Form 3160-3 (June 2015)

HOBBS OCD

AUG 1 4 2019 5. Lease Serial No.

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018

BUREAU OF LAND MAI	NAGEMEN	JT _		NMNM120914	
APPLICATION FOR PERMIT TO	DRILL OF	REERECE	IVED	6. If Indian, Allotee or T	ribe Name
1a. Type of work:	REENTER	"''		7. If Unit or CA Agreem	ent, Name and No.
1b. Type of Well: Oil Well Gas Well	Other			8. Lease Name and Well	No
lc. Type of Completion: Hydraulic Fracturing	Single Zone	Multiple Zone		PINE STRAWFED CO	25 36 05
2. Name of Operator AMEREDEV OPERATING LLC (372224)				9. API Well No. 30-025-46	286
3a. Address 5707 Southwest Parkway, Building 1, Suite 275 Austin T		No. <i>(include area cod</i> 4700	e)	10. Field and Pool, or Education 10. Field and Pool, or Education 10. In 1985	- •
4. Location of Well (Report location clearly and in accordance	e with any Sta	te requirements.*)		11. Sec., T. R. M. or Blk	_
At surface LOT 4 / 233 FNL / 230 FWL / LAT 32.166	04 / LONG -	103.29475		SEC 5 / T25S / R36E /	NMP
At proposed prod. zone LOT M / 50 FSL / 200 FWL / L	AT 32.13782	/ LONG -103.29504			
14. Distance in miles and direction from nearest town or post of 6 miles	office*			12. County or Parish LEA	13. State NM
15. Distance from proposed* 230 feet	16. No of	acres in lease	17. Spacir	ng Unit dedicated to this v	vell
location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	640		640.96		
18. Distance from proposed location*	19. Propos	sed Depth	20. BLM/	BIA Bond No. in file	-
to nearest well, drilling, completed, 11616 feet applied for, on this lease, ft.		et / 22241 feet		B001478	
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	1	ximate date work will:	start*	23. Estimated duration	
3241 feet	06/01/201			90 days	
	24. Atta	chments			
The following, completed in accordance with the requirements (as applicable)	of Onshore O	il and Gas Order No. 1	, and the H	lydraulic Fracturing rule p	oer 43 CFR 3162.3-3
Well plat certified by a registered surveyor. A Drilling Plan.		4. Bond to cover the Item 20 above).	e operation:	s unless covered by an exi	sting bond on file (see
3. A Surface Use Plan (if the location is on National Forest Sys SUPO must be filed with the appropriate Forest Service Offi		•		mation and/or plans as may	be requested by the
25. Signature		nc (Printed/Typed)	· ·	Dat	te
(Electronic Submission)	Chris	stie Hanna / Ph: (737	7)300-472	3 07	/27/2018
Title Senior Engineering Technician					
Approved by (Signature) (Electronic Submission)	1	nc <i>(Printed/Typed)</i> y Layton / Ph: (575)2	34-5959	Dat 08/	te /12/2019
Title Assistant Field Manager Lands & Minerals		LSBAD			
Application approval does not warrant or certify that the application to conduct operations thereon. Conditions of approval, if any, are attached.	ant holds lega	l or equitable title to th	ose rights i	in the subject lease which	would entitle the
Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, of the United States any false, fictitious or fraudulent statement					lepartment or agency
OCA Rec 08/14/19	<u>,</u>			1/2011	19

UNITED STATES

DEPARTMENT OF THE INTERIOR

(Continued on page 2)

Approval Date: 08/12/2019

*(Instructions on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: LOT 4 / 233 FNL / 230 FWL / TWSP: 25S / RANGE: 36E / SECTION: 5 / LAT: 32.16604 / LONG: -103.29475 (TVD: 0 feet, MD: 0 feet)

PPP: NWNW / 0 FNL / 220 FWL / TWSP: 25S / RANGE: 36E / SECTION: 8 / LAT: 32.15218 / LONG: -103.29494 (TVD: 11495 feet, MD: 17019 feet)

PPP: NWNW / 100 FNL / 200 FWL / TWSP: 25S / RANGE: 36E / SECTION: 5 / LAT: 32.16641 / LONG: -103.29485 (TVD: 11495 feet, MD: 11839 feet)

BHL: LOT M / 50 FSL / 200 FWL / TWSP: 25S / RANGE: 36E / SECTION: 8 / LAT: 32.13782 / LONG: -103.29504 (TVD: 11495 feet, MD: 22241 feet)

BLM Point of Contact

Name: Ciji Methola

Title: GIS Support - Adjudicator

Phone: 5752345924

Email: cmethola@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

Application for Permit to Drill

U.S. Department of the Interior

Bureau of Land Management

APD Package Report

APD ID: 10400032526

APD Received Date: 07/27/2018 02:18 PM

Operator: AMEREDEV OPERATING LLC

Date Printed: 08/12/2019 04:21 PM

Well Status: AAPD

Well Name: PINE STRAW FED COM 25 30

Well Number: 101H

APD Package Report Contents

- Form 3160-3

- Operator Certification Report

- Application Report

- Application Attachments

-- Well Plat: 6 file(s)

- Drilling Plan Report

- Drilling Plan Attachments

-- Blowout Prevention Choke Diagram Attachment: 1 file(s)

-- Blowout Prevention BOP Diagram Attachment: 4 file(s)

-- Casing Design Assumptions and Worksheet(s): 6 file(s)

-- Hydrogen sulfide drilling operations plan: 1 file(s)

-- Proposed horizontal/directional/multi-lateral plan submission: 4 file(s)

-- Other Facets: 1 file(s)

-- Other Variances: 2 file(s)

- SUPO Report

- SUPO Attachments

-- Existing Road Map: 1 file(s)

-- New Road Map: 2 file(s)

-- Attach Well map: 1 file(s)

-- Production Facilities map: 5 file(s)

-- Water source and transportation map: 2 file(s)

-- Construction Materials source location attachment: 1 file(s)

-- Well Site Layout Diagram: 1 file(s)

-- Recontouring attachment: 1 file(s)

-- Other SUPO Attachment: 2 file(s)

- PWD Report

- PWD Attachments

-- None

- Bond Report
 Bond Attachments
 - -- None

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: | Ameredev Operating, LLC

LEASE NO.: NMNM-120914

WELL NAME & NO.: | Pine Straw Fed Com 25 36 05 91H

SURFACE HOLE FOOTAGE: | 0233' FNL & 0230' FWL

BOTTOM HOLE FOOTAGE | 0050' FSL & 0200' FWL Sec. 08, T. 25 S., R 36 E.

LOCATION: Section 05, T. 25 S., R 36 E., NMPM

COUNTY: | County, New Mexico

Communitization Agreement

The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

□ Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 3933612

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Alternative when using skid/walking rig
 The operator has proposed to drill multiple wells utilizing a skid/walking rig.
 Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other wells.
- 4. Option Setting surface casing with Surface Rig
 - a. Notify the BLM when removing the Surface Services Rig.
 - b. Notify the BLM when moving in the H&P Flex Rig. Rig to be moved in within 60 days of notification that Surface Rig has left the location. Failure to notify or have rig on location within 60 days will result in an Incident of Non-Compliance.
 - c. Once the H&P Flex Rig is on location, it shall not be removed from over the hole without prior approval unless the production casing has been run and cemented or the well has been properly plugged. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
 - d. BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as H&P Flex Rig is rigged up on well. CIT for the surface casing shall be performed and results recorded on subsequent sundry pressure to be 1200 psi.
- 5. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.

Page 2 of 11

6. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Capitan Reef

Possible water flows in the Castile, Salado, and Capitan Reef. Possible lost circulation in the Rustler, Red Beds, and Delaware.

Page 3 of 11

Abnormal pressures may be encountered within the 3rd Bone Spring and Wolfcamp Formations.

CASING DESIGN OPTION #1 (IF LOSS CIRCULATION OF 50% OR GREATER OCCURS ON THE 12-1/4" HOLE, OPERATOR WILL SWITCH TO THEIR CONTINGENCY FOUR STRING DESIGN):

- 1. The 13-3/8 inch surface casing shall be set at approximately 1359 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Formation below the 13-3/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

9-5/8" Intermediate casing shall be kept fluid filled while running into hole to meet BLM minimum collapse requirements.

IF LOSS CIRCULATION OF 50% OR GREATER OCCURS ON THE 12-1/4" HOLE, OPERATOR WILL SWITCH TO THEIR CONTINGENCY FOUR

Page 4 of 11

STRING DESIGN

Special Capitan Reef requirements:

If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following in addition to switching to their four string contingency design:

- Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
- Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing, which shall be set at 10,785 feet, is:

Operator has proposed DV tool at depth of 5171', but will adjust cement proportionately if moved. DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

a. Pil	st stage to DV tool:
BL hav	ment to circulate. If cement does not circulate, contact the appropriate M office before proceeding with second stage cement job. Operator should we plans as to how they will achieve circulation on the next stage. Excess culates to 14% - Additional cement may be required
b. Sec	cond stage above DV tool:
off	ment to surface. If cement does not circulate, contact the appropriate BLM ice. Wait on cement (WOC) time for a primary cement job is to clude the lead cement slurry due to Capitan Reef.
Test to be don pore pressure prevent disso	clow the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. ne as a mud equivalency test using the mud weight necessary for the c of the formation below the shoe (not the mud weight required to lving the salt formation) and the mud weight for the bottom of the results to BLM office.
Centralizers	required through the curve and a minimum of one every other joint.
3. The minim	num required fill of cement behind the 5-1/2 inch production casing is:
Ca	ment should tie-back at least 50 feet above the Capitan Reef (Top of pitan Reef estimated at 3906'). Operator shall provide method of ification.
50% OR GRI	NCY CASING DESIGN OPTION #2 (IF LOSS CIRCULATION OF EATER OCCURS ON THE 12-1/4" HOLE, OPERATOR WILL THIS FOUR STRING DESING):
25 feet into	inch surface casing shall be set at approximately 1359 feet (a minimum of the Rustler Anhydrite and above the salt) and cemented to the surface. If ountered, set casing at least 25 feet above the salt.
a. If c	ement does not circulate to the surface, the appropriate BLM office shall

be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of

six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Formation below the 13-3/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing, which shall be set at 5275 feet, is:

Operator has proposed DV tool at depth of 3262', but will adjust cement proportionately if moved. DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

- a. First stage to DV tool:____
- EX Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage.
- b. Second stage above DV tool:
- Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to Capitan Reef.

Formation below the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe (not the mud weight required to prevent dissolving the salt formation) and the mud weight for the bottom of the hole. Report results to BLM office.

3.	The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:
	Cement to surface. If cement does not circulate, contact the appropriate BLM
	office. Excess calculates to 15% - Additional cement may be required
Tes por	rmation below the 7-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. at to be done as a mud equivalency test using the mud weight necessary for the re pressure of the formation below the shoe and the mud weight for the bottom of hole. Report results to BLM office
4.	The minimum required fill of cement behind the 5-1/2 inch production casing is:
	☐ Cement should tie-back at least 50 feet above the Capitan Reef (Top of
	Capitan Reef estimated at 3906'). Operator shall provide method of verification.

5. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the

straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).

- 3. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. Operator shall perform the 9-5/8" and 7-5/8" casing integrity tests to 70% of the casing burst. This will test the multi-bowl seals.
 - f. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.)

10M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

- 4. The appropriate BLM office shall be notified a minimum of hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not

Page 9 of 11

hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- a. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer.
- b. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- c. The results of the test shall be reported to the appropriate BLM office.
- d. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- e. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- f. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the **Wolfcamp** formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

D. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the **Wolfcamp** formation, and shall be used until production casing is run and cemented.

E. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

F. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 050919

Page 11 of 11

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

©perator Certification Data Report 08/12/2019

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna

Signed on: 04/30/2019

Title: Senior Engineering Technician

Street Address: 5707 Southwest Parkway, Building 1, Suite 275

City: Austin

State: TX

Zip: 78735

Phone: (737)300-4723

Email address: channa@ameredev.com

Field Representative

Representative Name: ZACHARY BOYD

Street Address: 5707 SOUTHWEST PARKWAY, BLDG 1, STE. 275

City: AUSTIN

State: TX

Zip: 78735

Phone: (737)300-4700

Email address: zboyd@ameredev.com

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

APD ID: 10400032526

Submission Date: 07/27/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

APD ID:

10400032526

Tie to previous NOS? Y

Submission Date: 07/27/2018

BLM Office: CARLSBAD

User: Christie Hanna

Title: Senior Engineering Technician

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM120914

Lease Acres: 640

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

APD Operator: AMEREDEV OPERATING LLC

Operator letter of designation:

Operator Info

Operator Organization Name: AMEREDEV OPERATING LLC

Operator Address: 5707 Southwest Parkway, Building 1, Suite 275

Operator PO Box:

Zip: 78735

Operator City: Austin

State: TX

Operator Phone: (737)300-4700

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Master Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: JAL

Pool Name: 3RD BONE

SPRING

le the proposed well in an area containing other mineral resources I ISEARI E WATER NATURAL GAS COS OIL

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Describe other minerals:

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO

New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name: PS

Number: 1S

Well Class: HORIZONTAL

Number of Legs: 1

Well Work Type: Drill

Well Type: OIL WELL

Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:

Distance to town: 6 Miles

Distance to nearest well: 11616 FT

Distance to lease line: 230 FT

Reservoir well spacing assigned acres Measurement: 640.96 Acres

Well plat:

JEFF_20190326132513.pdf

PINE_STRAW_FED_COM_25_36_05_101H___BLM_LEASES_20190326132607.pdf

PINE_STRAW_FED_COM_25_36_05_101H___C_102_REV_SIG_20190325_20190326132608.pdf

PINE_STRAW_FED_COM_25_36_05_101H___EXHIBIT_2A_2B_20190326132609.pdf

PINE_STRAW_FED_COM_25_36_05_101H___VICINITY_MAP_20190326132610.pdf

GAS_CAPTURE_PLAN_20190326132624.pdf

Well work start Date: 06/01/2019

Duration: 90 DAYS

Section 3 - Well Location Table

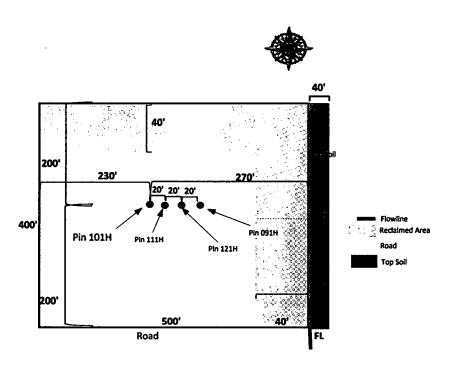
Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number: 11401

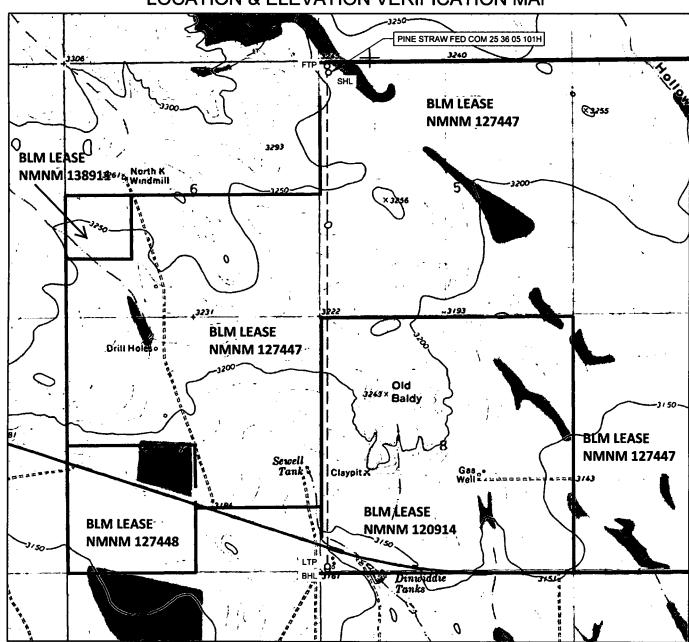

Reference Datum:

Ouiv	y iidi	······································	1170	•					Itticit	ciice Datu									
	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Тwsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	αντ	
SHL	233	1441	230	PML	255	361	5	Lot	an, 16604		HE EA	[MEDA]	ME:W		NMNM	324	()	10	
Leg	!							4 .		0011127 L		MHZE TX	Mr M		127447				
l#1		7.								(-)		(17)	(C)					į	ı

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
КОР								Aliquot							STATE			
Leg								sws										
#1								W										
PPP								Aliquot							NMNM			
Leg								NWN							127447			
#1								W										
PPP								Aliquot							MMMM			
Leg								NWN							120914			
#1								W										
EXIT								Lot							MMMM			
Leg								М							120914			
#1																		
BHL								Lot							NMNM			
Leg								М							120914			
#1															· ·			


Pine Straw Fed Com 25 36 05 101H SHL: 25S 36E 233' FNL 230' FWL

Pine Straw Fed Com 25 36 05 111H SHL: 25S 36E 233' FNL 250' FWL

Pine Straw Fed Com 25 36 05 121H SHL: 25S 36E 233' FNL 270' FWL

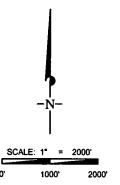
Pine Straw Fed Com 25 36 05 091H SHL: 25S 36E 233' FNL 290' FWL

LOCATION & ELEVATION VERIFICATION MAP

AMEREDEV

AMEREDEV OPERATING, LLC

LEASE NAME & WELL NO.:

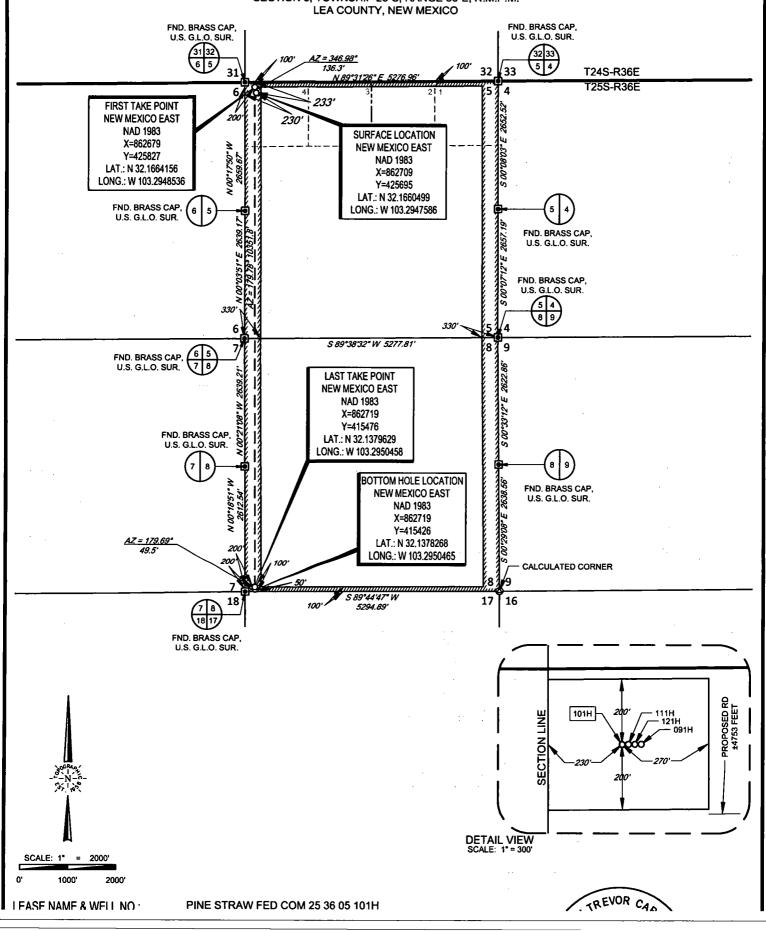

PINE STRAW FED COM 25 36 05 101H

 SECTION
 5
 TWP
 25-S
 RGE
 36-E
 SURVEY
 N.M.P.M.

 COUNTY
 LEA
 STATE
 NM
 ELEVATION
 3241'

 DESCRIPTION
 233' FNL & 230' FWL

LATITUDE N 32.1660499 LONGITUDE W 103.2947586


THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET

AMEREDEV

AMEREDEV OPERATING, LLC **EXHIBIT 2A**

SECTION 5, TOWNSHIP 25-S, RANGE 36-E, N.M.P.M.

EXHIBIT 2B

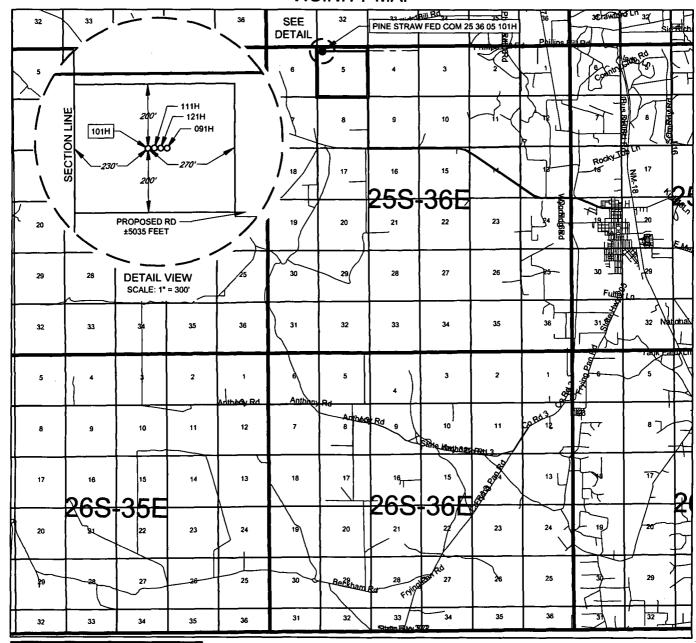
AMEREDEV OPERATING, LLC

SECTION 5, TOWNSHIP 25-S, RANGE 36-E, N.M.P.M. LEA COUNTY, NEW MEXICO DETAIL VIEW SCALE: 1*= 100'

TOWNSHIP LINE 3239.6 3242.1 CENTER OF PAD X=862729 33 Y=425695 LAT.: N 32.1660498 LONG.: W 103.2946939 PINE STRAW FED COM 25 36 05 111H PINE STRAW FED COM 25 36 05 121H PINE STRAW FED COM 25 36 05 091H 3241.3 PINE STRAW FED COM 25 36 05 101H 20' 20' 20 SECTION LINE ġ 3236.5 3247.5 PROPOSED RD ±9764 FEET LEASE NAME & WELL NO .: _ PINE STRAW FED COM 25 36 05 101H 101H LATITUDE _ N 32.1660499 W 103.2947586 101H LONGITUDE CENTER OF PAD IS 233' FNL & 250' FWL SCALE: 1° = 100' 100

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET

THIS PROPOSED PAD SITE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.


TELEPHONE: (817) 744-7512 - FAX (817) 744-7554

2903 NORTH BIG SPRING - MIDLAND, TEXAS 79705

TELEPHONE: (432) 682-1653 OR (800) 767-1653 - FAX (432) 682-1743

WWW.TOPOGRAPHIC.COM

EXHIBIT 2 VICINITY MAP

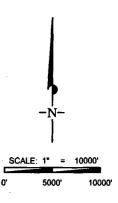
AMEREDEV

AMEREDEV	OPERATING, I	LLC
----------	--------------	-----

LEASE NAME & WELL NO.: PINE STRAW FED COM 25 36 05 101H

 SECTION
 5
 TWP
 25-S
 RGE
 36-E
 SURVEY
 N.M.P.M.

 COUNTY
 LEA
 STATE
 NM


DESCRIPTION ______ 233' FNL & 230' FWL

DISTANCE & DIRECTION

FROM INT. OF 3RD ST./NM-205/FRYING PAN RD. & NM-128, HEAD WEST ON NM-128. ±5.3 MILES, THENCE NORTHEAST (RIGHT) ON A LEASE RD. ±2.0 MILES, THENCE NORTHWEST (LEFT) ON A PROPOSED RD.±4753 FEET TO A POINT ±345 FEET SOUTHEAST OF THE LOCATION.

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC, THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET

1400 EVERMAN PARKWAY, Ste. 146 • FT. WORTH, TEXAS 76140

TELEPHONE: (817) 744-7512 • FAX (817) 744-7554

2903 NORTH BIG SPRING • MIDJAND, TEXAS 79705

TELEPHONE: (432) 682-1653 OR (800) 767-1653 • FAX (432) 682-1743

WWW.TOPOGRAPHIC.COM

U.S. Department of the interior **BUREAU OF LAND MANAGEMENT**

Drilling Plan Data Report

APD ID: 10400032526

Submission Date: 07/27/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: PINE STRAW FED COM 25 36 05

Well Type: OIL WELL

Well Number: 101H

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER ANHYDRITE	3241	1234	1234	ANHYDRITE	NONE	N
2	SALADO	1381	1772	1772	SALT	NONE	N
3	TANSILL	-267	3420	3420	LIMESTONE	NONE	N
4	CAPITAN REEF	-778	4019	4019	LIMESTONE	USEABLE WATER	N
5	LAMAR	-1968	5121	5121	LIMESTONE	NONE	N
6	BELL CANYON	-2147	5300	5300	SANDSTONE	NONE	N
7	BRUSHY CANYON	-3843	6996	6996	SANDSTONE	NATURAL GAS,OIL	N
8	BONE SPRING LIME	-5067	8220	8220	LIMESTONE	NATURAL GAS,OIL	N
9	BONE SPRING 1ST	-6374	9527	9527	SANDSTONE	NONE	N
10	BONE SPRING 2ND	-6770	9923	9923	SANDSTONE	NATURAL GAS,OIL	N
11	BONE SPRING 3RD	-7524	10677	10677	LIMESTONE	NATURAL GAS,OIL	N
12	BONE SPRING 3RD	-7985	11138	11138	SANDSTONE	NATURAL GAS,OIL	N
13	WOLFCAMP	-8292	11445	11445	SHALE	NATURAL GAS,OIL	Y

Section 2 - Blowout Prevention

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Pressure Rating (PSI): 10M

Rating Depth: 15000

Equipment: 10M BOPE SYSTEM WILL BE USED AFTER THE SURFACE CASING IS SET. A KELLY COCK WILL BE KEPT IN THE DRILL STRING AT ALL TIMES. A FULL OPENING DRILL PIPE STABBING VALVE WITH PROPER DRILL

PIPE CONNECTIONS WILL BE ON THE RIG FLOOR AT ALL TIMES.

Requesting Variance? YES

Variance request: Co-Flex Choke Line, 5M Annular Preventer

Testing Procedure: See attachment

Choke Diagram Attachment:

10M_Choke_Manifold_REV_20190327075729.pdf

BOP Diagram Attachment:

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190327075804.pdf

5M_BOP_System_20190327075804.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190327075805.pdf

4 String MB Ameredev Wellhead Drawing net REV 20190327075920.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1359	0	1359	3241		1359	J-55		OTHER - BTC	6.75	0.65	DRY	9.9	DRY	11.5 7
_	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	10802	0	10802	3241	,	10802	HCL -80	_	OTHER - BTC	1.27	1.27	DRY	2.17	DRY	2.18
	PRODUCTI ON	8.5	5.5	NEW	API	N	0	22241	0	11495	3241		22241	P- 110		OTHER - BTC	1.8	1.92	DRY	2.85	DRY	3.17

Casing Attachments

Operator Name: AMEREDEV OPERATING LLC Well Name: PINE STRAW FED COM 25 36 05 Well Number: 101H **Casing Attachments** String Type: SURFACE Casing ID: 1 **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): $\label{lem:pine_Straw_Fed_Com_25_36_05_101H} \underline{\qquad} Wellbore_Diagram_and_CDA_20190327100043.pdf$ 13.375_68.00__J55_BTC_20190327100105.pdf Casing ID: 2 **String Type: INTERMEDIATE Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): 9.625_40_SeAH80HC_4100_Collapse_20190327100239.pdf Pine_Straw_Fed_Com_25_36_05_101H___Wellbore_Diagram_and_CDA_20190327100249.pdf Casing ID: 3 String Type: PRODUCTION **Inspection Document: Spec Document: Tapered String Spec:**

Casing Design Assumptions and Worksheet(s):

Pine_Straw_Fed_Com_25_36_05_101H___Wellbore_Diagram_and_CDA_20190327100417.pdf 5.5_20_P110HP_Eagle_SFH_20190327100427.pdf

Well Name: PINE STRAW FED COM 25 36 05 Well Number: 101H

Section	4 - C	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	973	652	1.76	13.5	1146. 88	50	CLASS C	Bentonite, Accelerator, Kolseal, Defoamer, Celloflake
SURFACE	Tail		973	1359	200	1.34	14.8	268	100	CLASS C	Salt
INTERMEDIATE	Lead	5171	0	4321	711	2.47	11.9	1756. 74	25	Class C	Salt, Bentonite, Kolseal, Defoamer, Celloflake, Anti-settling Expansion Additive
INTERMEDIATE	Tail		4321	5171	200	1.33	14.8	266	25	Class C	Retarder
INTERMEDIATE	Lead	5171	0	9546	1552	2.47	11.9	3832. 42	25	CLASS H	Bentonite, Salt, Kolseal, Defoamer, Celloflake, Retarder, Anti-settling Expansion Additive
INTERMEDIATE	Tail		9546	1080 2	300	1.24	14.5	371.1	25	CLASS H	Salt, Bentonite, Retarder, Dispersant, Fluid Loss
PRODUCTION	Lead		0	2224 1	4749	1.34	14.2	6363. 45	25	CLASS H	Salt, Bentonite, Fluid Loss, Dispersant,

Retarder, Defoamer

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

Circulating Medium Table

Well Name: PINE STRAW FED COM 25 36 05 Well Number: 101H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1359	WATER-BASED MUD	8.4	8.6	,						
1359	1080 2	OTHER: DIESEL BRINE EMULSION	8.5	9.4		, :					
1080	1149 5	OIL-BASED MUD	10.5	12.5						٠,	

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5000

Anticipated Surface Pressure: 2471.1

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S Plan 20180727130524.pdf

Well Name: PINE STRAW FED COM 25 36 05 Well Number: 101H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

PS101_DR_20190327101118.pdf

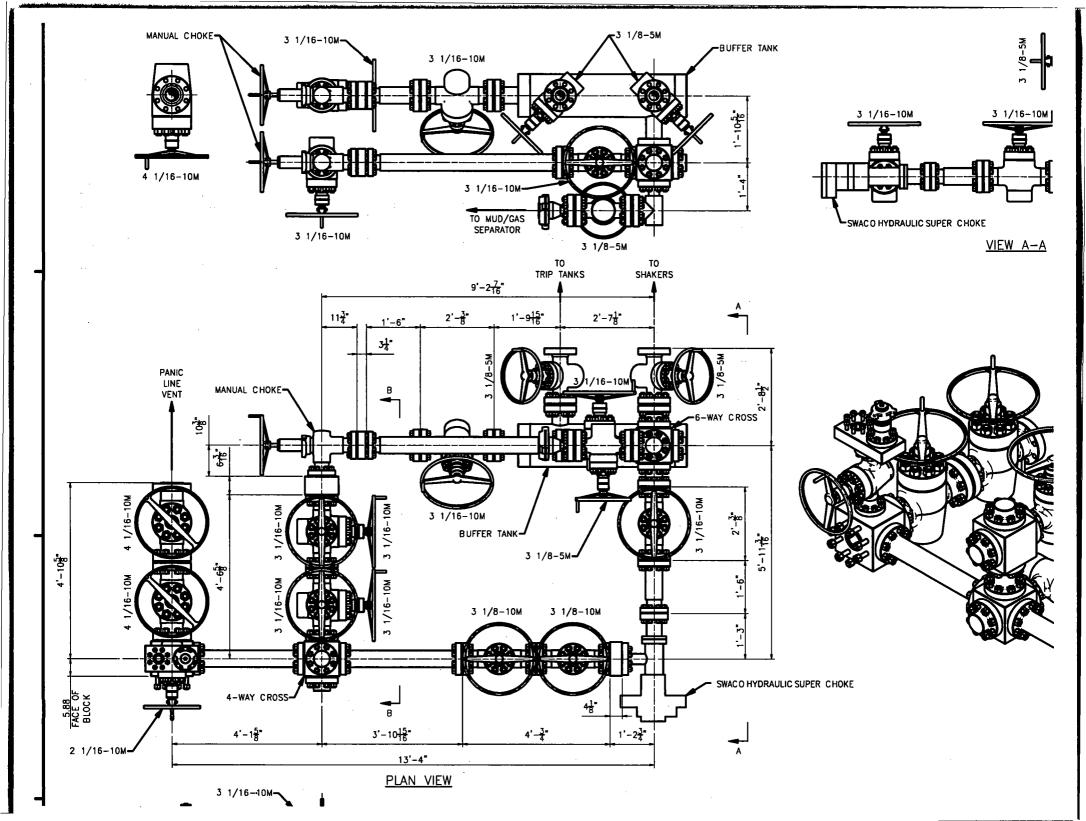
PS101_LLR_20190327101118.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190327101149.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190327101149.pdf

Other proposed operations facets description:

4-STRING CONTINGENCY PLAN ATTACHED


Other proposed operations facets attachment:

CAPITAN_PROTECTION_CONTINGENCY_PLAN_20190327101248.pdf

Other Variance attachment:

R616___CoC_for_hoses_12_18_17_20190327101316.pdf

Requested_Exceptions___3_String_Revised_03252019_20190327101317.pdf

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves
 Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

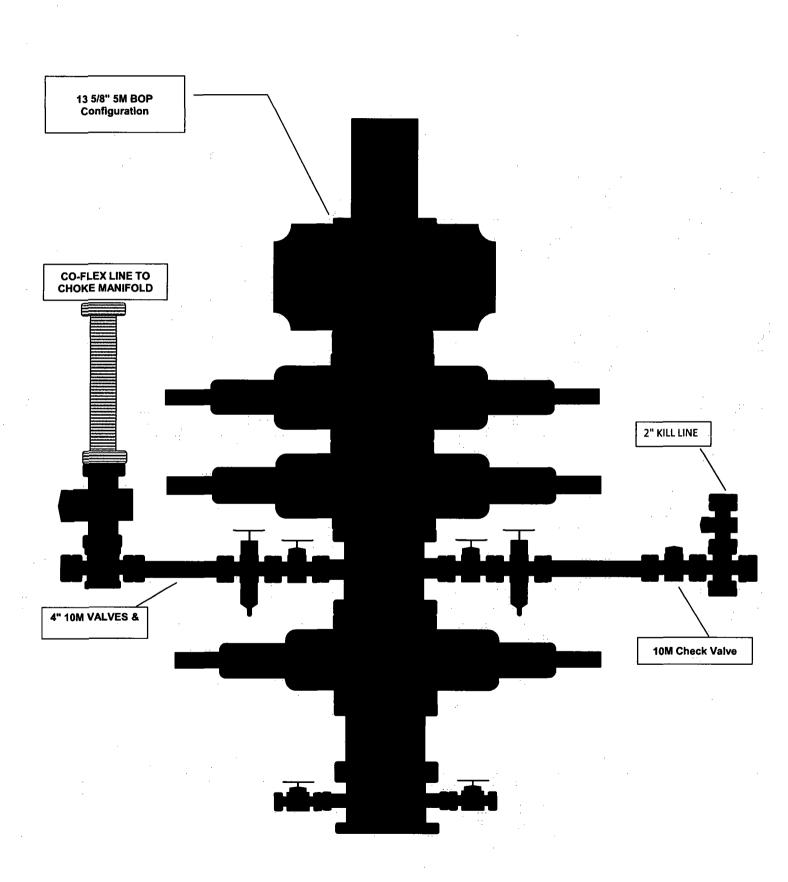
Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure


Shutting in while BHA is in the stack and no ram preventer or combo immediately available

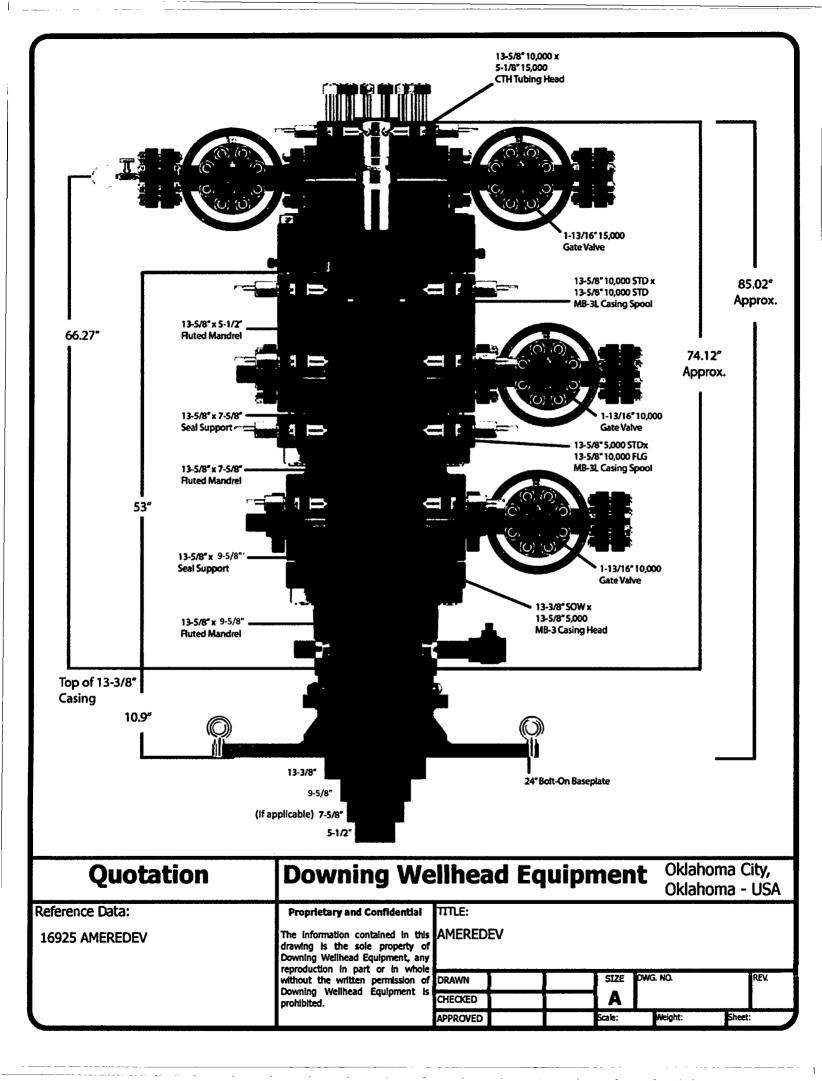
- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

^{*}FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Pressure Control Plan


Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M
 Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure
 witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or
 .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the
 burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break
 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips
 and test same (Installation procedure witnessed and verified by a manufacturer's
 representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed
 and verified by a manufacturer's representative). Ameredev will test head to 70% casing design
 and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting
 completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a
 co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to
 API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications
 will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

Wellbore Schematic

Pine Straw Fed Com 25-36-05 101H Well:

Sec. 05 25S-36E 233' FNL & 230' FWL SHL:

BHL: Sec. 08 25S-36E 50' FSL & 200' FWL

Lea, NM

Wellhead: A - 13-5/8" 10M x 13-5/8" SOW

> B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

Tubing: 2-7/8" L-80 6.5# 8rd EUE Co. Well ID:

XXXXXX

AFE No.: API No.: XXXX-XXX **XXXXXXXXXX**

GL:

3,241'

Field:

Delaware

Objective:

Wolfcamp A

TVD:

11,495'

MD:

22,241'

Rig:

TBD KB: 27'

E-Mail:

Wellsite2@ameredev.com

rubing:	2-1/6 L-00 0.5# ord EUE	nan.	VV CIISICEZ(W	ameredev.com
Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 1,	234'	852 Sacks TOC 0' 100% Excess	8.4-8.6 ppg WBM
	13.375" 68# J-55 BTC 1,3	359'	852 TO 100	δi
	Salado 1,	772'		· .
	Tansill 3,	420'		
	Capitan Reef 4,0	019'	SS ess	uo
	Lamar 5,	121'	911 Sacks TOC 0' 50% Excess	mulsi
	DV Tool 5,	171'	911 Sar TOC 0' 50% Ex	ine E
12.25"	Bell Canyon 5,	300'		8.5 - 9.4 ppg Diesel Brine Emulsion
	Brushy Canyon 6,	996'		g Die
	Bone Spring Lime 8,2	220'		9.4 pp
	First Bone Spring 9,	527'		8.5 -
	Second Bone Spring 9,9	923'	cks ess	
	Third Bone Spring Upper 10,0	677'	1,723 Sacks TOC 0' 50% Excess	
	9.625" 40# L-80HC BTC 10,8	802'	1,723 S TOC 0' 50% Ex	
8.5"	Third Bone Spring 11,	138'		№
12° Buil	Wolfcamp A 11,4	445'		ра ОВМ
10,934' M	D			6
thru	5.5" 20# P-110CYHP BTC 22,2	241'	ss ss	- 12
11,839' M	D Target Wolfcamp A 11495 TVD // 22241 MD		9 Sacks 0' Excess	10.5 - 12.5 pp
			4,749 Sacks TOC 0' 25% Excess	-
			4 ⊢ <u>v</u>	

Casing Design and Safety Factor Check

Casing Specifications							
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling	
Surface	17.5	1,359'	13.375	68	J-55	BTC	
Intermediate	12.25	10,802'	9.625	40	HCL-80	BTC	
Prod Segment A	8.5	10,934'	5.5	20	CYHP-110	BTC	
Prod Segment B	8.5	22,241'	5.5	20	CYHP-110	BTC	

	Check Surface Casing							
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
14.375	1,069	915	4,100	3,450				
	S	afety Facto	ors					
1.56	11.57	9.90	6.75	0.65				
	Check I	ntermedia	te Casing					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
7.625	940	558	6700	9460				
	Safety Factors							
2.31	2.18	2.17	1.27	1.27				
	Check Pro	od Casing,	Segment A					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
	S	afety Facto	ors					
1.36	3.17	2.85	1.80	1.92				
	Check Prod Casing, Segment B							
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
	S	afety Facto	ors					
1.36	64.88	58.38	1.71	1.92				

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	
MECHANICAL PROPERTIES			
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
ZNOIZIEMIO			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
SECTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
PERFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

- Other than proprietary collapse and connection values, performance properties have been calculated using standard
 equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal
 pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- 4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.
- 6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

Manuel USS Product Data Sheet 2017 rev25 (April)

SěAH

9.625"

.395" SEAH-80 HIGH COLLAPSE

(SEAH-80 IS A NON HEAT TREATED PRODUCT)

Dimensions (Nominal)

Outside Diameter	9.625	in.
Wall	0.395	in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

Performance Properties

·	. : .	
Collapse	4100	psi
Internal Yield Pressure at Minimum Yield		
PE	5750	psi
LTC	5750	psi
ВТС	5750	psi
Yield Strength, Pipe Body	916	1000 lbs.
Joint Strength		
LTC	717	1000 lbs.
втс	915	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

Wellbore Schematic

Well: Pine Straw Fed Com 25-36-05 101H

SHL: Sec. 05 25S-36E 233' FNL & 230' FWL

BHL: Sec. 08 25S-36E 50' FSL & 200' FWL **API No.:**

Lea, NM

Wellhead: A - 13-5/8" 10M x 13-5/8" SOW

B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

Tubing: 2-7/8" L-80 6.5# 8rd EUE

Co. Well ID: XXXXXX AFE No.: XXXX-XXX

API No.: xxxxxxxxxx

GL: 3,241'

Field: Delaware
Objective: Wolfcamp A

TVD: 11,495' MD: 22.241'

MD: 22,241'
Rig: TBD KB: 27'

E-Mail: Wellsite2@ameredev.com

Hole Size Formation Tops Log 17.5" Rustler 1,234'	852 Sacks TOC 0' 100% Excess	WBM Weight
17.5" Rustler 1,234'	352 Sacks TOC 0' 100% Excess	3.6 ppg /BM
		4 ≥
13.375" 68# J-55 BTC 1,359'	100 1	ω΄
Salado 1,772'		
Tansill 3,420'		
Capitan Reef 4,019'	(S)	uo
Lamar 5,121'	911 Sacks TOC 0' 50% Excess	Emulsi
DV Tool 5,171'	10 10 50°	l de l
12.25" Bell Canyon 5,300'	:	8.5 - 9.4 ppg Diesel Brine Emulsion
Brushy Canyon 6,996'		Pg Die
Bone Spring Lime 8,220'		9.4 p
First Bone Spring 9,527'		8.5
Second Bone Spring 9,923'	cks	
Third Bone Spring Upper 10,677'	1,723 Sacks TOC 0' 50% Excess	
9.625" 40# L-80HC BTC 10,802'	1,1 0,1 5,03	<u> </u>
8.5" Third Bone Spring 11,138'		<u>×</u>
12° Build Wolfcamp A 11,445'		pg OBM
10,934' MD		δ. <u>σ</u>
thru 5.5" 20# P-110CYHP BTC 22,241'	ss ss	10.5 - 12.5 pp
11,839' MD Target Wolfcamp A 11495 TVD // 22241 MD	Sac	0.5
	4,749 Sacks TOC 0' 25% Excess	-

Casing Design and Safety Factor Check

Casing Specifications							
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling	
Surface	17.5	1,359'	13.375	68	J-55	втс	
Intermediate	12.25	10,802'	9.625	40	HCL-80	BTC	
Prod Segment A	8.5	10,934'	5.5	20	CYHP-110	BTC	
Prod Segment B	8.5	22,241'	5.5	20	CYHP-110	BTC	

Check Surface Casing								
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
14.375	1,069	915	4,100	3,450				
	S	afety Facto	ors					
1.56	11.57	9.90	6.75	0.65				
	Check I	ntermedia	te Casing					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
7.625	940	558	6700	9460				
	Safety Factors							
2.31	2.18	2.17	1.27	1.27				
	Check Pro	od Casing,	Segment A					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
	S	afety Facto	ors					
1.36	3.17	2.85	1.80	1.92				
	Check Prod Casing, Segment B							
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
	S	afety Facto	ors					
1.36	64.88	58.38	1.71	1.92				

Wellbore Schematic

Well: Pine Straw Fed Com 25-36-05 101H

SHL: Sec. 05 25S-36E 233' FNL & 230' FWL

BHL: Sec. 08 25S-36E 50' FSL & 200' FWL

Lea, NM

A - 13-5/8" 10M x 13-5/8" SOW Wellhead:

> B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

Tubing: 2-7/8" L-80 6.5# 8rd EUE Co. Well ID:

XXXXXX

AFE No.: API No.:

XXXX-XXX xxxxxxxxx

GL:

Field:

3,241'

Objective:

Delaware Wolfcamp A

TVD:

11,495'

MD:

22,241'

Rig:

TBD **KB**: 27'

E-Mail: Wellsite2@ameredev.com

Hole Size		Formation Tops		Logs	Cemen	t	Mud Weight
17.5"		Rustler	1,234'		852 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM
		13.375" 68# J-55 BTC	1,359'	 	∞ ⊢	-	
		Salado	1,772'				
		Tansill	3,420'				
		Capitan Reef	4,019'		ທ	SSS	5
		Lamar	5,121'		911 Sacks TOC 0'	50% Excess	mulsik
	·,	DV Tool	5,171'		911 Sad TOC 0'	20%	<u>е</u> Ш
12.25"		Bell Canyon	5,300'				8.5 - 9.4 ppg Diesel Brine Emulsion
		Brushy Canyon	6,996'				g Die
		Bone Spring Lime	8,220'				9.4 pp
		First Bone Spring	9,527'				8.5 -
		Second Bone Spring	9,923'		s ks		
		Third Bone Spring Upper	10,677'	1,723 Sacks TOC 0'		50% Excess	
		9.625" 40# L-80HC BTC	10,802'		1,7,1 TO	50%	
8.5"		Third Bone Spring	11,138'				
12° Build		Wolfcamp A	11,445'				ppg OBM
@ 10,934' MD							
thru	5.5"	20# P-110CYHP BTC	22,241'	1	<u>ş</u>	SS	12
11,839' MD	3.0 = 3.1.1 1.10 1.11 = 1.0					XCG	10.5 - 12.5
					4,749 Sacks TOC 0'	25% Excess	
					4, <u>⊢</u>	No.	

Casing Design and Safety Factor Check

Casing Specifications							
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling	
Surface	17.5	1,359'	13.375	68	J-55	BTC	
Intermediate	12.25	10,802'	9.625	40	HCL-80	BTC	
Prod Segment A	8.5	10,934'	5.5	20	CYHP-110	ВТС	
Prod Segment B	8.5	22,241'	5.5	20	CYHP-110	втс	

Check Surface Casing								
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
14.375	1,069	915	4,100	3,450				
	S	afety Facto	ors					
1.56	11.57	9.90	6.75	0.65				
	Check I	ntermedia	te Casing					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
7.625	940	558	6700	9460				
Safety Factors								
2.31	2.18	2.17	1.27	1.27				
•	Check Pro	od Casing,	Segment A					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
	S	afety Facto	ors					
1.36	3.17	2.85	1.80	1.92				
	Check Prod Casing, Segment B							
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
		afety Facto	ors					
1.36	64.88	58.38	1.71	1.92				

PERFORMANCE DATA

API BTC

13.375 in

68.00 lbs/ft

J-55

Technical Data Sheet

Tubular Parameters					
Size	13.375	in	Minimum Yield	55,000	ps
Nominal Weight	68.00	lbs/ft	Minimum Tensile	75,000	ps
Grade	J-55		Yield Load	1,069,000	lbs
PE Weight	66.10	lbs/ft	Tensile Load	1,458,000	lbs
Wall Thickness	0.480	in	Min. Internal Yield Pressure	3,500	ps
Nominal ID	12,415	in	Collapse Pressure	1,950	ps
Drift Diameter	12.259	in		•	'
Nom. Pipe Body Area	19.445	in²			
·					
Connection Parameters					
	14.375	in			
Connection OD	14.375 10.625	in in			
Connection OD Coupling Length			•		
Connection OD Coupling Length Threads Per Inch	10.625	in			
Connection OD Coupling Length Threads Per Inch Standoff Thread Turns	10.625 5.000	in			
Connection Parameters Connection OD Coupling Length Threads Per Inch Standoff Thread Turns Make-Up Loss Yield Load In Tension	10.625 5.000 1.000	in in			

Printed on: February-13-2015

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toli-free at 1-888-258-2000.

H₂S Drilling Operation Plan

1. All Company and Contract personnel admitted on location must be trained by a qualified H₂S safety instructor to the following:

- a. Characteristics of H₂S
- b. Physical effects and hazards
- c. Principal and operation of H₂s detectors, warning system and briefing areas
- d. Evacuation procedure, routes and first aid
- e. Proper use of safety equipment and life support systems
- f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- b. Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. H₂S Detection and Alarm Systems:

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- b. An audio alarm will be installed on the derrick floor and in the top doghouse.

4. Protective Equipment for Essential Personnel:

a. **Breathing Apparatus:**

- i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
- ii. Two (SCBA) Units will be stored in safety trailer on location.
- iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.

b. **Auxiliary Rescue Equipment:**

- i. Stretcher
- ii. 2 OSHA full body harnesses
- iii. 100 ft. 5/8" OSHA approved rope
- iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- b. Windsock on the rig floor should be high enough to be visible.

6. Communication:

- a. While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. Drill Stem Testing: No Planned DST at this time.

8. Mud program:

a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. Metallurgy:

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- b. Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
 - o Detection of H₂S and
 - Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating LLC – Emergency Phone 737-300-4799										
Key Personnel:										
Name	Title	Office	Mobile							
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810							
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996							
Blake Estrada	Construction Foreman		432-385-5831							

Artesia	
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
Carlsbad	
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
<u>Santa Fe</u>	
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
<u>National</u>	
National Emergency Response Center (Washington, D.C.)	800-424-8802
<u>Medical</u>	
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NN	1 505-842-4949

PIN/DOG PINDOG #1S Pine Straw 101H

Wellbore #1

Plan: Design #1

Standard Planning Report

26 March, 2019

Planning Report

Database: Company: EDM5000

Ameredev Operating, LLC.

Project: Site:

PINDOG #1S

Pine Straw 101H

Well: Wellbore:

Design:

Wellbore #1 Design #1

Local Co-ordinate Reference:

TVD Reference:

KB @ 3268.0usft

Well Pine Straw 101H

MD Reference: North Reference: KB @ 3268.0usft

Survey Calculation Method:

Grid Minimum Curvature

Project PIN/DOG

Map System:

Geo Datum:

US State Plane 1983 North American Datum 1983 Svstem Datum:

Mean Sea Level

Map Zone:

New Mexico Eastern Zone

Site

Well

PINDOG #1S

Site Position:

Northing:

425,695.22 usft

Latitude:

32° 9' 57.779 N

Lat/Long

Pine Straw 101H

Easting:

862,769.39 usft

Longitude:

Position Uncertainty:

0.0 usft

Slot Radius:

13-3/16 "

Grid Convergence:

103° 17' 40.433 W

0.55°

Well Position

+N/-S +E/-W -0.5 usft

-60.0 usft

Northing: Easting:

425,694.72 usft 862,709.39 usft

6.63

Latitude: Longitude: 32° 9' 57.780 N

Position Uncertainty

0.0 usft

IGRF2015

Wellhead Elevation:

3/26/2019

Ground Level:

103° 17' 41.131 W 3,241.0 usft

Wellbore

Wellbore #1

Design #1

Magnetics

Model Name

Sample Date

Declination (°)

Dip Angle (°)

Field Strength

47,751.36440690

(nT)

Design

Audit Notes:

Version:

Phase:

PROTOTYPE

Tie On Depth:

0.0

60.03

Vertical Section:

Depth From (TVD) (usft)

0.0

+N/-S (usft) 0.0

+E/-W (usft)

0.0

Direction (°)

179.94

Plan Survey Tool Program

3/26/2019 Date

Depth From (usft)

Depth To

(usft) Survey (Wellbore)

22,240.6 Design #1 (Wellbore #1)

Tool Name

Remarks

MWD

OWSG MWD - Standard

Planning Report

Database: EDM5000

Company: Ameredev Operating, LLC.

Project: Site: Well:

Wellbore:

Design:

Ameredev Operating, LLC PIN/DOG

PINDOG #1S Pine Straw 101H Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Pine Straw 101H

KB @ 3268.0usft

KB @ 3268.0usft

Grid Minimum Curvature

an Sections	Ĺ									
Measured Depth (usft)	Inclination (°)	Azimuth	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	6.00	340.00	2,299.5	14.7	-5.4	2.00	2.00	0.00	340.00	
6,724.8	6.00	340.00	6,700.0	449.4	-163.6	0.00	0.00	0.00	0.00	
7,024.8	0.00	0.00	6,999.5	464.1	-168.9	2.00	-2.00	0.00	180.00	
8,525.3	0.00	0.00	8,500.0	464.1	-168.9	0.00	0.00	0.00	0.00	
8,825.3	6.00	340.00	8,799.5	478.9	-174.3	2.00	2.00	0.00	340.00	
10,133.0	6.00	340.00	10,100.0	607.3	-221.0	0.00	0.00	0.00	0.00	
10,433.0	0.00	0.00	10,399.5	622.1	-226.4	2.00	-2.00	0.00	180.00	
10,933.6	0.00	0.00	10,900.0	622.1	-226.4	0.00	0.00	0.00	0.00	
11,115.4	21.51	101.84	11,077.6	615.1	-193.4	11.83	11.83	0.00	101.84	
11,839.2	90.00	179.78	11,495.0	132.8	-30.7	11.83	9.46	10.77	78.75 PS101	FTP
22,240.6	90.00	179.78	11,495.0	-10,268.5	9.9	0.00	0.00	0.00	0.00 PS101	BHL

Planning Report

Database: EDM5000

Company: Ameredev Operating, LLC.

Project: Site: Well: PIN/DOG PINDOG #1S Pine Straw 101H

Wellbore: Wellbore #1
Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well Pine Straw 101H

KB @ 3268.0usft

KB @ 3268.0usft Grid

Minimum Curvature

sign:	Design #1	<u> </u>					<u> </u>		
anned Survey									
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)			(usft)			(usft)	(°/100usft)	(°/100usft)	(°/100usft)
(usit)	(°)	(°)	(usit)	(usft)	(usft)	(usit)	(/ 1000511)	(/1000511)	(11000311)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
			500.0			• •	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
			-						
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	2.00	340.00	2,100.0	1.6	-0.6	-1.6	2.00	2.00	0.00
2,200.0	4.00	340.00	2,199.8	6.6	-2.4	-6 .6	2.00	2.00	0.00
2,300.0	6.00	340.00	2,299.5	14.7	- 5.4	-14.8	2.00	2.00	0.00
2,400.0	6.00	340.00	2,398.9	24.6	-8.9	-24.6	0.00	0.00	0.00
2,400.0	0.00	340.00	2,030.3	24.0	-0.3	-24.0	0.00	0.00	0.00
2,500.0	6.00	340.00	2,498.4	34.4	-12.5	-34.4	0.00	0.00	0.00
2,600.0	6.00	340.00	2,597.8	44.2	-16.1	-44.2	0.00	0.00	0.00
2,700.0	6.00	340.00	2,697.3	54.0	-19.7	-54.1	0.00	0.00	0.00
					-23.2	-63.9	0.00	0.00	0.00
2,800.0	6.00	340.00	2,796.7	63.9					
2,900.0	6.00	340.00	2,896.2	73.7	-26.8	-73.7	0.00	0.00	0.00
3,000.0	6.00	340.00	2,995.6	83.5	-30.4	-83.5	0.00	0.00	0.00
		340.00	2,995.6 3,095.1		-30.4 -34.0	-93.4	0.00	0.00	0.00
3,100.0	6.00		•	93.3					
3,200.0	6.00	340.00	3,194.5	103.1	-37.5	-103.2	0.00	0.00	0.00
3,300.0	6.00	340.00	3,294.0	113.0	-41.1	-113.0	0.00	0.00	0.00
3,400.0	6.00	340.00	3,393.4	122.8	-44.7	-122.8	0.00	0.00	0.00
					40.0			2.22	2.22
3,500.0	6.00	340.00	3,492.9	132.6	-48.3	-132.7	0.00	0.00	0.00
3,600.0	6.00	340.00	3,592.3	142.4	-51.8	-142.5	0.00	0.00	0.00
3,700.0	6.00	340.00	3,691.8	152.3	-55.4	-152.3	0.00	0.00	0.00
3,800.0	6.00	340.00	3,791.2	162.1	-59.0	-162.1	0.00	0.00	0.00
3,900.0	6.00	340.00	3,890.7	171.9	-62.6	-172.0	0.00	0.00	0.00
	0.00								
4,000.0	6.00	340.00	3,990.1	181.7	- 66.1	-181.8	0.00	0.00	0.00
4,100.0	6.00	340.00	4,089.6	191.6	-69.7	-191.6	0.00	0.00	0.00
4,200.0	6.00	340.00	4,189.0	201.4	-73.3	-201.4	0.00	0.00	0.00
		340.00	4,288.5	211.2	-76.9	-211.3	0.00	0.00	0.00
4,300.0	6.00		•						
4,400.0	6.00	340.00	4,387.9	221.0	-80.4	-221.1	0.00	0.00	0.00
4,500.0	6.00	340.00	4,487.4	230.8	-84.0	-230.9	0.00	0.00	0.00
4,600.0	6.00	340.00	4,586.9	240.7	-87.6	-240.7	0.00	0.00	0.00
4,700.0	6.00	340.00	4,686.3	250.5	-91.2	-250.6	0.00	0.00	0.00
4,800.0	6.00	340.00	4,785.8	260.3	-94.7	-260.4	0.00	0.00	0.00
4,900.0	6.00	340.00	4,885.2	270.1	-98.3	-270.2	0.00	0.00	0.00
7,000.0	0.00	5-15,00		_, .,	30.0		5.00		
		340.00	4,984.7	280.0	-101.9	-280.1	0.00	0.00	0.00
5,000.0	6.00	340.00	4,904./	200.0	-101.5	200.1	0.00	0.00	0.00
5,000.0 5,100.0	6.00 6.00	340.00	4,964.7 5,084.1	289.8	-101.5	-289.9	0.00	0.00	0.00

5,300.0

6.00

340.00

5,283.0

309.4

-112.6

-309.5

0.00

0.00

0.00

Planning Report

Database: Company: EDM5000

Ameredev Operating, LLC.

Project: Site:

Design:

PIN/DOG

Well: Wellbore: Pine Straw 101H Wellbore #1

PINDOG #1S

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:** Well Pine Straw 101H

KB @ 3268.0usft KB @ 3268.0usft

Grid

Minimum Curvature

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	Inclination (°)	Azimuth (°)	(usft)	+N/-S (usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
5,400.0	6.00	340.00	5,382.5	319.2	-116.2	-319.4	0.00	0.00	0.00
5,500.0	6.00	340.00	5,481.9	329.1	-119.8	-329.2	0.00	0.00	0.00
5,600.0	6.00	340.00	5,581.4	338.9	-123.3	-339.0	0.00	0.00	0.00
5,700.0	6.00	340.00	5,680.8	348.7	-126.9	-348.8	0.00	0.00	0.00
5,800.0	6.00	340.00	5,780.3	358.5	-130.5	-358.7	0.00	0.00	0.00
5,900.0	6.00	340.00	5,879.7	368.4	-134.1	-368.5	0.00	0.00	0.00
6,000.0	6.00	340.00	5,979.2	378.2	-137.6	-378.3	0.00	0.00	0.00
6,100.0	6.00	340.00	6,078.6	388.0	-141.2	-388.1	0.00	0.00	0.00
6,200.0	6.00	340.00	6,178.1	397.8	-144.8	-398.0	0.00	0.00	0.00
6,300.0	6.00	340.00	6,277.5	407.6	-148.4	-407.8	0.00	0.00	0.00
6,400.0	6.00	340.00	6,377.0	417.5	-151.9	-417.6	0.00	0.00	0.00
6,500.0	6.00	340.00	6,476.4	427.3	-155.5	-427.4	0.00	0.00	0.00
6,600.0	6.00	340.00	6,575.9	437.1	-159.1	-437.3	0.00	0.00	0.00
6,700.0	6.00	340.00	6,675.3	446.9	-162.7	-447.1	0.00	0.00	0.00
6,724.8	6.00	340.00	6,700.0	449.4	-163.6	-449.5	0.00	0.00	0.00
6,800.0	4.50	340.00	6,774.9	455.8	-165.9	-456.0	2.00	-2.00	0.00
6,900.0	2.50	340.00	6,874.7	461.6	-168.0	-4 61.7	2.00	-2.00	0.00
7,000.0	0.50	340.00	6,974.7	464.0	-168.9	-464.2	2.00	-2.00	0.00
7,024.8	0.00	0.00	6,999.5	464.1	-168.9	-464.3	2.00	-2.00	0.00
7,100.0	0.00	0.00	7,074.7	464.1	-168.9	-464.3	0.00	0.00	0.00
7,200.0	0.00	0.00	7,174.7	464.1	-168.9	-464.3	0.00	0.00	0.00
7,300.0	0.00	0.00	7,274.7	464.1	-168.9	-464.3	0.00	0.00	0.00
7,400.0	0.00	0.00	7,374.7	464.1	-168.9	-464.3	0.00	0.00	0.00
7,500.0	0.00	0.00	7,474.7	464.1	-168.9	-464.3	0.00	0.00	0.00
7,600.0	0.00	0.00	7,574.7	464.1	-168.9	-464.3	0.00	0.00	0.00
7,700.0	0.00	0.00	7,674.7	464.1	-168.9	-464.3	0.00	0.00	0.00
7,800.0	0.00	0.00	7,774.7	464.1	-168.9	-464.3	0.00	0.00	0.00
7,900.0	0,00	0.00	7,874.7	464.1	-168.9	-464.3	0.00	0.00	0.00
8,000.0	0.00	0.00	7,974.7	464.1	-168.9	-464.3	0.00	0.00	0.00
8,100.0	0.00	0.00	8,074.7	464.1	-168.9	-464.3	0.00	0.00	0.00
8,200.0	0.00	0.00	8,174.7	464.1	-168.9	-464.3	0.00	0.00	0.00
8,300.0	0.00	0.00	8,274.7	464.1	-168.9	-464.3	0.00	0.00	0.00
8,400.0	0.00	0.00	8,374.7	464.1	-168.9	-464.3	0.00	0.00	0.00
8,500.0	0.00	0.00	8,474.7	464.1	-168.9	-464.3	0.00	0.00	0.00
8,525.3	0.00	0.00	8,500.0	464.1	-168.9	-464.3	0.00	0.00	0.00
8,600.0	1.49	340.00	8,574.7	465.0	-169.3	-465.2	2.00	2.00	0.00
8,700.0	3.49	340.00	8,674.6	469.1	-170.7	-469.3	2.00	2.00	0.00
8,800.0	5.49	340.00	8,774.2	476.5	-173.4	-476.6	2.00	2.00	0.00
8,825.3	6.00	340.00	8,799.5	478.9	-174.3	-479.0	2.00	2.00	0.00
8,900.0	6.00	340.00	8,873.7	486.2	-177.0	-486.4	0.00	0.00	0.00
9,000.0	6.00	340.00	8,973.2	496.0	-180.5	-496.2	0.00	0.00	0.00
9,100.0	6.00	340.00	9,072.6	505.8	-184.1	-506.0	0.00	0.00	0.00
9,200.0	6.00	340.00	9,172.1	515.7	-187.7	-515.8	0.00	0.00	0.00
9,300.0	6.00	340.00	9,271.5	525.5	-191.3	-525.7	0.00	0.00	0.00
9,400.0	6.00	340.00	9,371.0	535.3	-194.8	-535.5	0.00	0.00	0.00
9,500.0	6.00	340.00	9,470.4	545.1	-198.4	-545.3	0.00	0.00	0.00
9,600.0	6.00	340.00	9,569.9	555.0	-202.0	-555.2	0.00	0.00	0.00
9,700.0	6.00	340.00	9,669.3	564.8	-205.6	-565.0	0.00	0.00	0.00
9,800.0	6.00	340.00	9,768.8	574.6	-209.1	-574.8	0.00	0.00	0.00
9,900.0	6.00	340.00	9,868.2	584.4	-212.7	-584.6	0.00	0.00	0.00
10,000.0	6.00	340.00	9,967.7	594.2	-216.3	-594.5	0.00	0.00	0.00
10,100.0	6.00	340.00	10,067.1	604.1	-219.9	-604.3	0.00	0.00	0.00
10,133.0	6.00	340.00	10,100.0	607.3	-221.0	-607.5	0.00	0.00	0.00
10,200.0	4.66	340.00	10,166.7	613.2	-223.2	-613.4	2.00	-2.00	0.00

Planning Report

Database: Company: EDM5000

Design #1

Ameredev Operating, LLC.

Project: Site:

PIN/DOG

Well: Wellbore: Design:

PINDOG #1S Pine Straw 101H Wellbore #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:** Well Pine Straw 101H

KB @ 3268.0usft

KB @ 3268.0usft

Grid Minimum Curvature

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,300.0	2.66	340.00	10,266.5	619.2	-225.4	-619.4	2.00	-2.00	0.00
10,400.0	0.66	340.00	10,366.4	621.9	-226.3	-622.1	2.00	-2.00	0.00
10,433.0	0.00	0.00	10,399.5	622.1	-226.4	-622.3	2.00	-2.00	0.00
10,500.0	0.00	0.00	10,466.4	622.1	-226.4	-622.3	0.00	0.00	0.00
10,600.0	0.00	0.00	10,566.4	622.1	-226.4	-622.3	0.00	0.00	0.00
10,700.0	0.00	0.00	10,666.4	622.1	-226.4	-622.3	0.00	0.00	0.00
10,800.0	0.00	0.00	10,766.4	622.1	-226.4	-622.3	0.00	0.00	0.00
10,900.0	0.00	0.00	10,866.4	622.1	-226.4	-622.3	0.00	0.00	0.00
10,933.6	0.00	0.00	10,900.0	622.1	-226.4	-622.3	0.00	0.00	0.00
PS101 KOP									
11,000.0	7.85	101.84	10,966.2	621.1	-222.0	-621.3	11.83	11.83	0.00
11,100.0	19.68	101.84	11,063.2	616.3	-198.7	-616.4	11.83	11.83	0.00
11,115.4	21.51	101.84	11,077.6	615.1	-193.4	-615.3	11.83	11.83	0.00
11,200.0	25.33	125.30	11,155.4	601.5	-163.4	-601.6	11.83	4.53	27.74
11,300.0	33.17	143.65	11,242.7	567.0	-129.6	-567.1	11.83	7.83	18.35
11,400.0	42.71	155.10	11,321.6	514.0	-99.0	-514.1	11.83	9.54	11.45
11,500.0	53.04	162.92	11,388.6	444.8	-72.9	-444 .8	11.83	10.33	7.82
11,600.0	63.75	168.82	11,441.0	362.3	-52.4	-362.4	11.83	10.71	5.90
11,700.0	74.66	173.71	11,476.5	270.1	-38.4	-270.1	11.83	10.91	4.89
11,800.0	85.67	178.10	11,493.5	171.9	-31.4	-172.0	11.83	11.01	4.40
11,839.2 PS101 FTP	90.00	179.78	11,495.0	132.8	-30.7	-132.8	11.83	11.03	4.26
11,900.0	90.00	179.78	11,495.0	72.0	-30.4	-72.0	0.00	0.00	0.00
12,000.0	90.00	179.78	11,495.0	-28.0	-30.1	28.0	0.00	0.00	0.00
12,100.0	90.00	179.78	11,495.0	-128.0	-29.7	128.0	0.00	0.00	0.00
12,200.0	90.00	179.78	11,495.0	-228.0	-29.3	228.0	0.00	0.00	0.00
12,300.0	90.00	179.78	11,495.0	-328.0	-28.9	328.0	0.00	0.00	0.00
12,400.0	90.00	179.78	11,495.0	-428.0	-28.5	428.0	0.00	0.00	0.00
12,500.0	90.00	179.78	11,495.0	- 528.0	-28.1	528.0	0.00	0.00	0.00
12,600.0	90.00	179.78	11,495.0	-628.0	-27.7	628.0	0.00	0.00	0.00
12,700.0	90.00	179.78	11,495.0	-728.0	-27.3	728.0	0.00	0.00	0.00
12,800.0	90.00	179.78	11,495.0	-828.0	-26.9	828.0	0.00	0.00	0.00
12,900.0	90.00	179.78	11,495.0	-928.0	-26.5	928.0	0.00	0.00	0.00
13,000.0	90.00	179.78	11,495.0	-1,028.0	-26.1	1,028.0	0.00	0.00	0.00
13,100.0	90.00	179.78	11,495.0	-1,128.0	-25.8	1,128.0	0.00	0.00	0.00
13,200.0	90.00	179.78	11,495.0	-1,228.0	-25.4	1,228.0	0.00	0.00	0.00
13,300.0	90.00	179.78	11,495.0	-1,328.0	-25.0	1,328.0	0.00	0.00	0.00
13,400.0 13,500.0	90.00 90.00	179.78 179.78	11,495.0 11,495.0	-1,428.0 -1,528.0	-24.6 -24.2	1,428.0 1,528.0	0.00 0.00	0.00 0.00	0.00 0.00
		•							
13,600.0	90.00	179.78	11,495.0	-1,628.0 1,729.0	-23.8	1,628.0	0.00	0.00	0.00 0.00
13,700.0	90.00	179.78	11,495.0	-1,728.0	-23.4	1,728.0	0.00	0.00 0.00	0.00
13,800.0 13,900.0	90.00 90.00	179.78 179.78	11,495.0 11,495.0	-1,828.0 -1,928.0	-23.0 -22.6	1,828.0 1,928.0	0.00 0.00	0.00	0.00
14,000.0	90.00	179.78 179.78	11,495.0	-1,928.0 -2,028.0	-22.0 -22.2	2,028.0	0.00	0.00	0.00
14,100.0 14,200.0	90.00 90.00	179.78 179.78	11,495.0 11,495.0	-2,128.0 -2,228.0	-21.9 -21.5	2,128.0 2,228.0	0.00 0.00	0.00 0.00	0.00 0.00
14,200.0	90.00	179.78	11,495.0	-2,228.0 -2,328.0	-21.5 -21.1	2,228.0	0.00	0.00	0.00
14,300.0	90.00	179.78	11,495.0	-2,328.0 -2,428.0	-21.1 -20.7	2,328.0	0.00	0.00	0.00
14,500.0	90.00	179.78	11,495.0	-2,528.0	-20.7	2,528.0	0.00	0.00	0.00
14,600.0 14,700.0	90.00 90.00	179.78 179.78	11,495.0 11,495.0	-2,628.0 -2,728.0	-19.9 -19.5	2,628.0 2,728.0	0.00 0.00	0.00 0.00	0.00 0.00
14,700.0	90.00	179.78	11,495.0	-2,728.0 -2,828.0	-19.5	2,728.0	0.00	0.00	0.00
14,900.0	90.00	179.78	11,495.0	-2,928.0	-18.7	2,928.0	0.00	0.00	0.00
15,000.0	90.00	179.78	11,495.0	-3,028.0	-18.3	3,028.0	0.00	0.00	0.00

Planning Report

Database:

EDM5000

Company:

Ameredev Operating, LLC.

Project: Site: Well: PIN/DOG

PINDOG #1S
Pine Straw 101H
Wellbore #1

Wellbore: Wellbore #
Design: Design #1

Local Co-ordinate Reference:

TVD Reference:

North Reference: Survey Calculation Method: Well Pine Straw 101H

KB @ 3268.0usft KB @ 3268.0usft

Grid

Minimum Curvature

Planned Survey

ned Survey									
Measured		A .1 4b	Vertical Depth		. 5. 114	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
Depth (usft)	Inclination (°)	Azimuth (°)	(usft)	+N/-S (usft)	+E/-W (usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
15,100.0	90.00	179.78	11,495.0	-3,128.0	-17.9	3,128.0	0.00	0.00	0.00
15,200.0	90.00	179.78	11,495.0	-3,228.0	-17.6	3,228.0	0.00	0.00	0.00
15,300.0	90.00	179.78	11,495.0	-3,328.0	-17.2	3,328.0	0.00	0.00	0.00
15,400.0	90.00	179.78	11,495.0	-3,428.0	-16.8	3,428.0	0.00	0.00	0.00
15,500.0	90.00	179.78	11,495.0	-3,528.0	-16.4	3,528.0	0.00	0.00	0.00
15,600.0	90.00	179.78	11,495.0	-3,628.0	-16.0	3,628.0	0.00	0.00	0.00
15,700.0	90.00	179.78	11,495.0	-3,728.0	-15.6	3,728.0	0.00	0.00	0.00
15,800.0	90.00	179.78	11,495.0	-3,828.0	-15.2	3,828.0	0.00	0.00	0.00
15,900.0	90.00	179.78	11,495.0	-3,928.0	-14.8	3,928.0	0.00	0.00	0.00
			•					0.00	
16,000.0	90.00	179.78	11,495.0	-4,028.0	-14.4	4,028.0	0.00		0.00
16,100.0	90.00	179.78	11,495.0	-4,128.0	-14.0	4,128.0	0.00	0.00	0.00
16,200.0	90.00	179.78	11,495.0	-4,228.0	-13.7	4,228.0	0.00	0.00	0.00
16,300.0	90.00	179.78	11,495.0	-4,328.0	-13.3	4,328.0	0.00	0.00	0.00
16,400.0	90.00	179.78	11,495.0	-4,428.0	-12.9	4,428.0	0.00	0.00	0.00
16,500.0	90.00	179.78	11,495.0	-4,528.0	-12.5	4,528.0	0.00	0.00	0.00
16,600.0	90.00	179.78	11,495.0	-4,628.0	-12.1	4,628.0	0.00	0.00	0.00
·						4,728.0	0.00	0.00	0.00
16,700.0	90.00	179.78	11,495.0	-4,728.0	-11.7				
16,800.0	90.00	179.78	. 11,495.0	-4,828.0	-11.3	4,828.0	0.00	0.00	0.00
16,900.0	90.00	179.78	11,495.0	-4,928.0	-10.9	4,928.0	0.00	0.00	0.00
17,000.0	90.00	179.78	11,495.0	-5,028.0	-10.5	5,028.0	0.00	0.00	0.00
17,018.5	90.00	179.78	11,495.0	-5,046.5	-10.5	5,046.5	0.00	0.00	0.00
PS101 into	NMNM120914								
17,100.0	90.00	179.78	11,495.0	-5,128.0	-10.1	5,128.0	0.00	0.00	0.00
,							0.00	0.00	0.00
17,200.0	90.00	179.78	11,495.0	-5,228.0	-9.7	5,228.0			
17,300.0	90.00	179.78	11,495.0	-5,328.0	-9.4	5,328.0	0.00	0.00	0.00
17,400.0	90.00	179.78	11,495.0	-5,428.0	-9.0	5,428.0	0.00	0.00	0.00
17,500.0	90.00	179.78	11,495.0	-5,528.0	-8.6	5,528.0	0.00	0.00	0.00
17,600.0	90.00	179.78	11,495.0	-5,628.0	-8.2	5,628.0	0.00	0.00	0.00
17,700.0	90.00	179.78	11,495.0	-5,728.0	-7.8	5,728.0	0.00	0.00	0.00
17,800.0	90.00	179.78	11,495.0	-5,828.0	-7.4	5,828.0	0.00	0.00	0.00
17,900.0	90.00	179.78	11,495.0	-5,928.0	-7.0	5,928.0	0.00	0.00	0.00
·									
18,000.0	90.00	179.78	11,495.0	-6,028.0	-6.6	6,028.0	0.00	0.00	0.00
18,100.0	90.00	179.78	11,495.0	-6,128.0	-6.2	6,128.0	0.00	0.00	0.00
18,200.0	90.00	179.78	11,495.0	-6,228.0	- 5.8	6,228.0	0.00	0.00	0.00
18,300.0	90.00	179.78	11,495.0	-6,328.0	-5.5	6,328.0	0.00	0.00	0.00
18,400.0	90.00	179.78	11,495.0	-6,428.0	-5.1	6,428.0	0.00	0.00	0.00
18,500.0	90.00	179.78	11,495.0	-6,528.0	-4.7	6,528.0	0.00	0.00	0.00
18,600.0	90.00	179.78	11,495.0	-6,628.0	-4.3	6,628.0	0.00	0.00	0.00
18,700.0	90.00	179.78	11,495.0	-6,728.0	-3.9	6,728.0	0.00	0.00	0.00
18,800.0	90.00	179.78	11,495.0	-6,828.0	-3.5	6,828.0	0.00	0.00	0.00
18,900.0	90.00	179.78	11,495.0	-6,928.0 -6,928.0	-3.5 -3.1	6,928.0	0.00	0.00	0.00
19,000.0	90.00	179.78	11,495.0	-7,028.0	-2.7	7,028.0	0.00	0.00	0.00
19,100.0	90.00	179.78	11,495.0	-7,128.0	-2.3	7,128.0	0.00	0.00	0.00
19,200.0	90.00	179.78	11,495.0	-7,228.0	-1.9	7,228.0	0.00	0.00	0.00
19,300.0	90.00	179.78	11,495.0	-7,328.0	-1.5	7,327.9	0.00	0.00	0.00
19,400.0	90.00	179.78	11,495.0	-7,428.0	-1.2	7,427.9	0.00	0.00	0.00
19,500.0	90.00	179.78	11,495.0	-7.528.0	-0.8	7,527.9	0.00	0.00	0.00
19,600.0	90.00	179.78	11,495.0	-7,628.0	-0.4	7,627.9	0.00	0.00	0.00
19,700.0	90.00	179.78	11,495.0	-7,728.0	0.0	7,727.9	0.00	0.00	0.00
19,800.0	90.00	179.78	11,495.0	-7,828.0	0.4	7,827.9	0.00	0.00	0.00
19,900.0	90.00	179.78	11,495.0	-7,928.0	0.8	7,927.9	0.00	0.00	0.00
20,000.0	90.00	179.78	11,495.0	-8,027.9	1.2	8,027.9	0.00	0.00	0.00
20,100.0	90.00	179.78	11,495.0	-8,127.9	1.6	8,127.9	0.00	0.00	0.00

Planning Report

Database:

EDM5000

Company:

Ameredev Operating, LLC.

Project: Site:

PIN/DOG PINDOG #1S

Well: Welibore: Design:

Pine Straw 101H Wellbore #1

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:** Well Pine Straw 101H

KB @ 3268.0usft KB @ 3268.0usft

Grid

Minimum Curvature

Pia

22,240.6

PS101 BHL

90.00

179.78

11,495.0

-10,268.5

9.9

10,268.5

0.00

0.00

0.00

anned Survey									
Measured Depth (usft)	Inclination	Azimuth	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
(0310)	(°)	(°)	(0314)	(usit)	(usit)		() () ()		
20,200.0	90.00	179.78	11,495.0	-8,227.9	2.0	8,227.9	0.00	0.00	0.00
20,300.0	90.00	179.78	11,495.0	-8,327.9	2.4	8,327.9	0.00	0.00	0.00
20,400.0	90.00	179.78	11,495.0	-8,427.9	2.8	8,427.9	0.00	0.00	0.00
20,500.0	90.00	179.78	11,495.0	-8,527.9	3.1	8,527.9	0.00	0.00	0.00
20,600.0	90.00	179.78	11,495.0	-8,627.9	3.5	8,627.9	0.00	0.00	0.00
20,700.0	90.00	179.78	11,495.0	-8,727.9	3.9	8,727.9	0.00	0.00	0.00
20,800.0	90.00	179.78	11,495.0	-8,827.9	4.3	8,827.9	0.00	0.00	0.00
20,900.0	90.00	179.78	11,495.0	-8,927.9	4.7	8,927.9	0.00	0.00	0.00
21,000.0	90.00	179.78	11,495.0	-9,027.9	5.1	9,027.9	0.00	0.00	0.00
21,100.0	90.00	179.78	11,495.0	-9,127.9	5.5	9,127.9	0.00	0.00	0.00
21,200.0	90.00	179.78	11,495.0	-9,227.9	5.9	9,227.9	0.00	0.00	0.00
21,300.0	90.00	179.78	11,495.0	-9,327.9	6.3	9,327.9	0.00	0.00	0.00
21,400.0	90.00	179.78	11,495.0	-9,427.9	6.7	9,427.9	0.00	0.00	0.00
21,500.0	90.00	179.78	11,495.0	-9,527.9	7.0	9,527.9	0.00	0.00	0.00
21,600.0	90.00	179.78	11,495.0	-9,627.9	7.4	9,627.9	0.00	0.00	0.00
21,700.0	90.00	179.78	11,495.0	-9,727.9	7.8	9,727.9	0.00	0.00	0.00
21,800.0	90.00	179.78	11,495.0	-9,827.9	8.2	9,827.9	0.00	0.00	0.00
21,900.0	90.00	179.78	11,495.0	-9,927.9	8.6	9,927.9	0.00	0.00	0.00
22,000.0	90.00	179.78	11,495.0	-10,027.9	9.0	10,027.9	0.00	0.00	0.00
22,100.0	90.00	179.78	11,495.0	-10,127.9	9.4	10,127.9	0.00	0.00	0.00
22,191.1	90.00	179.78	11,495.0	-10,219.0	9.7	10,219.0	0.00	0.00	0.00
PS101 LTP									
22,200.0	90.00	179.78	11,495.0	-10,227.9	9.8	10,227.9	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PS101 KOP - plan hits target cent - Point	0.00 ter	0.00	10,900.0	622.1	-226.4	426,316.78	862,482.98	32° 10' 3.956 N	103° 17' 43.695 W
PS101 BHL - plan hits target cent - Point	0.00 ter	0.00	11,495.0	-10,268.5	9.9	415,426.21	862,719.33	32° 8' 16.176 N	103° 17' 42.167 W
PS101 FTP - plan hits target cent - Point	0.00 ter	0.00	11,495.0	132.8	-30.7	425,827.48	862,678.71	32° 9' 59.096 N	103° 17' 41.473 W
PS101 LTP - plan misses target of - Point	0.00 center by 0.1u	0.00 usft at 22191	11,495.0 .1usft MD (1	-10,219.0 1495.0 TVD, -	9.7 10219.0 N, 9.	415,475.73 7 E)	862,719.07	32° 8' 16.666 N	103° 17' 42.165 W

Plan Annotation	ns (
	Measured	Vertical	Local Coor	dinates		
	Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment	
	17,018.5	11,495.0	-5,046.5	-10.5	PS101 into NMNM120914	

PIN/DOG PINDOG #1S Pine Straw 101H Wellbore #1

Plan: Design #1

Lease Penetration Section Line Foot

26 March, 2019

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project:

PIN/DOG PINDOG #1S

Site: Well:

Pine Straw 101H Wellbore #1

Wellbore: Design:

Design #1

Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Database:

Well Pine Straw 101H

KB @ 3268.0usft

KB @ 3268.0usft Grid

Minimum Curvature

EDM5000

Project PIN/DOG

Map System: Geo Datum:

Map Zone:

US State Plane 1983

North American Datum 1983

New Mexico Eastern Zone

System Datum:

Mean Sea Level

PINDOG #1S Site

Site Position:

From:

Lat/Long

Pine Straw 101H

Northing: Easting:

425,695.22 usft 862,769.39 usft

Latitude: Longitude:

32° 9' 57.779 N

Position Uncertainty:

0.0 usft

Slot Radius:

13-3/16"

Grid Convergence:

103° 17' 40.433 W 0.55

Well Position

Well

+N/-S +E/-W 0.0 usft

0.0 usft

Northing: Easting:

425,694.72 usft 862,709.39 usft Latitude: Longitude: 32° 9' 57.780 N

Position Uncertainty

103° 17' 41.131 W

3,241.0 usft 0.0 usft Wellhead Elevation: usft **Ground Level:**

Wellbore	Wellbore #1					
Magnetics	Model Name	Sample Date	Declination	Dip Angle	Field Strength	
		•	(°)	(°)	(nT)	
	IGRF2015	3/26/2019	6.63	60.03	47,751.36440690	

Design	Design #1				
Audit Notes:					
Version:	Phase:	PROTOTYPE	Tie On Depth:	0.0	
Vertical Section:	Depth From (TVD)	+N/-S	+E/-W	Direction	
	(usft)	(usft)	(usft)	(°)	
	0.0	0.0	0.0	179.94	

Survey Tool Program		Date	3/26/2019		
From	То				
(usft)	(usft)	Survey	(Wellbore)	Tool Name	Description
0.0	22,240.6	Design	#1 (Wellbore #1)	MWD	OWSG MWD - Standard

Planned Survey							
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
0.0	0.00	0.00	0.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.131 W
100.0	0.00	0.00	100.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.131 W
200.0	0.00	0.00	200.0	-233.5	230.0	32° 9′ 57.780 N	103° 17' 41.131 W
300.0	0.00	0.00	300.0	-233.5	230.0	32° 9′ 57.780 N	103° 17' 41.131 W
400.0	0.00	0.00	400.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.131 W
500.0	0.00	0.00	500.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.131 W
600.0	0.00	0.00	600.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.131 W
700.0	0.00	0.00	700.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.131 W
800.0	0.00	0.00	800.0	-233.5	230.0	32° 9′ 57.780 N	103° 17' 41.131 W
900.0	0.00	0.00	900.0	-233.5	230.0	32° 9′ 57.780 N	103° 17' 41.131 W
1,000.0	0.00	0.00	1,000.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.131 W
1,100.0	0.00	0.00	1,100.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.131 W

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company:

Project:

Design:

Ameredev Operating, LLC. PIN/DOG

PINDOG #1S Site: Well: Pine Straw 101H Wellbore:

Wellbore #1 Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:**

Database:

Well Pine Straw 101H

KB @ 3268.0usft KB @ 3268.0usft

Grid

Minimum Curvature

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
1,200.0	0.00	0.00	1,200.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.1
1,300.0	0.00	0.00	1,300.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.1
1,400.0	0.00	0.00	1,400.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.1
1,500.0	0.00	0.00	1,500.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.1
1,600.0	0.00	0.00	1,600.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.1
1,700.0	0.00	0.00	1,700.0	-233.5	230.0	32° 9′ 57.780 N	103° 17' 41.1
1,800.0	0.00	0.00	1,800.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.1
1,900.0	0.00	0.00	1,900.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.1
2,000.0	0.00	0.00	2,000.0	-233.5	230.0	32° 9' 57.780 N	103° 17' 41.1
2,100.0	2.00	340.00	2,100.0	-231.9	229.4	32° 9' 57.796 N	103° 17' 41.1
2,200.0	4.00	340.00	2,199.8	-226.9	227.6	32° 9' 57.845 N	103° 17' 41.1
2,300.0	6.00	340.00	2,299.5	-218.8	224.6	32° 9' 57.926 N	103° 17' 41.1
2,400.0	6.00	340.00	2,398.9	-208.9	221.1	32° 9′ 58.024 N	103° 17' 41.2
2,500.0	6.00	340.00	2,498.4	-199.1	217.5	32° 9' 58.121 N	103° 17' 41.2
2,600.0	6.00	340.00	2,597.8	-189.3	213.9	32° 9′ 58.219 N	103° 17' 41.3
2,700.0	6.00	340.00	2,697.3	-179.5	210.3	32° 9′ 58.316 N	103° 17' 41.3
2,800.0	6.00	340.00	2,796.7	-169.6	206.8	32° 9' 58.414 N	103° 17' 41.3
2,900.0	6.00	340.00	2,896.2	-159.8	203.2	32° 9' 58.511 N	103° 17' 41.4
3,000.0	6.00	340.00	2,995.6	-150.0	199.6	32° 9' 58.609 N	103° 17' 41.4
3,100.0	6.00	340.00	3,095.1	-140.2	196.0	32° 9' 58.706 N	103° 17' 41.5
3,200.0	6.00	340.00	3,194.5	-130.4	192.5	32° 9' 58.804 N	103° 17' 41.5
3,300.0	6.00	340.00	3,294.0	-120.5	188.9	32° 9′ 58.901 N	103° 17' 41.5
3,400.0	6.00	340.00	3,393.4	-110.7	185.3	32° 9' 58.999 N	103° 17' 41.6
3,500.0	6.00	340.00	3,492.9	-100.9	181.7	32° 9' 59.096 N	103° 17' 41.6
3,600.0	6.00	340.00	3,592.3	-91.1	178.2	32° 9' 59.194 N	103° 17' 41.7
3,700.0	6.00	340.00	3,691.8	-81.2	174.6	32° 9' 59.291 N	103° 17' 41.7
3,800.0	6.00	340.00	3,791.2	-71.4	171.0	32° 9' 59.389 N	103° 17' 41.7
3,900.0	6.00	340.00	3,890.7	-61.6	167.4	32° 9′ 59.487 N	103° 17' 41.8
4,000.0	6.00	340.00	3,990.1	-51.8	163.9	32° 9' 59.584 N	103° 17' 41.8
4,100.0	6.00	340.00	4,089.6	-42.0	160.3	32° 9' 59.682 N	103° 17' 41.9
4,200.0	6.00	340.00	4,189.0	-32.1	156.7	32° 9' 59.779 N	103° 17' 41.9
4,300.0	6.00	340.00	4,288.5	-22.3	153.1	32° 9' 59.877 N	103° 17' 42.0
4,400.0	6.00	340.00	4,387.9	-12.5	149.6	32° 9′ 59.974 N	103° 17' 42.0
4,500.0	6.00	340.00	4,487.4	-2.7	146.0	32° 10' 0.072 N	103° 17' 42.0
4,600.0	6.00	340.00	4,586.9	7.2	142.4	32° 10' 0.169 N	103° 17' 42.1
4,700.0	6.00	340.00	4,686.3	17.0	138.8	32° 10' 0.267 N	103° 17' 42.1
4,800.0	6.00	340.00	4,785.8	26.8	135.3	32° 10' 0.364 N	103° 17' 42.2
4,900.0	6.00	340.00	4,885.2	36.6	131.7	32° 10' 0.462 N	103° 17' 42.2
5,000.0	6.00	340.00	4,984.7	46.4	128.1	32° 10' 0.559 N	103° 17' 42.2
5,100.0	6.00	340.00	5,084.1	56.3	124.5	32° 10' 0.657 N	103° 17' 42,3
5,200.0	6.00	340.00	5,183.6	66.1	121.0	32° 10' 0.754 N	103° 17' 42.3
5,300.0	6.00	340.00	5,283.0	75.9	117.4	32° 10' 0.852 N	103° 17' 42.4
5,400.0	6.00	340.00	5,382.5	85.7	113.8	32° 10' 0.949 N	103° 17' 42.4
5,500.0	6.00	340.00	5,481.9	95.6	110.2	32° 10' 1.047 N	4000 471 40 4

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site: Well: PIN/DOG PINDOG #1S Pine Straw 101H Wellbore #1

Wellbore: Design:

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method:

Database:

Well Pine Straw 101H

KB @ 3268.0usft KB @ 3268.0usft

Grid

Minimum Curvature

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitu
5,600.0	6.00	340.00	5,581.4	105.4	106.7	32° 10' 1.145 N	103° 17' 4
5,700.0	6.00	340.00	5,680.8	115.2	103.1	32° 10' 1.242 N	103° 17' 4
5,800.0	6.00	340.00	5,780.3	125.0	99.5	32° 10' 1.340 N	103° 17' 4
5,900.0	6.00	340.00	5,879.7	134.8	95.9	32° 10' 1.437 N	103° 17' 4
6,000.0	6.00	340.00	5,979.2	144.7	92.4	32° 10' 1.535 N	103° 17' 4
6,100.0	6.00	340.00	6,078.6	154.5	88.8	32° 10' 1.632 N	103° 17' 4
6,200.0	6.00	340.00	6,178.1	164.3	85.2	32° 10' 1.730 N	103° 17' 4
6,300.0	6.00	340.00	6,277.5	174.1	81.6	32° 10' 1.827 N	103° 17' 4
6,400.0	6.00	340.00	6,377.0	184.0	78.1	32° 10' 1.925 N	103° 17' 4
6,500.0	6.00	340.00	6,476.4	193.8	74.5	32° 10' 2.022 N	103° 17' 4
6,600.0	6.00	340.00	6,575.9	203.6	70.9	32° 10' 2.120 N	103° 17' 4
6,700.0	6.00	340.00	6,675.3	213.4	67.3	32° 10' 2.217 N	103° 17' 4
6,724.8	6.00	340.00	6,700.0	215.9	66.4	32° 10' 2.242 N	103° 17' 4
6,800.0	4.50	340.00	6,774.9	222.3	64.1	32° 10' 2.306 N	103° 17' 4
6,900.0	2.50	340.00	6,874.7	228.1	62.0	32° 10' 2.363 N	103° 17' 4
7,000.0	0.50	340.00	6,974.7	230.5	61.1	32° 10' 2.387 N	103° 17' 4
7,024.8	0.00	0.00	6,999.5	230.6	61.1	32° 10' 2.388 N	103° 17' 4
7,100.0	0.00	0.00	7,074.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
7,200.0	0.00	0.00	7,174.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
7,300.0	0.00	0.00	7,274.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
7,400.0	0.00	0.00	7,374.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
7,500.0	0.00	0.00	7,474.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
7,600.0	0.00	0.00	7,574.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
7,700.0	0.00	0.00	7,674.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
7,800.0	0.00	0.00	7,774.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
7,900.0	0.00	0.00	7,874.7	230.6	61.1	32° 10′ 2.388 N	103° 17' 4
8,000.0	0.00	0.00	7,974.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
8,100.0	0.00	0.00	8,074.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
8,200.0	0.00	0.00	8,174.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
8,300.0	0.00	0.00	8,274.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
8,400.0	0.00	0.00	8,374.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
8,500.0	0.00	0.00	8,474.7	230.6	61.1	32° 10' 2.388 N	103° 17' 4
8,525.3	0.00	0.00	8,500.0	230.6	61.1	32° 10' 2.388 N	103° 17' 4
8,600.0	1.49	340.00	8,574.7	231.5	60.7	32° 10' 2.397 N	103° 17' 4
8,700.0	3.49	340.00	8,674.6	235.6	59.3	32° 10' 2.438 N	103° 17' 4
0.008,8	5.49	340.00	8,774.2	243.0	56.6	32° 10' 2.511 N	103° 17' 4
8,825.3	6.00	340.00	8,799.5	245.4	55.7	32° 10' 2.534 N	103° 17' 4
8,900.0	6.00	340.00	8,873.7	252.7	53.0	32° 10' 2.607 N	103° 17' 4
9,000.0	6.00	340.00	8,973.2	262.5	49.5	32° 10' 2.705 N	103° 17' 4
9,100.0	6.00	340.00	9,072.6	272.3	45.9	32° 10' 2.802 N	103° 17' 4
9,200.0	6.00	340.00	9,172.1	282.2	42.3	32° 10' 2.900 N	103° 17' 4
9,300.0	6.00	340.00	9,271.5	292.0	. 38.7	32° 10' 2.997 N	103° 17' 4
9,400.0	6.00	340.00	9,371.0	301.8	35.2	32° 10' 3.095 N	103° 17' 4

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site:

Well:

PIN/DOG PINDOG #1\$ Pine Straw 101H

∣Wellbore: ∶Design: Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference:

North Reference: Survey Calculation Method:

Database:

Well Pine Straw 101H

KB @ 3268.0usft KB @ 3268.0usft

Grid

Minimum Curvature

esign: Design	1 #1 		Database:		EDM5000		
lanned Survey							
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
9,600.0	6.00	340.00	9,569.9	321.4	28.0	32° 10' 3.290 N	103° 17' 43.418
9,700.0	6.00	340.00	9,669.3	331.3	24.4	32° 10' 3.387 N	103° 17' 43.459
9,800.0	6.00	340.00	9,768.8	341.1	20.9	32° 10' 3.485 N	103° 17' 43.499
9,900.0	6.00	340.00	9,868.2	350.9	17.3	32° 10' 3,583 N	103° 17' 43.540
10,000.0	6.00	340.00	9,967.7	360.7	13.7	32° 10' 3.680 N	103° 17' 43.580
10,100.0	6.00	340.00	10,067.1	370.6	10.1	32° 10' 3.778 N	103° 17' 43.621
10,133.0	6.00	340.00	10,100.0	373.8	9.0	32° 10' 3.810 N	103° 17' 43.634
10,200.0	4.66	340.00	10,166.7	379.7	6.8	32° 10' 3.868 N	103° 17' 43.658
10,300.0	2.66	340.00	10,266.5	385.7	4.6	32° 10' 3.927 N	103° 17' 43.683
10,400.0	0.66	340.00	10,366.4	388.4	3.7	32° 10′ 3.954 N	103° 17' 43.694
10,433.0	0.00	0.00	10,399.5	388.6	3.6	32° 10' 3.956 N	103° 17' 43.69
10,500.0	0.00	0.00	10,466.4	388.6	3.6	32° 10' 3,956 N	103° 17' 43.69
10,600.0	0.00	0.00	10,566.4	388.6	3.6	32° 10' 3.956 N	103° 17' 43.69
10,700.0	0.00	0.00	10,666.4	388.6	3.6	32° 10′ 3.956 N	103° 17' 43.69
10,800.0	0.00	0.00	10,766.4	388.6	3.6	32° 10' 3.956 N	103° 17' 43.69
10,900.0	0.00	0.00	10,866.4	388.6	3.6	32° 10' 3.956 N	103° 17' 43.69
10,933.6	0.00	0.00	10,900.0	388.6	3.6	32° 10' 3.956 N	103° 17' 43.69
PS101 KOP							
11,000.0	7.85	101.84	10,966.2	387.6	8.0	32° 10′ 3.947 N	103° 17' 43.64
11,100.0	19.68	101.84	11,063.2	382.7	31.3	32° 10' 3.896 N	103° 17' 43.37
11,115.4	21.51	101.84	11,077.6	381.6	36.6	32° 10′ 3.885 N	103° 17' 43.31
11,200.0	25.33	125.30	11,155.4	368.0	66.6	32° 10′ 3.747 N	103° 17' 42.96
11,300.0	33.17	143.65	11,242.7	333.4	100.4	32° 10' 3.402 N	103° 17' 42.57
11,400.0	42.71	155.10	11,321.6	280.5	131.0	32° 10′ 2.875 N	103° 17' 42.22
11,500.0	53.04	162.92	11,388.6	211.3	157.1	32° 10' 2.187 N	103° 17' 41.92
11,600.0	63.75	168.82	11,441.0	128.8	177.6	32° 10′ 1.369 N	103° 17' 41.70
11,700.0	74.66	173.71	11,476.5	36.5	191.6	32° 10' 0.455 N	103° 17' 41.54
11,800.0	85.67	178.10	11,493.5	-61.6	198.6	32° 9′ 59.484 N	103° 17' 41.47
11,839.2	90.00	179.78	11,495.0	-100.7	199.3	32° 9′ 59.096 N	103° 17' 41.47
PS101 FTP							
11,900.0	90.00	179.78	11,495.0	-161.5	199.6	32° 9′ 58.495 N	103° 17' 41.47
12,000.0	90.00	179.78	11,495.0	-261.5	199.9	32° 9' 57.505 N	103° 17' 41.48
12,100.0	90.00	179.78	11,495.0	-361.5	200.3	32° 9′ 56.516 N	103° 17' 41.49
12,200.0	90.00	179.78	11,495.0	-461.5	200.7	32° 9' 55.526 N	103° 17' 41.49
12,300.0	90.00	179.78	11,495.0	-561.5	201.1	32° 9' 54.537 N	103° 17' 41.50
12,400.0	90.00	179.78	11,495.0	-661.5	201.5	32° 9' 53.547 N	103° 17' 41.51
12,500.0	90.00	179.78	11,495.0	-761.5	201.9	32° 9' 52.558 N	103° 17' 41.51
12,600.0	90.00	179.78	11,495.0	-861.5	202.3	32° 9′ 51.568 N	103° 17' 41.52
12,700.0	90.00	179.78	11,495.0	-961.5	202.7	32° 9' 50.579 N	103° 17' 41.53
12,800.0	90.00	179.78	11,495.0	-1,061.5	203.1	32° 9' 49.589 N	103° 17' 41.53
12,900.0	90.00	179.78	11,495.0	-1,161.5	203.5	32° 9′ 48.600 N	103° 17' 41.54
13,000.0	90.00	179.78	11,495.0	-1,261.5	203.8	32° 9' 47.611 N	103° 17' 41.55
13,100.0	90.00	179.78	11,495.0	-1,361.5	204.2	32° 9′ 46.621 N	103° 17' 41.55
13,200.0	90.00	179.78	11,495.0	-1,461.5	204.6	32° 9' 45.632 N	103° 17' 41.56
13,300.0	90.00	179.78	11,495.0	-1,561.5	205.0	32° 9' 44.642 N	103° 17' 41.571

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site: Well: PIN/DOG PINDOG #1S Pine Straw 101H

Wellbore: Design: Wellbore #1
Design #1

Local Co-ordinate Reference:

TVD Reference:

North Reference:

Survey Calculation Method: Database:

Well Pine Straw 101H

KB @ 3268.0usft KB @ 3268.0usft

Grid

Minimum Curvature

ed Survey					•		
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
13,400.0	90.00	179.78	11,495.0	-1,661.5	205.4	32° 9' 43.653 N	103° 17' 41.5
13,500.0	90.00	179.78	11,495.0	-1,761.5	205.8	32° 9' 42.663 N	103° 17' 41.5
13,600.0	90.00	179.78	11,495.0	-1,861.5	206.2	32° 9' 41.674 N	103° 17' 41.5
13,700.0	90.00	179.78	11,495.0	-1,961.5	206.6	32° 9' 40.684 N	103° 17' 41.5
13,800.0	90.00	179.78	11,495.0	-2,061.5	207.0	32° 9' 39.695 N	103° 17' 41.6
13,900.0	90.00	179.78	11,495.0	-2,161.5	207.4	32° 9' 38.705 N	103° 17' 41.6
14,000.0	90.00	179.78	11,495.0	-2,261.5	207.8	32° 9' 37.716 N	103° 17' 41.6
14,100.0	90.00	179.78	11,495.0	-2,361.5	208.1	32° 9' 36.726 N	103° 17' 41.6
14,200.0	90.00	179.78	11,495.0	-2,461.5	208.5	32° 9' 35.737 N	103° 17' 41.6
14,300.0	90.00	179.78	11,495.0	-2,561.5	208.9	32° 9' 34.747 N	103° 17' 41.6
14,400.0	90.00	179.78	11,495.0	-2,661.5	209.3	32° 9' 33.758 N	103° 17' 41.6
14,500.0	90.00	179.78	11,495.0	-2,761.5	209.7	32° 9' 32.768 N	103° 17' 41.6
14,600.0	90.00	179.78	11,495.0	-2,861.5	210.1	32° 9' 31.779 N	103° 17' 41.6
14,700.0	90.00	179.78	11,495.0	-2,961.5	210.5	32° 9′ 30.789 N	103° 17' 41.6
14,800.0	90.00	179.78	11,495.0	-3,061.5	210.9	32° 9' 29.800 N	103° 17' 41.6
14,900.0	90.00	179.78	11,495.0	-3,161.5	211.3	32° 9' 28.810 N	103° 17' 41.6
15,000.0	90.00	179.78	11,495.0	-3,261.5	. 211.7	32° 9' 27.821 N	103° 17' 41.6
15,100.0	90.00	179.78	11,495.0	-3,361.5	212.0	32° 9' 26.831 N	103° 17' 41.6
15,200.0	90.00	179.78	11,495.0	-3,461.5	212.4	32° 9' 25.842 N	103° 17' 41.6
15,300.0	90.00	179.78	11,495.0	-3,561.5	212.8	32° 9' 24.852 N	103° 17' 41.7
15,400.0	90.00	179.78	11,495.0	-3,661.5	213.2	32° 9' 23.863 N	103° 17' 41.7
15,500.0	90.00	179.78	11,495.0	-3,761.5	213.6	32° 9' 22.873 N	103° 17' 41.7
15,600.0	90.00	179.78	11,495.0	-3,861.5	214.0	32° 9' 21.884 N	103° 17' 41.7
15,700.0	90.00	179.78	11,495.0	-3,961.5	214.4	32° 9' 20.894 N	103° 17' 41.7
15,800.0	90.00	179.78	11,495.0	-4,061.5	214.8	32° 9' 19.905 N	103° 17' 41.7
15,900.0	90.00	179.78	11,495.0	-4,161.5	215.2	32° 9' 18.916 N	103° 17' 41.7
16,000.0	90.00	179.78	11,495.0	-4,261.5	215.6	32° 9′ 17.926 N	103° 17' 41.7
16,100.0	90.00	179.78	11,495.0	-4,361.5	216.0	32° 9' 16.937 N	103° 17' 41.7
16,200.0	90.00	179.78	11,495.0	-4,461.5	216.3	32° 9' 15.947 N	103° 17' 41.7
16,300.0	90.00	179.78	11,495.0	-4,561.5	216.7	32° 9' 14.958 N	103° 17' 41.7
16,400.0	90.00	179.78	11,495.0	-4 ,661.5	217.1	32° 9′ 13.968 N	103° 17' 41.7
16,500.0	90.00	179.78	11,495.0	-4,761.5	217.5	32° 9' 12.979 N	103° 17' 41.7
16,600.0	90.00	179.78	11,495.0	-4,861.5	217.9	32° 9' 11.989 N	103° 17' 41.7
16,700.0	90.00	179.78	11,495.0	-4,961.5	218.3	32° 9' 11.000 N	103° 17' 41.7
16,800.0	90.00	179.78	11,495.0	-5,061.5	: 218.7	32° 9' 10.010 N	103° 17' 41.8
16,900.0	90.00	179.78	11,495.0	-5,161.5	219.1	32° 9' 9.021 N	103° 17' 41.8
17,000.0	90.00	179.78	11,495.0	-5,261.5	219.5	32° 9' 8.031 N	103° 17' 41.8
17,018.5	90.00	179.78	11,495.0	-5,280.0	219.5	32° 9' 7.848 N	103° 17' 41.8
PS101 into NMN!			•	<u>-</u>			
17,100.0	90.00	179.78	11,495.0	-5,361.5	219.9	32° 9' 7.042 N	103° 17' 41.8
17,200.0	90.00	179.78	11,495.0	-5,461.5	220.3	32° 9' 6.052 N	103° 17' 41.8
17,300.0	90.00	179.78	11,495.0	-5,561.5	220.6	32° 9′ 5.063 N	103° 17' 41.8
17,400.0	90.00	179.78	11,495.0	-5,661.5	221.0	32° 9′ 4.073 N	103° 17' 41.8
17,500.0	90.00	179.78	11,495.0	-5,761.5	221.4	32° 9' 3.084 N	103° 17' 41.8

Lease Penetration Section Line Footages

Company: Project: Ameredev Operating, LLC.

Project: Site: PIN/DOG PINDOG #18 Pine Straw 101H

Wellbore: Design:

Well:

Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Database:

Well Pine Straw 101H

KB @ 3268.0usft

KB @ 3268.0usft Grid

Minimum Curvature

ed Survey				-			
MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
17,600.0	90.00	179.78	11,495.0	-5,861.5	221.8	32° 9' 2.094 N	103° 17' 41.85
17,700.0	90.00	179.78	11,495.0	-5,961.5	222.2	32° 9' 1.105 N	103° 17' 41.86
17,800.0	90.00	179.78	11,495.0	-6,061.5	222.6	32° 9' 0.115 N	103° 17' 41.87
17,900.0	90.00	179.78	11,495.0	-6,161.5	223.0	32° 8' 59.126 N	103° 17' 41.87
18,000.0	90.00	179.78	11,495.0	-6,261.5	223.4	32° 8' 58.136 N	103° 17' 41.88
18,100.0	90.00	179.78	11,495.0	-6,361.5	223.8	32° 8' 57.147 N	103° 17' 41.89
18,200.0	90.00	179.78	11,495.0	-6,461.5	224.2	32° 8' 56.157 N	103° 17' 41.89
18,300.0	90.00	179.78	11,495.0	-6,561.5	224.5	32° 8′ 55.168 N	103° 17' 41.90
18,400.0	90.00	179.78	11,495.0	-6,661.5	224.9	32° 8′ 54.178 N	103° 17' 41.9
18,500.0	90.00	179.78	11,495.0	-6,761.5	225.3	32° 8′ 53.189 N	103° 17' 41.9
18,600.0	90.00	179.78	11,495.0	-6,861.5	225.7	32° 8' 52.199 N	103° 17' 41.92
18,700.0	90.00	179.78	11,495.0	-6,961.5	226.1	32° 8′ 51.210 N	103° 17' 41.93
18,800.0	90.00	179.78	11,495.0	-7,061.5	226.5	32° 8' 50.220 N	103° 17' 41.9
18,900.0	90.00	179.78	11,495.0	-7,161.5	226.9	32° 8' 49.231 N	103° 17' 41.94
19,000.0	90.00	179.78	11,495.0	-7,261.5	227.3	32° 8′ 48.241 N	103° 17' 41.95
19,100.0	90.00	179.78	11,495.0	-7,361.5	227.7	32° 8' 47.252 N	103° 17' 41.9
19,200.0	90.00	179.78	11,495.0	-7,461.5	228.1	32° 8' 46.263 N	103° 17' 41.90
19,300.0	90.00	179.78	11,495.0	-7,561.5	228.5	32° 8' 45.273 N	103° 17' 41.9
19,400.0	90.00	179.78	11,495.0	-7,661.5	228.8	32° 8′ 44.284 N	103° 17' 41.9
19,500.0	90.00	179.78	11,495.0	-7,761.5	229.2	32° 8' 43.294 N	103° 17' 41.98
19,600.0	90.00	179.78	11,495.0	-7,861.5	229.6	32° 8' 42.305 N	103° 17' 41.99
19,700.0	90.00	179.78	11,495.0	-7,961.5	230.0	32° 8' 41.315 N	103° 17' 41.99
19,800.0	90.00	179.78	11,495.0	-8,061.5	230.4	32° 8' 40.326 N	103° 17' 42.00
19,900.0	90.00	179.78	11,495.0	-8,161.5	230.8	32° 8' 39.336 N	103° 17' 42.0
20,000.0	90.00	179.78	11,495.0	-8,261.5	231.2	32° 8′ 38.347 N	103° 17' 42.0
20,100.0	90.00	179.78	11,495.0	-8,361.5	231.6	32° 8' 37.357 N	103° 17' 42.0
20,200.0	90.00	179.78	11,495.0	-8,461.5	232.0	32° 8' 36.368 N	103° 17' 42.03
20,300.0	90.00	179.78	11,495.0	-8,561.5	232.4	32° 8' 35.378 N	103° 17' 42.03
20,400.0	90.00	179.78	11,495.0	-8,661.5	232.7	32° 8' 34.389 N	103° 17' 42.04
20,500.0	90.00	179.78	11,495.0	-8,761.5	233.1	32° 8' 33.399 N	103° 17' 42.0
20,600.0	90.00	179.78	11,495.0	-8,861.5	233.5	32° 8′ 32.410 N	103° 17' 42.0
20,700.0	90.00	179.78	11,495.0	-8,961.5	233.9	32° 8′ 31.420 N	103° 17' 42.06
20,800.0	90.00	179.78	11,495.0	-9,061.4	234.3	32° 8' 30.431 N	103° 17' 42.07
20,900.0	90.00	179.78	11,495.0	-9,161.4	234.7	32° 8' 29.441 N	103° 17' 42.07
21,000.0	90.00	179.78	11,495.0	-9,261.4	235.1	32° 8' 28.452 N	103° 17' 42.08
21,100.0	90.00	179.78	11,495.0	-9,361.4	235.5	32° 8′ 27.462 N	103° 17' 42.09
21,200.0	90.00	179.78	11,495.0	-9,461.4	235.9	32° 8' 26.473 N	103° 17' 42.09
21,300.0	90.00	179.78	11,495.0	-9,561.4	236.3	32° 8' 25.483 N	103° 17' 42.10
21,400.0	90.00	179.78	11,495.0	-9,661.4	236.7	32° 8' 24.494 N	103° 17' 42.1
21,500.0	90,00	179.78	11,495.0	-9,761.4	237.0	32° 8' 23.504 N	103° 17' 42.1
21,600.0	90.00	179.78	11,495.0	-9,861.4	237.4	32° 8' 22.515 N	103° 17' 42,12
21,700.0	90.00	179.78	11,495.0	-9,961.4	237.8	32° 8' 21.525 N	103° 17' 42.13
21,800.0	90.00	179.78	11,495.0	-10,061.4	238.2	32° 8' 20.536 N	103° 17' 42.13
21,900.0	90.00	179.78	11,495.0	-10,161.4	238.6	32° 8′ 19.546 N	103° 17' 42.14

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project:

PIN/DOG PINDOG #1S

Site: Well:

Pine Straw 101H Wellbore #1

Wellbore: Design:

Design #1

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Pine Straw 101H

KB @ 3268.0usft

KB @ 3268.0usft Grid

Minimum Curvature

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
22,000.0	90.00	179.78	11,495.0	-10,261.4	239.0	32° 8' 18.557 N	103° 17' 42.151 W
22,100.0	90.00	179.78	11,495.0	-10,361.4	239.4	32° 8' 17.567 N	103° 17' 42.158 W
22,191.1	90.00	179.78	11,495.0	-10,452.5	239.7	32° 8' 16.666 N	103° 17' 42.164 W
PS101 LTP							
22,200.0	90.00	179.78	11,495.0	-10,461.4	239.8	32° 8' 16,578 N	103° 17' 42.165 W
22,240.6	90.00	179.78	11,495.0	-10,502.0	239.9	32° 8' 16.176 N	103° 17' 42.167 W

Plan Annota	itions				
	Measured Vertical Local Coordinates		dinates		
	Depth	Depth	+N/-S	+E/-W	
	(usft)	(usft)	(usft)	(usft)	Comment
	17,018.5	11,495.0	-5,046.5	-10.5	PS101 into NMNM120914

Checked By:	Approved By:	Date:	
unconce by.			

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
	10 - 10	 		

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- T December 10100 CICD Dit Caim and Times

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

^{*}FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak
 off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.</p>
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M
 Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure
 witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or
 .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the
 burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a
 co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to
 API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications
 will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

Ameredev Drilling Plan: 3 String with 4 String Contingency

- Contingency Plan If Losses Exceed 50% in Intermediate Interval
 - We will utilize a MB4 wellhead that will enable us to convert a 3 string design to a 4 string design. (Schematic Attached)
 - We will displace well with FW and drill or condition to run 9-5/8" Casing at the Lamar Limestone, we will utilize DV Tool w/ ACP @ the Tansill to Isolate Capitan Reef and cement to surface.
 - Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- 7.625 Casing will be Additional 4th String
 - o Drill remaining hole section to 10,670'
 - o Run 7.625 29.7# HCL80 FJM Casing

4-String Contingency Wellbore Schematic

Well: (Well Name)

SHL:

BHL:

Tubing:

(SHL)

(BHL)

Lea, NM Wellhead: A - 13-5/8" 10M x 13-5/8" SOW

> B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

2-7/8" L-80 6.5# 8rd EUE

Co. Well ID:

XXXXXX AFE No.: XXXX-XXX

API No.:

E-Mail:

XXXXXXXXX (Elevation)'

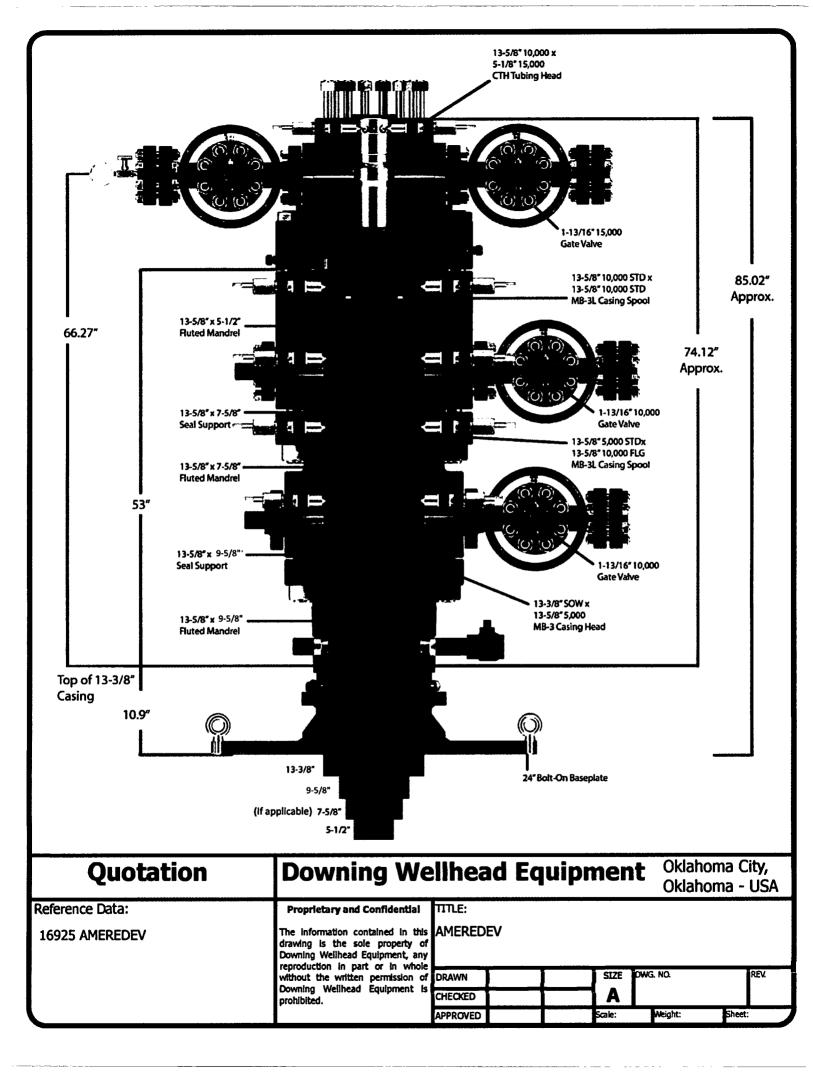
GL: Field:

Delaware

Objective: TVD: Wolfcamp B (TVD)'

MD: (MD)'

TBD **KB** 27' Rig:


Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 125' below 13.375" 54.5# J-55 BTC Rustler		TOC 0' 100% Excess	8.4-8.6 ppg WBM
	Salado DV Tool with ACP At Tansill		TOC 0' 50% Excess	sh Water
12.25"	Tansill Capitan Reef Lamar 50' below 9.625" 40# L-80HC BTC Lamar		TOC 0' 50% Excess	8.3-10.2 Fresh Water
8.75"	Bell Canyon Brushy Canyon Bone Spring Lime First Bone Spring Second Bone Spring Third Bone Spring Upper 125' below 7.625" 29.7# L-80HC FJM TBSG Upper		TOC 0' 25% Excess	8.5-9.4 Diesel Brine Emulsion
6.75" 12° Build @ KOP	Third Bone Spring Wolfcamp Wolfcamp B (If Applicable) 5.5" 20# P-110CYHP TMK UP SF TORQ (MD) Target Wolfcamp B TVD // MD		TOC 0' 25% Excess	10.5-14 ppg OBM

Contingency Casing Design and Safety Factor Check

	Casing Specifications										
Segment Hole ID Depth OD Weight Grade Coupling											
Surface	17.5	1,888'	13.375	54.5	J-55	BTC					
Int #1	12.25	5,013'	9.625	40	HCL-80	BTC					
Int #2	8.75	11,147'	7.625	29.7	HCL-80	FJM					
Prod Segment A	6.75	11,147'	5.5	20	CYHP-110	TMK UPSF					
Prod Segment B	6.75	22,496'	5.5	20	CYHP-110	TMK UPSF					

<u> </u>	Chec	k Surface (Casina						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
14.38			1,130	2,730					
14.36		afety Facto		2,730					
1.56	8.29	8.83	1.15	0.91					
1.56				0.91					
		ck Int #1 C	,						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
10.625	916	1042	4230	5750					
Safety Factors									
0.81	4.57	5.20	1.41	0.95					
	Che	ck Int #2 C	asing						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
7.625	940	558	6700	9460					
	S	afety Facto	ors						
0.56	2.84	1.96	1.10	1.24					
	Check Pro	od Casing,	Segment A						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
	S	afety Facto	ors						
0.49	3.11	2.79	1.77	1.89					
	Check Pro	od Casing,	Segment B						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
Safety Factors									

							
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
1	17.5	13.375	1888		1.76	13.5	
Stage 1 Lead	Bbl/Sk bbls Stage Tool Dep Top MD of Segi Bottom MD of Cement Type Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/ga Volume (cu ft) Percent Excess Column Height	th ment Segment Bentonite, Accel	erator, Kolseal, Del	oamer, Celloflak	0.31372549 419.402246 N/A 0 1502	Target %	100%
1		Calc TOC	-1888	bbi	25% Excess	100%	
		calc vol	0.12372195	233.587041	291.9838012	467.174082	
		33.3 73.	0				
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	17.5	13.375	1888		1.34	14.8	
	Bb!/Sk bbls				0.23885918 47.77183601		
	Top MD of Segi	nent			1502		
ſ	Bottom MD of				1888		
1	Cement Type						
1	Additives		,				
Stage 1 Tail							
🖁 –	Quantity (sks)				200		
	Yield (cu ft/sk)				1.34		
	Density (lbs/ga				14.8		
	Volume (cu ft)				268		
	Percent Excess				100%		
	Column Height				386.1225606		
•			•				
1							
	<u></u>						

SURFACE CEMENT

					•	-	***	
l		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	ł	12.25	9.625	5013		3.5	9	
t _		Bbl/Sk bbls Stage Tool Deptl Top MD of Segm Bottom MD of S Cement Type Additves	ent egment	olseal,Defoamer,Ce	lloclake	0.623885918 372.0365733 N/A 0 4163 C		
Stage 5		Quantity (sks) Yield (cu ft/sk) Density (lbs/gal)				596 3.5 9		
1		Volume (cu ft)				2,087.13		
Į.	1	Percent Excess		 		50%	Target %	50%
		Column Height				6,669.49		
			Target TOC Calc TOC calc vol	0 -2506.5 0.055781888	bbl 279.6346021	25% Excess 349.5432526	50% 419.4519031	
		Link Chin	Carlon Class	0	Condu	V2-1-2	Danata	
1	Į.	Hole Size	Casing Size	Depth	Sacks	Yield	Density 14.8	
	į	12.25	9.625	5013		1.33	14.8	
		Bbl/Sk				0.237076649		
	ł	bbls				47.41532977		
	1	Top MD of Segm				4163		
1		Bottom MD of S	egment			5013		
	ì	Cement Type				<u>c</u>		
e =		Additives						
Stage 1 Tail		Quantity (sks)				200		
l	1	Yield (cu ft/sk)				1.33		
ı	1	Density (lbs/gal)			•	14.8		
1		Volume (cu ft)				266		
	1	Percent Excess				25% 850.013004		
1		FEICEIIC EXCESS						

INTERMEDIATE 1 CEMENT - STAGE 1

	<u> </u>						-
	Hole S	ize Casing Size	Depth	Sacks	Yield	Density	
	12.2	_	3262		3.5	9	
Stage 2 Lead	Bbl/Sk bbls Stage Too Top MD o	I Depth f Segment ID of Segment ype Bentonite,Salt,I sks) t/sk) os/gal) u ft) ccess eight	Kolseal, Defoamer, Ce	illoclake	3.5 0.623885918 225.5254458 N/A 0 2412 C 361 3.5 9 1,265.20 50% 4,042.99		50%
		Target TOC Calc TOC	0 1631	LLII	250/ 5	50%	
		calc roc	-1631 0.055781888	bbl 181.960517	25% Excess 227.4506463	272.9407756	
	. "	Calc Voi	0.033781888	181.300317	227.4300403	272.3407730	
1	Hole S	ize Casing Size	Depth	Sacks	Yield	Density	
	12.2		3262		1.33	14.8	
	Bbi/Sk bbis				0.237076649 47.41532977		
		f Segment			2412		
1		D of Segment			3262		
1	Cement T						
	Additives	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · · · · · · · · · · · · · · · ·				
Stage 2 Tail							
٦	Quantity (sks)			200		
i .	Yield (cu f				1.33		
İ	Density (I				14.8		
İ	Volume (266		
	Percent I				25%		
	Column I	ieignt			850.013004		
L	<u> </u>						

INTERMEDIATE 1 CEMENT - STAGE 2

1		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
1		8.75	7.625	10670		2.47	9	
Stage 1	pean	Bbl/Sk bbls Stage Tool Deptl Top MD of Segm Bottom MD of Sc Cement Type Additves Expansion Addit Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	ent egment Bentonite,Retard ive	der,Kolseal,Defoam 0 -2667.5	ner,Celloflake, Ant	0.440285205 168.6309595 N/A 0 6755 H i-Settling 383 2.47 9 946.02 25% 9,422.97	Target %	25%
			calc vol	0.01789574	190.9475483	23% Excess 238.6844354	25% 238.6844354	
—								
I		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
ľ		8.75	7.625	10670		1.31	14.2	
		Bbl/Sk				0.233511586		
	- 1	bbls				70.05347594		
	- 1	Top MD of Segm		 		6755		
	ŀ	Bottom MD of So Cement Type	egment			10670 H		
		Additves	Salt Bentonite Re	etarder, Dispersant,	Fluid Loss			
Stage 1	Tai Tai	Addites	Jan, Demonite, N	tarder, Dispersant,	11010 2033			
Sta	_	Quantity (sks)				300		
		Yield (cu ft/sk)				1.31		
		Density (lbs/gal)				14.2		
		Volume (cu ft)				393		
						25%		
		Percent Excess Column Height				3914.533571		

INTERMEDIATE 2 CEMENT

		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		6.75	5.5	22496		1.34	14.2	
		Bbl/Sk bbls Stage Tool Depti Top MD of Segm Bottom MD of S Cement Type Additves	nent egment	Fluid Loss, Dispersa	Patrician Del	0.23885918 418.2897805 N/A 0 22496 H	· ·	
۾ ڇا		Additives	Sait, Bentonite, i	iulu coss, Dispersa	int, netarder, Der	oanier	•	
Stage 1 Lead		Quantity (sks)				1,751		
		Yield (cu ft/sk)				1.34		
		Density (lbs/gal)				14.2		
		Volume (cu ft)				2,346.61		
		Percent Excess				25%		25%
ļ		Column Height		· -···-		28,120.00		
			Target TOC	0		250/5	l asa	
ł			Calc TOC calc vol	-5624 0.01487517	bbl 334.6318244	25% Excess 418.2897805		
 			Caic voi	0.01487517	334.0310244	410.2037003	416.2657605	
1		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		6.75	5.5	22496	0	0	0	
		Bbl/Sk				0		
	1	bbls				0		
		Top MD of Segm				22496		
	į	Bottom MD of So Cement Type	egment			22496 H		
		Additives				п		
F =	l	Additives						
Stage 1 Tail	İ							
۱"		Quantity (sks)			•	0		
	}	Yield (cu ft/sk)				0		
	1	Density (lbs/gal)	<u></u>			0		
	1	Volume (cu ft) Percent Excess			.	0		
		Column Height				0		
l	İ	Column ricigne						
1								
	ł							
	1							

PRODUCTION CEMENT

HALLIBURTON

Permian Basin, Ft Stockton

Lab Results-Lead

Request/Slurry	2488456/2	Rig Name		Date	18/DEC/20	018
Submitted By	Dillon Briers	Job Type	Intermediate Casing	Bulk Plant		
Customer	Ameredev	Location	Lea	Well		
Well Informa	tion					
Casing/Liner Size	7.625 in	Depth MD	5013 ft	BHST	165°F	
Hole Size	8.75 in	Depth TVD	5013 ft	внст	130°F	
Cement Inforn	nation - Lead Design	•				0
		•		Cem	ent Properti	es
Conc UOM	Cement/Additive	•		Ceme Slurry Density	ent Properti	· ·
Conc UOM	Cement/Additive	•			-	es

Pilot Test	lilot Test Results Request ID 2488456/1											
API Rheology, Request Test ID:35665340												
Temp (degF)	300	200		100	60	30	6	3	Cond Time (min)			
80 (up)	82	67		49	42	39	36	28	0			
80 (down)	82	59		35	26	18	10	9	0			
80 (avg.)	82	63		42	34	29	23	19	0			
V (cP) & YP (lbs/100ft2):	61.73	22.32	(Least-s	quares method)							
PV (cP) & YP (lbs/100ft2):	60	22	(Traditio	onal method (300	& 100 mm based	D)					

Generalized Herschel-Bulkley 4: YP(lbf/100ft2)=20.33 MuInf(cP)=52.39	m=0.81	n=0.81

API Rheo	logy, Requ	est Test	ID:3566	5341					
Temp (degF)	300	200	100	60	30	6	3	Cond Time (min)	Cond Temp (degF)
134 (up)	63	47	29	21	15	7	6	30	134
134 (down)	63	46	29	21	14	7	4	30	134
134 (avg.)	63	47	29	21	15	7	5	30	134
PV (cP) & YP (lbs/100ft2):	57.12	7.98	(Least-squares me	thod)				
PV (cP) & YP (lbs/100ft2):	51	12	(Traditional method (300 & 100 rpm based))					
Generalized He	rschel-Bulkley	4: YP(lbf/1	00ft2)=2.26	MuInf(cP)=30.64	m=0.41	n=0.41		•	

API Fluid Loss, Request Test ID:35665342							
Test Temp (degF)	Test Pressure (psi)	Test Time (min)	Meas. Vol.	Calculated FL (<30 min)	Conditioning time (min)	Conditioning Temp (degF)	
134	1000	9.12	52	189	30	134	

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

Free Fluid API 10B-2, Request Test ID:35665343

Con. Temp (degF)

Cond. Time (min)

Static T. (F)

Static time (min)

Incl. (deg)

% Fluid

120

0

0

Pilot Test Results Request ID 2504116/5

Thickening Time - ON-OFF-ON, Request Test ID:35852392

Test Temp

(degF)

Reached in (min) 70 Bc (hh:min) Pressure (psi)

Start Bc

126

5800

6:18

16

UCA Comp. Strength, Request Test ID:35852394

End Temp

Pressure (psi)

50 psi (hh:mm) 500 psi

12 hr CS (psi)

24 hr CS (psi)

48 hr CS (psi)

(degF) 159

4000

(hh:mm) 8:55 12:23

456

749

681

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400032526

Submission Date: 07/27/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: PINE STRAW FED COM 25 36 05

Well Type: OIL WELL

Well Number: 101H

Well Work Type: Drill

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

PINE STRAW FED COM 25 36 05 101H SITE_ACCESS_20190327120635.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? YES

Existing Road Improvement Description: Expand existing 2-track road to 20' wide road per BLM Gold Book Standards.

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

PINE_STRAW_FED_COM_25_36_05_101H___SITE_ACCESS_20190327121202.pdf

EP_PINE_STRAW_ROADS_20190327121220.pdf

New road type: RESOURCE

Length: 5276

Feet

Width (ft.): 30

Max slope (%): 2

Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 20

New road access erosion control: Crowned and Ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Well Name: PINE STRAW FED COM 25 36 05 Well Number: 101H

Access road engineering design? NO

Access road engineering design attachment:

Turnout? N

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: CALICHE

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: GRADER

Access other construction information: NM One Call (811) will be notified before construction start.

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and Ditched

Road Drainage Control Structures (DCS) description: Crowned and Ditched

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

PINE_STRAW_FED_COM_25_36_05_101H___1_MI_RADIUS_WELLS_20190327121331.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Production from the proposed well will be transported to a new production facility named Pine Straw CTB, southeast of the well pad. A buried 4" poly flowline (700 psi maximum) will be run approximately 2,068' from the Pine Straw Fed Com 25 36 05 101H to the Pine Straw CTB. Approximately 10,802' of buried 12" poly water line will be

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

run parallel to the water line and connect into Xcel Energy. The power line will be approximately 12,298'. The Pine Straw CTB will be 500'x525' and will include a separator, heat exchanger, VRU, VRT, meter run and a tank battery. The new production facility will have a secondary containment structure that is constructed to hold the capacity of 1-1/2 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Production Facilities map:

BO_PINE_STRAW_BATTERY_SITE_REV3_S_20190327121508.pdf

EP_PINE_STRAW_ELECTRICAL_20190327121510.pdf

EP_PINE_STRAW_FLOW_LINES_20190327121510.pdf

EP_PINE_STRAW_WATER_20190327121511.pdf

BO_PINE_STRAW_1N_PAD_SITE_REV2_S_20190327122138.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: DUST CONTROL,

INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE

CASING

Describe type:

Source longitude:

Water source type: GW WELL

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 20000

Source volume (acre-feet): 2.577862

Source volume (gal): 840000

Water source and transportation map:

PINE_STRAW_FED_COM_25_36_05_101H ___WATER_WELLS_LIST_20190327122412.pdf PINE_STRAW_FED_COM_25_36_05_101H ___WATER_WELL_MAP_20190327132300.pdf

Water source comments: Water will be trucked or surface piped from existing water wells on private land. See attached list of available wells.

New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Well casing outside diameter (in.):

Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method:

Drill material:

Grout material:

Grout depth:

Casing length (ft.):

Casing top depth (ft.):

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: NM One Call (811) will be notified before construction start. Top 6" of soil and brush will be stockpiled east of the pad. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (Dinwiddie Cattle Company) land in W2 08-25S-36E or an existing caliche pit on private (Dinwiddie Cattle Company) land in E2 17-25S-36E.

Construction Materials source location attachment:

PINE_STRAW_FED_COM_25_36_05_101H___CALICHE_MAP_20190327132618.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000

barrels

Waste disposal frequency: Daily

Safe containment description: Steel tanks

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL

Disposal location ownership: COMMERCIAL

Disposal type description:

Disposal location description: R360's state approved (NM-01-0006) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

PINE_STRAW_FED_COM_25_36_05_101H___WELL_SITE_DIAGRAM_20190327132748.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: PS

Multiple Well Pad Number: 1S

Recontouring attachment:

PINE_STRAW_FED_COM_25_36_05_101H___WELL_SITE_DIAGRAM_20190327132811.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well Name: PINE STRAW FED COM 25 36 05 Well Number: 101H

Wellpad long term disturbance (acres): 3.8

Access road long term disturbance (acres): 3.6

Pipeline long term disturbance (acres): 1.42

Other long term disturbance (acres): 6.02

Total long term disturbance: 23.31

Wellpad short term disturbance (acres): 0.79

Access road short term disturbance (acres): 0

Pipeline short term disturbance (acres): 0

Other short term disturbance (acres): 0

Total short term disturbance: 0.79

Disturbance Comments:

Reconstruction method: If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed. Interim reclamation will consist of shrinking the pad 17% (.79 acre) by removing caliche and reclaiming 40' wide swaths on the north and east sides of the pad. This will leave 3.8 acres for producing three wells, with tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements. All topsoil for the battery will be reseeded in place for the life of the battery.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. New road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled.

Soil treatment: None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Seed Management

See	d	Ta	h	ما
-7				

Seed type:

Seed source:

Seed name:

Source name:

Source address:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed Summary

Seed Type

Pounds/Acre

Total pounds/Acre:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Zachary

Last Name: Boyd

Phone: (580)940-5054

Email: zboyd@ameredev.com

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pit closure description: No pit

Pit closure attachment:

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Section 11 - Surface Ownership

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Fee Owner: Dinwiddie Cattle Company

Fee Owner Address:

Phone: (575)631-0385

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: Agreement

Surface Access Agreement Need description: Ameredev and Dinwiddie have a Surface Use Agreement (SUA)

Email:

in place for this location.

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Disturbance type: WELL PAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Fee Owner: Dinwiddie Cattle Company

Fee Owner Address:

Phone: (575)631-0385

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: Agreement

Surface Access Agreement Need description: Ameredev and Dinwiddie have a Surface Use Agreement (SUA)

Email:

in place for this location.

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Disturbance type: PIPELINE

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

Operator Name: AMEREDEV OPERATING LLC	
Well Name: PINE STRAW FED COM 25 36 05	Well Number: 101H
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:
Fee Owner: Dinwiddie Cattle Company	Fee Owner Address:
Phone: (575)631-0385	Email:
Surface use plan certification: NO	
Surface use plan certification document:	
Surface access agreement or bond: Agreem	nent
Surface Access Agreement Need description in place for this location. Surface Access Bond BLM or Forest Service	on: Ameredev and Dinwiddie have a Surface Use Agreement (SUA)
BLM Surface Access Bond number:	
USFS Surface access bond number:	
•	
Disturbance type: OTHER	
Describe: POWERLINE	
Surface Owner: PRIVATE OWNERSHIP	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	

Ctata I anal Office.

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Fee Owner: Dinwiddie Cattle Company

Fee Owner Address:

Phone: (575)631-0385

Email:

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: Agreement

Surface Access Agreement Need description: Ameredev and Dinwiddie have a Surface Use Agreement (SUA) in place for this location.

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: An on-site meeting for Ameredev's Pine Straw Fed Com 25 36 05 101H well was held on March 14, 2019. Attendees included Jeff Robertson (BLM), Shane McNeely (Ameredev), and Ged Adams (Topographic). Ameredev made a donation with the MOU fund in lieu of an archaeology report.

Other SUPO Attachment

PINE_STRAW_FED_COM_25_36_05_101H___SURFACE_USE_PLAN_REV_20190327134920.pdf PINE_STRAW_FED_COM_25_36_05_101H___OWNER_AGREEMENT_LETTER_20190327135330.pdf

Surface Use Plan of Operations

Introduction

The following Surface Use Plan of Operations will be implemented by Ameredev Operating, LLC (Ameredev), after APD approval. No disturbance will be created other than those described in this surface use plan. If any additional surface disturbance becomes necessary after APD approval, the appropriate BLM approved sundry notice or right of way application will be acquired prior to such disturbance. This Surface Use Plan includes Ameredev's well pad, battery site, electrical, water and flow lines, and access roads.

Before any surface disturbance is created, stakes or flagging will be installed to mark boundaries of permitted areas of disturbance, including soil storage areas. As necessary, slope, grade, and other construction control stakes will be placed to ensure construction is in accordance with the surface use plan. All boundary markers will be maintained in place until final construction cleanup is completed. If disturbance boundary markers are displaced, they will be replaced before construction proceeds. Adjacent operators will be contacted before construction starts to mark adjacent pipelines.

Directions to proposed pad:

At the intersection of NM-205 & 3rd St/NM-128/Frying Pan Rd, head west on NM-128 approximately 5.3 miles. Turn northeast (right) on lease road about 2 miles. Head northwest (left) on proposed road and proceed approximately 4,753 feet to the southeast of the location.

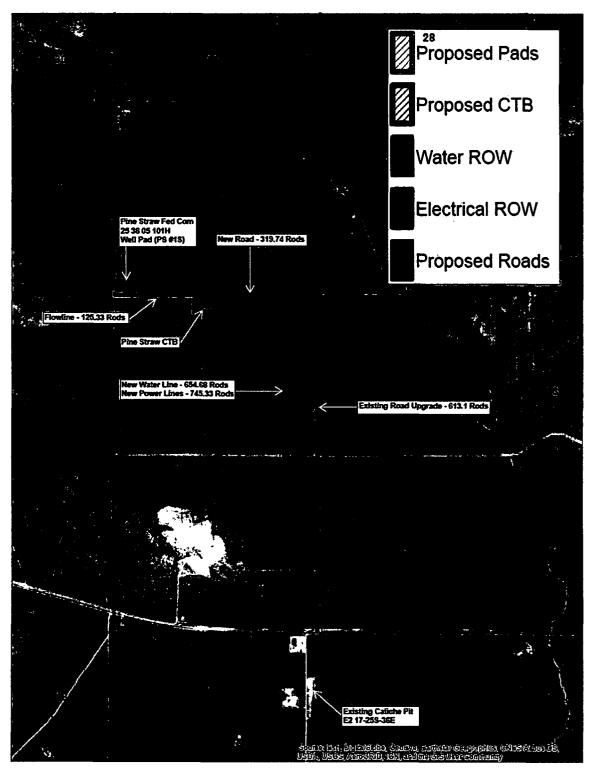
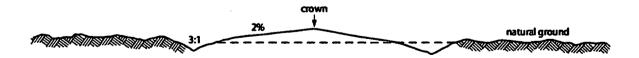


Exhibit 1 - Well Pad Access



Section 1 - Existing Roads

- A. The existing access road route to the proposed project is depicted on *Exhibit 1 Well Pad Access*. Improvements to the driving surface will be done where necessary. No new surface disturbance will be done, unless otherwise noted in the New or Reconstructed Access Roads section of this surface use plan.
- **B.** Right-Of-Way will be acquired before construction begins.
- C. The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use.
- D. Operator will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

Section 2 - New or Reconstructed Access Roads

- A. A section of new access road will be needed for this proposed project. See Exhibit 1 Well Pad Access, for locations.
- **B.** The length of new access road needed to be constructed for this proposed project is approximately 5,276 feet.
- **C.** New access road will be constructed with 6 inches of compacted caliche.
- D. The maximum driving width of the access road will be 20 feet. The maximum width of surface disturbance when constructing the access road will not exceed 30 feet. All areas outside of the driving surface will be revegetated.
- E. When the road travels on fairly level ground, the road will be crowned and ditched with a maximum 2% slope from the tip of the road crown to the edge of the driving surface. Ditches will be constructed on each side of the road. The ditches will be 3 feet wide with 3:1 slopes. See road cross section diagram below:

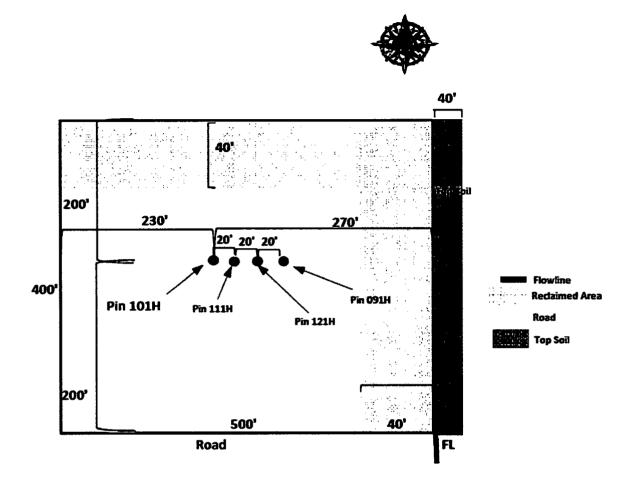
- **F.** No turnouts will be constructed on the new portions of access road.
- **G.** No cattle guards will be installed on the new portions of access road.
- H. Right-Of-Way will be acquired before construction begins.
- I. No culverts or low water crossings will be constructed for the new portions of access road.
- J. Since the access road is on level ground, no lead-off ditches will be constructed for the new portions of access road.
- **K.** Any sharp turns in the in the new road will be rounded to facilitate turning by trucks.

- L. Newly constructed or reconstructed roads, on surface under the jurisdiction of the Bureau of Land Management, will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road.
- M. All topsoil and fragmented rock removed in excavation will be used as directed in approved plan.

Section 3 – Location of Existing Wells

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Pine Straw Fed Com 25 36 05 101H. There are no known existing wells within 1 mile of this proposed well.




Exhibit 2 – One Mile Radius Existing Wells

Section 4 - Location of Existing and/or Proposed Production Facilities

- A. The multiple well pad will be located on Section 5, and will measure 400'x500'. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location.
- **B.** Production from the proposed well will be transported to a new production facility named Pine Straw CTB, southeast of the well pad.
- C. A buried 4" poly flowline (700 psi maximum) will be run approximately 2,068' from the Pine Straw Fed Com 25 36 05 101H to the Pine Straw CTB. Approximately 10,802' of buried 12" poly water line will be run from the Pine Straw CTB to an existing line connecting to an existing water system. A new overhead power line will be run parallel to the water line and connect into Xcel Energy. The power line will be approximately 12,298'. The Pine Straw CTB will be 500'x525' and will include a separator, heat exchanger, VRU, VRT, meter run and a tank battery.
- **D.** The new production facility will have a secondary containment structure that is constructed to hold the capacity of 1-1/2 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.
- E. All permanent (lasting more than six months) above ground structures including but not limited to pump jacks, storage tanks, barrels, pipeline risers, meter housing, etc., that are not subject to safety requirements will be painted a non-reflective paint color, Shale Green, from the BLM Standard Environmental Colors chart, unless another color is required in the APD Conditions of Approval.
- F. If any plans change regarding the production facility or other infrastructure (pipeline, electrical lines, etc.), Ameredev will submit a sundry notice or right-of-way (if applicable) prior to installation or construction.

Pine Straw Fed Com 25 36 05 101H SHL: 25S 36E 233' FNL 230' FWL

Pine Straw Fed Com 25 36 05 111H SHL: 25S 36E 233' FNL 250' FWL

Pine Straw Fed Com 25 36 05 121H SHL: 25S 36E 233' FNL 270' FWL

Pine Straw Fed Com 25 36 05 091H SHL: 25S 36E 233' FNL 290' FWL

Exhibit 3 - Well Site Diagram

Section 5 - Location and Types of Water Supply

A. This location will be drilled using a combination of water and mud systems (outlined in the Drilling Program). The water will be obtained from preexisting water wells, by running a pump directly to the drilling rig. See *Exhibit 4 - Water Wells*, for a list of available water wells. In cases where a polyline is used to transport water for drilling or completion purposes, the existing and proposed roads into location will be utilized.

Permit #	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04′14.32″ N, 103°12′32.30″ W
CP 1378	S. Eppenour	32°05′40.62″ N, 103°13′ 35.26″ W
CP 1285	Sec. 5	32°03′56.50″ N, 103°17′37.04″ W
CP 857	Capped	32°04′39.70″ N, 103°16′51.13″ W
C 2287	#1	32°03′59.0″ N, 103°33′16.8″ W
C 2286	#2	32°03′59.2″ N, 103°33′15.2″ W
C 2290	#3	32°04′1.0″ N, 103°33′ 12.6″ W
C 2285	#4	32°04′3.7″ N, 103°33′9.7″ W
C 2288	#5	32°04′0.5″ N, 103°33′8.4″ W
C 2294	Garden	32°03′3.2″ N, 103°32′38.1″ W
C 2293	House	32°03′2.3″ N, 103°32′36.8″ W
J-11-S-3	Farm Well #2	32°03'08.4" N, 103°16'35.2" W
J-11-S-2	Farm Well #3	32°03′11.5″ N, 103°17′02.0″ W
J-11-S	Farm Well #4	32°03′24.6″ N, 103°17′02.1″ W
CP 1170 POD 1	CB 1	32°03′57.2″ N, 103°18′45.3″ W
CP 1170 POD 5		32°07′17.1″ N, 103°17′48.0″ W
CP 1263 POD 5	CB 2	32°03′56.27″ N, 103°18′27.4″ W
CP 1263 POD 3	CB 3	32°03′54.90″ N, 103°18′16.74″ W
CP 1351 POD 1	CB 4	32°03′57.16″ N, 103°17′45.13″ W
CP 1351 POD 2	CB 5	32°03′30.70″ N, 103°17′45.70″ W
J 26	Ryan	32°01′20.41″ N, 103°15′49.46″ W
13		32°02′41.5″ N, 103°18′55.8″ W

Exhibit 4 - Water Wells

Section 6 - Construction/Construction Materials

- A. Caliche will be obtained from the caliche pit located at Lat: 32° 6'28.78"N, Long: 103°16'58.77"W, the caliche pit at Lat: 32° 6'33.14"N, Long: 103°18'44.16"W, or the caliche pit at Lat: 32° 3'8.30"N, Long: 103°13'57.00"W.
- B. Caliche utilized for the drilling pad will be obtained either from the locations listed above, an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "flipping" the well location. A mineral material permit will be obtained from the BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "flipping" a well location is as follows:
 - 1. An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the *Exhibit 3 Well Site Diagram*.
 - 2. An area will be used within the proposed well site dimensions to excavate caliche.
 - 3. Subsoil will be removed and stockpiled within the surveyed well pad dimensions.
 - **4.** Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions.
 - 5. Subsoil will then be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available).
 - **6.** Neither caliche, nor subsoil will be stockpiled outside of the well pad dimensions. Topsoil will be stockpiled along the edge of the pad as depicted in *Exhibit 3 Well Site Diagram*.
 - 7. In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

Section 7 - Methods of Handling Waste

- **A.** Drill cuttings, mud, salts and other chemicals will be properly disposed of into steel tanks on site and hauled to a State approved commercial disposal facility.
- **B.** Garbage and trash produced during drilling and completion operations will be collected in a portable metal trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal.
- C. Human waste and grey water will be properly contained and disposed of properly at a state approved disposal facility.
- **D.** After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a state approved disposal facility.

Section 8 - Ancillary Facilities

A. No ancillary facilities will be needed for the proposed project.

Section 9 - Well Site Layout

- A. See Exhibit 3 Well Site Diagram. The following information is presented:
 - 1. Reasonable scale
 - 2. Well pad dimensions/orientation
 - 3. Topsoil stockpile
- **B.** The proposed drilling pad was staked and surveyed by a professional surveyor. The attached survey plat of the well site depicts the drilling pad layout as staked.
- C. Topsoil salvaging
 - 1. Grass, forbs, and small woody vegetation such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and re-spread evenly on the site following topsoil re-spreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

<u>Section 10 - Plans for Final Surface Reclamation</u>

Reclamation Objectives

- **A.** The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil, to control erosion, and to minimize habitat and forage loss, visual impact, and weed infestation during the life of the well or facilities.
- B. The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.
- **C.** The BLM will be notified at least 3 days prior to the commencement of any reclamation procedures.
- D. If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed.

E. Interim reclamation will performed on the well site after the well is drilled and completed. Exhibit 3 – Well Site Diagram depicts the location and dimension of the planned interim reclamation for the well site.

Interim Reclamation Procedures (if performed)

- A. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production.
- **B.** In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. The areas planned for interim reclamation will then be contoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to reseeding will not be steeper than a 3:1 Ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be re-contoured to the above ratios during interim reclamation.
- D. Topsoil will be evenly re-spread and aggressively revegetated over the entire disturbed area not needed for all-weather operations, including cuts and fills. To seed the area, the proper BLM mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- **E.** Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- **F.** The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Final Reclamation Procedures (well pad, buried pipelines, etc.)

- **A.** Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- **B.** All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be re-contoured to the contour existing prior to initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to re-contouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation.
- **D.** After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BLM seed mixture, free of noxious weeds. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- **E.** Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.

- **F.** All unused equipment and structures including pipelines, electric line poles, tanks, etc. that serviced the well will be removed.
- **G.** All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not re-disturbed, and that erosion is controlled.

Section 11 - Surface Ownership

A. Dinwiddie Cattle Company has surface ownership for the proposed project area. Ameredev and Dinwiddie have a Surface Use Agreement (SUA) in place for this location. Dinwiddie contact: Tommy Dinwiddie P.O. Box 963 Capitan, NM 88354 (575) 631-0385

Section 12 - Other Information

- A. There are no dwellings within 1 mile of this location.
- **B.** An on-site meeting for Ameredev's Pine Straw Fed Com 25 36 05 101H well was held on March 14, 2019. Attendees included Jeff Robertson (BLM), Shane McNeely (Ameredev), and Ged Adams (Topographic).
- C. The well pad described in this document Pine Straw (PS #1S) will contain 4 wells that produce into a central tank battery (CTB) located southeast of the well pad. The wells share a common pad access road, and the four flowlines from the individual wells will share a common corridor that will terminate into the CTB. The wells that share the pad are:
 - Pine Straw Fed Com 25 36 05 091H, APD ID# 10400032595
 - Pine Straw Fed Com 25 36 05 101H, APD ID# 10400032526
 - Pine Straw Fed Com 25 36 05 111H
 - Pine Straw Fed Com 25 36 05 121H

Ameredev field representative:

Ameredev office contact:

Zac Boyd, Operations Supervisor

Christie Hanna, Regulatory Coordinator

Cell: (432) 385-6996

Direct: (737) 300-4723

Email: zboyd@ameredev.com

Email: channa@ameredev.com

Ameredev Operating, LLC Address: 5707 Southwest Parkway Building 1, Suite 275 Austin, Texas 78735

March 27, 2019

To whom it may concern:

Ameredev Operating, LLC has negotiated a private Surface Use Agreement (SUA) with Tommy Dinwiddie of Dinwiddie Cattle Co. (PO Box 963, Capitan, NM 88354; 575-631-0385) for a power line, flowline, saltwater disposal line, roads, central production facility, and pad for the Pine Straw Fed Com 25 36 05 101H well in sections 5 and 8 of T25S, R36E.

Thank you,

Christie Hanna

Regulatory Coordinator

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

PWD Data Report
08/12/2019

APD ID: 10400032526

Submission Date: 07/27/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection eystem attachment.

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: AMEREDEV OPERATING LLC Well Name: PINE STRAW FED COM 25 36 05 Well Number: 101H Is the reclamation bond a rider under the BLM bond? Unlined pit bond number: Unlined pit bond amount: Additional bond information attachment: **Section 4 - Injection** Would you like to utilize Injection PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner: PWD disturbance (acres): Injection PWD discharge volume (bbl/day): Injection well mineral owner: Injection well type: Injection well number: Injection well name: Injection well API number: Assigned injection well API number? Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: **Underground Injection Control (UIC) Permit? UIC Permit attachment:** Section 5 - Surface Discharge Would you like to utilize Surface Discharge PWD options? NO **Produced Water Disposal (PWD) Location:**

PWD surface owner:

PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT**

Bond Info Data Report

APD ID: 10400032526

Submission Date: 07/27/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: PINE STRAW FED COM 25 36 05

Well Number: 101H

Well Work Type: Drill

Show Final Text

Bond Information

Well Type: OIL WELL

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: