Form 3160-3 (June 2015)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT TION FOR PERMIT TO DRILL OF ACT

FORM APPROVED
OMB No. 1004-0137
Expires: January 31, 20

i. Lease Serial No.

BUREAU OF LAND MAN	VAGEN	IEN I	r _{c1} 03 to	<u>a</u>	NMNM137469		
BUREAU OF LAND MAN APPLICATION FOR PERMIT TO 1a. Type of work: DRILL	DRILL	OR	REENTERVE		6. If Indian, Allotee or	Tribe Name	
			RECT		7. If Unit or CA Agree	ment Name and No	
1a. Type of work:	REENTE	R	•		7. II Ollif of CA Agree	ment, Name and No.	
1b. Type of Well: Oil Well Gas Well	Other			ì	8. Lease Name and We	ell No.	
1c. Type of Completion: Hydraulic Fracturing	Single Zo	ne [Multiple Zone		NANDINA FED COM	1 25 36 31 3 2 2 647)	
2. Name of Operator AMEREDEV OPERATING LLC (372284)					9. API Well No.	46425/	
3a. Address 5707 Southwest Parkway, Building 1, Suite 275 Austin Ţ			io. <i>(include area cod</i> 700	e)	10. Field and Pool, or WC-025-G-08-S2636	Exploratory 970 S206 / LWR BONE SI	
4. Location of Well (Report location clearly and in accordance	e with any	State	requirements.*)			lk. and Survey or Area	
At surface LOT O / 230 FNL / 1950 FEL / LAT 32.07	8945 / LO	ONG -	-103.3019693		SEC 6 / T26S / R36E	I / NMP	
At proposed prod. zone LOT B / 200 FNL / 1980 FEL /	LAT 32.	10806	669 / LONG -103.30	020755			
14. Distance in miles and direction from nearest town or post of 6.5 miles	ffice*				12. County or Parish LEA	13. State NM	
15. Distance from proposed* location to nearest property or lease line, ft.	16. N		cres in lease	17. Spacir 320	ing Unit dedicated to this well		
(Also to nearest drig. unit line, if any) 18. Distance from proposed location*	19. Pr	ากกระ	d Denth	20. BLM/	/BIA Bond No. in file		
to nearest well, drilling, completed, applied for, on this lease, ft.	ł	Proposed Depth 20. BLM/BIA Bond No. in file 550 feet / 22059 feet FED: NMB001478					
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3011 feet					23. Estimated duration 90 days		
	24.	Attac	chments				
The following, completed in accordance with the requirements (as applicable)	of Onsho	re Oil	and Gas Order No.	I, and the H	lydraulic Fracturing rule	e per 43 CFR 3162.3-3	
Well plat certified by a registered surveyor. A Drilling Plan.			4. Bond to cover the Item 20 above).	e operation	s unless covered by an e	existing bond on file (see	
3. A Surface Use Plan (if the location is on National Forest Sys SUPO must be filed with the appropriate Forest Service Offi		s, the	5. Operator certific 6. Such other site sp BLM.		mation and/or plans as m	nay be requested by the	
25. Signature			(Printed/Typed)			Pate	
(Electronic Submission)		Julia :	Steger / Ph: (737)3	00-4733	<u> </u>	08/28/2018	
Title Engineer							
Approved by (Signature)	I	Name	(Printed/Typed)		· In	Date	
(Electronic Submission)			Layton / Ph: (575)2	234-5959		9/27/2019	
Title Assistant Field Manager Lands & Minerals		Office CARL	SBAD				
Application approval does not warrant or certify that the application applicant to conduct operations thereon. Conditions of approval, if any, are attached.	ant holds	legal	or equitable title to the	hose rights	in the subject lease whi	ch would entitle the	
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, of the United States any false, fictitious or fraudulent statement						y department or agency	
OCP Reciologing					(W)	9	

(Continued on page 2)

*(Instructions on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Form 3160-3, page 2)

October 1, 2019

ATTN: Paul Kautz NMOCD 1625 N. French Drive Hobbs, NM 88240 (575) 393-6161 ext. 104

Paul,

Enclosed is a copy of the BLM approved APD COA packet for the Nandina Fed Com 25 36 31 095H well, for your review and approval. Please let me know if you have any questions.

Best regards,

Christie Hanna

Regulatory Coordinator

Application for Permit to Drill.

U.S. Department of the Interior Bureau of Land Management

APD Package Report

Date Printed: 09/30/2019 04:01 PM

APD ID: 10400032975

Well Status: AAPD

APD Received Date: 08/28/2018 03:48 PM

Well Name: NANDINA FED COM 25 36 31

Operator: AMEREDEV OPERATING LLC

Well Number: 095H

APD Package Report Contents

- Form 3160-3
- Operator Certification Report
- Application Report
- Application Attachments
 - -- Well Plat: 5 file(s)
- Drilling Plan Report
- Drilling Plan Attachments
 - -- Blowout Prevention Choke Diagram Attachment: 1 file(s)
 - -- Blowout Prevention BOP Diagram Attachment: 3 file(s)
 - -- Casing Design Assumptions and Worksheet(s): 12 file(s)
 - -- Hydrogen sulfide drilling operations plan: 1 file(s)
 - -- Proposed horizontal/directional/multi-lateral plan submission: 1 file(s)
 - -- Other Variances: 3 file(s)
- SUPO Report
- SUPO Attachments
 - -- Existing Road Map: 1 file(s)
 - -- New Road Map: 2 file(s)
 - -- Attach Well map: 1 file(s)
 - -- Production Facilities map: 5 file(s)
 - -- Water source and transportation map: 2 file(s)
 - -- Construction Materials source location attachment: 2 file(s)
 - -- Well Site Layout Diagram: 1 file(s)
 - -- Recontouring attachment: 1 file(s)
 - -- Other SUPO Attachment: 1 file(s)
- PWD Report
- PWD Attachments
 - -- None

- Bond Report
 Bond Attachments
 - -- None

Additional Operator Remarks

Location of Well

1. SHL: LOT O / 230 FNL / 1950 FEL / TWSP: 26S / RANGE: 36E / SECTION: 6 / LAT: 32.078945 / LONG: -103.3019693 (TVD: 0 feet, MD: 0 feet)
PPP: LOT O / 230 FNL / 1950 FEL / TWSP: 26S / RANGE: 36E / SECTION: 6 / LAT: 32.078945 / LONG: -103.3019693 (TVD: 0 feet, MD: 0 feet)
PPP: NWNE / 0 FNL / 1895 FEL / TWSP: 26S / RANGE: 36E / SECTION: 6 / LAT: 32.0795774 / LONG: -103.3017953 (TVD: 11570 feet, MD: 11674 feet)
PPP: SWNE / 2640 FSL / 1980 FEL / TWSP: 25S / RANGE: 36E / SECTION: 31 / LAT: 32.0868337 / LONG: -103.3020672 (TVD: 11650 feet, MD: 14334 feet)
PPP: NWNE / 0 FNL / 1980 FEL / TWSP: 25S / RANGE: 36E / SECTION: 31 / LAT: 32.0940874 / LONG: -103.3020706 (TVD: 11650 feet, MD: 16973 feet)
PPP: SWSE / 1320 FSL / 1980 FEL / TWSP: 25S / RANGE: 36E / SECTION: 30 / LAT: 32.0977156 / LONG: -103.3020722 (TVD: 11650 feet, MD: 18293 feet)
PPP: SWSE / 0 FSL / 1980 FEL / TWSP: 25S / RANGE: 36E / SECTION: 31 / LAT: 32.0868337 / LONG: -103.3020706 (TVD: 11650 feet, MD: 14334 feet)
PPP: SWSE / 0 FSL / 1980 FEL / TWSP: 25S / RANGE: 36E / SECTION: 30 / LAT: 32.0940874 / LONG: -103.3020706 (TVD: 11650 feet, MD: 16973 feet)
PPP: SWSE / 0 FSL / 1980 FEL / TWSP: 25S / RANGE: 36E / SECTION: 31 / LAT: 32.0795774 / LONG: -103.3020706 (TVD: 11650 feet, MD: 11674 feet)
PPP: NWSE / 1320 FSL / 1980 FEL / TWSP: 25S / RANGE: 36E / SECTION: 31 / LAT: 32.0832055 / LONG: -103.3020656 (TVD: 11650 feet, MD: 13014 feet)
PPP: SWSE / 1320 FSL / 1980 FEL / TWSP: 25S / RANGE: 36E / SECTION: 31 / LAT: 32.0832055 / LONG: -103.3020656 (TVD: 11650 feet, MD: 13014 feet)
PPP: SWSE / 1320 FSL / 1980 FEL / TWSP: 25S / RANGE: 36E / SECTION: 31 / LAT: 32.0832055 / LONG: -103.3020656 (TVD: 11650 feet, MD: 13014 feet)
PPP: SWSE / 1320 FSL / 1980 FEL / TWSP: 25S / RANGE: 36E / SECTION: 30 / LAT: 32.0830055 / LONG: -103.3020755 (TVD: 11650 feet, MD: 22059 feet)

BLM Point of Contact

Name: Tanja Baca

Title: Admin Support Assistant

Phone: 5752345940 Email: tabaca@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

26366O APD Nandina Fed Com 25 36 31 95H 30015 NMNM137469 Ameredev 12-55 06232019 NMK_ContingencyPlan

Сар

13 3/8	surface	csg in a	17 1/2	1/2 inch hole. <u>Design Factors</u>				SURFACE		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	Weight	
"A"	54.50		J 55	BUTT	14.23	1.98	0.9	1,100	59,950	
"B"							,	0	0	
w/8.4#/g	mud. 30min Sf	c Csg Test psig	: 1.431	Tail Cmt	does not	circ to sfc.	Totals:	1,100	59,950	
omparison o	-		•	ement Volume	es			.,	,	
omparison o Hole	-		•	ement Volume Min	es_ 1 Stage	Drilling	Calc	Reg'd	,	
	f Proposed	to Minimum	Required C	Min		Drilling Mud Wt	Calc MASP	·	Min Dist	

9 5/8	3	casing i	nsi	de the	13 3/8		_	<u>Design F</u>	-actors	INTER	MEDIATE
Segment	1	#/ft		Grade		Coupling	Body	Collapse	Burst	Length	Weight
"A"		40.00		HCL	. 80	BUTT	4.51	1.39	0.95	5,084	203,360
"B"										0	0
w/8.4#	t/g m	nud, 30min S	fc C	sg Test psig:					Totals:	5,084	203,360
The	cer	nent volur	ne(s) are inte	nded to ach	leve a top of	0	ft from su	rface or a	1100	overlap.
Hole	1	Annular	F	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size		Volume		Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
12 1/4		0.3132	1	1380	2385	1665	43	11.50	3606	5M	0.81

75/8	casing in	side the	9 5/8	A Buc	<u>oyant</u>	Design Fac	<u>ctors</u>	INTERI	MEDIATE
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	29.70	HCL	80	FJM	1.96	1.11	1.25	11,079	329,046
"B"				FJM		_		0	0
w/8.4#/g	mud, 30min Sfo	Csg Test psig	2,437	,			Totals:	11,079	329,046
The co	ement volum	e(s) are inte	nded to ach	nieve a top of	3688	ft from su	rface or a	1396	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
8 3/4	0.1005	382	928	765	21	10.50	5002	10M	0.56
lass 'H' tail cn	nt yld > 1.20	•	MASP is wit	thin 10% of 50	00psig, need	exrta equip?	•		
			• •			Alt Collapse = 1	1.67 > 1.125		

51/2	casing in	side the	7 5/8			Design	Factors	PROD	UCTION
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	20.00	CYHP	110	TMK UPSF	1.28	1.63	1.9	11,147	222,940
"B"	20.00	CYHP	110	TMK UPSF	65.11	1.69	1.9	10,913	218,250
w/8.4#/g	mud, 30min Sf	c Csg Test psig:	2,452				Totals:	22,060	441,190
Ai∈	gment Desi	ign Factors	would be:	;	2.81	1.77	if it were a ve	ertical wellb	oore.
No Dil	ot Hole Pla	nnad	MTD	Max VTD	Csg VD	Curve KOP	Dogleg ^o	Severity ^o	MEOC
INO PII	ot hole Fla	nnea	22060	11650	11650	11100	90	10	11979.8
The co	ement volum	e(s) are inte	nded to aci	hieve a top of	10579	ft from s	urface or a	500	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
6 3/4	0.0835	980	1196	969	23	12.50			0.49
Class 'H' tail cn	nt yld > 1.20		,			MASP is with	in 10% of 500	Opsig, need	exrta equip?

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: AMERIDEV OPERATING LLC

LEASE NO.: | NMNM137469

WELL NAME & NO.: 095H – NANDINA FED COM 25 36 31

SURFACE HOLE FOOTAGE: 230'/S & 1950'/E **BOTTOM HOLE FOOTAGE** 200'/N & 1980'/E

LOCATION: | SECTION 31, T25S, R36E, NMPM

COUNTY: LEA

COA

H2S	CYes	€ No	
Potash	• None	© Secretary	← R-111-P
Cave/Karst Potential	© Low		C High
Variance	○ None	• Flex Hose	Other
Wellhead	• Conventional	Multibowl	C Both
Other	☐ 4 String Area		T. WIPP

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 1109 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours

- after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- ❖ Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 - Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
 - Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 9-5/8 inch 1st intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office. Excess calculates to 23% additional cement might be required.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef Top.
 Operator shall provide method of verification. Excess calculates to 17% additional cement might be required.

Page 2 of 9

Alternate Casing Design:

 $2^{nd}% = 2^{nd} + 2^{nd} +$

- 3. The minimum required fill of cement behind the 7-5/8 inch 2nd intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Excess calculates to 21% additional cement might be required.

In the case of lost circulation, operator has proposed to pump down 9 5/8" X 7 5/8" annulus. Operator must run a CBL from TD of the 7 5/8" casing to surface. Submit results to the BLM.

Pilot hole is required to have a plug at the bottom of the hole. If two plugs are set, the BLM is to be contacted (575-361-2822) prior to tag of bottom plug, which must be a minimum of 200' in length. Operator can set one plug from bottom of pilot hole to kick-off point and save the WOC time for tagging the first plug. Note plug tops on subsequent drilling report.

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef Top.
 Operator shall provide method of verification. Excess calculates to 17% additional cement might be required.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **10,000 (10M)** psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.)

D. SPECIAL REQUIREMENT(S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

Page 4 of 9

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)
 - ☑ Eddy CountyCall the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log (one log per well pad is acceptable) run from TD to surface (horizontal well vertical portion of hole) shall

be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

Page 6 of 9

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.

- a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

Page 8 of 9

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Waste Minimization Plan (WMP)

In the interest of resource development, submission of additional well gas capture development plan information is deferred but may be required by the BLM Authorized Officer at a later date.

NMK6242019

Page 9 of 9

Wellbore Schematic

Nandina Fed Com 25-36-31 095H Well:

SHL: Sec. 06 26S-36E 230' FNL & 1950' FEL BHL: Sec. 30 25S-36E 50' FNL & 1980' FEL

Lea, NM

Wellhead: A - 13-5/8" 10M x 13-5/8" SOW

B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

2-7/8" L-80 6.5# 8rd EUE Tubing:

Co. Well ID:

XXXXX

AFE No.: API No.:

XXXX-XXX **XXXXXXXXXX**

GL:

3,011'

Field:

Delaware

Objective:

Third Bone Spring

TVD:

11,650'

MD:

22,060'

Rig:

TBD **KB**: 27'

E-Mail:

Wellsite2@ameredev.com

						ameredev.com
Hole Size	Formation Tops		Logs (ement		Mud Weight
17.5"	Rustler	1,068'		753 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM
	13.375" 68# J-55 BT	C 1,193'		<u>ရ ဥ</u>	9	80
	Salado	1,508'	!			
	Tansill	3,234'				
	Capitan Reef	3,738'		s)	ess	Lo Lo
	Lamar	5,034'		o, de	Š	ulsi
	DV Tool	5,084'		897 Sacks TOC 0'	50% Excess	ine En
12.25"	Bell Canyon	5,069'				e Br
12.20	Brushy Canyon	7,109'				8.5 - 9.4 ppg Diesel Brine Emulsion
	Bone Spring Lime	8,335'				9.4 pi
i	First Bone Spring	9,711'				8.5 - 9
	Second Bone Spring	10,269'	1.	သ လ	SS	
	Third Bone Spring U	oper 10,855'		, sac 0'	Exce	
	9.625" 40# L-80HC I	STC 11,080'		1,723 Sacks TOC 0'	50% Excess	
0.511				<u>_</u>		
8.5"	Third Bone Spring	11,454'				∑
12° Buil				•		10.5 - 12.5 ppg OBM
@ 11,080' M	, <u> </u>					2 pp
thru	5.5" 20# P-110CYHP BTC	22,060'		S S	SS	- 15.
12,439' M	i i	TVD // 22060 MD	,	vac)'	Exce	0.5
				4,710 sacks TOC 0'	25% Excess	
L	· · · · · · · · · · · · · · · · · · ·			4 <u>, ⊢</u>	<u>~</u>	

Casing Design and Safety Factor Check

	Casing Specifications											
Segment Hole ID Depth OD Weight Grade Coupling												
Surface	17.5	1,193'	13.375	68	J-55	BTC						
Intermediate	12.25	11,080'	9.625	40	HCL-80	BTC						
Prod Segment A	8.5	11,080'	5.5	20	CYHP-110	BTC						
Prod Segment B	8.5	22,060'	5.5	20	CYHP-110	BTC						

	Chec	k Surface (Casing								
OD Cplg	Body	Joint	Collapse	Burst							
inches	1000 lbs	1000 lbs	psi	psi							
14.375	1,069	915	4,100	3,450							
	S	afety Facto	ors								
1.56	7.69	0.64									
	Check I	ntermedia	te Casing								
OD Cplg	Body	Joint	Collapse	Burst							
inches	1000 lbs	1000 lbs	psi	psi							
7.625	940	558	6700	9460							
	Safety Factors										
2.31	2.12	2.16	1.24	1.25							
	Check Pro	od Casing,	Segment A								
OD Cplg	Body	Joint	Collapse	Burst							
inches	1000 lbs	1000 lbs	psi	psi							
5.777	728	655	12780	14360							
·	S	afety Facto	ors								
1.36	3.12	2.81	1.78	1.90							
	Check Pro	od Casing,	Segment B								
OD Cplg	Body	Joint	Collapse	Burst							
inches	1000 lbs	1000 lbs	psi	psi							
5.777	728	655	12780	14360							
		afety Facto	ors								
1.36	63.86	57.46	1.69	1.90							

	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
1 1	17.5	13.375	1193		1.76	13.5	
Stage 1 Lead	Bbl/Sk bbls Stage Tool Dept Top MD of Segm Bottom MD of S Cement Type Additves	nent egment	erator, Kolseal, Defo	amer, Celloflake	0.31372549 173.6285929 N/A 0 807 C		
Sta	Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height				553 1.76 13.5 974.06 50% 1,403.38	Target %	50%
		Target TOC Calc TOC calc vol	0 -596.5 0.12372195	ьы 147.600286	25% Excess 184.5003575	50% 221.400429	
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	17.5	13.375	1193		1.34	14.8	
Stage 1 Tail	Bbl/Sk bbls Top MD of Segn Bottom MD of S Cement Type Additives				0.23885918 47.77183601 807 1193 C		
Sta _l	Quantity (sks) Yield (cu ft/sk) Density (lbs/gal Volume (cu ft) Percent Excess Column Height				200 1.34 14.8 268 100% 386.1225606		

$\overline{}$								
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
ı		12,25	9.625	11080		2.47	11.9	
Stage 1 Lead		Bbl/Sk bbls Stage Tool Depth Top MD of Segm Bottom MD of Sc Cement Type Additves Anti-Settling Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	ent egment Bentonite, Salt, K	Colseal, Defoamer,	Cellofiake, Retard	0.440285205 702.525666 5084 0 9824 H	Target %	25%
			calc vol	0.055781888	618.0633136	772.579142	772.579142	
ļ								
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
1		12.25	9.625	11080		1.31	14.2	
		Bbl/Sk				0.233511586		
1		bbls	•			70.05347594		
}		Top MD of Segm	ent			9824		
1		Bottom MD of S	egment			11080		
1		Cement Type			•	Н		
1_		Additives	Salt, Bentonite, F	Retarder, Dispersar	t, Fluid Loss			
Stage 1 Tail								
Sta	ĺ	Quantity (sks)		_		300		
1		Yield (cu ft/sk)				1.237		
ł		Density (lbs/gal)				14.5		
1		Volume (cu ft)				371.1		
		Percent Excess	_			25%		
		Column Height				1255.84628		
1								
	1							
	1							

		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
			9.625	5084	Sacks	2.47	11.9	
Stage 1		Bbl/Sk bbls Stage Tool Dept Top MD of Segm Bottom MD of S Cement Type Additves Expansion Addit Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft/sk) Percent Excess Column Height	h nent egment Salt, Bentonite, I	Solseal, Defoamer,	Celloflake, Anti-S	0.440285205 307.0785653 5084 0 4234	11.9 Target %	25%
			calc vol	0.055781888	283.5951161	354.4938951	2576 354.4938951	
	1							
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		12.25	9.625	5084		1.33	14.8	
		Bbl/Sk				0.237076649		
	1	bbls				47.41532977		
		Top MD of Segm	ent			4234		
	1	Bottom MD of S	egment			5084		
	1	Cement Type				C		
	1	Additves	Retarder					
Stage 1	[]							
🛱 .		Quantity (sks)				200		
		Yield (cu ft/sk)				1.33		
l	l	Density (lbs/gal)	1			14.8		
		Volume (cu ft)	·			266		
		Percent Excess	•			25%		
		Column Height				850.013004		
	1							
ļ	ŀ							
1	Ì							
Ĭ								

	4							
	1	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
1	•	h			Sucks			
Stage 1 Lead		Bbl/Sk bbls Stage Tool Depth Top MD of Segm Bottom MD of Se Cement Type Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess	ent egment Salt, Bentonite, F	22060 Fluid Loss, Dispersa	nt, Retarder, Defo	4,710 1.34 14.2 6,311.66 25%	Target %	25%
		Column Height	Target TOC Calc TOC calc vol	0 -5515 0.040800466	bbl 900.0582864	27,575.00 25% Excess 1125.072858	25% 1125.072858	
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
1		8.5	5.5	22060	0	0	0	
Stage 1 Tail		Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type Additives Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	egment			0 0 22060 22060 H 0 0 0		

PERFORMANCE DATA

API BTC

Technical Data Sheet

13.375 in

68.00 lbs/ft

J-55

Tubular Parameters

Size	13.375	in	Minimum Yield	55,000	psi
Nominal Weight	68.00	lbs/ft	Minimum Tensile	75,000	psi
Grade	J-55		Yield Load	1,069,000	lbs
PE Weight	66.10	lbs/ft	Tensile Load	1,458,000	lbs
Wall Thickness	0.480	in	Min. Internal Yield Pressure	3,500	psi
Nominal ID	12,415	in	Collapse Pressure	1,950	psi
Drift Diameter	12.259	in			ı
Nom. Pipe Body Area	19.445	in²			
		1			

Connection Parameters

Connection i arameters		
Connection OD	14.375	in
Coupling Length	10.625	·in
Threads Per Inch	5.000	in
Standoff Thread Turns	1.000	
Make-Up Loss	4.513	in
Yield Load In Tension		lbs
Min. Internal Yield Pressure	3,500	psi

Printed on: February-13-2015

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

SěAH

9.625"

40#

<u>.395"</u>

SEAH-80 HIGH COLLAPSE

(SEAH-80 IS A NON HEAT TREATED PRODUCT)

Dimensions (Nominal)

Outside Diameter	9.625	in.
Wall	0.395	in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

Performance Properties

Collapse	4100	psi
Internal Yield Pressure at Minimum Yield		
PE	5750	psi
LTC	5750	psi
ВТС	5750	psi
Yield Strength, Pipe Body	916	1000 lbs.
Joint Strength		
LTC	717	1000 lbs.
RTC	015	1000 lbc

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

U.S. Steel Tubular Products

Product Information
5.5 in. 20 lb/ft (0.361 in. wall) P-110 HC Casing
STAR SEAL - CDC™

Grade(s)	P-110 HC		
MECHANICAL PROPERTIES			
	Yield Strength		
	Minimum	110	ksi
	Maximum	140	ksi
	Tensile Strength		
	Minimum	125	ksi
PIPE PROPERTIES			
Dimensions, Nominal	Pipe Outside Diameter	5.500	in.
	Wall	0.361	in.
	Pipe Inside Diameter	4.778	in.
	Pipe Drift		
	API	4.653	in.
	Special (If Applicable)	N/A	in.
	Weight, T&C	20.00	lbs/ft
	Weight, Plain End	19.83	lbs/ft
•.	Pipe Cross Sectional Area	5.828	sq. in.
Performance Properties	Minimum Pipe Body Yield Strength	641	1,000 lbs
	Minimum Collapse Pressure	12,200	psi
	Minimum Internal Yield Pressure	12,640	psi
CONNECTION PROPERTIES			
Dimensions, Nominal	Connection Outside Diameter	6.050	in.
	Connection Inside Diameter	4.778	in.
	Connection Drift		•
	API	4.653	in.
	Special (If Applicable)	N/A	in.
	Makeup Loss	4.63	in.
	Critical Area	5.828	in.
	Joint Efficiency	100	%
Performance Properties	Joint Strength	667	1,000 lbs
	Compression Rating	400	1,000 lbs
	API Collapse Pressure Rating	12,200	psi
	API Internal Pressure Resistance	12,360	psi
	Maximum Uniaxial Bend Rating	57.2	deg/100 ft
Recommended Torque Values	Minimum Shoulder Torque	5,000	ft-lbs
	Maximum Shoulder Torque	7,500	ft-lbs
	Connection Yield Torque	16,100	ft-lbs

^{*} STAR SEAL - CDC (Casing Drilling Connection) is a Modified API Buttress threaded and coupled connection designed for field proven in drilling with casing applications. Star Seal is a registered trademark of U. S. Steel Corporation. All material contained in this publication is for general information only. This material should not therefore, be used or relied upon for any specific application without independent competent professional examination and verification of its accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U.S. Steel Tubular Products, Inc. 600 Grant Street Pittsburgh, PA 15219

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7 | Danied data /CIDD CICD Dit Cala and Time!

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

^{*}FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Cap

13 3/8	surface	csg in a	17 1/2	inch hole.		Design I	actors	SUR	FACE
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	Weight
"A"	68.00	J	55	BUTT	14.30	3.97	0.64	1,100	74,800
"B"								0	0
w/8.4#/g	mud, 30min Sf	Csg Test psig	1,500	Tail Cmt	does not	circ to sfc.	Totals:	1,100	74,800
omparison (of Proposed t	o Minimum	Required Co	ement Volume	S			·	,
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
17 1/2	0.6946	753	1241	817	52	8.60	2973	3M	1.56

casing in	side the	13 3/8		. <i></i> _	<u>Design</u>	Factors	INTERI	MEDIATE
#/ft	Grade		Coupling	Body	Collapse	Burst	Length	Weight
40.00	HCL	80	BÚTT	2.07	0.78	0.76	11,080	443,200
							0	0
nud, 30min Sf	Csg Test psig:					Totals:	11,080	443,200
ment volum	ie(s) are inte	nded to ach	ieve a top of	0	ft from su	rface or a	1100	overlap.
Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
0.3132	look 🖫	0	3513		9.40	5002	10M	0.81
		5084	,			sum of sx	Σ CuFt	Σ%excess
	127	23				2793	6302	79
t yld > 1.20			•			MASP is withi	in 10% of 50	00psig, need
	gment(s): A,	B, C, D = 0.5	2, b, c, d	Altern	ate Burst = 1.1	5 > 1 & Alt Co	ollapse = 1.1	7 > 1.125
	#/ft 40.00 mud, 30min Sfeement volum Annular Volume 0.3132	40.00 HCL mud, 30min Sfc Csg Test psig: ement volume(s) are inte Annular 1 Stage Volume Cmt Sx 0.3132 look > 127 t yld > 1.20 ient(s) for Segment(s): A,	#/ft Grade 40.00 HCL 80 mud, 30min Sfc Csg Test psig: ement volume(s) are intended to ach Annular 1 Stage Volume Cmt Sx 0.3132 look \ 0 5084 127 23 t yld > 1.20 ient(s) for Segment(s): A, B, C, D = 0.5	#/ft Grade Coupling 40.00 HCL 80 BUTT mud, 30min Sfc Csg Test psig: ement volume(s) are intended to achieve a top of Annular 1 Stage 1 Stage Min Volume Cmt Sx CuFt Cmt Cu Ft 0.3132 look \ 0 3513 5084 127 23 t yld > 1.20 lient(s) for Segment(s): A, B, C, D = 0.52, b, c, d	#/ft Grade Coupling Body 40.00 HCL 80 BUTT 2.07 mud, 30min Sfc Csg Test psig: ement volume(s) are intended to achieve a top of Annular 1 Stage 1 Stage Min 1 Stage Volume Cmt Sx CuFt Cmt Cu Ft % Excess 0.3132 look \(\) 0 3513 5084 127 23 t yld > 1.20 lient(s) for Segment(s): A, B, C, D = 0.52, b, c, d	#/ft Grade Coupling Body Collapse 40.00 HCL 80 BUTT 2.07 0.78 mud, 30min Sfc Csg Test psig: ement volume(s) are intended to achieve a top of Annular 1 Stage 1 Stage Min 1 Stage Drilling Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt 0.3132 look \(\) 0 3513 9.40 5084 127 23 t yld > 1.20 ient(s) for Segment(s): A, B, C, D = 0.52, b, c, d	#/ft Grade Coupling Body Collapse Burst 40.00 HCL 80 BUTT 2.07 0.78 0.76 mud, 30min Sfc Csg Test psig: Totals: ement volume(s) are intended to achieve a top of Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP 0.3132 look 0 3513 9.40 5002 5084 127 23 MASP is with ient(s) for Segment(s): A, B, C, D = 0.52, b, c, d	#/ft Grade Coupling Body Collapse Burst Length 40.00 HCL 80 BUTT 2.07 0.78 0.76 11,080 mud, 30min Sfc Csg Test psig: Totals: 11,080 mud, 30min Sfc Csg Test psig: Totals: 11,080 Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Req'd Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE 0.3132 look \(\) 0 3513 9.40 5002 10M 5084 \(\) sum of sx \(\) Sum of sx 127 23 MASP is within 10% of 50 ient(s) for Segment(s): A, B, C, D = 0.52, b, c, d

liapse Burs 1.54 1.63 1.63 Tot	3 11,100 3 10,960	Weight 222,000 219,190
.36 1.63	3 10,960	219,190
Tot	ale: 22.060	444 400
	.ais: 22,000	441,190
from surface of	ra 11080	overlap.
illing Cald	Reg'd	Min Dist
ud Wt MAS	P BOPE	Hole-Cplg
2.50		1.23
ţ	•	ud Wt MASP BOPE

0			5 1/2		<u>Design</u>	Factors -		
Segment	#/ft	Grade	Coupling	Joint	Collapse	Burst	Length	Weight
"A"							0	0
"B"							0	0
						· ·- 		
w/8.4#/g	mud, 30min Sf	c Csg Test psig				Totals:	0	0
			s this csg, TOC intended	0	ft from si		0 22060	overlap.
				0 1 Stage	ft from su		•	•
Cm	it vol calc be	low include	s this csg, TOC intended	0 1 Stage % Excess		ırface or a	22060	overlap.

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

Nandina Fed Com 25 36 31 075H: Surface Hole Location: 230' FNL & 1930' FEL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: 200' FEL & 1980' FEL, Section 30, T. 25 S., R. 36 E. Nandina Fed Com 25 36 31 095H: Surface Hole Location: 230' FNL & 1950' FEL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: 200' FNL & 1980' FEL, Section 30, T. 25 S., R. 36 E. Nandina Fed Com 25 36 31 085H: Surface Hole Location: 230' FNL & 1970' FEL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: 200' FSL & 1980' FEL, Section 30, T. 25 S., R. 36 E. Goldenbell Fed Com 26 36 06 075H: Surface Hole Location: 230' FNL & 2030' FEL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: 200' FSL & 1980' FEL, Section 7, T. 26 S., R. 36 E. Goldenbell Fed Com 26 36 06 085H: Surface Hole Location: 200' FNL & 2010' FEL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: 200' FSL & 1980' FEL, Section 7, T. 26 S., R. 36 E. Goldenbell Fed Com 26 36 06 095H: Surface Hole Location: 230' FNL & 1990' FEL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: 200' FSL & 1980' FEL, Section 7, T. 26 S., R. 36 E.

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

Gene	eral Provisions
🔲 Pern	nit Expiration
Arcl	naeology, Paleontology, and Historical Site
Noxi Noxi	ous Weeds
🛛 Spec	ial Requirements
I	esser Prairie-Chicken Timing Stipulations
(Ground-level Abandoned Well Marker
H	Hydrology
Con:	struction
1	Notification
7	Topsoil
(Closed Loop System
F	Federal Mineral Material Pits

Page 1 of 16

Well Pads	
Roads	
Road Section Diagram	
Production (Post Drilling)	
Well Structures & Facilities	
Pipelines	
☐ Interim Reclamation ☐ Final Abandonment & Reclamation	

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 3 of 16

V. SPECIAL REQUIREMENT(S)

Timing Limitation Stipulation / Condition of Approval for lesser prairie-chicken:
Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period.
Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 feet from the source of the noise.

Timing Limitation Exceptions:

The Carlsbad Field Office will publish an annual map of where the LPC timing and noise stipulations and conditions of approval (Limitations) will apply for the identified year (between March 1 and June 15) based on the latest survey information. The LPC Timing Area map will identify areas which are Habitat Areas (HA), Isolated Population Area (IPA), and Primary Population Area (PPA). The LPC Timing Area map will also have an area in red crosshatch. The red crosshatch area is the only area where an operator is required to submit a request for exception to the LPC Limitations. If an operator is operating outside the red crosshatch area, the LPC Limitations do not apply for that year and an exception to LPC Limitations is not required.

Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well. For more installation details, contact the Carlsbad Field Office at 575-234-5972.

Hydrology:

The entire well pad(s) will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. The compacted berm shall be constructed at a minimum of 12 inches with impermeable mineral material (e.g. caliche). Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed. Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion. Stockpiling of topsoil is required. The top soil shall be stockpiled in an appropriate location to prevent loss of soil due to water or wind erosion and not used for berming or erosion control. If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.

Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank or 24 hour production, whichever is greater. Automatic shut off, check valves, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Page 6 of 16

Approval Date: 09/27/2019

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

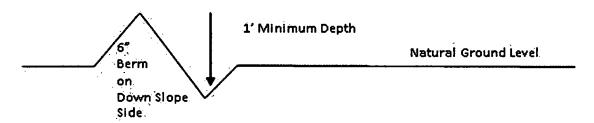
Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts


Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope:
$$\frac{400'}{4\%}$$
 + 100' = 200' lead-off ditch interval

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 8 of 16

Approval Date: 09/27/2019

Construction Steps

- 1. Salvage topsoil
- 3. Redistribute topsoil
- 2. Construct road 4. Revegetate slopes

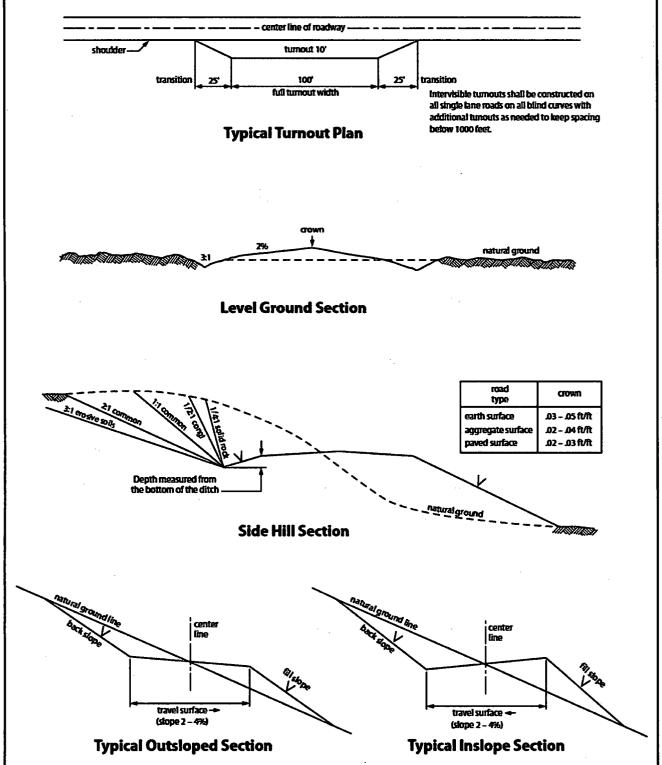


Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, **Shale Green** from the BLM Standard Environmental Color Chart (CC-001: June 2008).

B. PIPELINES

BURIED PIPELINE STIPULATIONS

A copy of the application (Grant, APD, or Sundry Notice) and attachments, including conditions of approval, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

- 1. The Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.
- 2. The Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.
- 3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C.6901, et seq.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.
- 4. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil or other

Page 11 of 16

Approval Date: 09/27/2019

pollutant, wherever found, shall be the responsibility of holder, regardless of fault. Upon failure of holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve holder of any responsibility as provided herein.

5. All construction and maintenance activity will be confined to the authorized right-of-way.
6. The pipeline will be buried with a minimum cover of <u>36</u> inches between the top of the pipe and ground level.
7. The maximum allowable disturbance for construction in this right-of-way will be $\underline{30}$ feet:
• Blading of vegetation within the right-of-way will be allowed: maximum width of blading operations will not exceed <u>30</u> feet. The trench is included in this area. (Blading is defined as the complete removal of brush and ground vegetation.)
• Clearing of brush species within the right-of-way will be allowed: maximum width of clearing operations will not exceed 30 feet. The trench and bladed area are included in this area. (Clearing is defined as the removal of brush while leaving ground vegetation (grasses, weeds, etc.) intact. Clearing is best accomplished by holding the blade 4 to 6 inches above the ground surface.)
• The remaining area of the right-of-way (if any) shall only be disturbed by compressing the vegetation. (Compressing can be caused by vehicle tires, placement of equipment, etc.)
8. The holder shall stockpile an adequate amount of topsoil where blading is allowed. The topsoil to be stripped is approximately6 inches in depth. The topsoil will be segregated from other spoil piles from trench construction. The topsoil will be evenly distributed over the bladed area for the preparation of seeding.
9. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.
10. Vegetation, soil, and rocks left as a result of construction or maintenance activity will be randomly scattered on this right-of-way and will not be left in rows, piles, or berms, unless otherwise approved by the Authorized Officer. The entire right-of-way shall be recontoured to match the surrounding landscape. The backfilled soil shall be compacted and a 6 inch berm will be left over the ditch line to allow for settling back to grade.
11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.
12. The holder will reseed all disturbed areas. Seeding will be done according to the attached seeding requirements, using the following seed mix.
() seed mixture 1 () seed mixture 3 () seed mixture 2 () seed mixture 4 (X) seed mixture 2/LPC () Aplomado Falcon Mixture
D 12 - C16

Page 13 of 16

- 13. All above-ground structures not subject to safety requirements shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be color which simulates "Standard Environmental Colors" Shale Green, Munsell Soil Color No. 5Y 4/2.
- 14. The pipeline will be identified by signs at the point of origin and completion of the right-of-way and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. All signs and information thereon will be posted in a permanent, conspicuous manner, and will be maintained in a legible condition for the life of the pipeline.
- 15. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder before maintenance begins. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway. As determined necessary during the life of the pipeline, the Authorized Officer may ask the holder to construct temporary deterrence structures.
- 16. Any cultural and/or paleontological resources (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.
- 17. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes associated roads, pipeline corridor and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.
- 18. <u>Escape Ramps</u> The operator will construct and maintain pipeline/utility trenches [that are not otherwise fenced, screened, or netted] to prevent livestock, wildlife, and humans from becoming entrapped. At a minimum, the operator will construct and maintain escape ramps, ladders, or other methods of avian and terrestrial wildlife escape in the trenches according to the following criteria:
 - a. Any trench left open for eight (8) hours or less is not required to have escape ramps; however, before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them at least 100 yards from the trench.
 - b. For trenches left open for eight (8) hours or more, earthen escape ramps (built at no more than a 30 degree slope and spaced no more than 500 feet apart) shall be placed in the trench.

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Page 15 of 16

Approval Date: 09/27/2019

Seed Mixture for LPC Sand/Shinnery Sites

The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be <u>no</u> primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

<u>Species</u>	<u>lb/acre</u>
Plains Bristlegrass	5lbs/A
Sand Bluestem	5lbs/A
Little Bluestem	3lbs/A
Big Bluestem	6lbs/A
Plains Coreopsis	2lbs/A
Sand Dropseed	1lbs/A

^{*}Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification Data Report

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Julia Steger Signed on: 08/10/2018

Title: Engineer

Email address:

Street Address: 5707 Southwest Parkway, Building 1, Suite 275

City: Austin State: TX Zip: 78735

Phone: (737)300-4733

Email address: jsteger@ameredev.com

Field Representative

Representative Name:		
Street Address:		
City:	State:	Zip:
Phone:		

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Application Data Report

APD ID: 10400032975

Submission Date: 08/28/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Type: OIL WELL

Well Number: 095H

Well Work Type: Drill

Show Final Text

Section 1 - General

APD ID:

10400032975

Tie to previous NOS? Y

Submission Date: 08/28/2018

BLM Office: CARLSBAD

User: Julia Steger

Title: Engineer

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM137469

Lease Acres: 600.28

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

APD Operator: AMEREDEV OPERATING LLC

Operator letter of designation:

Operator Info

Operator Organization Name: AMEREDEV OPERATING LLC

Operator Address: 5707 Southwest Parkway, Building 1, Suite 275

Operator PO Box:

Zip: 78735

Operator City: Austin

State: TX

Operator Phone: (737)300-4700

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Master Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well Number: 095H

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: NANDINA FED COM 25 36 31

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: WC-025 G-08 S263620C

Pool Name: LWR BONE

SPRING

ALFACAUFCACO LIGEADI E MATED MATI IDAL CAC COO OIL

Well Name: NANDINA FED COM 25 36 31 Well Number: 095H

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, CO2, OIL

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO

New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name:

Number: 095H

Well Class: HORIZONTAL

NANDINA

Number of Legs: 1

Well Work Type: Drill

Well Type: OIL WELL

Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:

Distance to town: 6.5 Miles

Distance to nearest well: 2883 FT

Distance to lease line: 200 FT

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat:

NANDINA_FED_COM_25_36_31_095H___C102_SIGNED_20180809161508.pdf

NANDINA_FED_COM_25_36_31_095H___BLM_LEASES_20180809161540.pdf

NANDINA_FED_COM_25_36_31_095H___GAS_CAPTURE_PLAN_20180809161548.pdf

NANDINA FED COM 25 36 31 095H EXHIBIT 2A 2B 20180827071301.pdf

NANDINA_FED_COM_25_36_31_095H VICINITY_MAP_20180827071314.pdf

Well work start Date: 06/04/2020

Duration: 90 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

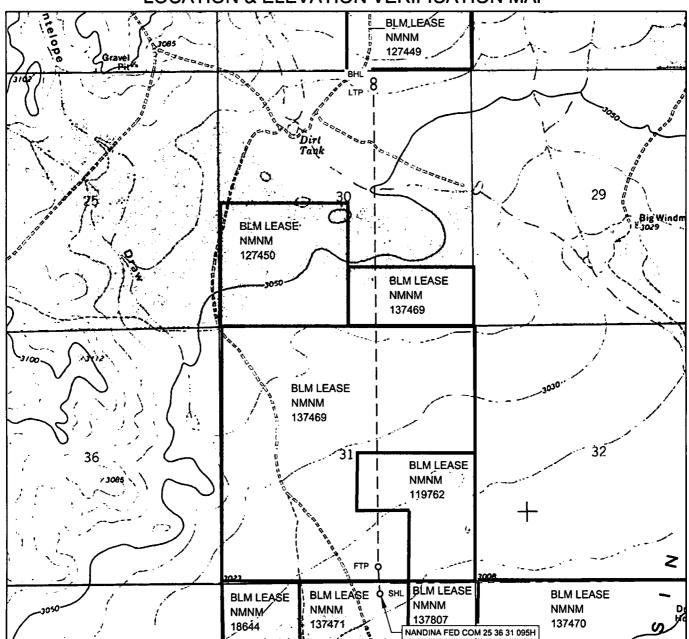
Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number: 19642

Reference Datum:


	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
SHL Leg #1	230	FNL	195 0	FEL	26S	36E	6	Lot O	32.07894 5	- 103.3019 693	LEA	MEXI	NEW MEXI CO		NMNM 137471	301 1	0	0

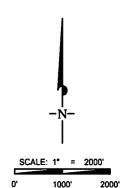
Well Name: NANDINA FED COM 25 36 31

Well Number: 095H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
KOP Leg #1	276	FNL	185 1	FEL	26\$	36E	6	Aliquot NWNE	32.07881 34	- 103.3016 5	LEA	NEW MEXI CO	NEW MEXI CO	щ	NMNM 137471	- 806 6	110 79	110 77
PPP Leg #1	0	FSL	189 5	FEL	258	36E	31	Aliquot SWSE	32.07957 74	- 103.3017 953	LEA	NEW MEXI CO	NEW MEXI CO	F	ł	- 855 9	116 74	115 70
PPP Leg #1	0	FSL	198 0	FEL	25S	36E	30	Aliquot SWSE	32.09408 74	- 103.3020 706	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 137469	- 863 9	169 73	116 50
PPP Leg #1	132 0	FSL	198 0	FEL	25S	36E	31	Aliquot NWSE	32.08320 55	- 103.3020 656	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 119762	- 863 9	130 14	116 50
PPP Leg #1	132 0	FSL	198 0	FEL	25\$	36E	31	Aliquot SWSE	32.08320 55	- 103.3020 656	LEA	NEW MEXI CO		F	NMNM 137469	- 863 9	130 14	116 50
PPP Leg #1	264 0	FSL	198 0	FEL	258	36E	31	Aliquot NWSE	32.08683 37	- 103.3020 672	LEA	NEW MEXI CO		F		- 863 9	143 34	116 50
PPP Leg #1	230	FNL	195 0	FEL	26S	36E	6	Lot O	32.07894 5	- 103.3019 693	LEA	NEW MEXI CO		F	NMNM 137471	301 1	0	0
PPP Leg #1	132 0	FSL	198 0	FEL	258	36E	30	Aliquot SWSE	32.09771 56	- 103.3020 722	LEA	NEW MEXI CO	NEW MEXI CO	F		- 863 9	182 93	116 50
PPP Leg #1	0	FNL	198 0	FEL	258	36E	31	Aliquot NWNE	32.09408 74	- 103.3020 706	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 137469	- 863 9	169 73	116 50
PPP Leg #1	264 0	FSL	198 0	FEL	258	36E	31	Aliquot SWNE	32.08683 37	- 103.3020 672	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 137469	- 863 9	143 34	116 50
PPP Leg #1	0	FNL	189 5	FEL	26S	36E	6	Aliquot NWNE	32.07957 74	- 103.3017 953	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 137471	- 855 9	116 74	115 70
EXIT Leg #1	132 0	FSL	198 0	FEL	258	36E	30	Aliquot NWSE		- 103.3020 722	LEA	NEW MEXI CO		F	FEE	- 863 9	182 93	116 50
BHL Leg #1	200	FNL	198 0	FEL	258	36E	30	Lot B	32.10806 69	- 103.3020 755	LEA	NEW MEXI CO	NEW MEXI CO	F	FEE	- 863 9	220 59	116 50

LOCATION & ELEVATION VERIFICATION MAP

AMEREDEV


AMEREDEV OPERATING, LLC

LEASE NAME & WELL NO.:

NANDINA FED COM 25 36 31 095H

TWP 26-S RGE 36-E SECTION ___6_ _ SURVEY __N.M.P.M. __ STATE _ NM COUNTY ELEVATION _ 230' FNL & 1950' FEL DESCRIPTION

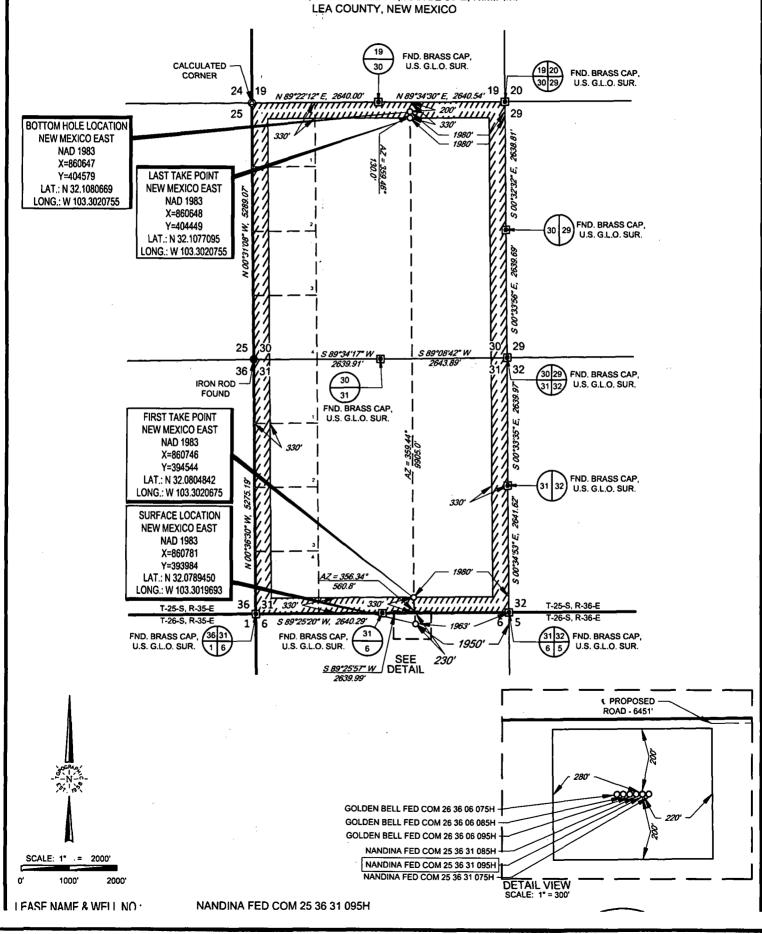
N 32.0789450 W 103.3019693 LATITUDE LONGITUDE

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDED OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO STATE PLANE COORDINATE SYSTEM, EAST ZONE OF THE NORTH AMERICAN DATUM 1983, U.S. SURVEY FEET.

1400 EVERMAN PARKWAY 366, 149 - F1. 1704.17), 1250- 181.

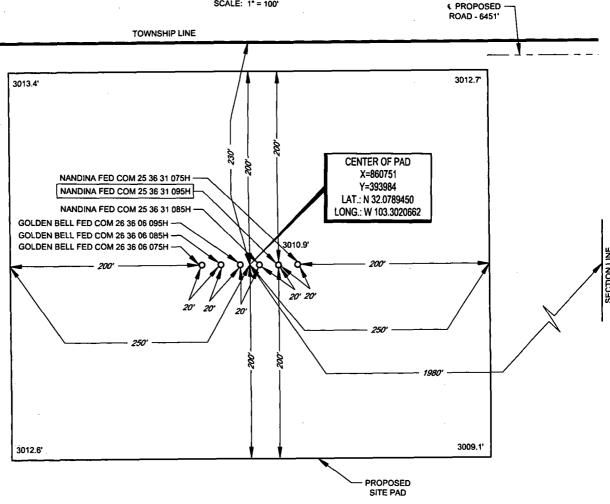
TELEPHONE: (817) 744-7512 - FAX (817) 744-7548
2903 NORTH BIG SPRING - MIDLAND, TEXAS 79705


TELEPHONE: (432) 682-1853 OR (800) 767-1653 - FAX (432) 682-1743

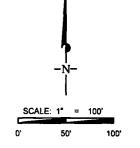
WWW.TOPOGRAPHIC.COM

AMEREDEV

AMEREDEV OPERATING, LLC EXHIBIT 2A


SECTION 6, TOWNSHIP 26-S, RANGE 36-E, N.M.P.M. LEA COUNTY, NEW MEXICO

SECTION 6, TOWNSHIP 26-S, RANGE 36-E, N.M.P.M. LEA COUNTY, NEW MEXICO


DETAIL VIEW SCALE: 1" = 100"

 LEASE NAME & WELL NO.:
 NANDINA FED COM 25 36 31 095H

 095H LATITUDE
 N 32.0789450
 095H LONGITUDE
 W 103.3019693

CENTER OF PAD IS 230' FNL 1980' FEL

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO STATE PLANE COORDINATE SYSTEM, EAST ZONE OF THE NORTH AMERICAN DATUM 1983, U.S. SURVEY FEET

THIS PROPOSED PAD SITE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

1400 EVERMAN PARKWAY, Ste. 146 • FT. WORTH, TEXAS 76140

TELEPHONE: (817) 744-7512 • FAX (817) 744-7548

2903 NORTH BIG SPRING • MIDLAND, TEXAS 79705

TELEPHONE: (432) 682-1853 OR (800) 767-1653 • FAX (432) 682-1743

WWW.TOPOGRAPHIC.COM

EXHIBIT 2 VICINITY MAP Phillids Bill Rd € PROPOSED ROAD - 6451 **GOLDEN BELL FED COM 26 36 06 075H** GOLDEN BELL FED COM 26 36 06 085H **GOLDEN BELL FED COM 26 36 06 095H** 36E NANDINA FED COM 25 36 31 085H NANDINA FED COM 25 36 31 095H NANDINA FED COM 25 36 31 075H **DETAIL VIEW** SCALE: 1" = 300' 25\$-35E SEE DETAIL NANDINA FED COM 25 36 31 095H - Age Const 16, 36 Beckba ₹ų,

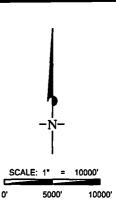
AMEREDEV

AMEREDEV OPERATING, LLC

LEASE NAME & WELL NO.: NANDINA FED COM 25 36 31 095H

 SECTION
 6
 TWP
 26-S
 RGE
 36-E
 SURVEY
 N.M.P.M.

 COUNTY
 LEA
 STATE
 NM


 DESCRIPTION
 230' FNL & 1950' FEL

DISTANCE & DIRECTION

FROM INT. OF 3RD ST./NM-205/FRYING PAN RD. & NM-128, HEAD SOUTH ON 3RD ST./NM-205/FRYING PAN RD. ±5.6 MILES, THENCE WEST (RIGHT) ON ANTHONY RD. ±3.4 MILES, THENCE NORTH (RIGHT) TO CONTINUE ON ANTHONY RD. ±0.3 MILES, THENCE EAST (RIGHT) ON PIPELINE RD. ±0.3 MILES, THENCE NORTH (LEFT) ON A LEASE RD. ±1.0 MILES, THENCE WEST (LEFT) ON A LEASE RD. ±6451 FEET TO A POINT ±310 FEET NORTHEAST OF THE LOCATION.

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO STATE PLANE COORDINATE SYSTEM, EAST ZONE OF THE NORTH AMERICAN DATUM 1883, U.S., SURVEY FEET.

1400 EVERMAN PARKWAY, Ste. 146 • FT. WORTH, TEXAS 76140

TELEPHONE: (817) 744-7512 • FAX (817) 744-7548

2903 NORTH BIG SPRING • MIDLAND, TEXAS 78705

TELEPHONE: (432) 682-1653 OR (800) 767-1653 • FAX (432) 682-1743

WWW.TOPOGRAPHIC.COM

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT**

Drilling Plan Data Report

09/30/2019

APD ID: 10400032975

Submission Date: 08/28/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Number: 095H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER	1946	1068	1068	ANHYDRITE	NONE	N
2	SALADO	438	1508	1508	SALT	NONE	N
3	TANSILL	-1286	3234	3234	LIMESTONE	NONE	N
4	CAPITAN REEF	-1792	3738	3738	LIMESTONE	USEABLE WATER	N
5	LAMAR	-3088	5034	5034	LIMESTONE	NONE	N
6	BELL CANYON	-3123	5069	5069	SANDSTONE	NATURAL GAS,OIL	N
7	BRUSHY CANYON	-5163	7109	7109	SANDSTONE	NATURAL GAS,OIL	N
8	BONE SPRING LIME	-6389	8335	8335	LIMESTONE	NONE	N
9	BONE SPRING 1ST	-7765	9711	9711	SANDSTONE	NATURAL GAS,OIL	N
10	BONE SPRING 2ND	-8323	10269	10269	SANDSTONE	NATURAL GAS,OIL	N
11	BONE SPRING 3RD	-8909	10855	10855	LIMESTONE	NATURAL GAS,OIL	N
12	BONE SPRING 3RD	-9508	11454	11454	SANDSTONE	NATURAL GAS,OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 15000

Equipment: A 5M BOPE system will be used after setting surface casing. A Kelly cock will be kept in the drilling string at all times. A full opening drill pipe stabbing valve with proper drill pipe connections will always be on the rig floor.

Requesting Variance? YES

Variance request: Utilize 5M System to TD // Co-Flex Choke Line

Testing Procedure: See attachment

Well Name: NANDINA FED COM 25 36 31

Well Number: 095H

10M_Choke_Manifold_20180828153650.pdf

BOP Diagram Attachment:

5M_BOP_System_20180809131923.pdf

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20180809131943.pdf

Pressure_Control_Plan_Pad_Well_MB4_Preset_20180809131932.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1193	0	1193	3011		1193	J-55		OTHER - BTC	1.82	0.9		13.9 8	DRY	13.1 2
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5084	0	5084			5084	HCL -80		OTHER - BTC	1.39	0.95	DRY	5.12	DRY	4.51
3	INTERMED IATE	8.75	7.625	NEW	API	N	0	11079	0	11077			11079	HCP -110		OTHER - FJM	1.11	1.25	DRY	1.96	DRY	2.86
4	PRODUCTI ON	6.75	5.5	NEW	API	N	0	22059	0	11650			22059	OTH ER		OTHER - TMK UP SF TORQ	1.78	1.9	DRY	2.81	DRY	3.12

Casing Attachments

Casing ID: 1

String Type:SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

NANDINA_FED_COM_25_36_31_095H___CASING_DESIGN_ASSUMPTIONS_20180810083550.pdf

Well Name: NANDINA FED COM 25 36 31

Well Number: 095H

13.375_54.50_J55_SEAH_20180810091409.pdf

Casing ID: 2

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

NANDINA_FED_COM_25_36_31_095H___WELLBORE_SCHEMATIC_20180810083641.pdf

NANDINA_FED_COM_25_36_31_095H___CASING_DESIGN_ASSUMPTIONS_20180810083650.pdf

9625_40_SeAH80HC_4100_Collapse_20180810091428.pdf

Casing ID: 3

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

NANDINA_FED_COM_25_36_31_095H___CASING_DESIGN_ASSUMPTIONS_20180810083730.pdf

NANDINA_FED_COM_25_36_31_095H___WELLBORE_SCHEMATIC_20180810083740.pdf

7.625_29.70_P110HC_LIBERTY_FJM_20180810091439.pdf

Well Name: NANDINA FED COM 25 36 31

Well Number: 095H

Casing Attachments

Casing ID: 4

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

NANDINA_FED_COM_25_36_31_095H___WELLBORE_SCHEMATIC_20180810083840.pdf

NANDINA_FED_COM_25_36_31_095H___CASING_DESIGN_ASSUMPTIONS_20180810083935.pdf

TMK_UP_SF_TORQ____5.500in_x_20.00__P_110_CYHP_20180810091452.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	809	735	1.89	12.9	1390. 62	100	Class C	Bentonite, Retarder, Kolseal, Defoamer, Celloflake
SURFACE	Tail		809	1193	200	1.33	14.8	266.4	100	Class C	None
INTERMEDIATE	Lead		0	3464	1000	1.88	12.9	1878	50	Class C	Bentonite, Salt, Kolseal, Defoamer, Celloflake
INTERMEDIATE	Tail		3464	5084	380	1.33	14.8	506.9 2	50	Class C	None
INTERMEDIATE	Lead		3688	9847	282	2.85	11	802.2 9	25	Class H	Bentonite, Retarder, Kolseal, Defoamer, Celloflake, Anti-Settling, Expansion Additive
INTERMEDIATE	Tail		9847	1107 9	100	1.24	14.5	123.7	25	Class H	Bentonite, Retarder, Dispersant, Fluid Loss
PRODUCTION	Lead		1057 9	2205 9	980	1.22	14.5	1198. 54	25	Class H	Retarder, Kolseal, Defoamer, Celloflake, Expansion Additive

Well Name: NANDINA FED COM 25 36 31

Well Number: 095H

Section 5 - Circulating Medium

Mud System Type: Semi-Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1193	5084	SALT SATURATED	10	11.5							
0	1193	WATER-BASED MUD	8.6	10							
1107 7	1165 0	OIL-BASED MUD	11.5	12.5							
5084	1107 7	OTHER : Cut Brine	8.9	10.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Well Name: NANDINA FED COM 25 36 31

Well Number: 095H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5000

Anticipated Surface Pressure: 2437

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

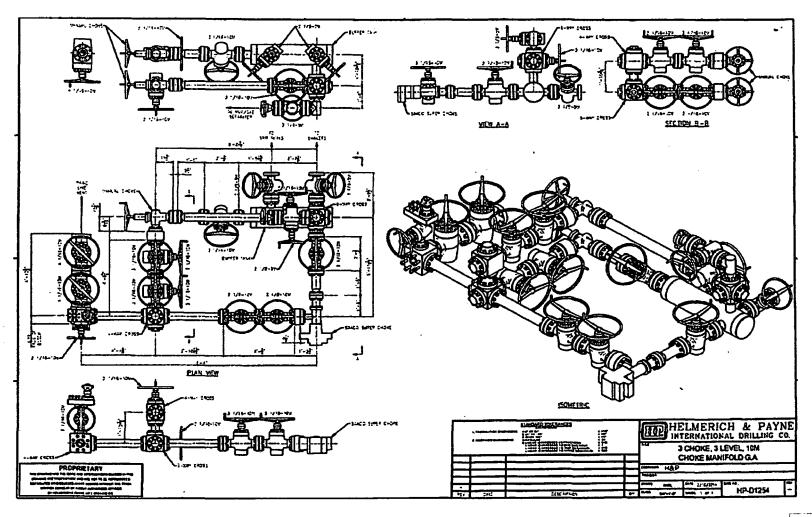
H2S_Plan_20180809142040.pdf

Section 8 - Other Information

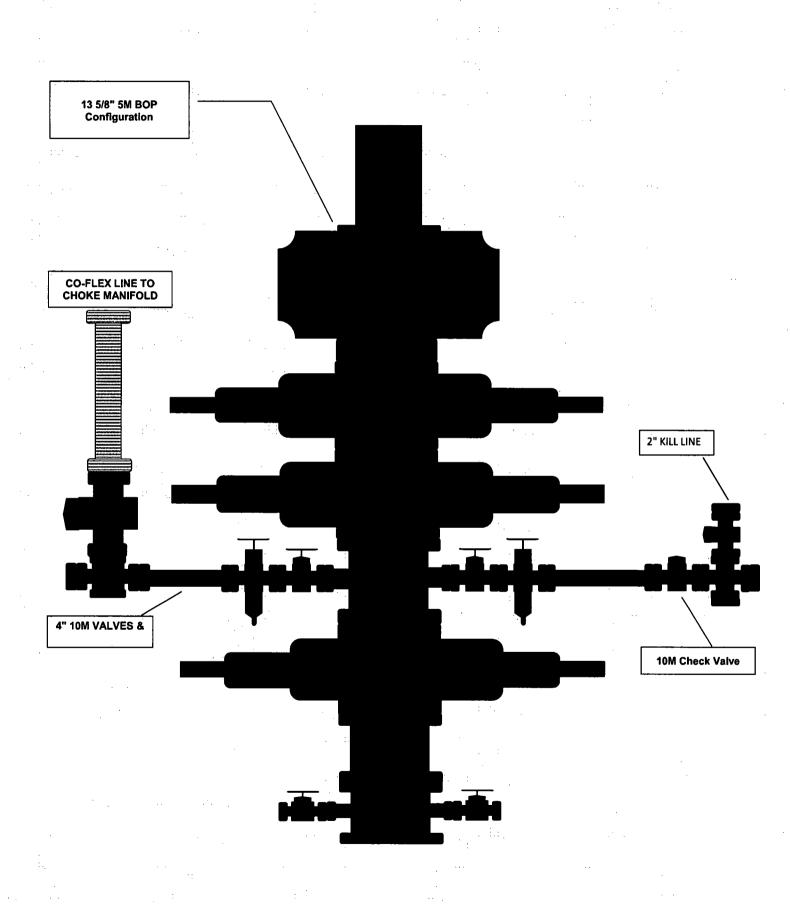
Proposed horizontal/directional/multi-lateral plan submission:

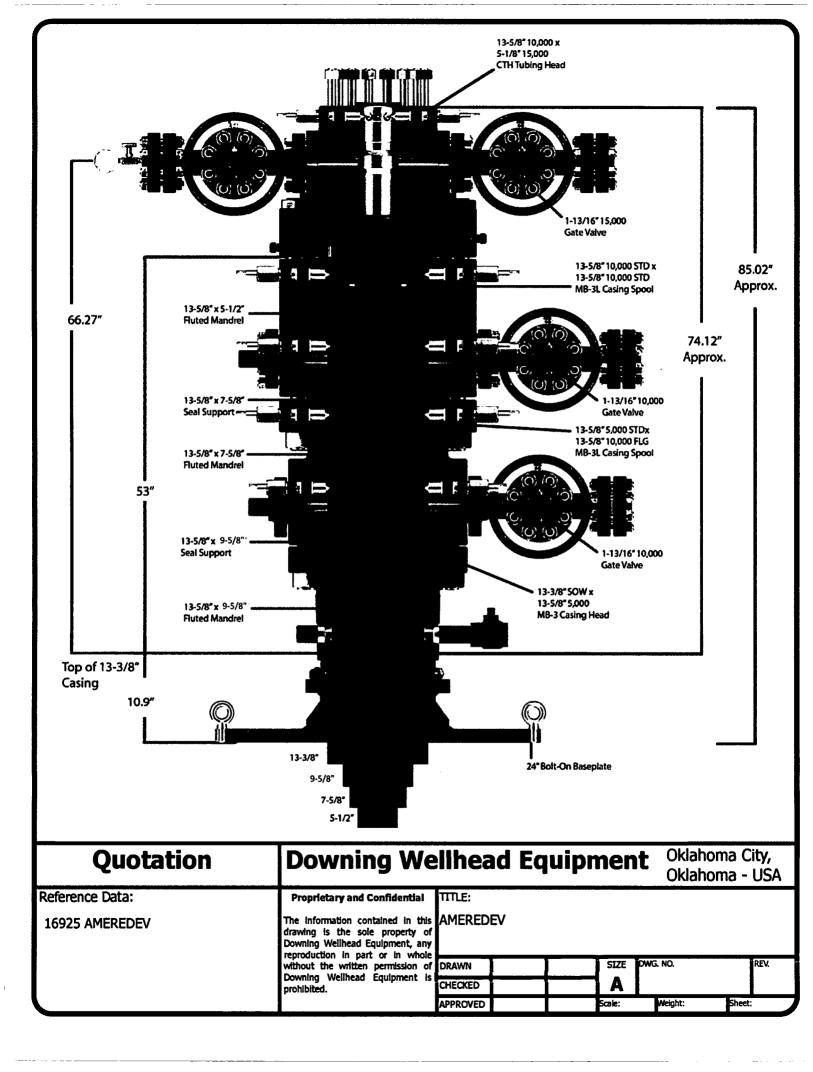
Nandina_Fed_Com_25_36_31__095H___Plan_1_20180810084429.pdf

Other proposed operations facets description:


Other proposed operations facets attachment:

Other Variance attachment:


Requested_Exceptions___4_String_20180809142116.pdf 5M_Exception_BLM_Well_Control_Plan_20180809142154.pdf R616___CoC_for_hoses_12_18_17_20180809142146.pdf


10M Choke Manifold

10M Choke Manifold

Pressure Control Plan

Pressure Control Equipment

- Ameredev will utilize a drilling rig not capable of drilling to TD to preset Surface Casing.
- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install Dry Hole Cap and install Pressure gauges to monitor. Ameredev will Suspend Operations to Mob to Adjacent Wells and Drill Surface
 - o Camellia Fed Com 26-36-21 114H
- Ameredev will Mobilize Rig capable of drilling to TD.(Rig Capable of Drilling to TD will not Mobilize until all wells on Drilling Pad have reached TD and Tubing Head installed and Tested) Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500psi). Casing will be tested to 1500psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.</p>
- Setting of 9-5/8" Intermediate #1 will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install Dry Hole Cap and install Pressure gauges to monitor. Ameredev will Suspend Operations to Mob to Adjacent Wells and Drill Intm #1
 - o Camellia Fed Com 26-36-21 114H

Pressure Control Plan

- Ameredev will Skid Rig capable of drilling to TD.(Rig Capable of Drilling to TD will not Mobilize until all wells on Drilling Pad have reached TD and Tubing Head installed and Tested) Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500psi). Casing will be tested to 1500psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.</p>
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of
 the Casing Shoe will be performed to minimum of the MWE anticipated to control formation
 pressure to the next casing depth.
- Setting of 7-5/8" Intermediate #2 will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install Dry Hole Cap and install Pressure gauges to monitor. Ameredev will Suspend Operations to Mob to Adjacent Wells and Drill Intm #1
 - o Camellia Fed Com 26-36-21 114H
- Ameredev will Skid Rig capable of drilling to TD.(Rig Capable of Drilling to TD will not Mobilize until all wells on Drilling Pad have reached TD and Tubing Head installed and Tested) Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 10,000psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500psi). Casing will be tested to 1500psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.</p>
- Before drilling >20ft of new formation under the 7-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 5M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and

Pressure Control Plan

test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a
 co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to
 API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications
 will be sent to Carlsbad BLM Office prior to install)
 - O The minimum blowout preventer equipment (BOPE) shown in 5M BOPE System Attachment will consist of annular preventer, pipe ram, blind ram, drilling spool (with two outlets, choke side minimum 3" and kill side minimum 2"), 2 choke line valves, kill line, 2 chokes with one remotely controlled from the rig floor, 2 kill line valves and a check valve, upper kelly cock valve with handle available, lower kelly cock valve with handle available, safety valves to fit all drill string connections, inside BOP, pressure gauge on choke manifold, fill up line above the upper most preventer. All BOPE will be tested in accordance with Onshore Order No. 2.

Wellbore Schematic

Well:

Nandina Fed Com 25 36 31 095H

SHL:

Sec. 6 26S-36E 230' FNL & 1950' FEL Sec. 30 25S-36E 200' FNL & 1980' FEL

BHL: Sec. 30 2 Lea. NM

Wellhead:

A - 13-5/8" 5M x 13-5/8" SOW B - 13-5/8" 5M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

Tubing:

2-7/8" L-80 6.5# 8rd EUE

Co. Well ID:

40763

AFE No.:

2018-025

API No.: XXXXXXXXXX

GL: 3,011'

Field:

Delaware_TBSG

Objective:

Third Bone Spring

TVD: 11,650' **MD:** 22,059'

Rig: TBD

Kig. 160

E-Mail: Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 1,068' TVD 13.375" 54.5# J-55 BTC 1,193' MD/TVD		935 Sacks TOC 0' 100% Excess	8.6 - 10 ppg WBM
	Salado 1,508' TVD			
	Tansill 3,234' TVD			Srine
12.25"	Capitan 3,738' TVD			10 - 11.5 ppg Brine
	Lamar 5,034' TVD		iks ess	11.5
	Bell Canyon 5,069' TVD		1380 Sacks TOC 0' 50% Excess	1 0
	9.625" 40# L-80HC BTC 5,084' MD/TVD		138 TO 50%	
8.75"	Brushy Canyon 7,109' TVD Bone Spring Lime 8,335' TVD First Bone Spring 9,711' TVD Second Bone Spring 10,269' TVD Third Bone Spring Upper 10,855' TVD 7.625" 29.7#P-110HC FJM 11,079' MD	Triple Combo	344 Sacks TOC 4584' 25% Excess	
10° Build KOP 11,079' MD // 11,077' TVD 6.75"□	Third Bone Spring 11,454' TVD 5.5" 20# P-110CYHP TMK UP SF TORQ 22,059' MD Target Third Bone Spring 11650' TVD // 22059' MD	Triple Combo	1570 Sacks TOC 3688' 25% Excess	11.5 - 12.5 ppg OBM

Casing Design and Safety Factor Check

	Casing Specifications											
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling						
Surface	17.5	1,193'	13.375	54.5	J-55	BTC						
Int #1	12.25	5,084'	9.625	40	HCL-80	BTC						
Int #2	8.75	11,079'	7.625	29.7	HCP-110	FJM						
Prod Segment A	6.75	11,079'	5.5	20	CYHP-110	TMK UPSF						
Prod Segment B	6.75	22,059'	5.5	20	CYHP-110	TMK UPSF						

	Charle Confine Carina					
Check Surface Casing						
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
14.38	853	909	1,130	2,730		
	S	afety Facto	ors			
1.56	13.12	13.98	1.82	0.90		
	Che	ck Int #1 C	asing	•		
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
10.625	916	1042	4230	5750		
	S	afety Facto	ors			
0.81	4.51	5.12	1.39	0.95		
	Che	ck Int #2 C	asing			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
7.625	940	558	6700	9460		
	S	afety Facto	ors			
0.56	2.86	1.96	1.11	1.25		
	Check Pro	od Casing,	Segment A			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
Safety Factors						
0.49	3.12	2.81	1.78	1.90		
Check Prod Casing, Segment B						
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
Safety Factors						
0.49	63.75	57.36	1.69	1.90		

PERFORMANCE DATA

TMK UP SF TORQ™ Technical Data Sheet

5.500 in

20.00 lbs/ft

P-110 CYHP

Tubular Parameters					
Size	5.500	in	Minimum Yield	125,000	psi
Nominal Weight	20.00	lbs/ft	Minimum Tensile	135,000	psi
Grade	P-110 CYHP	, .	Yield Load	728,000	lbs
PE Weight	19.81	lbs/ft	Tensile Load	786,000	lbs
Wall Thickness	0.361	in	Min. Internal Yield Pressure	14,360	psi
Nominal ID	4.778	in	Collapse Pressure	12,780	psi

in

in²

Drift Diameter 4.653
Nom. Pipe Body Area 5.828

Connection Parameters		
Connection OD	5.777	in
Connection ID	4.734	in
Make-Up Loss	5.823	in
Critical Section Area	5.875	in²
Tension Efficiency	90.0	%
Compression Efficiency	90.0	%
Yield Load In Tension	655,000	lbs
Min. Internal Yield Pressure	14,360	psi
Collapse Pressure	12,780	psi
Uniaxial Bending	93.8	°/ 100 ft
	-	•

Make-Up Torques		
Min. Make-Up Torque	15,700	ft-lbs
Opt. Make-Up Torque	19,600	ft-lbs
Max. Make-Up Torque	21,600	ft-lbs
Operating Torque	29,000	ft-lbs
Yield Torque	37,000	ft-lbs

Printed on: January-10-2018

NOTE

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

Casing Design and Safety Factor Check

Casing Specifications						
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling
Surface	17.5	1,193'	13.375	54.5	J-55	BTC
Int #1	12.25	5,084'	9.625	40	HCL-80	BTC
Int #2	8.75	11,079'	7.625	29.7	HCP-110	FJM
Prod Segment A	6.75	11,079'	5.5	20	CYHP-110	TMK UPSF
Prod Segment B	6.75	22,059'	5.5	20	CYHP-110	TMK UPSF

Check Surface Casing							
OD Cplg							
inches	1000 lbs	1000 lbs	psi	psi			
14.38	853	909	1,130	2,730			
	S	afety Facto	ors	ı			
1.56	13.12	13.98	1.82	0.90			
	Che	ck Int #1 C	asing				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
10.625	916	1042	4230	5750			
	S	afety Facto	ors				
0.81	4.51	5.12	1.39	0.95			
	Che	ck Int #2 C	asing				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
7.625	940	558	6700	9460			
	S	afety Facto	ors				
0.56	2.86	1.96	1.11	1.25			
	Check Pro	d Casing,	Segment A				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777	728	655	12780	14360			
Safety Factors							
0.49	3.12	2.81	1.78	1.90			
Check Prod Casing, Segment B							
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777	728	655	12780	14360			
Safety Factors							
0.49	63.75	57.36	1.69	1.90			

Wellbore Schematic

Well:

Nandina Fed Com 25 36 31 095H

SHL: BHL: Sec. 6 26S-36E 230' FNL & 1950' FEL Sec. 30 25S-36E 200' FNL & 1980' FEL

Lea, NM

Wellhead:

A - 13-5/8" 5M x 13-5/8" SOW B - 13-5/8" 5M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

Tubing:

2-7/8" L-80 6.5# 8rd EUE

Co. Well ID:

40763

AFE No.:

2018-025

API No.: XXXXXXXXXX GL:

3.011'

Field:

Delaware TBSG

Objective:

Third Bone Spring

11,650' TVD:

22,059' MD:

TBD Rig:

E-Mail: Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 1,068' TVD 13.375" 54.5# J-55 BTC 1,193' MD/TVD		935 Sacks TOC 0' 100% Excess	8.6 - 10 ppg WBM
	Salado 1,508' TVD			
	Tansill 3,234' TVD			Brine
12.25"	Capitan 3,738' TVD			10 - 11.5 ppg Brine
	Lamar 5,034' TVD		ks ess	11.5
	Bell Canyon 5,069' TVD		1380 Sacks TOC 0' 50% Excess	1 0
4	9.625" 40# L-80HC BTC 5,084' MD/TVD		50 7	
	Brushy Canyon 7,109' TVD			rine
8.75"	Bone Spring Lime 8,335' TVD	Somb		Out B
0.73	First Bone Spring 9,711' TVD	Triple Combo		8.9 - 10.5 Cut Brine
	Second Bone Spring 10,269' TVD	-	cess	8.9
	Third Bone Spring Upper 10,855' TVD 7.625" 29.7#P-110HC FJM 11,079' MD		344 Sacks TOC 4584' 25% Excess	
	Third Bone Spring 11,454' TVD		0 - 0	OBM
· · · · · · · · · · · · · · · · · · ·	" 20# P-110CYHP TMK UP SF TORQ 22,059' MD arget Third Bone Spring 11650' TVD // 22059' MD	Triple Combo	1570 Sacks TOC 3688' 25% Excess	- 12.5 ppg
			1570 TOC 25%	11.5

SěAH

13-3/8" 54.50# .380 J-55

Dimensions (Nominal)

Outside Diameter	13.375	in.
Wall	0.380	in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PE	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE	1130	psi
Internal Yields Pressure		•
PE	2730	psi
STC	2730	PSI
ВТС	2730	psi
Yield Strength, Pipe Body	853	1000 lbs
Joint Strength, STC	514	1000 lbs
Joint Strength, BTC	909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

Wellbore Schematic

Well:

Nandina Fed Com 25 36 31 095H

SHL: BHL:

Sec. 6 26S-36E 230' FNL & 1950' FEL Sec. 30 25S-36E 200' FNL & 1980' FEL

Lea. NM

Wellhead: A - 13-5/8" 5M x 13-5/8" SOW B - 13-5/8" 5M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

Tubing:

2-7/8" L-80 6.5# 8rd EUE

Co. Well ID:

40763

AFE No.:

2018-025

API No.: **XXXXXXXXXX**

GL: 3,011'

Field:

Delaware TBSG

Objective:

Third Bone Spring

TVD: MD:

11,650' 22,059'

Rig: TBD

E-Mail: Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 1,068' TVD 13.375" 54.5# J-55 BTC 1,193' MD/TVD		935 Sacks TOC 0' 100% Excess	8.6 - 10 ppg WBM
	Salado 1,508' TVD			
	Tansill 3,234' TVD			Brine
12.25"	Capitan 3,738' TVD			6dd 9
	Lamar 5,034' TVD		ks Sss	10 - 11.5 ppg Brine
	Bell Canyon 5,069' TVD		1380 Sacks TOC 0' 50% Excess	10
	9.625" 40# L-80HC BTC 5,084' MD/TVD		1380 Si TOC 0' 50% Ex	
8.75"	Brushy Canyon 7,109' TVD Bone Spring Lime 8,335' TVD First Bone Spring 9,711' TVD Second Bone Spring 10,269' TVD Third Bone Spring Upper 10,855' TVD 7.625" 29.7#P-110HC FJM 11,079' MD	Triple Combo	344 Sacks TOC 4584' 25% Excess	1
10° Build KOP 11,079' MD //	Third Bone Spring 11,454' TVD	oqmo		ppg OBM
	.5" 20# P-110CYHP TMK UP SF TORQ 22,059' MD Target Third Bone Spring 11650' TVD // 22059' MD	Triple Combo	1570 Sacks TOC 3688' 25% Excess	- 12.5
			1570 TOC 25%	1,

Casing Design and Safety Factor Check

Casing Specifications							
Segment Hole ID Depth OD Weight Grade Coupling							
Surface	17.5	1,193'	13.375	54.5	J-55	BTC	
Int #1	12.25	5,084'	9.625	40	HCL-80	BTC	
Int #2	8.75	11,079'	7.625	29.7	HCP-110	FJM	
Prod Segment A	6.75	11,079'	5.5	20	CYHP-110	TMK UPSF	
Prod Segment B	6.75	22,059'	5.5	20	CYHP-110	TMK UPSF	

Check Surface Casing						
OD Cplg	Body	Joint ,	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
14.38	853	909	1,130	2,730		
	S	afety Facto	ors			
1.56	13.12	13.98	1.82	0.90		
	Che	ck Int #1 C	asing			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
10.625	916	1042	4230	5750		
	S	afety Facto	ors			
0.81	4.51	5.12	1.39	0.95		
	Check Int #2 Casing					
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
7.625	940	558	6700	9460		
	S	afety Facto	ors	•		
0.56	2.86	1.96	1.11	1.25		
	Check Pro	d Casing,	Segment A			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
		afety Facto				
0.49	3.12	2.81	1.78	1.90		
			Segment B			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
ļ		afety Facto				
0.49	63.75	57.36	1.69	1.90		

SěAH

9.625"

40#

.395" SEAH-80 HIGH COLLAPSE

(SEAH-80 IS A NON HEAT TREATED PRODUCT)

Dimensions (Nominal)

Outside Diameter	9.625	in.
Wall	0.395	in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

Performance Properties

BTC

Collapse	4100	psi
Internal Yield Pressure at Minimum Yield		÷
PE	5750	psi
LTC	5750	psi
втс	5750	psi
Yield Strength, Pipe Body	916	1000 lbs.
Joint Strength		
LTC	717	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

915

1000 lbs.

Casing Design and Safety Factor Check

Casing Specifications							
Segment Hole ID Depth OD Weight Grade Coupling							
Surface	17.5	1,193'	13.375	54.5	J-55	BTC	
Int #1	12.25	5,084'	9.625	40	HCL-80	BTC	
Int #2	8.75	11,079'	7.625	29.7	HCP-110	FJM	
Prod Segment A	6.75	11,079'	5.5	20	CYHP-110	TMK UPSF	
Prod Segment B	6.75	22,059'	5.5	20	CYHP-110	TMK UPSF	

Check Surface Casing						
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
14.38	853	909	1,130	2,730		
Safety Factors						
1.56	13.12	13.98	1.82	0.90		
	Che	ck Int #1 C	asing			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
10.625	916	1042	4230	5750		
	S	afety Facto	ors			
0.81	4.51	5.12	1.39	0.95		
Check Int #2 Casing						
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
7.625	940	558	6700	9460		
	S	afety Facto	ors			
0.56	2.86	1.96	1.11	1.25		
	Check Pro	od Casing,	Segment A			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
0.49	3.12	2.81	1.78	1.90		
	Check Pro	d Casing,	Segment E	3		
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
		afety Facto				
0.49	63.75	57.36	1.69	1.90		

Wellbore Schematic

Well:

Nandina Fed Com 25 36 31 095H

SHL:

Sec. 6 26S-36E 230' FNL & 1950' FEL Sec. 30 25S-36E 200' FNL & 1980' FEL

Lea, NM

Wellhead:

A - 13-5/8" 5M x 13-5/8" SOW

B - 13-5/8" 5M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

Tubing:

2-7/8" L-80 6.5# 8rd EUE

Co. Well ID:

40763

AFE No.: 2

2018-025 xxxxxxxxxx

API No.: xxx

GL: 3,011'

Field: Delaware TBSG

Objective: Third Bone Spring

TVD: 11,650'

MD: 22,059'

Rig: TBD

E-Mail: Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 1,068' TVD 13.375" 54.5# J-55 BTC 1,193' MD/TVD		935 Sacks TOC 0' 100% Excess	8.6 - 10 ppg WBM
	Salado 1,508' TVD			
	Tansill 3,234' TVD			3rine
12.25"	Capitan 3,738' TVD			10 - 11.5 ppg Brine
	Lamar 5,034' TVD		SS SS	- 11.5
	Bell Canyon 5,069' TVD		1380 Sacks TOC 0' 50% Excess	10
	9.625" 40# L-80HC BTC 5,084' MD/TVD		1380 S; TOC 0' 50% Ex	
8.75"	Brushy Canyon 7,109' TVD Bone Spring Lime 8,335' TVD First Bone Spring 9,711' TVD Second Bone Spring 10,269' TVD Third Bone Spring Upper 10,855' TVD 7.625" 29.7#P-110HC FJM 11,079' MD	Triple Combo	344 Sacks TOC 4584' 25% Excess	
10° Build KOP 11,079' MD // 11,077' TVD 6.75"□	Third Bone Spring 11,454' TVD 5.5" 20# P-110CYHP TMK UP SF TORQ 22,059' MD Target Third Bone Spring 11650' TVD // 22059' MD	Triple Combo	1570 Sacks TOC 3688' 25% Excess	11.5 - 12.5 ppg OBM

U. S. Steel Tubular Products 7.625" 29.70lbs/ft (0.375" Wall)

P110 HC USS-LIBERTY FJM®

		······································	
MECHANICAL PROPERTIES	Pipe	USS-LIBERTY FJM®	STATE STATE OF THE
Minimum Yield Strength	110,000		psi
Maximum Yield Strength	140,000	 .	psi
Minimum Tensile Strength	125,000		psi
DIMENSIONS	Pipe	USS-LIBERTY FJM®	
Outside Diameter	7.625	7.625	in.
Wall Thickness	0.375		in.
Inside Diameter	6.875	6.789	in.
Standard Drift	6.750	6.750	in.
Alternate Drift		-	in.
Nominal Linear Weight, T&C	29.70		lbs/ft
Plain End Weight	29.06		lbs/ft
SECTION AREA	Pipe	USS-LIBERTY FJM®	
Critical Area	8.541	5.074	sq. in.
Joint Efficiency		59.4	%
PERFORMANCE	Pipe	USS-LIBERTY FJM®	
Minimum Collapse Pressure	6,700	6,700	psi
Minimum Internal Yield Pressure	9,460	9,460	psi
Minimum Pipe Body Yield Strength	940,000		lbs
Joint Strength		558,000	lbs
Compression Rating	_	558,000	lbs
Reference Length		12,810	ft
Maximum Uniaxial Bend Rating		39.3	deg/100 ft
Make-Up Loss		3.92	· in.
Minimum Make-Up Torque		10,800	ft-lbs
Maximum Make-Up Torque		15,250	ft-lbs

- Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness and Specified Minimum Yield Strength (SMYS).
- 2. Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3. Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- 4. USS-LIBERTY FJM™ connections are optimized for each combination of OD and wall thickness and cannot be interchanged.
- 5. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 6. Reference length is calculated by joint strength divided by nominal plain end weight with 1.5 safety factor.
- 7. Connection external pressure leak resistance has been verified to 100% API pipe body collapse pressure following the guidelines of API 5C5 Cal III.

Legal Notice

USS-LIBERTY FJM® is a trademark of U. S. Steel Corporation. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U.S. Steel disctalms any and all expressed or implied warrenties of fitness for any general or particular application.

H₂S Drilling Operation Plan

1. All Company and Contract personnel admitted on location must be trained by a qualified H₂S safety instructor to the following:

- a. Characteristics of H₂S
- b. Physical effects and hazards
- c. Principal and operation of H₂s detectors, warning system and briefing areas
- d. Evacuation procedure, routes and first aid
- e. Proper use of safety equipment and life support systems
- f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- b. Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. H₂S Detection and Alarm Systems:

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- b. An audio alarm will be installed on the derrick floor and in the top doghouse.

4. Protective Equipment for Essential Personnel:

a. **Breathing Apparatus:**

- i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
- ii. Two (SCBA) Units will be stored in safety trailer on location.
- iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.

b. Auxiliary Rescue Equipment:

- i. Stretcher
- ii. 2 OSHA full body harnesses
- iii. 100 ft. 5/8" OSHA approved rope
- iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- b. Windsock on the rig floor should be high enough to be visible.

6. Communication:

- a. While working under mask scripting boards will be used for communication where applicable.
- **b.** Hand signals will be used when script boards are not applicable.

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. **Drill Stem Testing:** No Planned DST at this time.

8. Mud program:

a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. Metallurgy:

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- b. Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
 - o Detection of H₂S and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating	LLC – Emergency Phone 737-300	-4799	
Key Personnel:			
Name	Title	Office	Mobile
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996
Blake Estrada	Construction Foreman		432-385-5831

<u>Artesia</u>	••
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
Carlsbad	····
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
Santa Fe	
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
<u>National</u>	
National Emergency Response Center (Washington, D.C.)	800-424-8802
<u>Medical</u>	
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949

AMEREDEV

Ameredev Operating, LLC

Lea County, NM (NAD83 NME) (Nandina Fed) Sec-31_T-25-S_R-36-E Nandina Fed Com 25-36-31#095H

OWB

Plan: Plan #1

Standard Planning Report

02 July, 2018

Database: Company: EDM5000

Ameredev Operating, LLC

Project: Site:

Lea County, NM (NAD83 NME) (Nandina Fed) Sec-31_T-25-S_R-36-E

Well:

Nandina Fed Com 25-36-31 #095H

Wellbore: Design:

OWB Plan #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

KB @ 3038.0usft (Rig)

Well Nandina Fed Com 25-36-31 #095H

KB @ 3038.0usft (Rig)

Survey Calculation Method:

Grid

Minimum Curvature

Project

Lea County, NM (NAD83 NME)

Map System: Geo Datum:

US State Plane 1983

Map Zone:

North American Datum 1983

New Mexico Eastern Zone

System Datum:

Mean Sea Level

Site

(Nandina Fed) Sec-31_T-25-S_R-36-E

Site Position:

Мар

Northing: Easting:

394,412.00 usft 860,517.00 usft Latitude: Longitude:

32.0801272 -103.3028096

Position Uncertainty:

0.0 usft

Slot Radius:

13-3/16"

6.70

Grid Convergence:

0.55

Well

From:

Nandina Fed Com 25-36-31 #095H

Well Position

IGRF2015

-428.0 usft 264.0 usft

Northing: 393,984.00 usft 860,781.00 usft Easting:

Latitude: Longitude:

32.0789439 -103.3019705

Position Uncertainty

0.0 usft

Wellhead Elevation:

Ground Level:

59.96

3,011.0 usft

Wellbore

OWB

+N/-S

+E/-W

Magnetics Model Name Sample Date

2018/06/28

Declination (°)

Dip Angle (°)

Field Strength (nT)

47,777.07109783

Design

Plan #1

Audit Notes:

Version:

Phase:

PLAN

Tie On Depth:

0.0

359.27

Vertical Section:

Depth From (TVD) (usft)

0.0

+N/-S (usft) 0.0

+E/-W (usft) 0.0

Direction (°)

Pian Survey Tool Program

Date 2018/07/02

Depth From (usft)

Depth To (usft)

Survey (Wellbore)

Tool Name

MWD - Standard

Remarks

0.0 22,059.1 Plan #1 (OWB) 1

MWD

Database:

EDM5000

Company:

Ameredev Operating, LLC

Project:

Lea County, NM (NAD83 NME)

Site: Well: (Nandina Fed) Sec-31_T-25-S_R-36-E Nandina Fed Com 25-36-31 #095H

Wellbore: Design:

OWB Plan #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Well Nandina Fed Com 25-36-31 #095H

KB @ 3038.0usft (Rig)

KB @ 3038.0usft (Rig)

Grid

leasured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,650.0	3.00	115.00	2,649.9	-1.7	3.6	2.00	2.00	0.00	115.00	
4,602.7	3.00	115.00	4,600.0	-44.9	96.2	0.00	0.00	0.00	0.00	
4,752.7	0.00	0.00	4,749.9	-46.5	99.7	2.00	-2.00	-76.67	-180.00	
11,079.8	0.00	0.00	11,077.0	-46.5	99.7	0.00	0.00	0.00	0.00	
11,979.8	90.00	350.25	11,650.0	518.2	2.7	10.00	10.00	0.00	350.25	
12,438.8	90.00	359.43	11,650.0	974.8	-38.5	2.00	0.00	2.00	90.00	
21,929.5	90.00	359.43	11,650.0	10,465.0	-133.0	0.00	0.00	0.00	0.00	LTP (Nandina Fo
22,059.5	90.00	359.43	11,650.0	10,595.0	-134.3	0.00	0.00	0.00	0.00	PBHL (Nandina

Database:

EDM5000

Company:

Ameredev Operating, LLC

Project: Site:

Lea County, NM (NAD83 NME) (Nandina Fed) Sec-31_T-25-S_R-36-E

Well:

Nandina Fed Com 25-36-31 #095H

Wellbore: Design:

OWB Plan #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Well Nandina Fed Com 25-36-31 #095H

KB @ 3038.0usft (Rig) KB @ 3038.0usft (Rig)

Grid

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,068.0	0.00	0.00	1,068.0	0.0	0.0	0.0	0.00	0.00	0.00
Rustier	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,508.0	0.00	0.00	1,508.0	0.0	0.0	0.0	0.00	0.00	0.00
Salado	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1.600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1.800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00							
			2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0 2,200.0	0.00 0.00	0.00 0.00	2,100.0 2,200.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
	0.00	0.00	2,300.0	0.0					
2,300.0					0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
BUILD - 2. 2,600.0	2.00	115.00	2,600.0	-0.7	1.6	-0.8	2.00	2.00	0.00
	3.00								
2,650.0	52.7 at 2650.0	115.00	2,649.9	-1.7	3.6	-1.7	2.00	2.00	0.00
	•					-		•	
2,700.0	3.00	115.00	2,699.9	-2.8	5.9	-2.8	0.00	0.00	0.00
2,800.0	3.00	115.00	2,799.7	-5.0	10.7	-5.1	0.00	0.00	0.00
2,900.0	3.00	115.00	2,899.6	-7.2	15.4	-7.4	0.00	0.00	0.00
3,000.0	3.00	115.00	2,999.5	-9.4	20.2	-9.7	0.00	0.00	0.00
3,100.0	3.00	115.00	3,099.3	-11,6	24.9	-11.9	0.00	0.00	0.00
3,200.0	3.00	115.00	3,199.2	-13.8	29.6	-14.2	0.00	0.00	0.00
3,234.9	3.00	115.00	3,234.0	-14.6	31.3	-15.0	0.00	0.00	0.00
Tansill									
3,300.0	3.00	115.00	3,299.0	-16.0	34.4	-16.5	0.00	0.00	0.00
3,400.0	3.00	115.00	3,398.9	-18.2	39.1	-18.7	0.00	0.00	0.00
3,500.0	3.00	115.00	3,498.8	-20.5	43.9	-21.0	0.00	0.00	0.00
3,600.0	3.00	115.00	3,598.6	-22.7	48.6	-23.3	0.00	0.00	0.00
3,700.0	3.00	115.00	3,698.5	-24.9	53.4	-25.6	0.00	0.00	0.00
3,800.0	3.00	115.00	3,798.4	-27.1	58.1	-27.8	0.00	0.00	0.00
3,900.0	3.00	115.00	3,898.2	-29.3	62.8	-30.1	0.00	0.00	0.00
4,000.0	3.00	115.00	3,998.1	-31.5	67.6	-32.4	0.00	0.00	0.00
4,100.0	3.00	115.00	4,097.9	-33.7	72.3	-34.6	0.00	0.00	0.00
4,200.0	3.00	115.00	4,197.8	-35.9	77,1	-36.9	0.00	0.00	0.00
4,300.0	3.00	115.00	4,297.7	-38.2	81.8	-39.2	0.00	0.00	0.00
4,400.0	3.00	115.00	4,397.5	-40.4	86.6	-41.5	0.00	0.00	0.00

Database:

EDM5000

Company: Project: Ameredev Operating, LLC Lea County, NM (NAD83 NME)

Site: Well: (Nandina Fed) Sec-31_T-25-S_R-36-E Nandina Fed Com 25-36-31 #095H

Wellbore: Design: OWB Plan #1 Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Well Nandina Fed Com 25-36-31 #095H

KB @ 3038.0usft (Rig) KB @ 3038.0usft (Rig)

Grid

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
4,500.0	3.00	115.00	4,497.4	-42.6	91.3	-43.7	0.00	0.00	0.00
4,602.7	3.00	115.00	4,600.0	-44.9	96.2	-46.1	0.00	0.00	0.00
DROP - DL	S 2.00 TFO -1		•						
4,700.0	1.05	115.00	4,697.2	-4 6.3	99.3	-47.6	2.00	-2.00	0.00
4,752.7	0.00	0.00	4,749.9	-46.5	99.7	-47.8	2.00	-2.00	-218.03
HOLD - 632	27.1 at 4752.7	MD							
4,800.0	0.00	0.00	4,797.2	-46.5	99.7	-47.8	0.00	0.00	0.00
4,900.0	0.00	0.00	4,897.2	-46.5	99.7	-47.8	0.00	0.00	0.00
5,000.0	0.00	0.00	4,997.2	-46.5	99.7	-47.8	0.00	0.00	0.00
5,036.8	0.00	0.00	5,034.0	-46.5	99.7	-47.8	0.00	0.00	0.00
Lamar									
5,071.8	0.00	0.00	5,069.0	-4 6.5	99.7	-47.8	0.00	0.00	0.00
Bell Canyo	n								
5,086.8	0.00	0.00	5,084.0	-46.5	99.7	-47.8	0.00	0.00	0.00
9.625"									
5,100.0	0.00	0.00	5,097.2	-46.5	99.7	-47.8	0.00	0.00	0.00
5,200.0	0.00	0.00	5,197.2	-46.5	99.7	-47.8	0.00	0.00	0.00
5,300.0	0.00	0.00	5,297.2	-4 6.5	99.7	-47.8	0.00	0.00	0.00
5,400.0	0.00	0.00	5,397.2	-46.5	99.7	-47.8	0.00	0.00	0.00
5,500.0	0.00	0.00	5,497.2	-46.5	99.7	-47.8	0.00	0.00	0.00
5,600.0	0.00	0.00	5,597.2	-46.5	99.7	-47.8	0.00	0.00	0.00
5,700.0	0.00	0.00	5,697.2	-46.5	99.7	-47.8	0.00	0.00	0.00
5,800.0	0.00	0.00	5,797.2	-46.5	99.7	-47.8	0.00	0.00	0.00
5,900.0	0.00	0.00	5,897.2	-46.5	99.7	-47.8	0.00	0.00	0.00
6,000.0	0.00	0.00	5,997.2	-46.5	99.7	-47.8	0.00	0.00	0.00
6,100.0	0.00	0.00	6,097.2	-46.5	99.7	-47.8	0.00	0.00	0.00
6,200.0	0.00	0.00	6,197.2	-46.5	99.7	-47.8	0.00	0.00	0.00
6,300.0	0.00	0.00	6,297.2	-46.5	99.7	-47.8	0.00	0.00	0.00
6,400.0	0.00	0.00	6,397.2	-46.5	99.7	-47.8	0.00	0.00	0.00
6,500.0	0.00	0.00	6,497.2	-46.5	99.7	-47.8	0.00	0.00	0.00
6,600.0	0.00	0.00	6,597.2	-46.5	99.7	-47.8	0.00	0.00	0.00
6,700.0	0.00	0.00	6,697.2	-46.5	99.7	-47.8	0.00	0.00	0.00
6,800.0	0.00	0.00	6,797.2	-46.5	99.7	-4 7.8	0.00	0.00	0.00
6,900.0	0.00	0.00	6,897.2	-46.5	99.7	-47.8	0.00	0.00	0.00
7,000.0	0.00	0.00	6,997.2	-46.5	99.7	-47.8	0.00	0.00	0.00
7,100.0	0.00	0.00	7,097.2	-46.5	99.7	-47.8	0.00	0.00	0.00
7,111.8	0.00	0.00	7,109.0	-46.5	99.7	-47.8	0.00	0.00	0.00
Brushy Car									
7,200.0	0.00	0.00	7,197.2	-46.5	99.7	-47.8	0.00	0.00	0.00
7,300.0	0.00	0.00	7,297.2	-46.5	99.7	-47.8	0.00	0.00	0.00
7,400.0	0.00	0.00	7,397.2	-4 6.5	99.7	-47.8 47.0	0.00	0.00	0.00
7,500.0	0.00	0.00	7,497.2	-46.5	99.7	-47.8	0.00	0.00	0.00
7,600.0	0.00	0.00	7,597.2	-46.5	99.7	-47.8	0.00	0.00	0.00
7,700.0	0.00	0.00	7,697.2	-46.5	99.7	-47.8	0.00	0.00	0.00
7,800.0	0.00	0.00	7,797.2	-46.5	99.7	-47.8	0.00	0.00	0.00
7,900.0	0.00	0.00	7,897.2	-46.5	99.7	-47.8	0.00	0.00	0.00
8,000.0	0.00	0.00	7,997.2	-46.5	99.7	-47.8	0.00	0.00	0.00
8,100.0	0.00	0.00	8,097.2	-46.5	99.7	-47.8	0.00	0.00	0.00
8,200.0	0.00	0.00	8,197.2	-46.5	99.7	-47.8	0.00	0.00	0.00
8,300.0	0.00	0.00	8,297.2	-46.5	99.7	-47.8	0.00	0.00	0.00
8,337.8	0.00	0.00	8,335.0	-46.5	99.7	-47.8	0.00	0.00	0.00
Bone Sprin	na l ime								

Database:

EDM5000

Company:

Ameredev Operating, LLC

Project: Site:

Lea County, NM (NAD83 NME) (Nandina Fed) Sec-31_T-25-S_R-36-E

Well:

Nandina Fed Com 25-36-31 #095H

Wellbore: Design:

OWB Plan #1 **Local Co-ordinate Reference:**

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Well Nandina Fed Com 25-36-31 #095H

KB @ 3038.0usft (Rig)

KB @ 3038.0usft (Rig)

nned Survey				-					
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
8,500.0	0.00	0.00	8,497.2	-46.5	99.7	-47.8	0.00	0.00	0.00
8,600.0	0.00	0.00	8,597.2	-46.5	99.7	-47.8	0.00	0.00	0.00
8,700.0	0.00	0.00	8,697.2	-46.5	99.7	-47.8	0.00	0.00	0.00
8,800.0	0.00	0.00	8,797.2	-46.5	99.7	-47.8	0.00	0.00	0.00
8,900.0	0.00	0.00	8,897.2	-46.5	99.7	-47.8	0.00	0.00	0.00
9,000.0	0.00	0.00	8,997.2	-46.5	99.7	-47.8	0.00	0.00	0.00
9,100.0	0.00	0.00	9,097.2	-46.5	99.7	-47.8	0.00	0.00	0.00
9,200.0	0.00	0.00	9,197.2	-46.5	99.7	-47.8	0.00	0.00	0.00
9,300.0	0.00	0.00	9,297.2	-46.5	99.7	-47.8	0.00	0.00	0.00
9,400.0	0.00	0.00	9,397.2	-46.5	99.7	-4 7.8	0.00	0.00	0.00
9,500.0	0.00	0.00	9.497.2	-46.5	99.7	-47.8	0.00	0.00	0.00
9,600.0	0.00	0.00	9,597.2	-46.5	99.7	-47.8	0.00	0.00	0.00
9,700.0	0.00	0.00	9,697.2	-46.5	99.7	-47.8	0.00	0.00	0.00
9,713.8	0.00	0.00	9,711.0	-46.5	99.7	-47.8	0.00	0.00	0.00
First Bone			_,		55	5	2.00	0.00	0.00
9,800.0	0.00	0.00	9,797.2	-46.5	99.7	-47.8	0.00	0.00	0.00
9,900.0	0.00	0.00	9,897.2	-46.5	99.7	-47.8	0.00	0.00	0.00
10,000.0	0.00	0.00	9,997.2	-46.5	99.7	-47.8	0.00	0.00	0.00
10,100.0	0.00	0.00	10,097.2	-46.5	99.7	-47.8	0.00	0.00	0.00
10,200.0	0.00	0.00	10,197.2	-46.5	99.7	-47.8	0.00	0.00	0.00
10,271.8	0.00	0.00	10,269.0	-46.5	99.7	-47.8	0.00	0.00	0.00
Second Bo	ne Spring								
10,300.0	0.00	0.00	10,297.2	-46.5	99.7	-47.8	0.00	0.00	0.00
10,400.0	0.00	0.00	10,297.2	-46.5	99.7	-47.8	0.00	0.00	0.00
10,500.0	0.00	0.00	10,397.2	-46.5	99.7	-47.8	0.00	0.00	0.00
10,600.0	0.00	0.00	10,497.2	-46.5	99.7	-47.8	0.00	0.00	0.00
10,700.0	0.00	0.00	10,697.2	-46.5	99.7	-47.8	0.00	0.00	0.00
10,800.0	0.00	0.00	10,797.2	-46.5	99.7	-47.8	0.00	0.00	0.00
10,857.8	0.00	0.00	10,855.0	-46.5	99.7	-47.8	0.00	0.00	0.00
	Spring Uppe								
10,900.0	0.00	0.00	10,897.2	-46.5	99.7	-47.8	0.00	0.00	0.00
11,000.0	0.00	0.00	10,997.2	-46.5	99.7	-47.8	0.00	0.00	0.00
11,079.8	0.00	0.00	11,077.0	-46.5	99.7	-47.8	0.00	0.00	0.00
	d 10.00 -10842	?' FNL, 1851' F							
11,100.0	2.02	350.25	11,097.2	-46.2	99.7	-47.4	10.00	10.00	-48.30
11,150.0	7.02	350.25	11,147.0	-42.3	99.0	-43.5	10.00	10.00	0.00
11,200.0	12.02	350.25	11,196.3	-34.1	97.6	-35.4	10.00	10.00	0.00
11,250.0	17.02	350.25	11,244.7	-21.8	95.5	-23.0	10.00	10.00	0.00
11,300.0	22.02	350.25	11,291.8	-5.3	92.7	-6.5	10.00	10.00	0.00
11,350.0	27.02	350,25	11,337.3	15.1	89.2	14.0	10.00	10.00	0.00
11,400.0	32.02	350.25 350.25	11,380.8	39.4	85.0	38.3	10.00	10.00	0.00
11,450.0	37.02	350.25	11,422.0	67.3	80.2	66.3	10.00	10.00	0.00
11,491.3	41.15	350.25	11,454.0	93.0	75.8	92.0	10.00	10.00	0.00
Third Bone		000.20	11,404.0	55.5	7 3.0	32.0	10.00	10.00	0.00
11,500.0	42.02	350.25	11,460.5	98.7	74.8	97.7	10.00	10.00	0.00
11,550.0	47.02	350.25	11,496,2	133.2	68.9	132.3	10.00	10.00	0.00
11,600.0	52.02	350.25	11,528.6	170.7	62.4	169.9	10.00	10.00	0.00
11,650.0	57.02	350.25	11,526.6	210.8	55.5	210.1	10.00	10.00	0.00
11,674.1	59.43	350.25	11,570.3	231.0	52.1	230.3	10.00	10.00	0.00
	Cross -10565			201.0	J£.1	200.0	10.00	10.00	0.00
11,700.0	62.02	350.25	11,583.0	253.2	48.2	252.6	10.00	10.00	0.00
11,700.0									
11,750.0	67.02	350.25	11,604.5	297.7	40.6	297.2	10.00	10.00	0.00

Database: Company: EDM5000

Ameredev Operating, LLC

Project: Lea County, NM (NAD83 NME)

Site: Well: (Nandina Fed) Sec-31_T-25-S_R-36-E Nandina Fed Com 25-36-31 #095H

Wellbore: Design:

OWB Plan #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Well Nandina Fed Com 25-36-31 #095H

KB @ 3038.0usft (Rig)

KB @ 3038.0usft (Rig)

Grid Minimum Curvature

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
11,850.0	77.02	350.25	11,635.3	391.3	24.5	391.0	10.00	10.00	0.00
11,900.0	82.02	350.25	11,644.4	439.8	16.2	439.5	10.00	10.00	0.00
11,950.0	87.02	350.25	11,649.2	488.8	7.8	488.7	10.00	10.00	0.00
11,979.8	90.00	350.25	11,650.0	518.2	2.7	518.1		10.00	0.00
			0.060,11	316.2	2.1	516.1	10.00	10.00	0.00
	N - DLS 2.00 T								
12,000.0	90.00	350.65	11,650.0	538.1	-0.6	538.0	2.00	0.00	2.00
12,026.7	90.00	351.19	11,650.0	564.4	-4.8	564.4	2.00	0.00	2.00
	lina Fed Com								
12,100.0	90.00	352.65	11,650.0	637.0	-15.2	637.2	2.00	0.00	2.00
12,200.0	90.00	354.65	11,650.0	736.4	-26.2	736.7	2.00	0.00	2.00
12,300.0	90.00	356.65	11,650.0	836.1	-33.8	836.5	2.00	0.00	2.00
12,400.0	90.00	358.65	11,650.0	936.0	-37.9	936.4	2.00	0.00	2.00
12,438.8	90.00	359.43	11,650.0	974.8	-38.5	975.2	2.00	0.00	2.00
•	90.7 at 12438.		,555.5	3, 1.0	00.0	3. J. E	2.50	0.00	2,00
12,500.0	90.00	359.43	11,650.0	1,036.0	-39.1	1,036.4	0.00	0.00	0.00
12,500.0	90.00	359.43	11,650.0	1,136.0	-39.1 -40.1	1,136.4	0.00	0.00	0.00
12,700.0	90.00	359.43	11,650.0	1,236.0	-41.1	1,236.4	0.00	0.00	0.00
12,800.0	90.00	359.43	11,650.0	1,336.0	-42.1	1,336.4	0.00	0.00	0.00
12,900.0	90.00	359.43	11,650.0	1,436.0	-43.1	1,436.4	0.00	0.00	0.00
13,000.0	90.00	359.43	11,650.0	1,536.0	-44.1	1,536.4	0.00	0.00	0.00
13,014.1	90.00	359.43	11,650.0	1,550.1	-44.3	1,550.5	0.00	0.00	0.00
Sec 31 132	20' FSL - 9245'	'FNL, 1980' F	EL						
13,100.0	90.00	359.43	11,650.0	1,636.0	-45.1	1,636.4	0.00	0.00	0.00
13,200.0	90.00	359.43	11,650.0	1,736.0	-46.1	1,736.4	0.00	0.00	0.00
13,300.0	90.00	359.43	11,650.0	1,836.0	-47.1	1,836.4	0.00	0.00	0.00
13,400.0	90.00	359.43	11,650.0	1,936.0	-48.1	1,936.4	0.00	0.00	0.00
13,500.0	90.00	359.43	11,650.0	2,036.0	-49.1	2,036.4	0.00	0.00	0.00
13,600.0	90.00	359.43	11,650,0	2,136.0	-50.1	2,136.4	0.00	0.00	0.00
13,700.0	90.00	359.43	11,650.0	2,235.9	-51.1	2,136.4	0.00	0.00	0.00
13,800.0	90.00	359.43	11,650.0	2,335.9	-52.1	2,336.4	0.00	0.00	0.00
13,900.0	90.00	359.43	11,650.0	2,435.9	-53.1	2,436.4	0.00	0.00	0.00
14,000.0	90.00	359.43	11,650.0	2,535.9	-54.1	2,536.4	0.00	0.00	0.00
14,100.0	90.00	359.43	11,650.0	2,635.9	-55.1	2,636.4	0.00	0.00	0.00
14,200.0	90.00	359.43	11,650.0	2,735.9	-56.1	2,736.4	0.00	0.00	0.00
14,300.0	90.00	359.43	11,650.0	2,835.9	-57.1	2,836.4	0.00	0.00	0.00
14,334.1	90.00	359.43	11,650.0	2,870.0	-57.4	2,870.5	0.00	0.00	0.00
	40' FSL -7925'								
14,400.0	90.00	359.43	11,650.0	2,935.9	-58.0	2,936.4	0.00	0.00	0.00
14,500.0	90.00	359.43	11,650.0	3,035.9	-59.0	3,036.4	0.00	0.00	0.00
14,600.0	90.00	359.43	11,650.0	3,135.9	-60.0	3,136.4	0.00	0.00	0.00
14,700.0	90.00	359.43	11,650.0	3,235.9	-61.0	3,236.4	0.00	0.00	0.00
14,800.0	90.00	359.43	11,650.0	3,335.9	-62.0	3,336.4	0.00	0.00	0.00
14,900.0	90.00	359.43	11,650.0	3,435.9	-63.0	3,436.4	0.00	0.00	0.00
•									
15,000.0	90.00	359.43	11,650.0	3,535.9	-64.0	3,536.4	0.00	0.00	0.00
15,100.0	90.00	359.43	11,650.0	3,635.9	-65.0	3,636.4	0.00	0.00	0.00
15,200.0	90.00	359.43	11,650.0	3,735.9	-66.0	3,736.4	0.00	0.00	0.00
15,300.0	90.00	359.43	11,650.0	3,835.9	-67.0	3,836.4	0.00	0.00	0.00
15,400.0	90.00	359.43	11,650.0	3,935.9	- 68.0	3,936.4	0.00	0.00	0.00
15,500.0	90.00	359.43	11,650.0	4,035.9	-69.0	4,036.4	0.00	0.00	0.00
15,600.0	90.00	359.43	11,650.0	4,135.9	-70.0	4,136,4	0.00	0.00	0.00
15,700.0	90.00	359.43	11,650.0	4,235.8	-71.0	4,236.4	0.00	0.00	0.00
15,800.0	90.00	359.43	11,650.0	4,335.8	-72.0	4,336.4	0.00	0.00	0.00
15,000.0	90.00	350.43	11,650.0	4,000.0	-72.0 -73.0	4,330.4	0.00	0.00	0.00

15,900.0

90.00

359.43

11,650.0

4,435.8

-73.0

4,436.4

0.00

0.00

0.00

Database: Company: EDM5000

Ameredev Operating, LLC

Lea County, NM (NAD83 NME)

Project: Site: Well:

(Nandina Fed) Sec-31_T-25-S_R-36-E Nandina Fed Com 25-36-31 #095H

Wellbore: Design:

OWB Plan #1 Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference: **Survey Calculation Method:**

Well Nandina Fed Com 25-36-31 #095H

KB @ 3038.0usft (Rig) KB @ 3038.0usft (Rig)

Grid

esign:	Plan # I	 							* *.
lanned Survey						-			
Measured Depth (usft)	inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
16,000.0	90.00	359.43	11,650.0	4,535.8	-74.0	4,536.4	0.00	0.00	0.00
16,100.0	90.00	359.43	11,650.0	4,635.8	-75.0	4,636.4	0.00	0.00	0.00
16,200.0	90.00	359.43	11,650.0	4,735.8	-76.0	4,736.4	0.00	0.00	0.00
16,300.0	90.00	359.43	11,650.0	4,835.8	-77.0	4,836.4	0.00	0.00	0.00
16,400.0	90.00	359.43	11,650.0	4,935.8	-78.0	4,936.4	0.00	0.00	0.00
16,500.0	90.00	359.43	11.650.0	5.035.8	-79.0	5,036.4	0.00	0.00	0.00
16,600.0	90.00	359.43	11,650.0	5,135.8	-79.9	5,136.4	0.00	0.00	0.00
16,700.0	90.00	359.43	11,650.0	5,135.8	-80.9	5,236.4	0.00	0.00	0.00
				- ,					
16,800.0	90.00	359.43	11,650.0	5,335.8	-81.9	5,336.4	0.00	0.00	0.00
16,900.0	90.00	359.43	11,650.0	5,435.8	-82.9	5,436.4	0.00	0.00	0.00
16,973.1	90.00	359.43	11,650.0	5,508.9	-83.7	5,509.5	0.00	0.00	0.00
	30 Cross -5286			.,		-,			
17,000.0	90.00	359.43	11,650.0	5,535.8	-83.9	5,536.4	0.00	0.00	0.00
17,100.0	90.00	359.43	11,650.0	5,635.8	-84.9	5,636.4	0.00	0.00	0.00
17,200.0	90.00	359.43	11,650.0	5,735.8	-85.9	5,736.4	0.00	0.00	0.00
17,300.0	90.00	359.43	11,650.0	5,835.8	-86.9	5,836.4	0.00	0.00	0.00
17,400.0	90.00	359.43	11,650.0	5,935.8	-87.9	5,936,4	0.00	0.00	0.00
17,500.0	90.00	359.43	11,650.0	6,035.8	-88.9	6,036.4	0.00	0.00	0.00
17,600.0	90.00	359.43	11,650.0	6,135.8	-89.9	6,136.4	0.00	0.00	0.00
17,700.0	90.00	359.43	11,650.0	6,235.7	-90.9	6,236.4	0.00	0.00	0.00
17,800.0	90.00	359.43	11,650.0	6,335.7	-91.9	6,336.4	0.00	0.00	0.00
17,900.0	90.00	359.43	11.650.0	6,435.7	-92.9	6,436.4	0.00	0.00	0.00
18,000.0	90.00	359.43	11,650.0	6,535.7	-93.9	6,536.4	0.00	0.00	0.00
18,100.0	90.00	359.43	11,650.0	6,635.7	-94.9	6,636.4	0.00	0.00	0.00
18,200.0	90.00	359.43	11,650.0	6,735.7	-95.9	6,736.4	0.00	0.00	0.00
18,293.1	90.00	359.43	11,650.0	6,828.8	-96.8	6,829.5	0.00	0.00	0.00
Sec 30 13	20' FSL -3966'	FNL, 1980' FI	EL						
18,300.0	90.00	359.43	11,650.0	6,835.7	-96.9	6,836.4	0.00	0.00	0.00
18,400.0	90.00	359.43	11,650.0	6,935.7	-97.9	6,936.4	0.00	0.00	0.00
18,500.0	90.00	359.43	11,650.0	7,035.7	-98.9	7,036.4	0.00	0.00	0.00
18,600.0	90.00	359.43	11,650.0	7,135.7	-99.9	7,136.4	0.00	0.00	0.00
18,700.0	90.00	359.43	11,650.0	7,235.7	-100.9	7,236.4	0.00	0.00	0.00
18,800.0	90.00	359.43	11,650.0	7,335.7	-101.8	7,336.4	0.00	0.00	0.00
18,900.0	90.00	359.43	11,650.0	7,435.7	-102.8	7,436.4	0.00	0.00	0.00
19,000.0	90.00	359.43	11,650.0	7,535.7	-103.8	7,536.4	0.00	0.00	0.00
19,100.0	90.00	359.43	11,650.0	7,635.7	-104.8	7,636.4	0.00	0.00	0.00
19,200.0	90.00	359.43	11,650.0	7,735.7	-105.8	7,736.4	0.00	0.00	0.00
•									
19,300.0	90.00	359.43	11,650.0	7,835.7	-106.8	7,836.4	0.00	0.00	0.00
19,400.0	90.00	359.43	11,650.0	7,935.7	-107.8	7,936.4	0.00	0.00	0.00
19,500.0	90.00	359.43	11,650.0	8,035.7	-108.8	8,036.4	0.00	0.00	0.00
19,600.0	90.00	359.43	11,650.0	8,135.7	-109.8	8,136.4	0.00	0.00	0.00
19,700.0	90.00	359.43	11,650.0	8,235.7	-110.8	8,236.4	0.00	0.00	0.00
19,800.0	90.00	359.43	11,650.0	8,335.6	-111.8	8,336.4	0.00	0.00	0.00
19,900.0	90.00	359.43	11,650.0	8,435.6	-112.8	8,436.4	0.00	0.00	0.00
20,000.0	90.00	359.43	11,650.0	8,535.6	-113.8	8,536.4	0.00	0.00	0.00
20,100.0	90.00	359.43	11,650.0	8,635.6	-114.8	8,636.4	0.00	0.00	0.00
20,200.0	90.00	359.43	11,650.0	8,735.6	-115.8	8,736.4	0.00	0.00	0.00
20,300.0	90.00	359.43	11,650.0	8,835.6	-116.8	8,836.4	0.00	0.00	0.00
20,400.0	90.00	359.43	11,650.0	8,935.6	-117.8	8,936.4	0.00	0.00	0.00
20,500.0	90.00	359.43	11,650.0	9,035.6	-118.8	9,036.4	0.00	0.00	0.00
20,600.0	90.00	359.43	11,650.0	9,135.6	-119.8	9,136.4	0.00	0.00	0.00
20,700.0	90.00	359.43	11,650.0	9,235.6	-120.8	9,236.4	0.00	0.00	0.00
20,800.0	90.00	359.43	11,650.0	9,335.6	-121.8	9,336.4	0.00	0.00	0.00
20,900.0	90.00	359.43	11,650.0	9,435.6	-122.8	9,436.4	0.00	0.00	0.00

Database:

EDM5000

Company:

Ameredev Operating, LLC

Project:

Site:

Lea County, NM (NAD83 NME) (Nandina Fed) Sec-31_T-25-S_R-36-E

Well:

Nandina Fed Com 25-36-31 #095H

Wellbore: Design:

OWB Plan #1 **Local Co-ordinate Reference:**

TVD Reference:

MD Reference:

North Reference: **Survey Calculation Method:**

Well Nandina Fed Com 25-36-31 #095H

KB @ 3038.0usft (Rig) KB @ 3038.0usft (Rig)

Grid

Minimum Curvature

Planned Survey	Planned S	urvev
----------------	-----------	-------

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
21,000.0	90.00	359.43	11,650.0	9,535.6	-123.7	9,536,4	0.00	0.00	0.00
21,100.0	90.00	359.43	11,650.0	9,635.6	-124.7	9,636.4	0.00	0.00	0.00
21,200.0	90.00	359.43	11,650.0	9,735.6	-125.7	9,736.4	0.00	0.00	0.00
21,300.0	90.00	359.43	11,650.0	9,835.6	-126.7	9,836.4	0.00	0.00	0.00
21,400.0	90.00	359.43	11,650.0	9,935.6	-127.7	9,936.4	0.00	0.00	0.0
21,500.0	90.00	359.43	11,650.0	10,035.6	-128.7	10,036.4	0.00	0.00	0.00
21,600.0	90.00	359.43	11,650.0	10,135.6	-129.7	10,136.4	0.00	0.00	0.00
21,700.0	90.00	359.43	11,650.0	10,235.6	-130.7	10,236.4	0.00	0.00	0.0
21,800.0	90.00	359.43	11,650.0	10,335.5	-131.7	10,336.4	0.00	0.00	0.0
21,900.0	90.00	359.43	11,650.0	10,435.5	-132.7	10,436.4	0.00	0.00	0.0
21,929.5	90.00	359.43	11,650.0	10,465.0	-133.0	10,465.8	0.00	0.00	0.00
LTP - LTP ((Nandina Fed	Com 25-36-31	#095H)						
22,000.0	90.00	359.43	11,650.0	10,535.5	-133.7	10,536.4	0.00	0.00	0.00
22,059.5	90.00	359,43	11,650.0	10,595.0	-134.3	10,595.8	0.00	0.00	0.0

Design Targets

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL (Nandina Fed C - plan misses targe - Point	0.00 et center by	0.00 0.3usft at 2	11,650.0 22059.5usft	10,595.0 MD (11650.0	-134.0 0 TVD, 1059	404,579.00 5.0 N, -134.3 E)	860,647.00	32.1080680	-103.3020760
FTP (Nandina Fed Cc - plan misses targe - Point		0.00 30.5usft at	,	560.0 ft MD (11650	-35.0 0.0 TVD, 564	394,544.00 .4 N, -4.8 E)	860,746.00	32.0804840	-103.3020662
LTP (Nandina Fed Co - plan hits target co - Point		0.00	11,650.0	10,465.0	-133.0	404,449.00	860,648.00	32.1077106	-103.3020768

Casing Points

Gasing romi	•					ļ	
	Measured Depth (usft)	Vertical Depth (usft)		Name	Casing Dlameter (")	Hole Diameter (")	· ·
	5,086.8	5,084.0	9.625"		9-5/8	12-1/4	
	11,079.8	11,077.0	7.625"		7-5/8	8-3/4	
	22,059.5	11,650.0	5.5"		5-1/2	6-3/4	

Database:

EDM5000

Company: Ameredev Operating, LLC Project: Lea County, NM (NAD83 NME)

Site:

(Nandina Fed) Sec-31_T-25-S_R-36-E Nandina Fed Com 25-36-31 #095H

Well: Wellbore: Design:

OWB Plan #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:** Well Nandina Fed Com 25-36-31 #095H

KB @ 3038.0usft (Rig)

Grid

Minimum Curvature

KB @ 3038.0usft (Rig)

Formations	
------------	--

Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)	
 1,068.0	1,068.0	Rustler				
1,508.0	1,508.0	Salado				
3,234.9	3,234.0	Tansill				
5,036.8	5,034.0	Lamar				
5,071.8	5,069.0	Bell Canyon				
7,111.8	7,109.0	Brushy Canyon				
8,337.8	8,335.0	Bone Spring Lime				
9,713.8	9,711.0	First Bone Spring				
10,271.8	10,269.0	Second Bone Spring				
10,857.8	10,855.0	Third Bone Spring Upper				
11,491.3	11,454.0	Third Bone Spring				

Plan	Ann	otati	ions
------	-----	-------	------

	Measured	Vertical	Local Coordinates				
	Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment		
	2,500.0	2,500.0	0.0	0.0	BUILD - 2.00		
	2,650.0	2,649.9	-1.7	3.6	HOLD - 1952.7 at 2650.0 MD		
	4,602.7	4,600.0	-44.9	96.2	DROP - DLS 2.00 TFO -180.00		
	4,752.7	4,749.9	-46.5	99.7	HOLD - 6327.1 at 4752.7 MD		
	11,079.8	11,077.0	-46.5	99.7	KOP - Build 10.00 -10842' FNL, 1851' FEL		
i	11,674.1	11,570.3	231.0	52.1	Sec 31 & 6 Cross -10565' FNL, 1895' FEL		
1	11,979.8	11,650.0	518.2	2.7	EOC/TURN - DLS 2.00 TFO 90.00		
	12,438.8	11,650.0	974.8	-38.5	HOLD - 9490.7 at 12438.8 MD		
	13,014.1	11,650.0	1,550.1	-44.3	Sec 31 1320' FSL - 9245' FNL, 1980' FEL		
	14,334,1	11,650.0	2,870.0	-57.4	Sec 31 2640' FSL -7925' FNL, 1980' FEL		
	16,973.1	11,650.0	5,508.9	-83.7	Sec 31 & 30 Cross -5286' FNL, 1980' FEL		
	18,293,1	11,650.0	6,828.8	-96.8	Sec 30 1320' FSL -3966' FNL, 1980' FEL		
	21,929.5	11,650.0	10,465.0	-133.0	LTP		
	22,059.5	11,650.0	10,595.0	-134.3	PBHL - 200' FNL, 1980' FEL		

Requested Exceptions

- Variance is requested to connect the BOP choke outlet to the choke manifold using a co-flex line (instead of using a 4" OD steel line) with a 10,000 psi working pressure that has been tested to 15,000 psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps.
- Variance is requested to allow Option of rig not capable of reaching TD presetting Surface
- Variance is requested to allow operation below the 7-5/8 casing point through a 5M BOPE
 System
- Variance is requested to wave any centralizer requirements on the 5-1/2 Casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to wave any centralizer requirements on the 7-5/8 Casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to allow Temporary Postponement of Operations on well to Skid to adjacent well.
- Variance is requested to Allow use of Multi Bowl Well Head System
- Variance is requested to Allow adjustment of Casing Design Safety Factor on conditions that
 Ameredev keeps minimum of 1/3 casing capacity filled with OMW drilling fluids
- Variance is requested to Drill Surface Casing to Base Salt with >100K Chlorides on the conditions that 50% Returns will be maintained
- Ameredev requests a variance to utilize a 5M Choke Manifold with 2 Adj. Chokes (Ameredev will
 rig up 2 remote operated Chokes in place of 10M 3- Choke Manifold)

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

APD ID: 10400032975

Submission Date: 08/28/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Number: 095H

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

I ask dataction evetam attachment.

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Number: 095H

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: AMEREDEV OPERATING LLC Well Name: NANDINA FED COM 25 36 31

Well Number: 095H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number:

Injection well name:

Assigned injection well API number?

Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Number: 095H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

09/30/2019

APD ID: 10400032975

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Type: OIL WELL

Submission Date: 08/28/2018

Well Number: 095H

Well Work Type: Drill

.

Show Final Text

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: