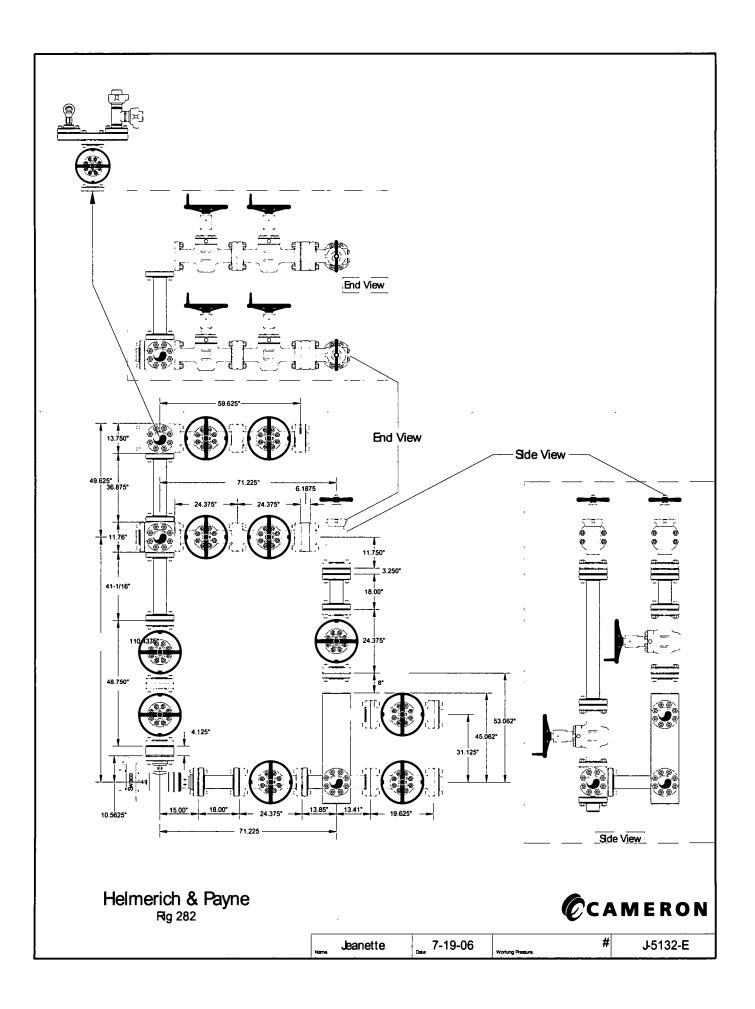


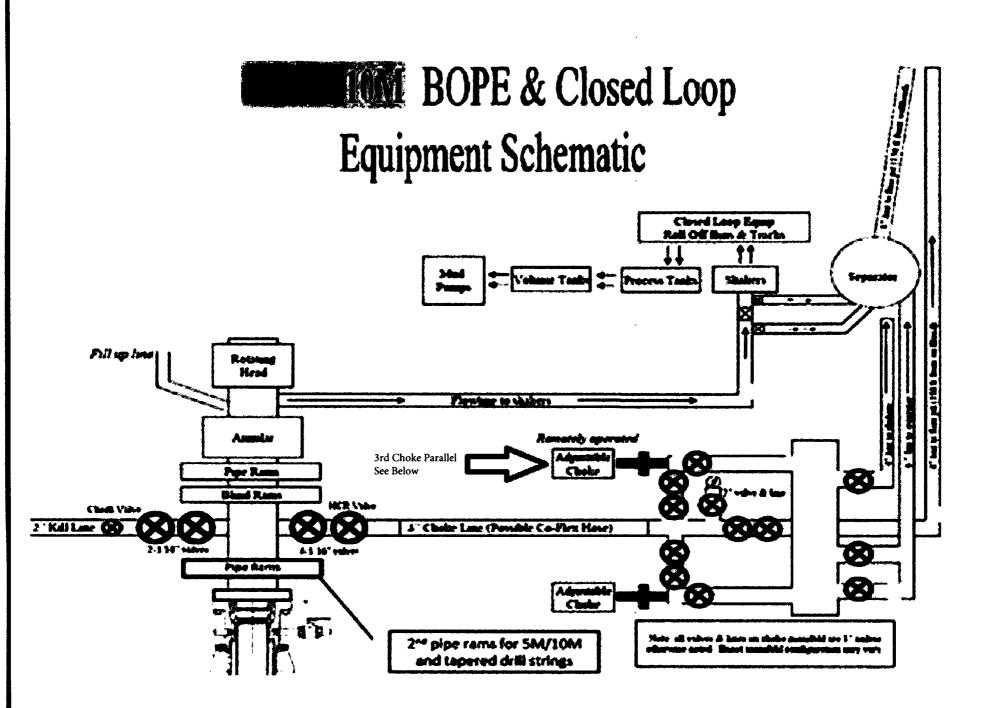


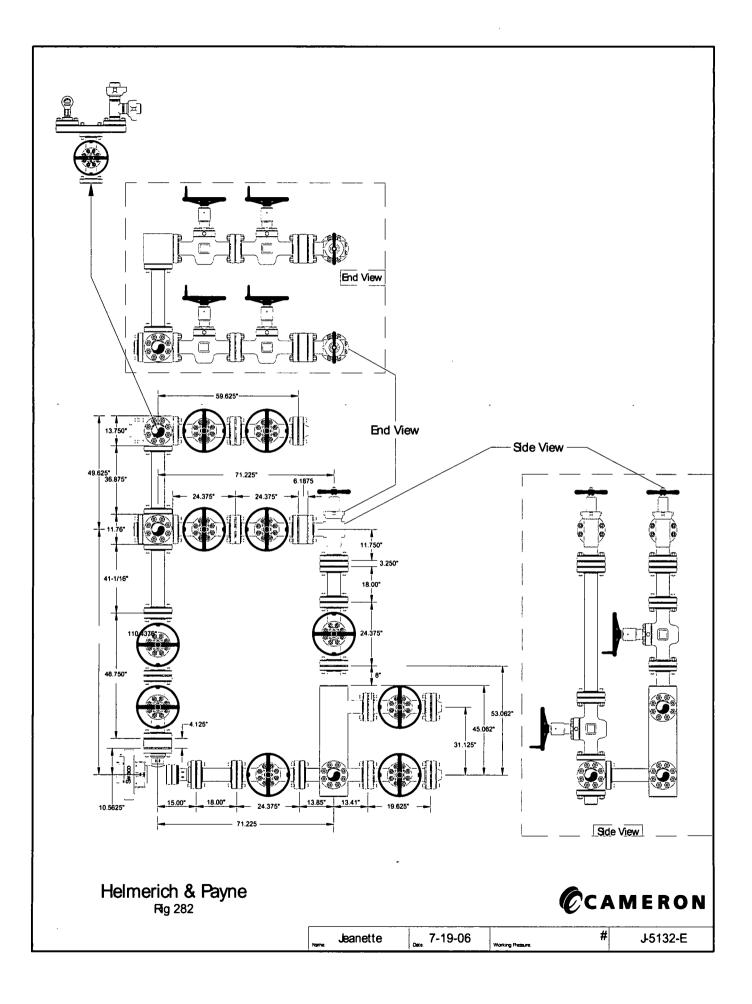


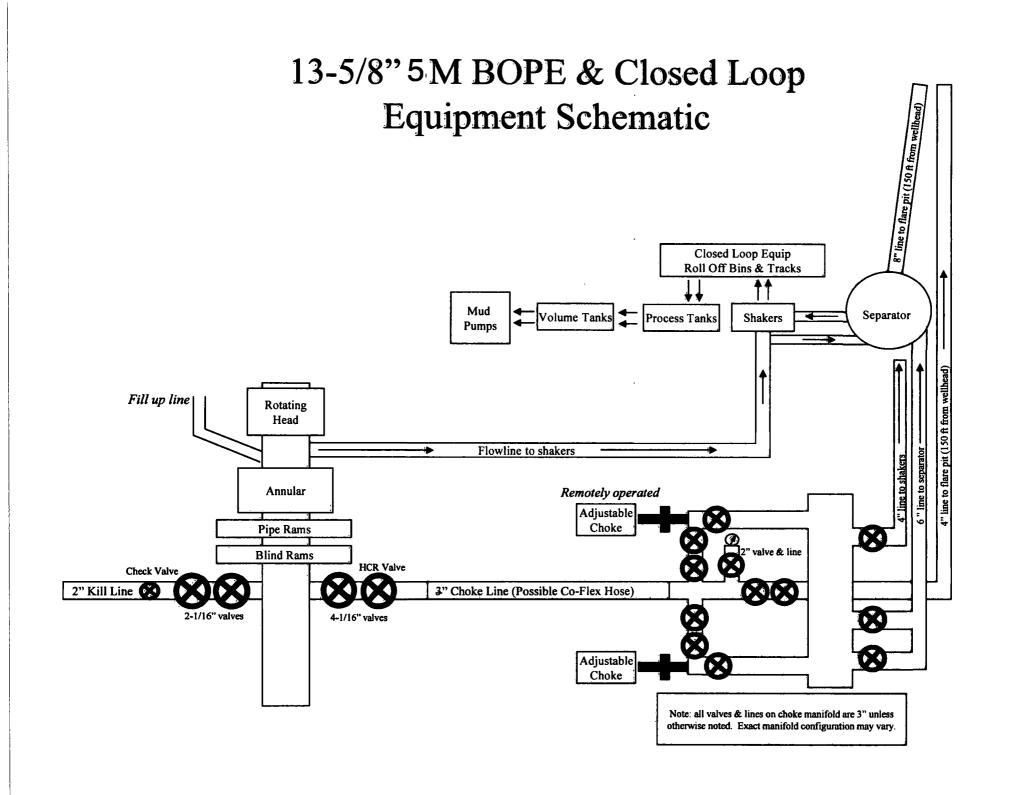


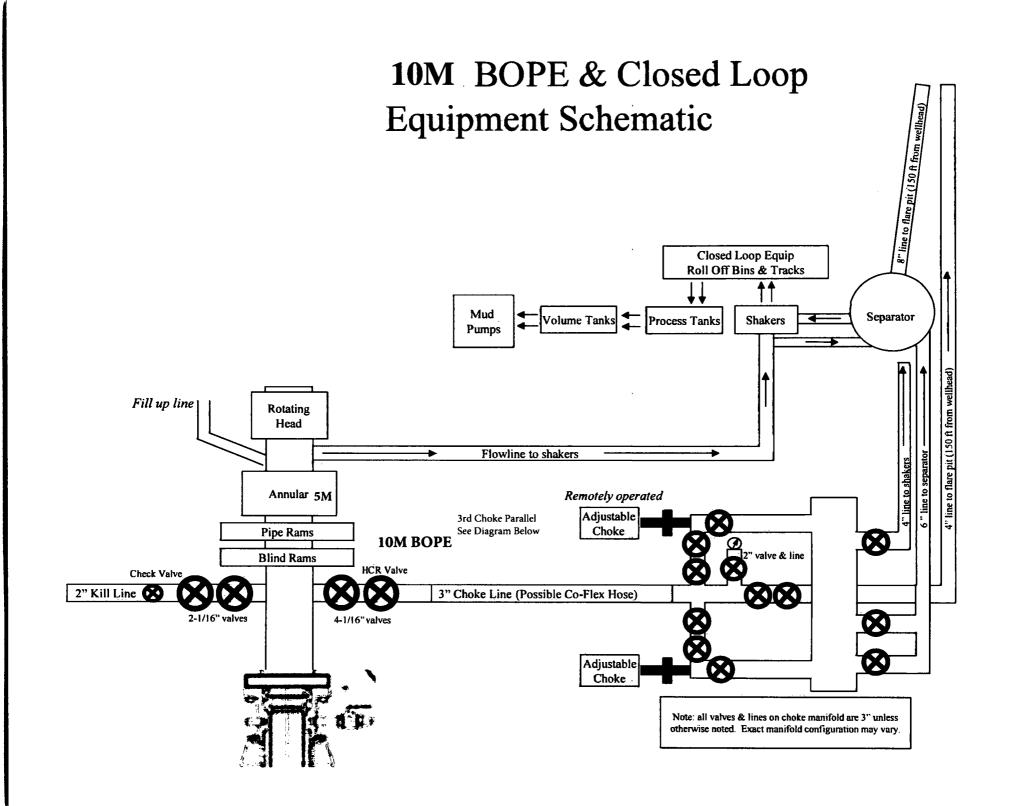


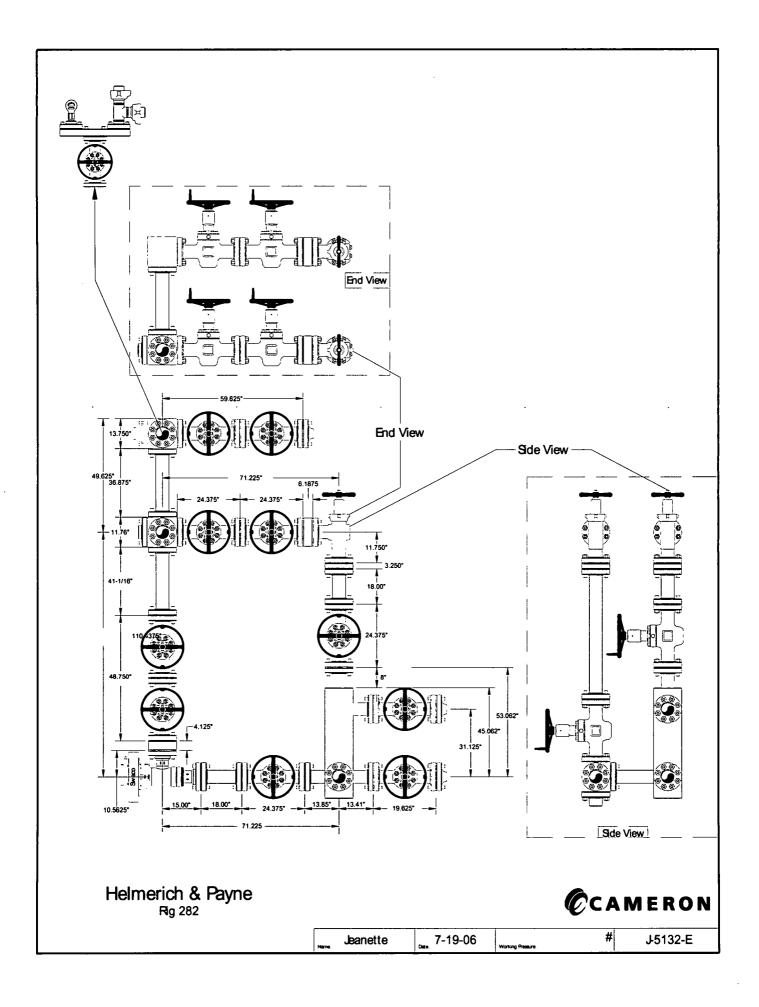


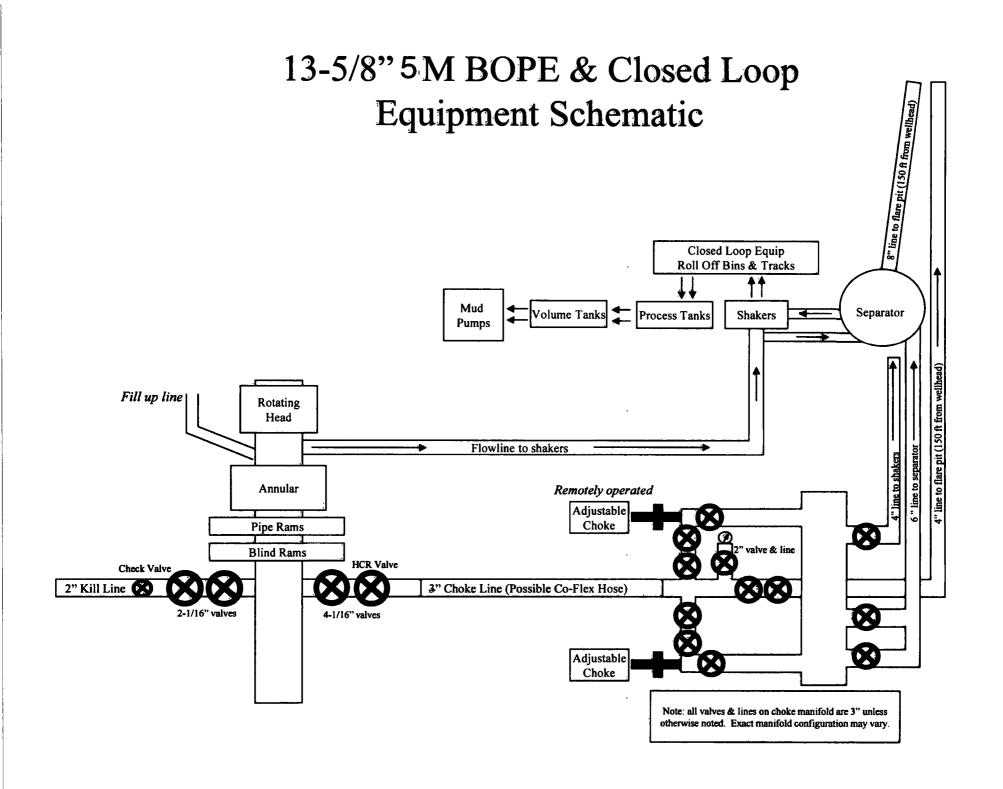












Intermediate

Intermediate Casing Burst Design					
Load Case	External Pressure	Internal Pressure			
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi			
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section			
Fracture @ Shoe	Formation Pore Pressure	Dry gas			

	Intermediate Casing Collapse Desig	zn	
Load Case	External Pressure	Internal Pressure	
Full Evacuation	Water gradient in cement, mud above TOC	None	
Cementing	Wet cement weight	Water (8.33ppg)	

Intermediate Casi	Intermediate Casing Tension Design						
Load Case Assumptions							
Overpull	100kips						
Runing in hole	2 ft/s						
Service Loads	N/A						

Intermediate

Intermediate Casing Burst Design					
Load Case	External Pressure	Internal Pressure			
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi			
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section			
Fracture @ Shoe	Formation Pore Pressure	Dry gas			

Intermediate Casing Collapse Design		
Load Case External Pressure Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC	None
Cementing	Wet cement weight	Water (8.33ppg)

Intermediate Casing Tension Design		
Load Case Assumptions		
Overpull 100kips		
Runing in hole 2 ft/s		
Service Loads N/A		

Production

Production Casing Burst Design		
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Fluid in hole (water or produced water) + test psi
Tubing Leak	Formation Pore Pressure	Packer @ KOP, leak below surface 8.6 ppg packer fluid
Stimulation	Formation Pore Pressure	Max frac pressure with heaviest frac fluid

Production Casing Collapse Design		
Load Case External Pressure Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC.	None
Cementing	Wet cement weight	Water (8.33ppg)

Production Casing Tension Design		
Load Case Assumptions		
Overpull 100kips		
Runing in hole 2 ft/s		
Service Loads N/A		

Surface

Surface Casing Burst Design		
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section
Displace to Gas	Formation Pore Pressure	Dry gas from next casing point

Surface Casing Collapse Design		
Load Case External Pressure Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC	None
Cementing	Wet cement weight	Water (8.33ppg)

Surface Casing Tension Design		
Load Case Assumptions		
Overpull 100kips		
Runing in hole 3 ft/s		
Service Loads N/A		

Intermediate

Intermediate Casing Burst Design		
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section
Fracture @ Shoe	Formation Pore Pressure	Dry gas

Intermediate Casing Collapse Design		
Load Case External Pressure Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC	None
Cementing Wet cement weight Water (8.33ppg)		

Intermediate Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole 2 ft/s		
Service Loads N/A		

Production

Production Casing Burst Design		
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Fluid in hole (water or produced water) + test psi
Tubing Leak	Formation Pore Pressure	Packer @ KOP, leak below surface 8.6 ppg packer fluid
Stimulation	Formation Pore Pressure	Max frac pressure with heaviest frac fluid

Production Casing Collapse Design				
Load Case External Pressure Internal Pressure				
Full Evacuation	Water gradient in cement, mud above TOC.	None		
Cementing	Wet cement weight	Water (8.33ppg)		

Production Casing Tension Design			
Load Case Assumptions			
Overpull	100kips		
Runing in hole	2 ft/s		
Service Loads N/A			

Production

Production Casing Burst Design			
Load Case	External Pressure	Internal Pressure	
Pressure Test	Formation Pore Pressure	Fluid in hole (water or produced water) + test psi	
Tubing Leak	Formation Pore Pressure	Packer @ KOP, leak below surface 8.6 ppg packer fluid	
Stimulation	Formation Pore Pressure	Max frac pressure with heaviest frac fluid	

Production Casing Collapse Design				
Load Case External Pressure Internal Pressure				
Full Evacuation	Water gradient in cement, mud above TOC.	None		
Cementing	Wet cement weight	Water (8.33ppg)		

Production Casing Tension Design			
Load Case Assumptions			
Overpull	100kips		
Runing in hole	2 ft/s		
Service Loads N/A			

Surface

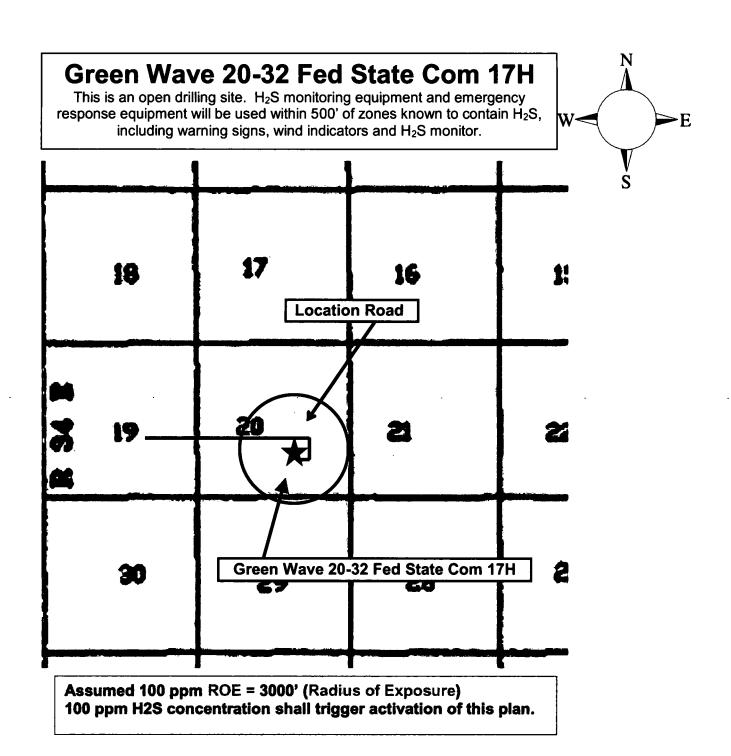
Surface Casing Burst Design			
Load Case	External Pressure	Internal Pressure Max mud weight of next hole- section plus Test psi	
Pressure Test	Formation Pore Pressure		
Drill Ahead Formation Pore Pres		Max mud weight of next hole section	
Displace to Gas	Formation Pore Pressure	Dry gas from next casing point	

Surface Casing Collapse Design				
Load Case External Pressure Internal Pressure				
Full Evacuation Water gradient in cement, mud above TOC		None		
Cementing	Wet cement weight	Water (8.33ppg)		

Surface Casing Tension Design			
Load Case Assumptions			
Overpull	100kips		
Runing in hole	3 ft/s		
Service Loads	N/A		

Devon Energy Center 333 West Sheridan Avenue Oklahoma City, Oklahoma 73102-5015

Hydrogen Sulfide (H₂S) Contingency Plan


For

Green Wave 20-32 Fed State Com 17H

Sec-20 T-26S R-34E 2381' FSL & 1734' FEL LAT. = 32.0282181' N (NAD83) LONG = 103.4889487' W

Lea County NM

Devon Energy Corp. Cont Plan. Page 1

Escape

Crews shall escape upwind of escaping gas in the event of an emergency release of gas. Escape can be facilitated from the location entrance road. Crews should then block the entrance to the location from the lease road so as not to allow anyone traversing into a hazardous area. The blockade should be at a safe distance outside of the ROE. <u>There are no homes or buildings in or near the ROE</u>.

Assumed 100 ppm ROE = 3000'

Devon Energy Corp. Cont Plan. Page 2

100 ppm H₂S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- Have received training in the
 - Detection of H₂S, and
 - Measures for protection against the gas,
 - Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H ₂ S	1.189 Air = 1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air = 1	2 ppm	N/A	1000 ppm

Characteristics of H₂S and SO₂

Contacting Authorities

Devon Energy Corp. personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available. The following call list of essential and potential responders has been prepared for use during a release. Devon Energy Corp. Company response must be in coordination with the State of New Mexico's 'Hazardous Materials Emergency Response Plan' (HMER)

Hydrogen Sulfide Drilling Operation Plan

I. HYDROGEN SULFIDE (H₂S) TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards and characteristics of hydrogen sulfide (H₂S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H₂S metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H₂S Drilling Operations Plan and Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H_2S zone (within 3 days or 500 feet) and weekly H_2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H_2S Drilling Operations Plan and the Public Protection Plan.

II. HYDROGEN SULFIDE TRAINING

Note: All H_2S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H_2S .

1. Well Control Equipment

- A. Flare line
- B. Choke manifold Remotely Operated
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- D. Auxiliary equipment may include if applicable: annular preventer and rotating head.
- E. Mud/Gas Separator

2. Protective equipment for essential personnel:

30-minute SCBA units located at briefing areas, as indicated on well site diagram, with escape units available in the top doghouse. As it may be difficult to communicate audibly while wearing these units, hand signals shall be utilized.

3. H₂S detection and monitoring equipment:

Portable H₂S monitors positioned on location for best coverage and response. These units have warning lights which activate when H₂S levels reach 10 ppm and audible sirens which activate at 15 ppm. Sensor locations:

- Bell nipple
 Possum Belly/Shale shaker
- Rig floor
 Choke manifold
- Cellar

Visual warning systems:

- A. Wind direction indicators as shown on well site diagram
- B. Caution/ Danger signs shall be posted on roads providing direct access to locations. Signs will be painted a high visibility yellow with black lettering of sufficient size to be reasonable distance from the immediate location. Bilingual signs will be used when appropriate.

4. Mud program:

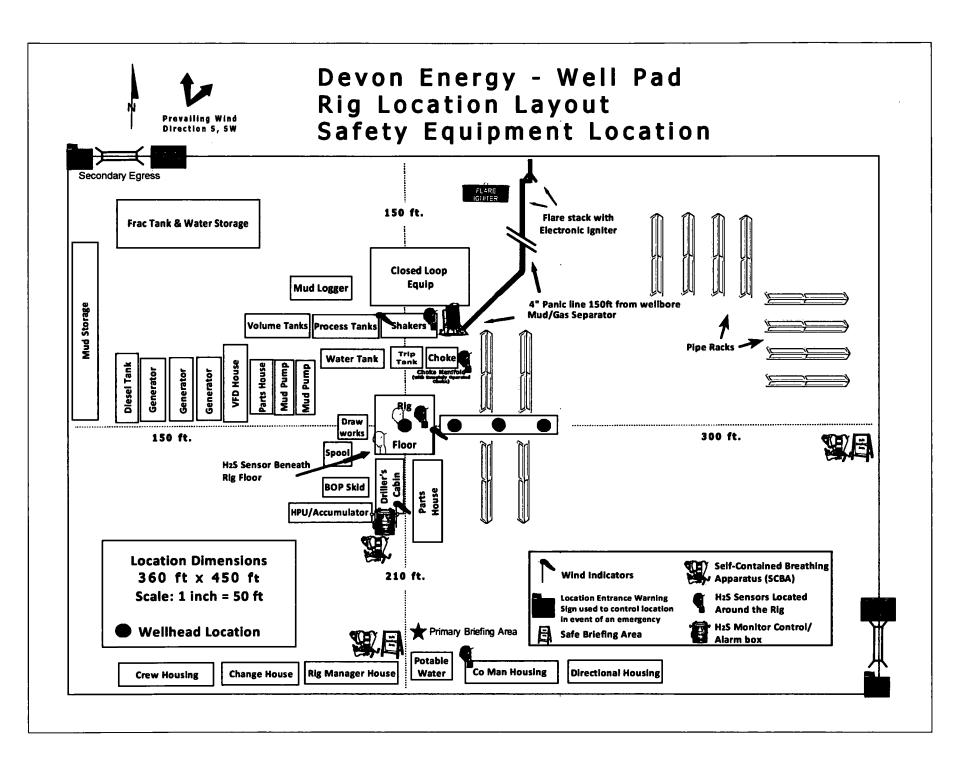
The mud program has been designed to minimize the volume of H₂S circulated to surface. Proper mud weight, safe drilling practices and the use of H₂S scavengers will minimize hazards when penetrating H₂S bearing zones.

5. Metallurgy:

- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold lines, and valves shall be H₂S trim.
- B. All elastomers used for packing and seals shall be H₂S trim.

6. Communication:

- A. Company personnel have/use cellular telephones in the field.
- B. Land line (telephone) communications at Office


7. Well testing:

- A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safety and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H₂S environment will use the closed chamber method of testing.
- B. There will be no drill stem testing.

Devon Energy Corp. Cont Plan. Page 6

Drilling Su	upervisor – Basin – Mark Kramer	405-823-479
EHS Prof	essional – Laura Wright	405-439-812
Agency	<u>Call List</u>	
Lea	Hobbs	
County	Lea County Communication Authority	393-398
(575)	State Police	392-55
	City Police	397-92
	Sheriff's Office	393-25
	Ambulance	9
	Fire Department	397-93
	LEPC (Local Emergency Planning Committee)	393-28
	NMOCD	393-61
	US Bureau of Land Management	393-36
Eddy	Carlsbad	
<u>County</u> 575)	State Police	885-31
	City Police	885-21
	Sheriff's Office	887-75
	Ambulance	9
	Fire Department	885-31
	LEPC (Local Emergency Planning Committee)	887-37
	US Bureau of Land Management	887-65
	NM Emergency Response Commission (Santa Fe)	(505) 476-96
	24 HR	(505) 827-91
	National Emergency Response Center	(800) 424-88
	National Pollution Control Center: Direct	(703) 872-60
	For Oil Spills	(800) 280-71
	Emergency Services	(000)20011
	Wild Well Control	(281) 784-47
	Cudd Pressure Control (915) 699- 0139	(915) 563-33
	Halliburton	(575) 746-27
	B. J. Services	(575) 746-35
Give	Native Air – Emergency Helicopter – Hobbs	(575) 392-64
GPS	Flight For Life - Lubbock, TX	(806) 743-99
position:		(806) 747-89
	Med Flight Air Amb - Albuquerque, NM	(575) 842-44
	Lifeguard Air Med Svc. Albuquerque, NM	(800) 222-12
	Poison Control (24/7)	(575) 272-31
	Oil & Gas Pipeline 24 Hour Service	(800) 364-43
	NOAA – Website - www.nhc.noaa.gov	

Prepared in conjunction with Dave Small

Devon Energy Corp. Cont Plan. Page 8

WCDSC Permian NM

Lea County (NAD83 New Mexico East) Sec 20-T26S-R34E Green Wave 20-32 Fed State Com 17H

Wellbore #1

Plan: Permit Plan 1

Standard Planning Report - Geographic

19 October, 2018

Database:										
		r5000.141_Pro				ordinate Refer		Well Green Wave		State Com 17H
Company:		SC Permian NM		- - 0	TVD Refe			RKB @ 3379.90		
Project:		ounty (NAD83 0-T26S-R34E	New Mexico	East)	MD Refer			RKB @ 3379.90ft		
Site:		0-1265-R34E 1 Wave 20-32 F	ad State Co		North Ref			Grid Minimum Curvati		
Well: Wellbore:	Wellbo		ed State Co	m 17 H	Survey Calculation Method: Minimum Curvature					
		t Plan 1								
Design:				•					· - · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Project	Lea Co	ounty (NAD83 N	New Mexico I	East)		· · · · · ·				
Map System:		e Plane 1983			System Dat	tum:	Me	an Sea Level		
Geo Datum:		nerican Datum								
Map Zone:		xico Eastern Zo	one							
Site	Sec 20	-T26S-R34E								······································
Site Position:			Nor	thing:	375	,305.15 usft	Latitude:			32.028952
From:	Mar	D		ting:		,412.02 usft	Longitude:			-103.484420
Position Uncer				Radius:		13-3/16 "	Grid Converg	епсе:		0.45 °
			· · · ·				······································			
Well		Wave 20-32 Fe					····	· · · ·		·······
Well Position	+N/-S			Northing:		375,027.02		tude:		32.028218
	+E/-W			Easting:		803,010.64	usft Lon	gitude:		-103.488949
Position Uncer	rtainty		0.50 ft	Wellhead Elevat	ion:		Gro	und Level:		3,354.90 fi
r · · · ·				•		•			•	· · · · · ·
Weilbore	Wellbo	ore #1	<u> </u>							
Magnetics	Mo	del Name	Sam	ple Date	Declina	tion	Dip A	-		Strength
					(*)		•))	(nT)
		IGRF2015		9/26/2018		6.76		59.88	47,6	99.82746491
Design	Permit	Plan 1		· · · · · · ·	····		· · · · · · · ·	-	-	
Audit Notes:										
Audit Notes: Version:			Phi	ase: P	ROTOTYPE	Tie	On Depth:	(0.00	
	n:)epth From (+N/-S	+E	/-W	Dire	ction	
Version:	n:	[Depth From ((ft)		+N/-S (ft)	+E (1	/-W ft)	Dire (ction ")	
Version:	n:	[)epth From (+N/-S	+E (1	/-W	Dire (ction	
Version: Vertical Section			Depth From ((ft) 0.00	TVD)	+N/-S (ft)	+E (1	/-W ft)	Dire (ction ")	
Version: Vertical Section Plan Survey To	ool Program	Date	Depth From ((ft)	TVD)	+N/-S (ft)	+E (1	/-W ft)	Dire (ction ")	
Version: Vertical Section	ool Program	Date h To	Depth From ((ft) 0.00	TVD)	+N/-S (ft)	+E (1	/-W ft)	Dire (ction ")	
Version: Vertical Section Plan Survey To Depth Fro (ft)	ool Program om Depti (ft	Date h To :) Survey	Depth From ((ft) 0.00 10/19/2018 (Wellbore)	TVD)	+N/-S (ft) 0.00 Tool Name	+E (1	/-W ft) 00	Dire (ction ")	· · · · · · · · · · · · · · · · · · ·
Version: Vertical Section Plan Survey To Depth Fro	ool Program om Depti (ft	Date h To	Depth From ((ft) 0.00 10/19/2018 (Wellbore)	TVD)	+N/-S (ft) 0.00	+E (1 0.	/-W ft) 00	Dire (ction ")	
Version: Vertical Section Plan Survey To Depth Fro (ft)	ool Program om Depti (ft	Date h To :) Survey	Depth From ((ft) 0.00 10/19/2018 (Wellbore)	TVD)	+N/-S (ft) 0.00 Tool Name MWD+HDGM	+E (1 0.	/-W ft) 00	Dire (ction ")	
Version: Vertical Section Plan Survey To Depth Fro (ft)	ool Program om Depti (ft	Date h To :) Survey	Depth From ((ft) 0.00 10/19/2018 (Wellbore)	TVD)	+N/-S (ft) 0.00 Tool Name MWD+HDGM	+E (1 0.	/-W ft) 00	Dire (ction ")	
Version: Vertical Section Plan Survey To Depth Fro (ft) 1 Plan Sections	ool Program om Depti (ft	Date h To :) Survey	Depth From ((ft) 0.00 10/19/2018 (Wellbore) Plan 1 (Wellb	TVD)	+N/-S (ft) 0.00 Tool Name MWD+HDGM	+E (1 0. + HDGM	/-W (t) 00 Remarks	Dire (ction ")	
Version: Vertical Section Plan Survey To Depth Fro (ft) 1 Plan Sections Measured	ool Program om Depti (ft 0.00 22,4	Date h To t) Survey 198.25 Permit	Depth From ((ft) 0.00 10/19/2018 (Wellbore) Plan 1 (Wellb	TVD) 3 pore #1)	+N/-S (ft) 0.00 Tool Name MWD+HDGM OWSG MWD	+E (1 0. + HDGM	/-W (t) 00 Remarks Build	Dire (18;	ction °) 2.70	
Version: Vertical Section Plan Survey To Depth Fro (ft) 1 Plan Sections	ool Program om Depti (ft	Date h To :) Survey	Depth From ((ft) 0.00 10/19/2018 (Wellbore) Plan 1 (Wellb	TVD)	+N/-S (ft) 0.00 Tool Name MWD+HDGM	+E (1 0. + HDGM	/-W (t) 00 Remarks	Dire (ction ")	Target
Version: Vertical Section Plan Survey To Depth Frn (ft) 1 Plan Sections Measured Depth (ft)	ool Program om Depti (ft 0.00 22,4 Inclination (°)	Date h To t) Survey 198.25 Permit 198.25 Permit (°)	Depth From ((ft) 0.00 10/19/2018 (Wellbore) Plan 1 (Wellb Plan 1 (Wellb Vertical Depth (ft)	TVD) 3 bore #1) +N/-S (ft)	+N/-S (ft) 0.00 Tool Name MWD+HDGM OWSG MWD +E/-W (ft)	+E (1 0. + HDGM Dogleg Rate (°/100usft)	/-W ft) 00 Remarks Build Rate (°/100usft)	Dire (18/ 18/ 18/ 18/ 18/ 18/ 18/ 18/ 18/ 18/	ction °) 2.70 TFO (°)	Target
Version: Vertical Section Plan Survey To Depth Frn (ft) 1 Plan Sections Measured Depth (ft) 0.00	ool Program om Depti (ft 0.00 22,4 Inclination (°) 0.00	Date h To t) Survey 198.25 Permit 198.25 Permit (°) 0.00	Depth From ((ft) 0.00 10/19/2018 (Wellbore) Plan 1 (Wellb Plan 1 (Wellb Vertical Depth (ft) 0.00	TVD) 3 bore #1) +N/-S (ft) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+N/-S (ft) 0.00 Tool Name MWD+HDGM OWSG MWD +E/-W (ft) 0.00	+E (1 0. + HDGM Dogleg Rate (*/100usft) 0.00	/-W ft) 00 Remarks Build Rate (*/100usft) 0.00	Dire (18/ 18/ 18/ 18/ 18/ 18/ 18/ 18/ 18/ 18/	ction *) 2.70 TFO (*) 0.00	Target
Version: Vertical Section Plan Survey To Depth Frn (ft) 1 Plan Sections Measured Depth (ft) 0.00 2,500.00	ool Program om Depti (ft 0.00 22,4 Inclination (*) 0.00 0.00	Date h To t) Survey 198.25 Permit 498.25 Permit 498.25 0.00 0.00 0.00	Depth From ((ft) 0.00 10/19/2018 (Wellbore) Plan 1 (Wellb Vertical Depth (ft) 0.00 2,500.00	TVD) 3 bore #1) +N/-S (ft) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+N/-S (ft) 0.00 Tool Name MWD+HDGM OWSG MWD +E/-W (ft) 0.00 0.00	+E (1 0. + HDGM Dogleg Rate (°/100usft) 0.00 0.00	/-W ft) 00 Remarks Build Rate (°/100usft) 0.00 0.00	Dire (18; 18; 18; 18; 18; 18; 18; 18; 18; 18;	Ction *) 2.70 TFO (*) 0.00 0.00	Target
Version: Vertical Section Plan Survey To Depth Fro- (ft) 1 Plan Sections Measured Depth (ft) 0.00 2,500.00 2,866.07	Dool Program om Deptile 0.00 22,4 Inclination (*) 0.00 3.66	Date h To t) Survey 198.25 Permit 498.25 Permit Azimuth (°) 0.00 0.00 270.00	Depth From ((ft) 0.00 10/19/2018 (Wellbore) Plan 1 (Wellb Vertical Depth (ft) 0.00 2,500.00 2,865.82	TVD) +N/-S (ft) 0 0.00 0 0.00 0 0.00 0 0.00	+N/-S (ft) 0.00 Tool Name MWD+HDGM OWSG MWD +E/-W (ft) 0.00 0.00 -11.69	+E ((0.) + HDGM Dogleg Rate (°/100usft) 0.00 0.00 1.00	/-W ft) 00 Remarks Build Rate (°/100usft) 0.00 0.00 1.00	Dire (18; 18; 18; 18; 18; 18; 18; 18; 18; 18;	Ction *) 2.70 TFO (*) 0.00 0.00 270.00	Target
Version: Vertical Section Plan Survey To Depth Fro- (ft) 1 Plan Sections Measured Depth (ft) 0.00 2,500.00 2,866.07 11,425.84	ool Program om Depti (ft 0.00 22,4 Inclination (*) 0.00 0.00 3.66 3.66	Date h To t) Survey 498.25 Permit 498.25 Permit Azimuth (°) 0.00 0.00 270.00 270.00	Depth From ((ft) 0.00 10/19/2018 (Wellbore) Plan 1 (Wellt Vertical Depth (ft) 0.00 2,500.00 2,865.82 11,408.12	TVD) +N/-S (ft) 0 0.00 0 0.0	+N/-S (ft) 0.00 Tool Name MWD+HDGM OWSG MWD +E/-W (ft) 0.00 0.00 -11.69 -558.21	+E ((0.) + HDGM + HDGM Dogleg Rate (°/100usft) 0.00 0.00 1.00 0.00	/-W ft) 00 Remarks Build Rate (*/100usft) 0.00 0.00 1.00 0.00	Dire (18; 18; 18; 18; 18; 18; 18; 18; 18; 18;	Ction *) 2.70 TFO (*) 0.00 0.00 270.00 0.00 0.00	Target
Version: Vertical Section Plan Survey To Depth Fro- (ft) 1 Plan Sections Measured Depth (ft) 0.00 2,500.00 2,866.07 11,425.84 11,669.88	Dool Program om Deptile 0.00 22,4 Inclination (*) 0.00 3.66 3.66 3.66 0.00 0.00	Date h To t) Survey 498.25 Permit 498.25 Permit 0.00 0.00 270.00 270.00 0.00 0.00	Depth From ((ft) 0.00 10/19/2018 (Wellbore) Plan 1 (Wellt Vertical Depth (ft) 0.00 2,500.00 2,865.82 11,408.12 11,652.00	TVD) +N/-S (ft) 0 0.00 0 0.	+N/-S (ft) 0.00 Tool Name MWD+HDGM OWSG MWD OWSG MWD +E/-W (ft) 0.00 0.00 -11.69 -558.21 -566.00	+E ((0.) + HDGM + HDGM Dogleg Rate (°/100usft) 0.00 0.00 1.00 0.00 1.50	/-W ft) 00 Remarks Build Rate (*/100usft) 0.00 0.00 1.00 0.00 -1.50	Dire (18; 18; 18; 18; 18; 18; 18; 18; 18; 18;	Ction *) 2.70 TFO (*) 0.00 0.00 270.00 0.00 180.00	Target
Version: Vertical Section Plan Survey Tc Depth Fr (ft) 1 Plan Sections Measured Depth (ft) 0.00 2,500.00 2,866.07 11,425.84 11,669.88 12,019.92	Dool Program om Depti (ft 0.00 22,4 Inclination (*) 0.00 0.00 3.66 3.66 0.00 0.00 0.00	Date h To 1) Survey 498.25 Permit 498.25 Permit (°) 0.00 0.00 270.00 270.00 0.00 0.00 0.00	Depth From ((ft) 0.00 10/19/2018 (Wellbore) Plan 1 (Wellt Vertical Depth (ft) 0.00 2,500.00 2,865.82 11,408.12 11,652.00 12,002.04	TVD) +N/-S (ft) 0 0.00 0 0.	+N/-S (ft) 0.00 Tool Name MWD+HDGM OWSG MWD OWSG MWD +E/-W (ft) 0.00 0.00 -11.69 -558.21 -566.00 -566.00	+E (1 0. 0. 1 + HDGM + HDGM Dogleg Rate (°/100usft) 0.00 0.00 1.00 0.00 1.50 0.00	/-W ft) 00 Remarks Build Rate (*/100usft) 0.00 0.00 1.00 0.00 -1.50 0.00	Dire (18: 18: 18: 18: 18: 18: 18: 18: 18: 18:	Ction *) 2.70 TFO (*) 0.00 0.00 270.00 0.00 180.00 0.00	
Version: Vertical Section Plan Survey To Depth Fro- (ft) 1 Plan Sections Measured Depth (ft) 0.00 2,500.00 2,866.07 11,425.84 11,669.88	Dol Program om Depti (fr 0.00 22,4 Inclination (*) 0.00 0.00 3.66 3.66 0.00 0.00 0.00 90.00	Date h To t) Survey 498.25 Permit 498.25 Permit 0.00 0.00 270.00 270.00 0.00 0.00	Depth From ((ft) 0.00 10/19/2018 (Wellbore) Plan 1 (Wellt Vertical Depth (ft) 0.00 2,500.00 2,865.82 11,408.12 11,652.00	TVD) 3 5 5 5 5 5 5 5 5 5 5 5 5 5	+N/-S (ft) 0.00 Tool Name MWD+HDGM OWSG MWD OWSG MWD +E/-W (ft) 0.00 0.00 -11.69 -558.21 -566.00	+E ((0.) + HDGM + HDGM Dogleg Rate (°/100usft) 0.00 0.00 1.00 0.00 1.50	/-W ft) 00 Remarks Build Rate (*/100usft) 0.00 0.00 1.00 0.00 -1.50	Dire (18; 18; 18; 18; 18; 18; 18; 18; 18; 18;	Ction *) 2.70 TFO (*) 0.00 0.00 270.00 0.00 180.00 0.00 179.51	Target PBHL - Green Wave 2 PBHL - Green Wave 2

Database:	EDM r5000.141 Prod US	Local Co-ordinate Reference:	Well G
	-	Local Co-ordinate Reference:	vven G
Company:	WCDSC Permian NM	TVD Reference:	RKB @
Project:	Lea County (NAD83 New Mexico East)	MD Reference:	RKB @
Site:	Sec 20-T26S-R34E	North Reference:	Grid
Well:	Green Wave 20-32 Fed State Com 17H	Survey Calculation Method:	Minimu
Wellbore:	Wellbore #1		
Desian:	Permit Plan 1		

Well Green Wave 20-32 Fed State Com 17H RKB @ 3379.90ft

RKB @ 3379.90ft

Grid

Minimum Curvature

(ft) (°) (°) 0.00 0.00 0.00 100.00 0.00 0.00 200.00 0.00 0.00 300.00 0.00 0.00 400.00 0.00 0.00 500.00 0.00 0.00 600.00 0.00 0.00 700.00 0.00 0.00 900.00 0.00 0.00 1,000.00 0.00 0.00 1,000.00 0.00 0.00 1,000.00 0.00 0.00 1,000.00 0.00 0.00 1,200.00 0.00 0.00 1,600.00 0.00 0.00 1,600.00 0.00 0.00 1,900.00 0.00 0.00 2,000.00 0.00 0.00 2,000.00 0.00 0.00 2,000.00 0.00 0.00 2,000.00 0.00 0.00 2,000.00 0.00 0.00 2,		+N/-S	+E/-W	Northing (usft)	Easting		
100.00 0.00 0.00 200.00 0.00 0.00 300.00 0.00 0.00 400.00 0.00 0.00 500.00 0.00 0.00 600.00 0.00 0.00 700.00 0.00 0.00 900.00 0.00 0.00 900.00 0.00 0.00 1,000.00 0.00 0.00 1,200.00 0.00 0.00 1,300.00 0.00 0.00 1,600.00 0.00 0.00 1,600.00 0.00 0.00 1,600.00 0.00 0.00 1,600.00 0.00 0.00 2,000.00 0.00 0.00 2,000.00 0.00 0.00 2,000.00 0.00 0.00 2,000.00 0.00 0.00 2,000.00 0.00 0.00 2,600.00 1.00 270.00 2,600.00 1.00 270.00	(ft)	(ft)	(ft)		(usft)	Latitude	Longitude
200.00 0.00 0.00 300.00 0.00 0.00 400.00 0.00 0.00 500.00 0.00 0.00 600.00 0.00 0.00 700.00 0.00 0.00 900.00 0.00 0.00 900.00 0.00 0.00 1,000.00 0.00 0.00 1,200.00 0.00 0.00 1,200.00 0.00 0.00 1,500.00 0.00 0.00 1,600.00 0.00 0.00 1,600.00 0.00 0.00 1,600.00 0.00 0.00 2,000.00 0.00 0.00 2,000.00 0.00 0.00 2,000.00 0.00 0.00 2,000.00 0.00 0.00 2,000.00 0.00 0.00 2,000.00 0.00 0.00 2,600.00 1.00 270.00 2,600.00 1.00 270.00	0.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
300.00 0.00 0.00 400.00 0.00 0.00 500.00 0.00 0.00 600.00 0.00 0.00 700.00 0.00 0.00 800.00 0.00 0.00 900.00 0.00 0.00 $1,000.00$ 0.00 0.00 $1,000.00$ 0.00 0.00 $1,200.00$ 0.00 0.00 $1,300.00$ 0.00 0.00 $1,400.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,600.00$ 1.00 270.00 $2,800.00$ 3.00 270.00 $2,800.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,00.00$ 3.66 270.00 $3,00.00$ 3.66 270.00 $3,00.00$ 3.66 270.00 $3,00.00$ 3.66 270.00 $3,00.00$ 3.66 270.00 $3,00.00$ 3.66 270.00 $3,00.00$ 3.66 270.00 <t< td=""><td>100.00</td><td>0.00</td><td>0.00</td><td>375,027.02</td><td>803,010.64</td><td>32.028218</td><td>-103.488</td></t<>	100.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
400.00 0.00 0.00 500.00 0.00 0.00 600.00 0.00 0.00 700.00 0.00 0.00 800.00 0.00 0.00 900.00 0.00 0.00 $1,000.00$ 0.00 0.00 $1,000.00$ 0.00 0.00 $1,200.00$ 0.00 0.00 $1,200.00$ 0.00 0.00 $1,400.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,900.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,600.00$ 1.00 270.00 $2,800.00$ 3.00 2.00 $2,800.00$ 3.66 270.00 $2,800.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00	200.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
500.00 0.00 0.00 600.00 0.00 0.00 700.00 0.00 0.00 800.00 0.00 0.00 900.00 0.00 0.00 $1,000.00$ 0.00 0.00 $1,200.00$ 0.00 0.00 $1,200.00$ 0.00 0.00 $1,300.00$ 0.00 0.00 $1,400.00$ 0.00 0.00 $1,400.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,700.00$ 0.00 0.00 $1,800.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,800.00$ 1.00 270.00 $2,800.00$ 3.00 270.00 $2,866.07$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $4,400.00$ 3.66 270.00 <	300.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
600.00 0.00 0.00 700.00 0.00 0.00 800.00 0.00 0.00 900.00 0.00 0.00 $1,000.00$ 0.00 0.00 $1,200.00$ 0.00 0.00 $1,200.00$ 0.00 0.00 $1,300.00$ 0.00 0.00 $1,400.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,900.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,800.00$ 0.00 0.00 $2,800.00$ 3.00 2.00 $2,800.00$ 3.66 270.00 $2,800.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00	400.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
700.00 0.00 0.00 800.00 0.00 0.00 900.00 0.00 0.00 $1,000.00$ 0.00 0.00 $1,100.00$ 0.00 0.00 $1,200.00$ 0.00 0.00 $1,300.00$ 0.00 0.00 $1,400.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,700.00$ 0.00 0.00 $1,800.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,800.00$ 1.00 270.00 $2,800.00$ 3.00 270.00 $2,800.00$ 3.66 270.00 $2,800.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,300.00$ 3.66 270.00 $3,300.00$ 3.66 270.00 $3,500.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $4,000.00$ 3.66	500.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
800.00 0.00 0.00 900.00 0.00 0.00 $1,000.00$ 0.00 0.00 $1,100.00$ 0.00 0.00 $1,200.00$ 0.00 0.00 $1,300.00$ 0.00 0.00 $1,300.00$ 0.00 0.00 $1,400.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,800.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,600.00$ 1.00 270.00 $2,800.00$ 3.00 270.00 $2,866.07$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,200.00$ 3.66 270.00 $3,200.00$ 3.66 270.00 $3,300.00$ 3.66 270.00 $3,400.00$ 3.66 270.00 $3,500.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $4,000.00$ 3.66 </td <td>600.00</td> <td>0.00</td> <td>0.00</td> <td>375,027.02</td> <td>803,010.64</td> <td>32.028218</td> <td>-103.488</td>	600.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
900.00 0.00 0.00 $1,000.00$ 0.00 0.00 $1,100.00$ 0.00 0.00 $1,200.00$ 0.00 0.00 $1,300.00$ 0.00 0.00 $1,300.00$ 0.00 0.00 $1,400.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,800.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,600.00$ 1.00 270.00 $2,800.00$ 3.00 270.00 $2,800.00$ 3.66 270.00 $2,800.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,200.00$ 3.66 270.00 $3,300.00$ 3.66 270.00 $3,400.00$ 3.66 270.00 $3,400.00$ 3.66 270.00 $3,800.00$ 3.66 270.00 $3,800.00$ 3.66 270.00 $3,900.00$ 3.66 270.00 $3,900.00$ 3.66 270.00 $4,400.00$ 3.66 270.00 $4,400.00$ 3.66 270.00 $4,500.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66	700.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
1,000.00 0.00 0.00 $1,100.00$ 0.00 0.00 $1,200.00$ 0.00 0.00 $1,300.00$ 0.00 0.00 $1,400.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,700.00$ 0.00 0.00 $1,700.00$ 0.00 0.00 $1,800.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,600.00$ 1.00 270.00 $2,600.00$ 1.00 270.00 $2,800.00$ 3.00 2.00 $2,800.00$ 3.66 270.00 $2,800.00$ 3.66 270.00 $3,200.00$ 3.66 270.00 $3,200.00$ 3.66 270.00 $3,300.00$ 3.66 270.00 $3,400.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,900.00$ 3.66 270.00 $3,900.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66	800.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
1,100.00 0.00 0.00 $1,200.00$ 0.00 0.00 $1,300.00$ 0.00 0.00 $1,400.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,700.00$ 0.00 0.00 $1,700.00$ 0.00 0.00 $1,800.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,600.00$ 1.00 270.00 $2,600.00$ 1.00 270.00 $2,600.00$ 3.00 270.00 $2,800.00$ 3.00 270.00 $2,800.00$ 3.66 270.00 $2,800.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,500.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3	900.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
1,200.00 0.00 0.00 $1,300.00$ 0.00 0.00 $1,400.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,700.00$ 0.00 0.00 $1,700.00$ 0.00 0.00 $1,800.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,400.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,600.00$ 1.00 270.00 $2,600.00$ 1.00 270.00 $2,800.00$ 3.00 270.00 $2,800.00$ 3.66 270.00 $2,800.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,500.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,800.00$ 3.66 270.00 $3,900.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3	1,000.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
1,300.00 0.00 0.00 $1,400.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,500.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,700.00$ 0.00 0.00 $1,800.00$ 0.00 0.00 $1,800.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,100.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,600.00$ 1.00 270.00 $2,800.00$ 3.00 270.00 $2,800.00$ 3.66 270.00 $2,900.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,500.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,800.00$ 3.66 270.00 $4,200.00$ 3.66 270.00 $4,200.00$ 3.66 270.00 $4,300.00$ 3.66 270.00 $4,400.00$ 3.66 270.00 $4,500.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3	1,100.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
1,400.00 0.00 0.00 $1,500.00$ 0.00 0.00 $1,600.00$ 0.00 0.00 $1,700.00$ 0.00 0.00 $1,700.00$ 0.00 0.00 $1,800.00$ 0.00 0.00 $1,900.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,100.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,400.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,500.00$ 0.00 2.00 $2,600.00$ 1.00 270.00 $2,600.00$ 3.00 270.00 $2,800.00$ 3.00 270.00 $2,800.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,200.00$ 3.66 270.00 $3,500.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$	1,200.00	0.00	0.00	375,027.02-	803,010.64	32.028218	-103.488
1,500.00 0.00 0.00 $1,600.00$ 0.00 0.00 $1,700.00$ 0.00 0.00 $1,800.00$ 0.00 0.00 $1,900.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,100.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,400.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,600.00$ 1.00 270.00 $2,600.00$ 3.00 270.00 $2,800.00$ 3.00 270.00 $2,800.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,200.00$ 3.66 270.00 $3,500.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$	1,300.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
1,600.00 0.00 0.00 $1,700.00$ 0.00 0.00 $1,800.00$ 0.00 0.00 $1,900.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,100.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,400.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,500.00$ 1.00 270.00 $2,600.00$ 1.00 270.00 $2,600.00$ 3.00 270.00 $2,800.00$ 3.66 270.00 $2,800.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,500.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,800.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,200.00$ 3.66 270.00 $4,200.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ <td>1,400.00</td> <td>0.00</td> <td>0.00</td> <td>375,027.02</td> <td>803,010.64</td> <td>32.028218</td> <td>-103.488</td>	1,400.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
1,700.00 0.00 0.00 $1,800.00$ 0.00 0.00 $1,900.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,100.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,400.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,600.00$ 1.00 270.00 $2,600.00$ 3.00 270.00 $2,800.00$ 3.00 270.00 $2,800.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,500.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,800.00$ 3.66 270.00 $3,800.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,200.00$ 3.66 270.00 $4,400.00$ 3.66 270.00 $4,500.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ <	1,500.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
1,800.00 0.00 0.00 $1,900.00$ 0.00 0.00 $2,000.00$ 0.00 0.00 $2,100.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,400.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,600.00$ 1.00 270.00 $2,600.00$ 1.00 270.00 $2,800.00$ 3.00 270.00 $2,800.00$ 3.66 270.00 $2,866.07$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,300.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,800.00$ 3.66 270.00 $3,800.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,400.00$ 3.66 270.00 $4,400.00$ 3.66 270.00 $4,400.00$ 3.66 270.00 $4,400.00$ 3.66 270.00 $4,500.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$	1,600.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
1,900.00 0.00 0.00 $2,000.00$ 0.00 0.00 $2,100.00$ 0.00 0.00 $2,200.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,300.00$ 0.00 0.00 $2,400.00$ 0.00 0.00 $2,500.00$ 0.00 0.00 $2,600.00$ 1.00 270.00 $2,600.00$ 1.00 270.00 $2,600.00$ 3.00 270.00 $2,800.00$ 3.00 270.00 $2,866.07$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,000.00$ 3.66 270.00 $3,500.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,600.00$ 3.66 270.00 $3,800.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,000.00$ 3.66 270.00 $4,300.00$ 3.66 270.00 $4,400.00$ 3.66 270.00 $4,400.00$ 3.66 270.00 $4,500.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.00$ 3.66 270.00 $4,600.$	1,700.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
2,000.00 0.00 0.00 2,100.00 0.00 0.00 2,200.00 0.00 0.00 2,300.00 0.00 0.00 2,400.00 0.00 0.00 2,500.00 0.00 0.00 2,600.00 1.00 270.00 2,600.00 1.00 270.00 2,700.00 2.00 270.00 2,800.00 3.00 270.00 2,866.07 3.66 270.00 3,000.00 3.66 270.00 3,000.00 3.66 270.00 3,200.00 3.66 270.00 3,300.00 3.66 270.00 3,400.00 3.66 270.00 3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 <td>1,800.00</td> <td>0.00</td> <td>0.00</td> <td>375,027.02</td> <td>803,010.64</td> <td>32.028218</td> <td>-103.488</td>	1,800.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,900.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
2,200.00 0.00 0.00 2,300.00 0.00 0.00 2,400.00 0.00 0.00 2,500.00 0.00 0.00 2,600.00 1.00 270.00 2,700.00 2.00 270.00 2,800.00 3.00 270.00 2,866.07 3.66 270.00 2,866.07 3.66 270.00 3,000.00 3.66 270.00 3,000.00 3.66 270.00 3,200.00 3.66 270.00 3,200.00 3.66 270.00 3,200.00 3.66 270.00 3,400.00 3.66 270.00 3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 270.00 4,400.00 3.6	2,000.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
2,300.00 0.00 0.00 2,400.00 0.00 0.00 2,500.00 0.00 0.00 2,600.00 1.00 270.00 2,600.00 3.00 270.00 2,800.00 3.00 270.00 2,800.00 3.00 270.00 2,866.07 3.66 270.00 2,900.00 3.66 270.00 3,000.00 3.66 270.00 3,000.00 3.66 270.00 3,200.00 3.66 270.00 3,200.00 3.66 270.00 3,300.00 3.66 270.00 3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,66 270.00 3.66 270.00 3,66 <td>2,100.00</td> <td>0.00</td> <td>0.00</td> <td>375,027.02</td> <td>803,010.64</td> <td>32.028218</td> <td>-103.488</td>	2,100.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
2,400.00 0.00 0.00 2,500.00 0.00 0.00 2,600.00 1.00 270.00 2,700.00 2.00 270.00 2,800.00 3.00 270.00 2,800.00 3.00 270.00 2,866.07 3.66 270.00 2,900.00 3.66 270.00 3,000.00 3.66 270.00 3,000.00 3.66 270.00 3,200.00 3.66 270.00 3,200.00 3.66 270.00 3,300.00 3.66 270.00 3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 4,000.00 <td< td=""><td>2,200.00</td><td>0.00</td><td>0.00</td><td>375,027.02</td><td>803,010.64</td><td>32.028218</td><td>-103.488</td></td<>	2,200.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
2,500.00 0.00 0.00 2,600.00 1.00 270.00 2,700.00 2.00 270.00 2,800.00 3.00 270.00 2,866.07 3.66 270.00 2,900.00 3.66 270.00 3,000.00 3.66 270.00 3,000.00 3.66 270.00 3,000.00 3.66 270.00 3,200.00 3.66 270.00 3,300.00 3.66 270.00 3,400.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 270.00 4,00.00 <t< td=""><td>2,300.00</td><td>0.00</td><td>0.00</td><td>375,027.02</td><td>803,010.64</td><td>32.028218</td><td>-103.488</td></t<>	2,300.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
2,600.00 1.00 270.00 2,700.00 2.00 270.00 2,800.00 3.00 270.00 2,866.07 3.66 270.00 2,900.00 3.66 270.00 3,000.00 3.66 270.00 3,000.00 3.66 270.00 3,000.00 3.66 270.00 3,200.00 3.66 270.00 3,200.00 3.66 270.00 3,300.00 3.66 270.00 3,400.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,66 270.00 3.66 270.00 4,000.00 3.66 270.00 4.66 4,200.00 3.66 270.00 <t< td=""><td>2,400.00</td><td>0.00</td><td>0.00</td><td>375,027.02</td><td>803,010.64</td><td>32.028218</td><td>-103.488</td></t<>	2,400.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
2,700.00 2.00 270.00 2,800.00 3.00 270.00 2,866.07 3.66 270.00 2,900.00 3.66 270.00 3,000.00 3.66 270.00 3,000.00 3.66 270.00 3,100.00 3.66 270.00 3,200.00 3.66 270.00 3,300.00 3.66 270.00 3,400.00 3.66 270.00 3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,900.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 270.00 4,400.00 3.66 270.00 4,600.00	2,500.00	0.00	0.00	375,027.02	803,010.64	32.028218	-103.488
2,800.00 3.00 270.00 2,866.07 3.66 270.00 2,900.00 3.66 270.00 3,000.00 3.66 270.00 3,100.00 3.66 270.00 3,200.00 3.66 270.00 3,200.00 3.66 270.00 3,300.00 3.66 270.00 3,400.00 3.66 270.00 3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 270.00 4,400.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00	2,599.99	0.00	-0.87	375,027.02	803,009.77	32.028218	-103.488
2,866.07 3.66 270.00 2,900.00 3.66 270.00 3,000.00 3.66 270.00 3,100.00 3.66 270.00 3,200.00 3.66 270.00 3,200.00 3.66 270.00 3,300.00 3.66 270.00 3,400.00 3.66 270.00 3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 270.00 4,400.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00	2,699.96	0.00	-3.49	375,027.02	803,007.15	32.028218	-103.488
2,900.00 3.66 270.00 3,000.00 3.66 270.00 3,100.00 3.66 270.00 3,200.00 3.66 270.00 3,200.00 3.66 270.00 3,300.00 3.66 270.00 3,400.00 3.66 270.00 3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 270.00 4,400.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00	2,799.86	0.00	-7.85	375,027.02	803,002.79	32.028218	-103.488
3,000.00 3.66 270.00 3,100.00 3.66 270.00 3,200.00 3.66 270.00 3,200.00 3.66 270.00 3,300.00 3.66 270.00 3,400.00 3.66 270.00 3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,700.00 3.66 270.00 3,800.00 3.66 270.00 3,900.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 270.00 4,200.00 3.66 270.00 4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00	2,865.82	0.00	-11.69	375,027.02	802,998.95	32.028218	-103.488
3,100.00 3.66 270.00 3,200.00 3.66 270.00 3,300.00 3.66 270.00 3,400.00 3.66 270.00 3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,700.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 270.00 4,200.00 3.66 270.00 4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,800.00	2,899.68	0.00	-13.86	375,027.02	802,996.78	32.028218	-103.488
3,200.00 3.66 270.00 3,300.00 3.66 270.00 3,400.00 3.66 270.00 3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,700.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 270.00 4,200.00 3.66 270.00 4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,800.00 3.66 270.00	2,999.48	0.00	-20.24	375,027.02	802,990.40	32.028219	-103.489
3,300.00 3.66 270.00 3,400.00 3.66 270.00 3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,600.00 3.66 270.00 3,700.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 4,000.00 3.66 270.00 4,100.00 3.66 270.00 4,200.00 3.66 270.00 4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,800.00 3.66 270.00	3,099.27	0.00	-26.63	375,027.02	802,984.01	32.028219	-103.489
3,400.00 3.66 270.00 3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,700.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,900.00 3.66 270.00 4,000.00 3.66 270.00 4,100.00 3.66 270.00 4,200.00 3.66 270.00 4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,800.00 3.66 270.00	3,199.07	0.00	-33.01	375,027.02	802,977.63	32.028219	-103.489
3,500.00 3.66 270.00 3,600.00 3.66 270.00 3,700.00 3.66 270.00 3,800.00 3.66 270.00 3,800.00 3.66 270.00 3,900.00 3.66 270.00 4,000.00 3.66 270.00 4,100.00 3.66 270.00 4,200.00 3.66 270.00 4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,800.00 3.66 270.00	3,298.87	0.00	-39.40	375,027.02	802,971.24	32.028219	-103.489
3,600.00 3.66 270.00 3,700.00 3.66 270.00 3,800.00 3.66 270.00 3,900.00 3.66 270.00 3,900.00 3.66 270.00 4,000.00 3.66 270.00 4,100.00 3.66 270.00 4,200.00 3.66 270.00 4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,800.00 3.66 270.00	3,398.66	0.00	-45.78	375,027.02	802,964.86	32.028219	-103.489
3,700.00 3.66 270.00 3,800.00 3.66 270.00 3,900.00 3.66 270.00 4,000.00 3.66 270.00 4,000.00 3.66 270.00 4,100.00 3.66 270.00 4,200.00 3.66 270.00 4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,800.00 3.66 270.00	3,498.46 3,598.25	0.00 0.00	-52.16 -58.55	375,027.02 375,027.02	802,958.47	32.028219 32.028219	-103.489
3,800.00 3.66 270.00 3,900.00 3.66 270.00 4,000.00 3.66 270.00 4,100.00 3.66 270.00 4,200.00 3.66 270.00 4,200.00 3.66 270.00 4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,800.00 3.66 270.00		0.00	-58.55 -64.93	375,027.02	802,952.09		-103.489
3,900.00 3.66 270.00 4,000.00 3.66 270.00 4,100.00 3.66 270.00 4,200.00 3.66 270.00 4,300.00 3.66 270.00 4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,800.00 3.66 270.00	3,698.05 3,797.85	0.00	-04.93 -71.32	375,027.02	802,945.70 802 939 32	32.028220 32.028220	-103.489
4,000.00 3.66 270.00 4,100.00 3.66 270.00 4,200.00 3.66 270.00 4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,500.00 3.66 270.00 4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,800.00 3.66 270.00					802,939.32 802 932 93		-103.489 -103.489
4,100.00 3.66 270.00 4,200.00 3.66 270.00 4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,800.00 3.66 270.00	3,897.64 3,997.44	0.00 0.00	-77.70 -84.09	375,027.02 375,027.02	802,932.93 802,926.55	32.028220 32.028220	-103.489 -103.489
4,200.00 3.66 270.00 4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,700.00 3.66 270.00 4,800.00 3.66 270.00	3,997.44 4,097.23	0.00	-04.09 -90.47	375,027.02	802,920.16	32.028220	-103.489 -103.489
4,300.00 3.66 270.00 4,400.00 3.66 270.00 4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,600.00 3.66 270.00 4,800.00 3.66 270.00	4,097.23	0.00	-90.47 -96.86	375,027.02	802,920.16	32.028220	
4,400.00 3.66 270.00 4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,700.00 3.66 270.00 4,800.00 3.66 270.00	4,197.03	0.00	-90.00 -103.24	375,027.02	802,913.78	32.028220	-103.489
4,500.00 3.66 270.00 4,600.00 3.66 270.00 4,700.00 3.66 270.00 4,800.00 3.66 270.00			-103.24 -109.63		802,907.40		-103.489
4,600.00 3.66 270.00 4,700.00 3.66 270.00 4,800.00 3.66 270.00	4,396.62	0.00	-109.63	375,027.02		32.028221	-103.489
4,700.00 3.66 270.00 4,800.00 3.66 270.00	4,496.42	0.00		375,027.02	802,894.63 802 888 24	32.028221	-103.489
4,800.00 3.66 270.00	4,596.21	0.00	-122.40	375,027.02	802,888.24	32.028221	-103.489
	4,696.01	0.00	-128.78	375,027.02	802,881.86	32.028221	-103.489
A MULTIC 3 66 270 00	4,795.81	0.00	-135.17	375,027.02	802,875.47	32.028221	-103.489
	4,895.60	0.00	-141.55	375,027.02	802,869.09	32.028221	-103.489
5,000.00 3.66 270.00	4,995.40	0.00	-147.94	375,027.02	802,862.70	32.028221	-103.489
5,100.00 3.66 270.00	5,095.19	0.00	-154.32	375,027.02	802,856.32	32.028221	-103.489
5,200.00 3.66 270.00 5,300.00 3.66 270.00	5,194.99 5,294.79	0.00 0.00	-160.71 -167.09	375,027.02 375,027.02	802,849.93 802,843.55	32.028222 32.028222	-103.489 -103.489

10/19/2018 10:40:27AM

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Green Wave 20-32 Fed State Com 17H
Сотрапу:	WCDSC Permian NM	TVD Reference:	RKB @ 3379.90ft
Project:	Lea County (NAD83 New Mexico East)	MD Reference:	RKB @ 3379.90ft
Site:	Sec 20-T26S-R34E	North Reference:	Grid
Well:	Green Wave 20-32 Fed State Com 17H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permit Plan 1		

.

Planned Survey

	Measured			Vertical			Мар	Мар		
	Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
	5,400.00	3.66	270.00	5,394.58	0.00	-173.47	375,027.02	802,837.16	32.028222	-103.489509
	5,500.00	3.66	270.00	5,494.38	0.00	-179.86	375,027.02	802,830.78	32.028222	-103.489529
	5,600.00	3.66	270.00	5,594.17	0.00	-186.24	375,027.02	802,824.39	32.028222	-103.489550
	5,700.00	3.66	270.00	5,693.97	0.00	-192.63	375,027.02	802,818.01	32.028222	-103.489570
	5,800.00	3.66	270.00	5,793.77	0.00	-199.01	375,027.02	802,811.63	32.028222	-103.489591
	5,900.00	3.66	270.00	5,893.56	0.00	-205.40	375,027.02	802,805.24	32.028223	-103.489612
	6,000.00	3.66	270.00	5,993.36	0.00	-211.78	375,027.02	802,798.86	32.028223	-103.489632
	6,100.00	3.66	270.00	6,093.15	0.00	-218.17	375,027.02	802,792.47	32.028223	-103.489653
	6,200.00	3.66	270.00	6,192.95	0.00	-224.55	375,027.02	802,786.09	32.028223	-103.489673
•	6,300.00	3.66	270.00	6,292.74	0.00	-230.94	375,027.02	802,779.70	32.028223	-103.489694
	6,400.00	3.66	270.00	6,392.54	0.00	-237.32	375,027.02	802,773.32	32.028223	-103.489715
'	6,500.00	3.66	270.00	6,492.34	0.00	-243.71	375,027.02	802,766.93	32.028223	-103.489735
-	6,600.00	3.66	270.00	6,592.13	0.00	-250.09	375,027.02	802,760.55	32.028224	-103.489756
	6,700.00	3.66	270.00	6,691.93	0.00	-256.48	375,027.02	802,754.16	32.028224	-103.489776
	6,800.00	3.66	270.00	6,791.72	0.00	-262.86	375,027.02	802,747.78	32.028224	-103.489797
	6,900.00	3.66	270.00	6,891.52	0.00	-269.25	375,027.02	802,741.39	32.028224	-103.489818
	7,000.00	3.66	270.00	6,991.32	0.00	-275.63	375,027.02	802,735.01	32.028224	-103,489838
	7,100.00	3.66	270.00	7,091.11	0.00	-282.01	375.027.02	802,728.62	32.028224	-103.489859
	7,200.00	3.66	270.00	7,190.91	0.00	-288.40	375,027.02	802,722.24	32.028224	-103.489880
	7,300.00	3.66	270.00	7,290.70	0.00	-294.78	375,027.02	802,715.85	32.028224	-103.489900
	7,400.00	3.66	270.00	7,390.50	0.00	-301.17	375,027.02	802,709.47	32.028225	-103.489921
	7,500.00	3.66	270.00	7,490.30	0.00	-307.55	375,027.02	802,703.09	32.028225	-103.489941
	7,600.00	3.66	270.00	7,590.09	0.00	-313.94	375,027.02	802,696.70	32.028225	-103.489962
	7,700.00	3.66	270.00	7,689.89	0.00	-320.32	375,027.02	802,690.32	32.028225	-103.489983
	7,800.00	3.66	270.00	7,789.68	0.00	-326.71	375,027.02	802,683.93	32.028225	-103.490003
	7,900.00	3.66	270.00	7,889.48	0.00	-333.09	375,027.02	802.677.55	32.028225	-103.490024
	8,000.00	3.66	270.00	7,989.28	0.00	-339.48	375,027.02	802,671.16	32.028225	-103.490044
	8,100.00	3.66	270.00	8,089.07	0.00	-345.86	375,027.02	802,664.78	32.028226	-103.490065
	8,200.00	3.66	270.00	8,188.87	0.00	-352.25	375,027.02	802,658.39	32.028226	-103.490086
	8,300.00	3.66	270.00	8,288.66	0.00	-358.63	375,027.02	802,652.01	32.028226	-103.490106
	8,400.00	3.66	270.00	8,388.46	0.00	-365.02	375,027.02	802,645.62	32.028226	-103.490127
	8,500.00	3.66	270.00	8,488.26	0.00	-371.40	375,027.02	802,639.24	32.028226	-103.490147
	8,600.00	3.66	270.00	8,588.05	0.00	-377.79	375,027.02	802,632.85	32.028226	-103.490168
	8,700.00	3.66	270.00	8,687.85	0.00	-384.17	375,027.02	802,626.47	32.028226	-103.490189
	8,800.00	3.66	270.00	8,787.64	0.00	-390.55	375,027.02	802,620.08	32.028227	-103.490209
	8,900.00	3.66	270.00	8,887.44	0.00	-396.94	375,027.02	802,613.70	32.028227	-103.490230
	9,000.00	3.66	270.00	8,987.24	0.00	-403.32	375,027.02	802,607.31	32.028227	-103.490250
	9,100.00	3.66	270.00	9,087.03	0.00	-409.71	375,027.02	802,600.93	32.028227	-103.490271
	9,200.00	3.66	270.00	9,186.83	0.00	-416.09	375,027.02	802,594.55	32.028227	-103.490292
	9,300.00	3.66	270.00	9,286.62	0.00	-422.48	375,027.02	802,588.16	32.028227	-103.490312
	9,400.00	3.66	270.00	9,386.42	0.00	-428.86	375,027.02	802,581.78	32.028227	-103.490333
	9,500.00	3.66	270.00	9,486.22	0.00	-435.25	375,027.02	802,575.39	32.028228	-103.490353
	9,600.00	3.66	270.00	9,586.01	0.00	-441.63	375,027.02	802,569.01	32.028228	-103.490374
	9,700.00	3.66	270.00	9,685.81	0.00	-448.02	375,027.02	802,562.62	32.028228	-103.490395
	9,800.00	3.66	270.00	9,785.60	0.00	-454.40	375,027.02	802,556.24	32.028228	-103.490415
								•		
	9,900.00	3.66	270.00	9,885.40	0.00	-460.79	375,027.02	802,549.85	32.028228	-103.490436
	10,000.00	3.66	270.00	9,985.20	0.00	-467.17	375,027.02	802,543.47	32.028228	-103.490456
	10,100.00	3.66	270.00	10,084.99	0.00	-473.56	375,027.02	802,537.08	32.028228	-103.490477
	10,200.00	3.66	270.00	10,184.79	0.00	-479.94	375,027.02	802,530.70	32.028228	-103.490498
	10,300.00	3.66	270.00	10,284.58	0.00	-486.33	375,027.02	802,524.31	32.028229	-103.490518
	10,400.00	3.66	270.00	10,384.38	0.00	-492.71	375,027.02	802,517.93	32.028229	-103.490539
	10,500.00	3.66	270.00	10,484.18	0.00	-499.09	375,027.02	802,511.54	32.028229	-103.490559
	10,600.00	3.66	270.00	10,583.97	0.00	-505.48	375,027.02	802,505.16	32.028229	-103.490580
	10,700.00	3.66	270.00	10,683.77	0.00	-511.86	375,027.02	802,498.77	32.028229	-103.490601
	10,800.00	3.66	270.00	10,783.56	0.00	-518.25	375,027.02	802,492.39	32.028229	-103.490621

10/19/2018 10:40:27AM

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Green Wave 20-32 Fed State Com 17
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3379.90ft
Project:	Lea County (NAD83 New Mexico East)	MD Reference:	RKB @ 3379.90ft
Site:	Sec 20-T26S-R34E	North Reference:	Grid
Nell:	Green Wave 20-32 Fed State Com 17H	Survey Calculation Method:	Minimum Curvature
Vellbore:	Wellbore #1		
Design:	Permit Plan 1		

- . - .

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
10,900.00	3.66	270.00	10,883.36	0.00	-524.63	375,027.02	802,486.01	32.028229	-103.49064
11,000.00	3.66	270.00	10,983.16	0.00	-531.02	375,027.02	802,479.62	32.028230	-103.49066
11,100.00	3.66	270.00	11,082.95	0.00	-537.40	375,027.02	802,473.24	32.028230	-103.49068
11,200.00	3.66	270.00	11,182.75	0.00	-543.79	375,027.02	802,466.85	32.028230	-103.49070
11,300.00	3.66	270.00	11,282.54	0.00	-550.17	375,027.02	802,460.47	32.028230	-103.49072
11,400.00	3.66	270.00	11,382.34	0.00	-556.56	375,027.02	802,454.08	32.028230	-103.49074
11,425.84	3.66	270.00	11,408.12	0.00	-558.21	375,027.02	802,452.43	32.028230	-103.49075
11,500.00	2.55	270.00	11,482.18	0.00	-562.22	375,027.02	802,448.42	32.028230	-103.49076
11,600.00	1.05	270.00	11,582.12	0.00	-565.36	375,027.02	802,445.28	32.028230	-103.49077
11,669.88	0.00	0.00	11,652.00	0.00	-566.00	375,027.02	802,444.64	32.028230	-103.49077
11,700.00	0.00	0.00	11,682.12	0.00	-566.00	375,027.02	802,444.64	32.028230	-103.49077
11,800.00	0.00	0.00	11,782.12	0.00	-566.00	375,027.02	802,444.64	32.028230	-103.49077
11,900.00	0.00	0.00	11,882.12	0.00	566.00	375,027.02	802,444.64	32.028230	-103.49077
12,000.00		0.00	11,982.12	0.00	-566.00	375,027.02	802,444.64	32.028230	-103.49077
12,019.92		0.00	12,002.04	0.00	-566.00	375,027.02	802,444.64	32.028230	-103.4907
	FTP @ 12020'		-						
12,100.00		179.51	12,081.86	-5.59	-565.95	375,021.43	802,444.69	32.028215	-103.49077
12,200.00	18.01	179.51	12,179.17	-28.07	-565.76	374,998.95	802,444.88	32.028153	-103.49077
12,300.00	28.01	179.51	12,271.10	-67.10	-565.43	374,959.92	802,445.21	32.028046	-103.49077
12,400.00	38.01	179.51	12,354.85	-121.51	-564.96	374,905.51	802,445.68	32.027896	-103.4907
12,500.00	48.01	179.51	12,427.88	-189.63	-564.38	374,837.39	802,446.26	32.027709	-103.4907
12,600.00	58.01	179.51	12,487.98	-269.39	-563.70	374,757.62	802,446.94	32.027490	-103.4907
12,700.00	68.01	179.51	12,533.31	-358.38	-562.94	374,668.63	802,447.70	32.027245	-103.4907
12,800.00	78.01	179.51	12,562.50	-453.89	-562.12	374,573.12	802,448.52	32.026983	-103.4907
12,900.00	88.01	179.51	12,574.65	-553.02	-561.27	374,474.00	802,449.37	32.026710	-103.4907
12,919.92	90.00	179.51	12,575.00	-572.94	-561.10	374,454.08	802,449.54	32.026655	-103.49077
13,000.00	90.00	179.51	12,575.00	-653.01	-560.42	374,374.01	802,450.22	32.026435	-103.49077
13,100.00	90.00	179.51	12,575.00	-753.01	-559.56	374,274.01	802,451.08	32.026160	-103.49077
13,200.00	90.00	179.51	12,575.00	-853.01	-558.71	374,174.01	802,451.93	32.025886	-103.49077
13,300.00		179.51	12,575.00	-953.00	-557.85	374,074.02	802,452.79	32.025611	-103.49077
13,400.00		179.51	12,575.00	-1,053.00	-557.00	373,974.02	802,453.64	32.025336	-103.49077
13,500.00		179.51	12,575.00	-1,153.00	-556.14	373,874.03	802,454.50	32.025061	-103.49077
13,600.00		179.51	12,575.00	-1,252.99	-555.29	373,774.03	802,455.35	32.024786	-103.49077
13,700.00		179.51	12,575.00	-1,352.99	-554.43	373,674.03	802,456.21	32.024511	-103.49077
13,800.00		179.51	12,575.00	-1,452.98	-553.58	373,574.04	802,457.06	32.024236	-103.49077
13,900.00		179.51	12,575.00	-1,552.98	-552.72	373,474.04	802,457.92	32.023961	-103.49077
14,000.00		179.51	12,575.00	-1,652.98	-551.87	373,374.04	802,458.77	32.023686	-103.4907
14,100.00		179.51	12,575.00	-1,752.97	-551.01	373,274.05	802,459.63	32.023412	-103.4907
14,200.00		179.51	12,575.00	-1,852.97	-550.16	373,174.05	802,460.48	32.023137	-103.4907
14,300.00		179.51	12,575.00	-1,952.97	-549.30	373,074.06	802,461.34	32.022862	-103.49077
14,400.00		179.51	12,575.00	-2,052.96	-548.45	372.974.06	802,462.19	32.022587	-103.4907
14,500.00		179.51	12,575.00	-2,152.96	-547.59	372,874.06	802,463.05	32.022312	-103.4907
14,600.00		179.51	12,575.00	-2,252.96	-546.74	372,774.07	802,463.90	32.022037	-103.4907
14,700.00		179.51	12,575.00	-2,352.95	-545.88	372,674.07	802,464.76	32.021762	-103.49076
14,728.00		179.51	12,575.00	-2,380.95	-545.64	372,646.07	802,465.00	32.021685	-103.4907
	ection @ 1472						,		
14,800.00	-	179.51	12,575.00	-2,452.95	-545.03	372,574.08	802,465.61	32.021487	-103.4907
14,900.00	90.00	179.51	12,575.00	-2,552.94	-544.17	372,474.08	802,466.47	32.021213	-103.4907
15,000.00		179.51	12,575.00	-2,652.94	-543.32	372,374.08	802,467.32	32.020938	-103.4907
15,100.00		179.51	12,575.00	-2,752.94	-542.46	372,274.09	802,468.18	32.020663	-103.4907
15,200.00		179.51	12,575.00	-2,852.93	-541.61	372,174.09	802,469.03	32.020388	-103.4907
15,300.00		179.51	12,575.00	-2,952.93	-540.75	372,074.09	802,469.89	32.020113	-103.49076
15,400.00		179.51	12,575.00	-2,952.93	-539.90	371,974.10	802,470.74	32.019838	-103.49076
15,500.00									
10,000.00	50.00	179.51	12,575.00	-3,152.92	-539.04	371,874.10	802,471.60	32.019563	-103.49076

10/19/2018 10:40:27AM

· · · · · · · · · · ·

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Green Wave 20-32 Fed State Com 17H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3379.90ft
Project:	Lea County (NAD83 New Mexico East)	MD Reference:	RKB @ 3379.90ft
Site:	Sec 20-T26S-R34E	North Reference:	Grid
Well:	Green Wave 20-32 Fed State Com 17H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	-	
Design:	Permit Plan 1		

. . .

Planned Survey

1	Measured			Vertical			Мар	Мар		
	Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
	15,600.00	90.00	179.51	12,575.00	-3,252.92	-538.19	371,774.11	802,472.45	32.019288	-103.490767
	15,700.00	90.00	179.51	12,575.00	-3,352.92	-537.33	371,674.11	802,473.31	32.019014	-103.490767
	15,800.00	90.00	17 9 .51	12,575.00	-3,452.91	-536.48	371,574.11	802,474.16	32.018739	-103.490767
	15,900.00	90.00	179.51	12,575.00	-3,552.91	-535.62	371,474.12	802,475.02	32.018464	-103.490767
	16,000.00	90.00	179.51	12,575.00	-3,652.90	-534.77	371,374.12	802,475.87	32.018189	-103.490766
	16,100.00	90.00	179.51	12,575.00	-3,752.90	-533.91	371,274.13	802,476.73	32.017914	-103.490766
	16,200.00	90.00	179.51	12,575.00	-3,852.90	-533.06	371,174.13	802,477.58	32.017639	-103.490766
	16,300.00	90.00	179.51	12,575.00	-3,952.89	-532.20	371,074.13	802,478.44	32.017364	-103.490766
	16,400.00	90.00	179.51	12,575.00	-4,052.89	-531.35	370,974.14	802,479.29	32.017089	-103.490765
	16,500.00	90.00	179.51	12,575.00	-4,152.89	-530.49	370,874.14	802,480.15	32.016815	-103.490765
	16,600.00	90.00	179.51	12,575.00	-4,252.88	-529.64	370,774.14	802,481.00	32.016540	-103.490765
	16,700.00	90.00	179.51	12,575.00	-4,352.88	-528.78	370,674.15	802,481.86	32.016265	-103.490765
	16,800.00	90.00	179.51	12,575.00	-4,452.87	-527.93	370,574.15	802,482.71	32.015990	-103.490764
	16,900.00	90.00	179.51	12,575.00	-4,552.87	-527.07	370,474.16	802,483.57	32.015715	-103.490764
	17,000.00	90.00	179.51	12,575.00	-4,652.87	-526.22	370,374.16	802,484.42	32.015440	-103.490764
	17,100.00	90.00	179.51	12,575.00	-4,752.86	-525.36	370,274.16	802,485.28	32.015165	-103.490764
	17,200.00	90.00	179.51	12,575.00	-4,852.86	-524.51	370,174.17	802,486.13	32.014890	-103.490763
	17,300.00	90.00	179.51	12,575.00	-4,952.86	-523.65	370,074.17	802,486.99	32.014616	-103.490763
	17,400.00	90.00	179.51	12,575.00	-5,052.85	-522.80	369,974.18	802,487.84	32.014341	-103.490763
	17,500.00	90.00	179.51	12,575.00	-5,152.85	-521.94	369,874.18	802,488.70	32.014066	-103.490763
	17,600.00	90.00	179.51	12,575.00	-5,252.85	-521.09	369,774.18	802,489.55	32.013791	-103.490762
	17,700.00	90.00	179.51	12,575.00	-5,352.84	-520.23	369,674.19	802,490.41	32.013516	-103.490762
	17,800.00	90.00	179.51	12,575.00	-5,452.84	-519.38	369,574.19	802,491.26	32.013241	-103.490762
	17,900.00	90.00	179.51	12,575.00	-5,552.83	-518.52	369,474.19	802,492.11	32.012966	-103.490762
	18,000.00	90.00	179.51	12,575.00	-5,652.83	-517.67	369,374.20	802,492.97	32.012691	-103.490761
	18,100.00	90.00	179.51	12,575.00	-5,752.83	-516.81	369,274.20	802,493.82	32.012417	-103.490761
	18,200.00	90.00	179.51	12,575.00	-5,852.82	-515.96	369,174.21	802,494.68	32.012142	-103.490761
	18,300.00	90.00	179.51	12,575.00	-5,952.82	-515.10	369,074.21	802,495.53	32.011867	-103.490761
	18,400.00	90.00	179.51	12,575.00	-6,052.82	-514.25	368,974.21	802,496.39	32.011592	-103.490761
	18,500.00	90.00	179.51	12,575.00	-6,152.81	-513.39	368,874.22	802,497.24	32.011317	-103.490760
	18,600.00	90.00	179.51	12,575.00	-6,252.81	-512.54	368,774.22	802,498.10	32.011042	-103.490760
	18,700.00	90.00	179.51	12,575.00	-6,352.81	-511.68	368,674.23	802,498.95	32.010767	-103.490760
	18,800.00	90.00	179.51	12,575.00	-6,452.80	-510.83	368,574.23	802,499.81	32.010492	-103.490760
	18,900.00	90.00	179.51	12,575.00	-6,552.80	-509.97	368,474.23	802,500.66	32.010217	-103.490759
	19,000.00	90.00	179.51	12,575.00	-6,652.79	-509.12	368,374.24	802,501.52	32.009943	-103.490759
	19,100.00	90.00	179.51	12,575.00	-6,752.79	-508.26	368,274.24	802,502.37	32.009668	-103.490759
	19,200.00	90.00	179.51	12,575.00	-6,852.79	-507.41	368,174.24	802,503.23	32.009393	-103.490759
	19,300.00	90.00	179.51	12,575.00	-6,952.78	-506.55	368,074.25	802,504.08	32.009118	-103.490758
	19,400.00	90.00	179.51	12,575.00	-7,052.78	-505.70	367,974.25	802,504.94	32.008843	-103.490758
	19,500.00	90.00	179.51	12,575.00	-7,152.78	-504.84	367,874.26	802,505.79	32.008568	-103.490758
	19,600.00	90.00	179.51	12,575.00	-7,252.77	-503.99	367,774.26	802,506.65	32.008293	-103.490758
	19,700.00	90.00	179.51	12,575.00	-7,352.77	-503.13	367,674.26	802,507.50	32.008018	-103.490757
	19,800.00	90.00	179.51	12,575.00	-7,452.77	-502.28	367,574.27	802,508.36	32.007744	-103.490757
	19,900.00	90.00	179.51	12,575.00	-7,552.76	-501.42	367,474.27	802,509.21	32.007469	-103.490757
	20,000.00	90.00	179.51	12,575.00	-7,652.76	-500.57	367,374.28	802,510.07	32.007194	-103.490757
	20,009.00	90.00	179.51	12,575.00	-7,661.76	-500.49	367,365.28	802,510.15	32.007169	-103.490757
	Cross Se		9' MD, 0' FNL	., 2300' FEL						
	20,100.00	90.00	179.51	12,575.00	-7,752.75	-499.71	367,274.28	802,510.92	32.006919	-103.490756
	20,200.00	90.00	179.51	12,575.00	-7,852.75	-498.86	367,174.28	802,511.78	32.006644	-103.490756
	20,300.00	90.00	179.51	12,575.00	-7,952.75	-498.01	367,074.29	802,512.63	32.006369	-103.490756
	20,400.00	90.00	179.51	12,575.00	-8,052.74	-497.15	366,974.29	802,513.49	32.006094	-103.490756
	20,500.00	90.00	179.51	12,575.00	-8,152.74	-496.30	366,874.29	802,514.34	32.005819	-103.490755
	20,600.00	90.00	179.51	12,575.00	-8,252.74	-495.44	366,774.30	802,515.20	32.005545	-103.490755
	20,700.00	90.00	179.51	12,575.00	-8,352.73	-494.59	366,674.30	802,516.05	32.005270	-103.490755

10/19/2018 10:40:27AM

COMPASS 5000.14 Build 85

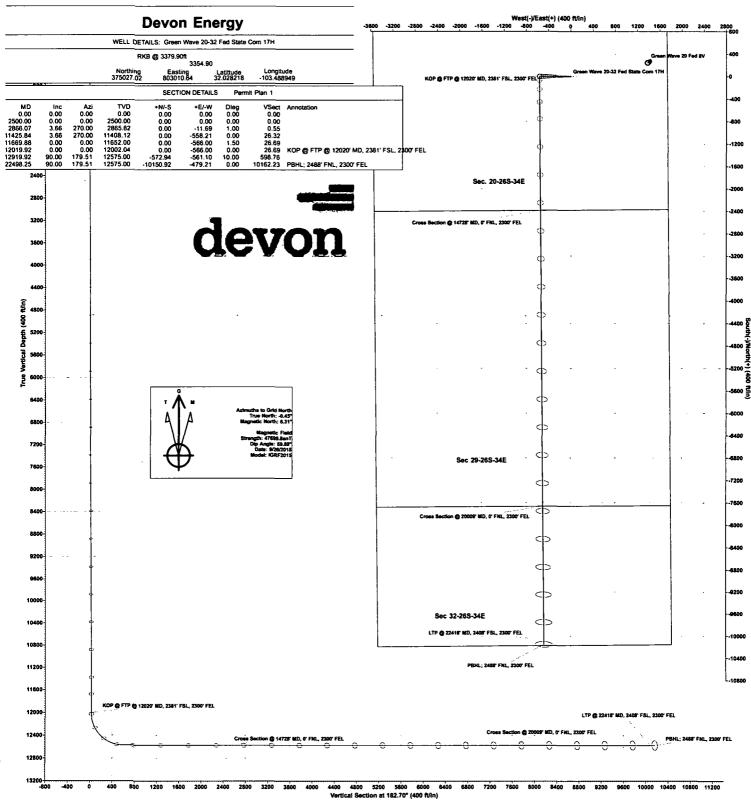
-

.

-

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Green Wave 20-32 Fed State Com 17H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3379.90ft
Project:	Lea County (NAD83 New Mexico East)	MD Reference:	RKB @ 3379.90ft
Site:	Sec 20-T26S-R34E	North Reference:	Grid
Well:	Green Wave 20-32 Fed State Com 17H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permit Plan 1		

.....


Planned Survey

Measured Depth (ft)	inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
20,800.00	90.00	179.51	12,575.00	-8,452.73	-493.73	366,574.31	802,516.91	32.004995	-103.49075
20,900.00	90.00	179.51	12,575.00	-8,552.73	-492.88	366,474.31	802,517.76	32.004720	-103.49075
21,000.00	90.00	179.51	12,575.00	-8,652.72	-492.02	366,374.31	802,518.62	32.004445	-103.49075
21,100.00	90.00	179.51	12,575.00	-8,752.72	-491.17	366,274.32	802,519.47	32.004170	-103.49075
21,200.00	90.00	179.51	12,575.00	-8,852.71	-490.31	366,174.32	802,520.33	32.003895	-103.49075
21,300.00	90.00	179.51	12,575.00	-8,952.71	-489.46	366,074.33	802,521.18	32.003620	-103.49075
21,400.00	90.00	179.51	12,575.00	-9,052.71	-488.60	365,974.33	802,522.04	32.003346	-103.49075
21,500.00	90.00	179.51	12,575.00	-9,152.70	-487.75	365,874.33	802,522.89	32.003071	-103.49075
21,600.00	90.00	179.51	12,575.00	-9,252.70	-486.89	365,774.34	802,523.75	32.002796	-103.49075
21,700.00	90.00	179.51	12,575.00	-9,352.70	-486.04	365,674.34	802,524.60	32.002521	-103.49075
21,800.00	90.00	179.51	12,575.00	-9,452.69	-485.18	365,574.34	802,525.46	32.002246	-103.49075
21,900.00	90.00	179.51	12,575.00	-9,552.69	-484.33	365,474.35	802,526.31	32.001971	-103.49075
22,000.00	90.00	179.51	12,575.00	-9,652.68	-483.47	365,374.35	802,527.17	32.001696	-103.49075
22,100.00	90.00	179.51	12,575.00	-9,752.68	-482.62	365,274.36	802,528.02	32.001421	-103.49075
22,200.00	90.00	179.51	12,575.00	-9,852.68	-481.76	365,174.36	802,528.88	32.001147	-103.49075
22,300.00	90.00	179.51	12,575.00	-9,952.67	-480.91	365,074.36	802,529.73	32.000872	-103.49075
22,400.00	90.00	179.51	12,575.00	-10,052.67	-480.05	364,974.37	802,530.59	32.000597	-103.49075
22,418.25	90.00	179.51	12,575.00	-10,070.92	-479.89	364,956.12	802,530.74	32.000547	-103.49075
LTP @ 2	2418' MD, 240	8' FSL, 2300'	FEL						
22,498.25	90.00	179.51	12,575.00	-10,150.92	-479.21	364,876.12	802,531.43	32.000327	-103.49075
PBHI : 2	488' FNL, 230	O' FEL							

Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
0.00	0.00	0.00	-10.150.92	-479.21	364,876,12	802,531,43	32,000327	-103.490751
	(°)	(°) (°)	Dip Angle Dip Dir. TVD (°) (°) (ft)	(°) (°) (ft) (ft)	Dip Angle Dip Dir. TVD +N/-S +E/-W (°) (°) (ft) (ft) (ft)	Dip Angle Dip Dir. TVD +N/-S +E/-W Northing (°) (°) (ft) (ft) (ft) (usft)	Dip Angle Dip Dir. TVD +N/-S +E/-W Northing Easting (°) (°) (ft) (ft) (ft) (usft) (usft)	Dip Angle Dip Dir. TVD +N/-S +E/-W Northing Easting (°) (°) (ft) (ft) (ft) (usft) (usft) Latitude

plan misses target center by 10162.23ft at 0.00ft MD (0.00 TVD, 0.00 N, 0.00 E)
 Point

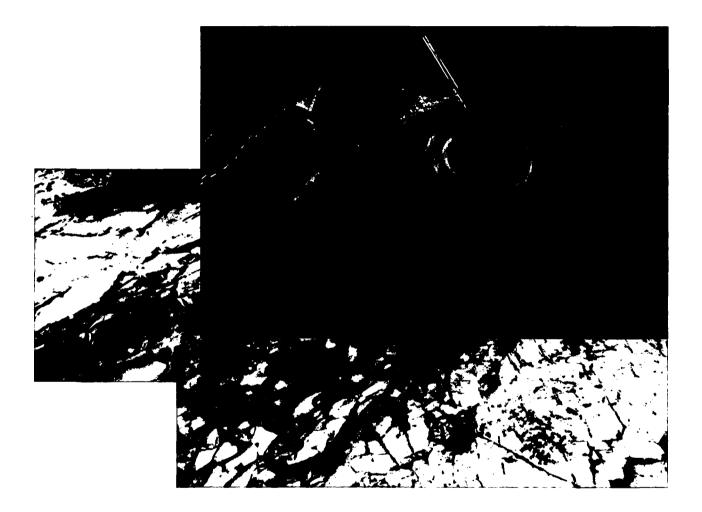
Plan Annotations	5					
,	Measured	Vertical	Local Coon	dinates		
	Depth	Depth	+N/-S	+E/-W		
	(ft)	(ft)	(ft)	(ft)	Comment	
	12,019.92	12,002.04	0.00	-566.00	KOP @ FTP @ 12020' MD, 2381' FSL, 2300' FEL	
	14,728.00	12,575.00	-2,380.95	-545.64	Cross Section @ 14728' MD, 0' FNL, 2300' FEL	
	20,009.00	12,575.00	-7,661.76	-500.49	Cross Section @ 20009' MD, 0' FNL, 2300' FEL	
	22,418.25	12,575.00	-10,070.92	-479.89	LTP @ 22418' MD, 2408' FSL, 2300' FEL	
	22,498.25	12,575.00	-10,150.92	-479.21	PBHL, 2488' FNL, 2300' FEL	

Devon Energy APD VARIANCE DATA

OPERATOR NAME: Devon Energy

1. SUMMARY OF Variance:

Devon Energy respectfully requests approval for the following additions to the drilling plan:


1. Potential utilization of a spudder rig to pre-set surface casing.

2. Description of Operations

- 1. A spudder rig contractor may move in their rig to drill the surface hole section and pre-set surface casing on this well.
 - **a.** After drilling the surface hole section, the rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - **b.** Rig will utilize fresh water based mud to drill surface hole to TD.
- 2. The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 3. A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - **a.** A means for intervention will be maintained while the drilling rig is not over the well.
- 4. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 5. Drilling operation will be performed with the big rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - **a.** The BLM will be contacted / notified 24 hours before the big rig moves back on to the pad with the pre-set surface casing.
- 6. Devon Energy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 7. Once the rig is removed, Devon Energy will secure the wellhead area by placing a guard rail around the cellar area.

Commitment Runs Deep

Design Plan Operation and Maintenance Plan Closure Plan

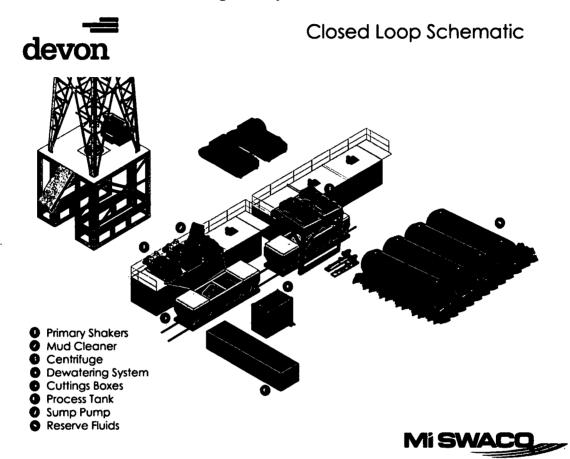
SENM - Closed Loop Systems June 2010

I. Design Plan

Devon uses MI SWACO closed loop system (CLS). The MI SWACO CLS is designed to maintain drill solids at or below 5%. The equipment is arranged to progressively remove solids from the largest to the smallest size. Drilling fluids can thus be reused and savings is realized on mud and disposal costs. Dewatering may be required with the centrifuges to insure removal of ultra fine solids.

The drilling location is constructed to allow storm water to flow to a central sump normally the cellar. This insures no contamination leaves the drilling pad in the event of a spill. Storm water is reused in the mud system or stored in a reserve fluid tank farm until it can be reused. All lubricants, oils, or chemicals are removed immediately from the ground to prevent the contamination of storm water. An oil trap is normally installed on the sump if an oil spill occurs during a storm.

A tank farm is utilized to store drilling fluids including fresh water and brine fluids. The tank farm is constructed on a 20 ml plastic lined, bermed pad to prevent the contamination of the drilling site during a spill. Fluids from other sites may be stored in these tanks for processing by the solids control equipment and reused in the mud system. At the end of the well the fluids are transported from the tank farm to an adjoining well or to the next well for the rig.


Prior to installing a closed-loop system on site, the topsoil, if present, will be stripped and stockpiled for use as the final cover or fill at the time of closure.

Signs will be posted on the fence surrounding the closed-loop system unless the closed-loop system is located on a site where there is an existing well, that is operated by Devon.

II. Operations and Maintenance Plan

Primary Shakers: The primary shakers make the first removal of drill solids from the drilling mud as it leaves the well bore. The shakers are sized to handle maximum drilling rate at optimal screen size. The shakers normally remove solids down to 74 microns.

Mud Cleaner: The Mud Cleaner cleans the fluid after it leaves the shakers. A set of hydrocyclones are sized to handle 1.25 to 1.5 times the maximum circulating rate. This ensures all the fluid is being processed to an average cut point of 25 microns. The wet discharged is dewatered on a shaker equipped with ultra fine mesh screens and generally cut at 40 microns.

Centrifuges: The centrifuges can be one or two in number depending on the well geometry or depth of well. The centrifuges are sized to maintain low gravity solids at 5% or below. They may or may not need a dewatering system to enhance the removal rates. The centrifuges can make a cut point of 8-10 microns depending on bowl speed, feed rate, solids loading and other factors.

The centrifuge system is designed to work on the active system and be flexible to process incoming fluids from other locations. This set-up is also dependent on well factors.

Dewatering System: The dewatering system is a chemical mixing and dosing system designed to enhance the solids removal of the centrifuge. Not commonly used in shallow wells. It may contain pH adjustment, coagulant mixing and dosing, and polymer mixing and dosing. Chemical flocculation binds ultra fine solids into a mass that is within the centrifuge operating design. The dewatering system improves the centrifuge cut point to infinity or allows for the return of clear water or brine fluid. This ability allows for the ultimate control of low gravity solids.

Cuttings Boxes: Cuttings boxes are utilized to capture drill solids that are discarded from the solids control equipment. These boxes are set upon a rail system that allows for the removal and replacement of a full box of cuttings with an empty one. They are equipped with a cover that insures no product is spilled into the environment during the transportation phase.

Process Tank: (Optional) The process tank allows for the holding and process of fluids that are being transferred into the mud system. Additionally, during times of lost circulation the process tank may hold active fluids that are removed for additional treatment. It can further be used as a mixing tank during well control conditions.

Sump and Sump Pump: The sump is used to collect storm water and the pump is used to transfer this fluid to the active system or to the tank for to hold in reserve. It can also be used to collect fluids that may escape during spills. The location contains drainage ditches that allow the location fluids to drain to the sump.

Reserve Fluids (Tank Farm): A series of frac tanks are used to replace the reserve pit. These are steel tanks that are equipped with a manifold system and a transfer pump. These tanks can contain any number of fluids used during the drilling process. These can include fresh water, cut brine, and saturated salt fluid. The fluid can be from the active well or reclaimed fluid from other locations. A 20 ml liner and berm system is employed to ensure the fluids do not migrate to the environment during a spill.

If a leak develops, the appropriate division district office will be notified within 48 hours of the discovery and the leak will be addressed. Spill prevention is accomplished by maintaining pump packing, hoses, and pipe fittings to insure no leaks are occurring. During an upset condition the source of the spill is isolated and repaired as soon as it is discovered. Free liquid is removed by a diaphragm pump and returned to the mud system. Loose topsoil may be used to stabilize the spill and the contaminated soil is excavated and placed in the cuttings boxes. After the well is finished and the rig has moved, the entire location is scrapped and testing will be performed to determine if a release has occurred.

All trash is kept in a wire mesh enclosure and removed to an approved landfill when full. All spent motor oils are kept in separate containers and they are removed and sent to an approved recycling center. Any spilled lubricants, pipe dope, or regulated chemicals are removed from soil and sent to landfills approved for these products.

These operations are monitored by Mi Swaco service technicians. Daily logs are maintained to ensure optimal equipment operation and maintenance. Screen and chemical use is logged to maintain inventory control. Fluid properties are monitored and recorded and drilling mud volumes are accounted for in the mud storage farm. This data is kept for end of well review to insure performance goals are met. Lessons learned are logged and used to help with continuous improvement.

A MI SWACO field supervisor manages from 3-5 wells. They are responsible for training personnel, supervising installations, and inspecting sites for compliance of MI SWACO safety and operational policy.

III. Closure Plan

A maximum 340' X 340' caliche pad is built per well. All of the trucks and steel tanks fit on this pad. All fluid cuttings go to the steel tanks to be hauled by various trucking companies to an agency approved disposal.

		pecifications	
Connection Type:	Size(O.D.):	Weight (Wall):	Grade:
DWC/C Casing	5-1/2 in	17.00 lb/ft (0.304 in)	P-110RY
standard			
	Material		
P-110RY	Grade		
110,000	Minimum Yield Strength (psi)		USA
125,000	Minimum Ultimate Strength (psi)		
			VAM-USA 4424 W. Sam Houston Pkwy. Suite 150
	Pipe Dimensions		Houston, TX 77041
5.500	Nominal Pipe Body O.D. (in)		Phone: 713-479-3200 Fax: 713-479-3234
4.892	Nominal Pipe Body I.D.(in)		E-mail: VAMUSAsales@vam-usa.com
0.304	Nominal Wall Thickness (in)		
17.00	Nominal Weight (lbs/ft)		
16.89	Plain End Weight (lbs/ft)		
4.962	Nominal Pipe Body Area (sq in)		
	Pipe Body Performance Prope	rties	
546,000	Minimum Pipe Body Yield Streng		
7,480	Minimum Collapse Pressure (psi		
10,640	Minimum Internal Yield Pressure		
9,700	Hydrostatic Test Pressure (psi)	W - 1	
-,			
	Connection Dimensions		
6.050	Connection O.D. (in)		
4.892	Connection I.D. (in)		
4.767	Connection Drift Diameter (in)		
4.13	Make-up Loss (in)		
4.962	Critical Area (sq in)		
100.0	Joint Efficiency (%)		
	Connection Performance Prop	erties	
546,000	Joint Strength (lbs)		
22,940	Reference String Length (ft) 1.4	Design Factor	
568,000	API Joint Strength (lbs)	•	
546,000	Compression Rating (lbs)		
7,480	API Collapse Pressure Rating (p	si)	
10,640	API Internal Pressure Resistance		
91.7	Maximum Uniaxial Bend Rating		
	Appoximated Field End Torque	e Values	
12,000	Minimum Final Torque (ft-lbs)		
13,800	Maximum Final Torque (ft-lbs)		
15,500	Connection Yield Torque (ft-lbs)		

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM-USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

11/13/2013 3:17:42 PM

Technical Specifications

DWC Connection Data Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- All standard DWC/C connections are interchangeable for a give pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.

Connection specifications within the control of VAM-USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

11/13/2013 3:17:42 PM

U. S. Steel Tubular Products 8.625" 32.00lbs/ft (0.352" Wall) L80 HC

TECHANICAL PROPERMES	Pip:	ETC	LTC	STC	
Minimum Yield Strength	80,000				psi
Maximum Yield Strength	95,000				psi
Minimum Tensile Strength	95,000				psi
DIMENSIONS	Fipo	DIC	LTC	STC	
Outside Diameter	8.625				in.
Wall Thickness	0.352				in.
Inside Diameter	7.921				in.
Standard Drift	7.796	7.796			in.
Alternate Drift	7.875	7.875			in.
Nominal Linear Weight, T&C	32.00				lbs/ft
Plain End Weight	31.13				lbs/ft
Performance	শিচ্ত	BTC	LTC	STC	
Minimum Collapse Pressure	3,820	3,820			psi
Minimum Internal Yield Pressure	5,710	5,710			psi
Minimum Pipe Body Yield Strength	732				1,000 lbs
Joint Strength					1,000 lbs
Reference Length	. .		'		. ft
MAKERUP DATA	শিচ্ত	etc	LTC	STC	
Make-Up Loss					in.
Minimum Make-Up Torque					ft-lbs
Maximum Make-Up Torque					ft-lbs

L and Nation Legal Notice

ł

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 1-877-893-9461 460 Wildwood Forest Drive, Suite 300S connections@uss.com

Spring, Texas 77380 www.usstubular.com

,

U. S. Steel Tubular Products 9.625" 40.00lbs/ft (0.395" Wall) J55

MECHANICAL PROPERTIES	Pipe	BTC	LTC	STC	
Minimum Yield Strength	55,000				psi
Maximum Yield Strength	80,000				psi
Minimum Tensile Strength	75,000	[`]			psi
DIMENSIONS	Pipe	BTC	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395				in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00				lbs/ft
Plain End Weight	38.97				ibs/ft
PERFORMANCE	Pipe	BTC	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630				1,000 lbs
Joint Strength		714	520	452	1,000 lbs
Reference Length		11,898	8,665	7,529	[·] ft
MAKE-UP DATA	Pipe	BTC	LTC	STC	
Make-Up Loss		4.81	4.75	3.38	in.
Minimum Make-Up Torque			3,900	3,390	ft-lbs
Maximum Make-Up Torque			6,500	5,650	ft-lbs

- . Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

.

U. S. Steel Tubular Products U. S. Steel Tubular Products 1-877-893-9461 460 Wildwood Forest Drive, Suite 300S connections@uss.com

1-877-893-9461 Spring, Texas 77380 www.usstubular.com

-

OCTG Casing Data Sheet

VALLOUREC & MANNESMANN TUBES

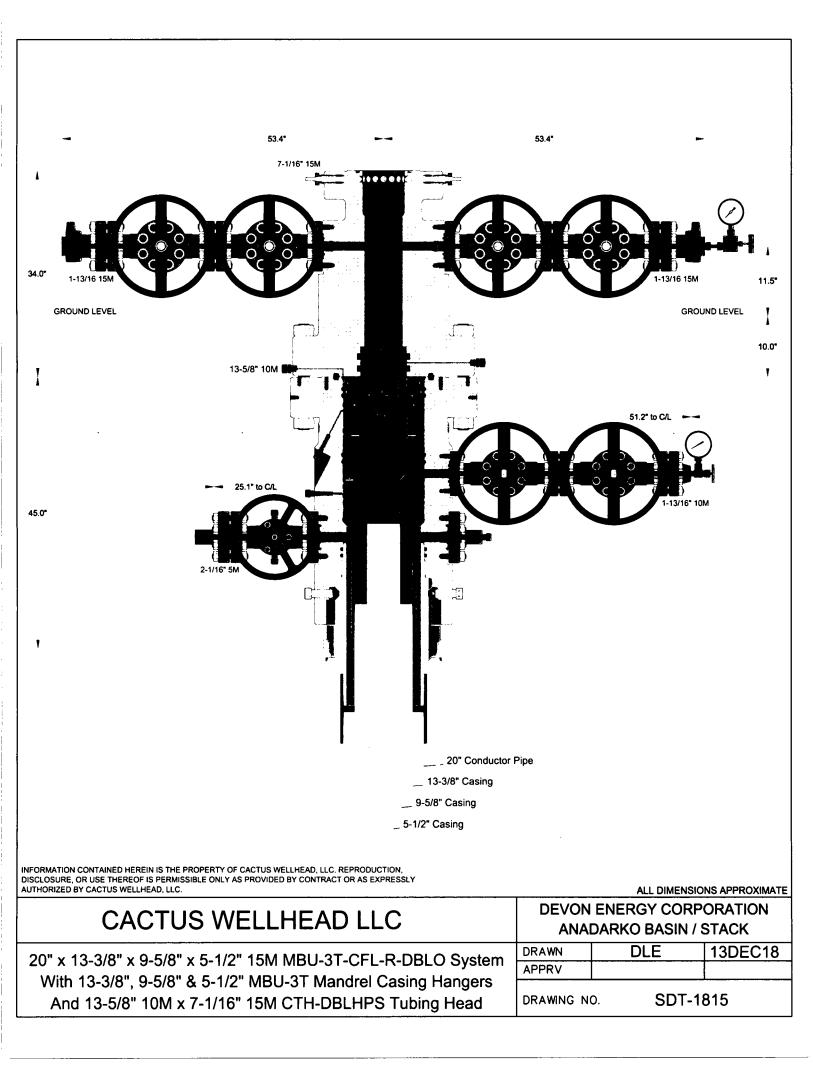
	O.E 9.62		T&C LB/FT 40.00		LB/FT 3.97	GRA P110		
			Grade - Mate	rial Prope	erties			
		Minir	num Yield Strength	:	125.0	k	si	
			num Yield Strength		140	k	si	
		Minimu	m Tensile Strength	:	135	k	si	
			Pipe Bod	y Data (Pl	E)			
			Geo	metry				
			Nominal ID	:	8.835	i	nch	
			Wall	-	0.395		nch	
		-	Nominal Area		11.454		nch ^{2·}	
			API Drift	-	8.679		nch	
			Alternate Drift		8.750	i	nch	
				rmance				
			Body Yield Strength		1,432	k	ips	
			ollapse Resistance		4,230	•	osi	
ln	ternal Yie	eld Press	ure (API Historical)		8,980	p	osi	
	• •		Lamé - Interna	l Yield Pr	essure	· · · · ·		
	. '	-	Lamé open		8,950	p	osi	
			Lamé capped		9,970	P	osi	
 		L	amé ductile rupture	:	9,700	p	osi	
			API Conn	ection Da	ta	<u></u>		
		ST	C Internal Pressure	:	8,980	p	osi	
			STC Joint Strength	:	861	k	ips	
		L	C Internal Pressure	•	8,980	c	si	
			LC Joint Strength		988	•	lips	
		R	C Internal Pressure	•	8,980	r	si	
		5	BC Joint Strength		1,266	•	kips	
						· · ·		
			······································	ue (ft-lbs)				
mi	nimum:	7,410	optimum	: 9,880	m	aximum:	12,350	
This data sheet i	s for informati	ional purpose	s only. While every effort has	been made to	ensure the accurat	cy of all data an	d that the informati	on ned
contained herein through the use			presented as a reference guid	eoniy. V & M 1	udes assumes no	responsibility f	or the results obtain	ned g
API grades with	enhanced per	formance are	supplied with API couplings	produced from	standard API grad	es.		I

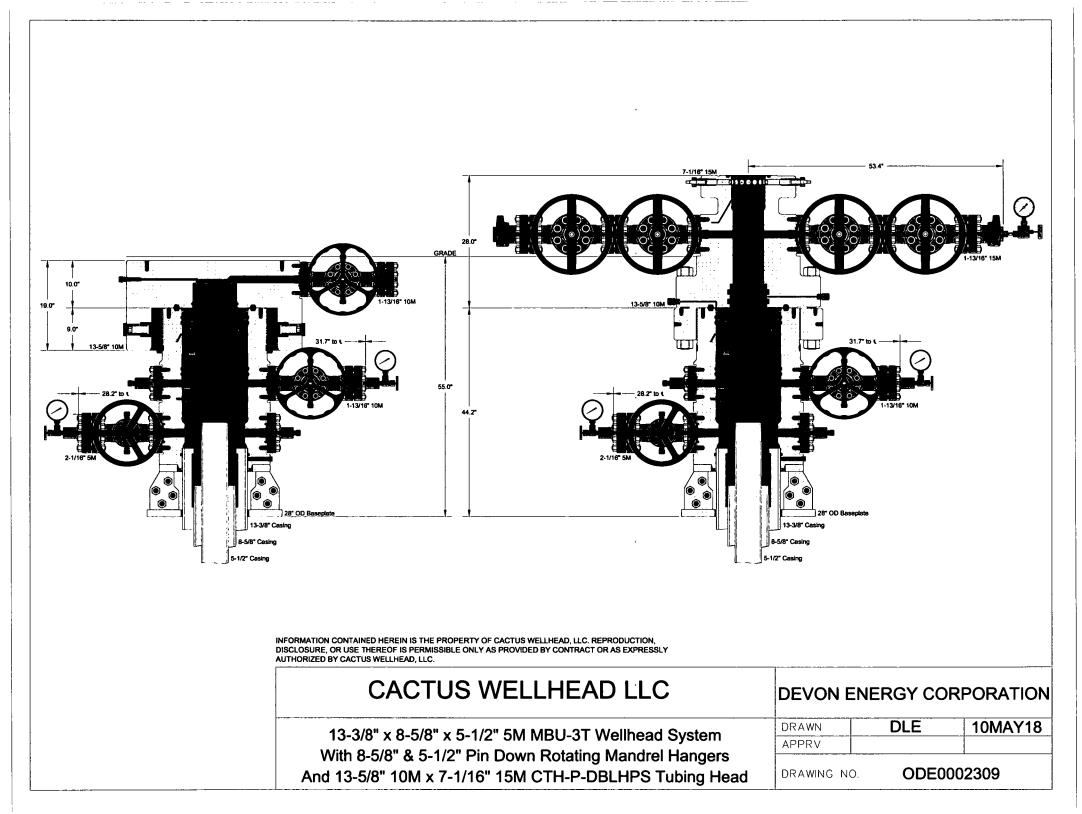
1/8/2019 12:38:52 PM

U. S. Steel Tubular Products 13.375" 48.00lbs/ft (0.330" Wall) H40

MECHANICAL PROPERTIES	Pipe	BTC	LTC	STC	
Minimum Yield Strength	40,000				psi
Maximum Yield Strength	80,000				psi
Minimum Tensile Strength	60,000				psi
DIMENSIONS	Pipe	BTC	LTC	STC	
Outside Diameter	13.375			14.375	in.
Wall Thickness	0.330				in.
Inside Diameter	12.715			12.715	in.
Standard Drift	12.559	12.559		12.559	in.
Alternate Drift					in.
Nominal Linear Weight, T&C	48.00				lbs/ft
Plain End Weight	46.02				lbs/ft
PERFORMANCE	Pipe	BTC	LTC	STC	•
Minimum Collapse Pressure	740	740		740	psi
Minimum Internal Yield Pressure	1,730	1,730		1,730	psi
Minimum Pipe Body Yield Strength	541				1,000 lbs
Joint Strength				322	1,000 lbs
Reference Length		<u>.</u>	'	4,473	ft
MAKE-UP DATA	Pipe	BTC	LTC	STC	
Make-Up Loss				3.50	in.
Minimum Make-Up Torque				2,420	ft-lbs
Maximum Make-Up Torque				4,030	ft-lbs

Legal Notice


All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.


-. ·

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S

1-877-893-9461 connections@uss.com Spring, Texas 77380 www.usstubular.com

· -----

A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- Wellhead will be installed by wellhead representatives.
- If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- Wellhead representative will install the test plug for the initial BOP test.
- Wellhead company will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 5M, as shown on the attached schematic. Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time.
- If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted.
- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

After running the surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 5,000 psi high pressure test. The 5,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

After running the intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 10M will be installed and tested, with 5M annular being tested to 100% of rated working pressure.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 10,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

1. Geologic Formations

TVD of target	12,575	Pilot hole depth	N/A
MD at TD:	22,498	Deepest expected fresh water:	

Basin

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
RUSTLER	675		
TOP SALT	1050		
Base of Salt	5330		-
Delaware	5330		
Lwr Brushy Marker	9414		
1BSLM	9620		
WOLFCAMP	12500		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (3-String Primary Design)

Hole Size	Casing Interval From To		Csg. Size	Wt	Grade	Conn
			CSg. Size	(PPF)	Grade	Conn
17.5″	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS
12.25″	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS
8.75″	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS
BLM Minimum Safety Factor				Collapse: 1.125	Burst: 1.00	Tension: 1.6 Dry 1.8 Wet

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing

- Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.
- Int casing shoe will be selected based on drilling data / gamma, setting depth with be revised accordingly if needed.

Casing Program (3-String Alternate Design)

Hole Size Casir	Casin	g Interval	Csg. Size	Wt	Grade	Conn
nole Size	From To	(PPF)	Grade	Conn		
17.5″	0	725′	13.375″	48	H-40	BTC
10.625"	0	10,000'	8.625″	32	L80HC	BTC
7.875″	0	TD	5.5″	17	P-110	BTC
BL	M Minimu	m Safety Fac	tor	Collapse: 1.125	Burst: 1.00	Tension: 1.6 Dry 1.8 Wet

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing

• Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.

- Variance is requested for collapse rating on 8-5/8" casing. Operator will keep pipe full while running casing. No losses are expected in subsequent hole section.
- Int casing shoe will be selected based on drilling data / gamma, setting depth with be revised accordingly if needed.
- A variance is requested to wave the centralizer requirement for the 10-5/8" casing and 5-1/2" casing.

Hole Size	Hole Size Casing Interva	Interval	Csg. Size	Weight	Grade	Conn.
noie site		То	CSB. SIZE	(PPF)	Graue	conn.
17.5″	0	725'	13.375″	48	H-40	STC
12.25"	0	4,500'	9.625″	40	J-55	BTC
12.25	4,500'	10,000'	9.625″	40	P-110EC	BTC
8.75″	0	TD	5.5″	17	P-110	ВТС
				Collapse:	Buret	Tension:
BL	M Minimu	m Safety Fac	tor	1.125	Burst: 1.00	1.6 Dry
				1.125	1.00	1.8 Wet

Casing Program (3-String Alternate Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing

• Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.

• Int casing shoe will be selected based on drilling data / gamma, setting depth with be revised accordingly if needed.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y

Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	<u>N</u>
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Cementing Program (3-String Primary Design)

Casing	# Sks	тос	Wt. (Ib/gal)	H20 (gal/sk)	Yld (ft3/sack)	Slurry Description
Surface	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS
1-4	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS
Int	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS
	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS
Prod.	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing	# Sks	тос	Wt. (Ib/gal)	H2O (gal/sk)	Yld (ft3/sack)	Slurry Description
Surface	560	Surf	14.8	6.33	1.33	Lead: Class C Cement + additives
	660	Surf	9	20.6	3.31	Lead: Class C Cement + additives
Int	411	2000' above shoe	14.8	6.42	1.33	Tail: Class H / C + additives
Int	As needed	Surf	14.8	6.32	1.33	Squeeze Lead: Class C Cement + additives
Squeeze	411	2000' above shoe	13.2	5.31	1.6	Tail: Class H / C + additives
Production	2300	200' tieback	13.2	5.31	. 1.6	Lead: Class H / C + additives

Cementing Program (3-String Alternate Design)

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate	50%
Production	10%

Cementing Program (3-String Alternate Design)

Casing	# Sks	TOC	Wt. (lb/gal)	H₂O (gal/sk)	Yld (ft3/sack)	Slurry Description
Surface	560	Surf	14.8	6.33	1.33	Lead: Class C Cement + additives
	985	Surf	9	20.6	3.31	Lead: Class C Cement + additives
Int	612	2000' above shoe	14.8	6.42	1.33	Tail: Class H / C + additives
Int Squeeze	As needed	Surf	14.8	6.32	1.33	Squeeze Lead: Class C Cement + additives

4 Drilling Plan

	612	2000' above shoe	14.8	6.42	1.33	Tail: Class H / C + additives
Production	2800	200' tieback	13.2	5.31	1.6	Lead: Class H / C + additives

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate	50%
Production	10%

3. Pressure Control Equipment (Primary Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ту	pe	6	Tested to:		
			Ann	ular	X	50% of rated working pressure		
1			Blind	Ram	X			
Intermediate	13-5/8"	5M	Pipe	Pipe Ram		5M		
			Double Ram		X	JNC		
			Other*					
			Annula	ar (5M)	X	100% of rated working pressure		
Due du stiene	4.0 5 (0"	10M	10M	10M	10M	Blind	Blind Ram X	
Production	13-5/8″					10M	10M	10M Pipe Ram
			Doubl	Double Ram				
			Other*					
			Ann	ular				
			Blind	Ram				

4. Mud Program (Primary Design)

5. [Depth	Turne	Weight	Weight Vis		
From	То	Туре	(ppg)	VIS	Water Loss	
0	725'	FW Gel	See AFMSS	See AFMSS	See AFMSS	
725′	5200'	Saturated Brine	See AFMSS	See AFMSS	See AFMSS	
5200'	TD	OBM / WBM	See AFMSS	See AFMSS	See AFMSS	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
---	-----------------------------

8. Other facets of operation

Is this a walking operation? Potentially

- 1. If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2. The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3. The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1. Spudder rig will move in and drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.
- 2. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3. The wellhead will be installed and tested once the 10 ¾" surface casing is cut off and the WOC time has been reached.
- 4. A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5. Spudder rig operations is expected to take 4-5 days per well on a multi well pad.
- 6. The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- Drilling operations will be performed with the drilling rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

<u>x</u> Directional Plan

Other, describe

6 Drilling Plan

Fluid Technology

ContiTech Beattle Corp. Website: <u>www.contitechbeattle.com</u>

Monday, June 14, 2010

RE: Drilling & Production Hoses Lifting & Safety Equipment

To Heimerich & Payne,

A Continental ContiTech hose assembly can perform as intended and suitable for the application regardless of whether the hose is secured or unsecured in its configuration. As a manufacturer of High Pressure Hose Assemblies for use in Drilling & Production, we do offer the corresponding lifting and safety equipment, this has the added benefit of easing the lifting and handling of each hose assembly whilst affording hose longevity by ensuring correct handling methods and procedures as well as securing the hose in the unlikely event of a failure; but in no way does the lifting and safety equipment affect the performance of the hoses providing the hoses have been handled and installed correctly it is good practice to use lifting & safety equipment but not mandatory

Should you have any questions or require any additional information/clarifications then please do not hesitate to contact us.

ContiTech Beattie is part of the Continental AG Corporation and can offer the full support resources associated with a global organization.

Best regards,

Robin Hodgson Sales Manager ContiTech Beattie Corp

ContiTech Beattle Corp, 11535 Brittmoore Park Drive, Houston, TX 77041 Phone: +1 (832) 327-0141 Fax: +1 (832) 327-0148 www.contitechbeattle.com

R16 212

QUALITY DOCUMENT

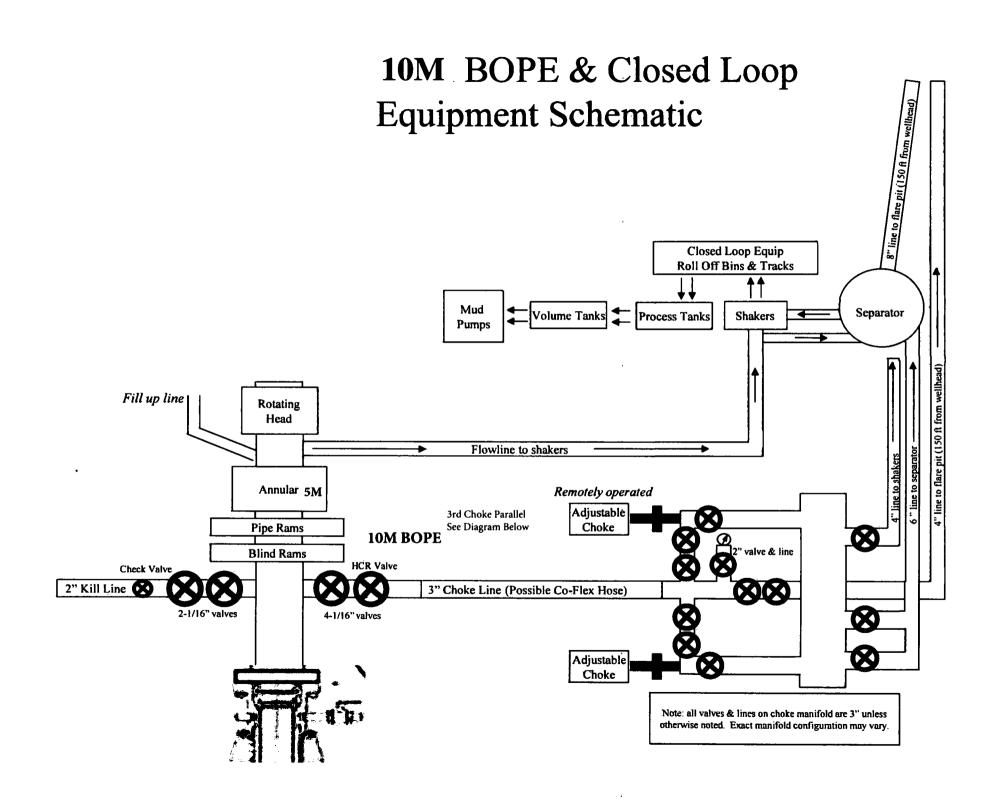
PHOENIX RUBBER

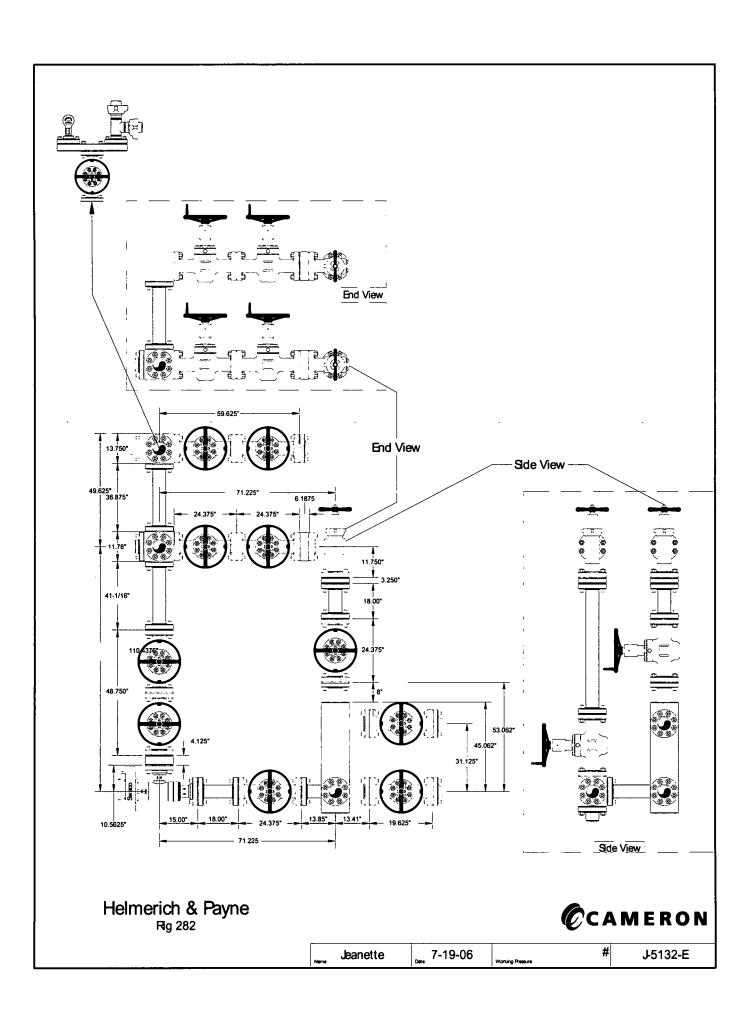
	110000		200 C	
SALES & MARKETENG: H-1092 Budapest, Ráday u.	42-44. Hungary	• H-1440 Bu	dapest, P.	0. Box 26

Phone: (361) 456-4200 · Fax: (361) 217-2972, 456-4273 · www.taunusemerge.hu

QUALITY CONTRÓL INSPECTION AND TEST CERTIFICATE					р. 	552	
PURCHASER:	Phoenix Beat	tie Co.		P.O. №	151	19FA-871	
PHOENIX RUBBER order N°	170466	HOSE TYPE:	3" (D	Cho	ke and K	al Hose	
HOSE SERIAL Nº	34128	NOMINAL / ACT	TUAL LENGTH		11,43 r	n	
W.P. 68,96 MPa 1	0000 ₍ psi	т.р. 103,4	MPa 1500)0 psi	Duration:	. 60	min
Pressure test with water at ambient temperature		•					
	•		•	· · ·			
	See atta	achment. (1 p	page)	•	•		
					· · · ·	:	ب. بر بر
· ·							
10 mm = 10 Min. → 10 mm = 25 MPa		COUPLIN	KGS				رون . تر.
		COUPLIN Serial N°	IGS	Quality		Heat N°	<u>بتنہ ،</u>
→ 10 mm = 25 MPa	72	Serial N°	A	Quality NSI 4130 NSI 4130		Heat N° C7626 47357	<u> </u>
→ 10 mm = 25 MPa Type 3° coupling with	72	Serial N°	A	NSI 4130		C7626	
→ 10 mm = 25 MPa Type 3" coupling with 4 1/16" Flange end	72	Serial N°	A	NSI 4130 NSI 4130		C7626	<u>یندی :</u>
→ 10 mm = 25 MPa Type 3" coupling with	72 72 HOSE HAS BEEN	Serial N° 20 719	API Spec 1 Temperatur	NSI 4130 NSI 4130 8 C re rate:"E		C7626 47357	

			•
• • • • • •	•••••		
		•	
			.
	·		
			K
ē.			b
			40920-0-00015
			015
7 .			
P.		66:61 69:61 69:51 2- 200 6 69:51 2- 200 6	5 78 7 - 108 - 108
•			
		1929-1929 1929-1920 1929-1920-1920 1929-1920 1920-1920 1920-1920 1920-1920 1920-1920 1	
	новол вид Дол Dept.	sul agot	
	.bt.l fai	SUI 480H SUF41 IN ICOTST IN ICOTST IN ICOTST IN ICOTST IN ICOTST IN ICOTST	
	ANARTIN		
	• (/		
	v		
		60141 60141 60141 60141 50141	


, i


*~

.

ş

PROKNIN RUBBER & C

Devon Energy Annular Preventer Summary

1. Component and Preventer Compatibility Table

The table below, which covers the drilling and casing of the 10M MASP portion of the well, outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Component	OD	Preventer	RWP
Drillpipe	4.5"	Fixed lower 4.5"	10M
		Upper 4.5-7" VBR	
HWDP	4.5"	Fixed lower 4.5"	10M
		Upper 4.5-7" VBR	
Drill collars and MWD tools	4.75"	Upper 4.5-7" VBR	10M
Mud Motor	4.75"	Upper 4.5-7" VBR	10M
Production casing	5.5"	Upper 4.5-7" VBR	10M
ALL	0-13-5/8"	Annular	5M
Open-hole	-	Blind Rams	10M

6-3/4" Production hole section, 10M requirement

VBR = Variable Bore Ram. Compatible range listed in chart.

2. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. The pressure at which control is swapped from the annular to another compatible ram is variable, but the operator will document in the submission their operating pressure limit. The operator may chose an operating pressure less than or equal to RWP, but in no case will it exceed the RWP of the annular preventer.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

1 Drilling Plan

Devon Energy Annular Preventer Summary

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to compatible pipe ram.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams or BSR. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

2 Drilling Plan

Devon Energy Annular Preventer Summary

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
 - a. Perform flowcheck, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper pipe ram.
 - e. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the compatible pipe ram.
 - d. Shut-in using compatible pipe ram. (HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper pipe ram.
 - f. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

3 Drilling Plan

SUPO Data Report U.S. Department of the Interior 03/25/2019 **BUREAU OF LAND MANAGEMENT** APD ID: 10400035365 Submission Date: 10/25/2018 **Operator Name: DEVON ENERGY PRODUCTION COMPANY LP** Well Name: GREEN WAVE 20-32 FED STATE COM Well Number: 17H Show Final Text Well Type: OIL WELL Well Work Type: Drill

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

Green_Wave_20_32_Fed_State_Com_17H_ACCESS_RD_20181025105005.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? YES

Existing Road Improvement Description: Improve road to accommodate Drilling and Completion operations.

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Green_Wave_20_32_Fed_State_Com_17H_NEW_ACCESS_RD_20181025105301.pdf Green_Wave_20_32_Fed_State_Com_RS_MDP_20_PADS_CTBS_ACC_RDS1_20181025105316.pdf Green_Wave_20_32_Fed_State_Com_RS_MDP_20_PADS_CTBS_ACC_RDS2_20181025105327.pdf New road type: LOCAL

Length: 2913 Feet Width (ft.): 30

Max slope (%): 6

Max grade (%): 4

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Water Drainage Ditch

New road access plan or profile prepared? YES

New road access plan attachment:

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP Well Name: GREEN WAVE 20-32 FED STATE COM Well Number: 17H

Green_Wave_20_32_Fed_State_Com_RS_MDP_20_PADS_CTBS_ACC_RDS1_20181018170408.pdf Green_Wave_20_32_Fed_State_Com_RS_MDP_20_PADS_CTBS_ACC_RDS2_20181018170428.pdf Green_Wave_20_32_Fed_State_Com_17H_NEW_ACCESS_RD_20181025105346.pdf Access road engineering design? YES

Access road engineering design attachment:

Green_Wave_20_32_Fed_State_Com_RS_MDP_20_PADS_CTBS_ACC_RDS1_20181018170534.pdf Green_Wave_20_32_Fed_State_Com_RS_MDP_20_PADS_CTBS_ACC_RDS2_20181018170556.pdf Green_Wave_20_32_Fed_State_Com_17H_NEW_ACCESS_RD_20181025105353.pdf

Access surfacing type: NONE

Access topsoil source: ONSITE

Access surfacing type description:

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: See attached Interim reclamation diagram.

Access other construction information:

Access miscellaneous information: Attached road map for well pad and a plat with the overall proposed MDP road system.

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: N/A

Road Drainage Control Structures (DCS) description: N/A

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Green_Wave_20_32_Fed_State_Com_17H_OneMileBuffer_20181025105407.pdf

Existing Wells description:

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Part of Rattlesnake 2 MDP. SIX PLATS ATTACHED - 3 ELECTRIC, CTB 20-9 PAD PLAT, WELLPAD PLAT, FLOWLINE PLAT. POWER AND ROADS ARE APPROVED IN EXISTING EASEMENTS - ROADS 138036, POWER 138037. CONNECTS HANDLED BY THIRD PARTY **Production Facilities map:**

Green_Wave_20_32_Fed_State_Com_CTB_20_9_PAD_20181018170815.pdf Green_Wave_20_32_Fed_State_Com_RS_MDP2_20_9_CTB_ELE_20181018170825.PDF Green_Wave_20_32_Fed_State_Com_S_LAT_ELE_20181018170838.PDF Green_Wave_20_32_Fed_State_Com_RS_MDP1_WP_20_9_PAD_20181025105447.pdf Green_Wave_20_32_Fed_State_Com_RS_MDP2_20_9_PAD_ELE_20181025105450.PDF Green_Wave_20_32_Fed_State_Com_RS_MDP2_20_9_RS_CTB_20_9_FLOWLINE_20181025105451.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: STIMULATION		Water source type: RECYCLED
Describe type:		
Source latitude:	2	Source longitude:
Source datum:		
Water source permit type: OTHER	. ·	
Source land ownership: FEDERAL		
Water source transport method: PIPELINE		
Source transportation land ownership: FEDERAL		
Water source volume (barrels): 320000		Source volume (acre-feet): 41.245792
Source volume (gal): 13440000		

Water source and transportation map:

GREEN_WAVE_20_32_FED_STATE_COM_WP_20_9_WATER_MAP_20181025105519.pdf

Water source comments: The attached Water Transfer Map is a proposal only and the final route and documentation will be provided by a Devon contractor prior to installation. When available Devon will always follow existing disturbance. New water well? NO

New Water Well Info)
---------------------	---

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

Aquifer comments:

Aquifer documentation:

Well depth (ft):	Well casing type:
Well casing outside diameter (in.):	Well casing inside diameter (in.):
New water well casing?	Used casing source:
Drilling method:	Drill material:
Grout material:	Grout depth:
Casing length (ft.):	Casing top depth (ft.):
Well Production type:	Completion Method:
Water well additional information:	
State appropriation permit:	

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Part of Rattlesnake 2 MDP. Dirt fill and caliche will be used to construct well pad. See attached map.

Construction Materials source location attachment:

RS_MDP_1_Pad_20_9_Caliche_Map_20181025105542.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Water Based and Oil Based Cuttings

Amount of waste: 1740 barrels

Waste disposal frequency : Daily

Safe containment description: N/A

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: All cuttings will disposed of at R360, Sundance, or equivalent.

Waste type: COMPLETIONS/STIMULATION

Waste content description: Flow back water during completion operations.

Amount of waste: 3000 barrels

Waste disposal frequency : One Time Only

Safe containment description: n/a

Safe containmant attachment:

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Various disposal locations in Lea and Eddy counties.

Waste type: PRODUCED WATER

Waste content description: Produced water during flowback will be disposed of at our Rattlesnake 16 SWD.

Amount of waste: 4100 barrels

Waste disposal frequency : Daily

Safe containment description: n/a

Safe containmant attachment:

Waste disposal type: OFF-LEASE INJECTION Disposal location ownership: STATE

Disposal type description:

Disposal location description: Produced water will be primarily disposed of at our Rattlesnake 16 SWD. Portions of this water will be recycled and used for stimulations (recycle facility co-located with SWD). Surplus produced water will be sent to third party suppliers for disposal.

Waste type: FLOWBACK

Waste content description: Average produced BWPD over the flowback period (first 30 days of production).

Amount of waste: 11500 barrels

Waste disposal frequency : Daily

Safe containment description: n/a

Safe containmant attachment:

Waste disposal type: OFF-LEASE INJECTION Disposal location ownership: STATE

Disposal type description:

Disposal location description: Produced water will be primarily disposed of at our Rattlesnake 16 SWD. Portions of this water will be recycled and used for stimulations (recycle facility co-located with SWD). Surplus produced water will be sent to third party suppliers for disposal.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Description of cuttings location

Cuttings area length (ft.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

Green_Wave_20_32_Fed_State_Com_17H_WELL_LAYOUT_20181025105600.pdf Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: RATTLESNAKE MDP 1 PAD

Multiple Well Pad Number: 20-09

Recontouring attachment:

Green_Wave_20_32_Fed_State_Com_17H_INTERIM_RECL_20181025105612.pdf

Drainage/Erosion control construction: n/a

Drainage/Erosion control reclamation: n/a

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

Well pad proposed disturbance (acres): 8.682	Well pad interim reclamation (acres): 5.839	Well pad long term disturbance (acres): 2.843
Road proposed disturbance (acres): 2.006	Road interim reclamation (acres): 0	Road long term disturbance (acres):
Powerline proposed disturbance	Powerline interim reclamation (acres):	Powernine long term disturbance
(acres): 4.482 Pipeline proposed disturbance	Pipeline interim reclamation (acres): 0	(acres): 4.482 Pipeline long term disturbance
(acres): 0.472 Other proposed disturbance (acres): 0	Other interim reclamation (acres): 0	(acres): 0.472 Other long term disturbance (acres): 0
Total proposed disturbance: 15.642	Total interim reclamation: 5.839	Total long term disturbance: 9.803

Disturbance Comments:

Reconstruction method: Operator will use Best Management Practices"BMP" to mechanically recontour to obtain the desired outcome.

Topsoil redistribution: Topsoils shall be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns.

Soll treatment: Topsoils shall be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns.

Existing Vegetation at the well pad: Shinnery, yucca, grasses and mesquite.

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Shinnery, yucca, grasses and mesquite.

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: Shinnery, yucca, grasses and mesquite.

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: Shinnery, yucca, grasses and mesquite.

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

	Seed Managemen	IL		
	Seed Table			
:	Seed type:		Seed source:	
	Seed name:			
	Source name:		Source address:	
:	Source phone:			
	Seed cultivar:			
	Seed use location:			
	PLS pounds per acre:		Proposed seeding season:	
	Seed S	ummary	Total pounds/Acre:	
•	Seed Type	Pounds/Acre		
Seed	d reclamation attachme	nt:		
	Operator Contact/	Responsible Offic	al Contact Info	
Fi			· .	
	rst Name: TRAVIS		Last Name: PHIBBS	
	rst Name: TRAVIS 10ne: (575)748-9929		Last Name: PHIBBS Email: TRAVIS.PHIBBS@DVN.COM	
Pł				
Pł See	1 one: (575)748-9929			
Pł Seei Seei	none: (575)748-9929 dbed prep:			
Pt Seed Seed Seed	none: (575)748-9929 Ibed prep: I BMP:	NO		
Pł Seed Seed Seed Exis	none: (575)748-9929 dbed prep: d BMP: d method:			
Pł Seed Seed Seed Exis Exis	none: (575)748-9929 dbed prep: d BMP: d method: ting invasive species? I	eatment description:		
Pł Seed Seed Exis Exis Exis	none: (575)748-9929 dbed prep: d BMP: d method: ting invasive species? f ting invasive species tr ting invasive species tr	eatment description:	Email: TRAVIS.PHIBBS@DVN.COM	
Pł Seed Seed Exis Exis Exis Exis	none: (575)748-9929 dbed prep: d BMP: d method: ting invasive species? f ting invasive species tr ting invasive species tr	eatment description: eatment attachment: ption: Maintain weeds on	Email: TRAVIS.PHIBBS@DVN.COM	
Pł Seed Seed Exis Exis Exis Wee Wee	none: (575)748-9929 dbed prep: d BMP: d method: ting invasive species? f ting invasive species tra ting invasive species tra d treatment plan descrip	eatment description: eatment attachment: ption: Maintain weeds on ment:	Email: TRAVIS.PHIBBS@DVN.COM	
Ph Seed Seed Exis Exis Exis Wee Wee Mon	none: (575)748-9929 dbed prep: d BMP: d method: ting invasive species? I ting invasive species tra ting invasive species tra d treatment plan descrip d treatment plan attach	eatment description: eatment attachment: ption: Maintain weeds on ment: : Monitor as needed.	Email: TRAVIS.PHIBBS@DVN.COM	
Ph Seed Seed Exis Exis Exis Wee Wee Mon Mon	none: (575)748-9929 dbed prep: d BMP: d method: ting invasive species? I ting invasive species tra ting invasive species tra d treatment plan description itoring plan description	eatment description: eatment attachment: ption: Maintain weeds on ment: : Monitor as needed.	Email: TRAVIS.PHIBBS@DVN.COM	

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

Section 11 - Surface Ownership

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: EXISTING ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: USFWS Local Office: Other Local Office:

Well Name: GREEN WAVE 20-32 FED STATE COM

Well Number: 17H

USFS Forest/Grassland:

Disturbance type: WELL PAD

USFS Ranger District:

Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: USFWS Local Office: USFWS Local Office: USFWS Local Office:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: PIPELINE Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office:

D	perator	Name:	DEVON	ENERGY	PRODUCTION	COMPANY LP

Well Name: GREEN WAVE 20-32 FED STATE COM

1.

Well Number: 17H

USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Section 12 - Other Information

Right of Way needed? YES

Use APD as ROW? YES

ROW Type(s): 281001 ROW - ROADS, 288100 ROW - O&G Pipeline, FLPMA (Powerline), Other

ROW Applications

SUPO Additional Information: PART OF RATTLESNAKE MDP 2. SEE SEC. 4 FOR FACILITY, ELECTRIC AND FLOWLINE PLATS. GRADING PLAN IN C-102 **Use a previously conducted onsite?** YES

Previous Onsite Information: CONDUCTED 1/272017

Other SUPO Attachment

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment: Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: CO1104

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bond Info Data Report

03/25/2019

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: