HOBBS OFFICE OCC Form C-122 ised 12-1-55 | | l Banon's | | HOL | D | 165)
Carrett | 00T 3 | O AM 19 | : 51 | Les | | | |--|--|--|--|---|---|---|--|--|--|---|--| | | | | | | | | | _ | | 0/3, 4, 1956 | | | | | | | | | | | | | | | | OΠ | apany | The Lector | COURT -C. |)
 | _Lease | and UIII | LCO | We | ll No | 1 | | | ni | t 18/4 X | Sec. 19 | _Twp | 195 R | ge. 37% | Purc | haser | ermian Ba | sin Pipe | eline Co. | | | a s | ing 7* | Wt. 24 | _I.D. 2 | .336" Se | et at 3787 | Pe | rf270 | 00 | To | 36901 | | | ub | ing 2-7/8* | Wt. 6.5 | <u> </u> | 2.441" Se | et at 370 | Per | rf. 389 | 21 | To | 38961 | | | as | Pay: From | 2700° To | <u> 369</u> 0 | L | 2700 xG | 0.680 | | 836 | Bar.Pre | ss. 13.2 | | | co | ducing Thru | ı: Casing | z x | Tu | ıbing | | Type We | ell G. | O. dual | | | | +. | e of Comple | tion. 2 | -8-55 | Dooles | 38601 | Sing | gle-Brade | enhead-G. | G. or G | .O. Dual | | | | e or compre | | | Раске | r | | Keservo | oir Temp. | 90 00 | <u> </u> | | | | | | | | OBSERVE | D DATA | | | | | | | S | ted Through | (Prover) | (CHEKE | (Hever) | 1 | | | Type Tap | os | | | | | | | v Data | | | Tubing | | Casing I | | | | | | (Prover)
海流 | (Orifice | Pres | ss. Diff. | Temp. | Press. | Temp. | | | Duratio | | | ا | Size | Size | / psi | g h _w | o _F . | psig | °F. | psig | ⊳ _F . | of Flo
Hr. | | | | | | | | | | | 1025,1 | | 71-3/4 | | | 4 | 2**
2** | 3/32* | 816
618 | ,0 | 81 | | | 816.() | | | | | ┪ | 2* | 3/16 | 403 | | 72 | | | 403.9 | | | | | | 2* | 3/16
7/32*
1.00* | 362
477 | .2 | 68 | | | 362.2 | | 3
21-3/4 | | | • | Coeffic
(24-Ho | ient
ur) √ | / | | Flow To
Facto
Ft | emp. | Gravity
Factor
Fg | Compre
Facto | r | Rate of Flow
Q-MCFPD
@ 15.025 psi | | | ✝ | • • | | | 829.2 | 0.9804 | 0 | .9393 | 1.067 | | 148 | | | 4 | 0,1820 | | | | | | | 14 44 | 1 | | | | † | 0,1820
0,3418 | | | 631,3 | 0,9804 | 0 | 9393 | 1.054 | | 209 | | | † | 0,1820 | | | 631,3
(17,1 | 0,9804
0,9887 | 0 | 9993 | 1,038 | | 316 | | | †
† | 0,1820
0,3418
0,7851 | 6 | | 631,3 | 0,9804 | 0
0
0 | | حبطينبك فكنتصاب عد | | | | | νi | 0,1820
0,3418
0,7851
1,0834 | ocarbon Ra
id Hydroca | 4.60 | 631.3
417.1
375.4
PR | 0.9804
0.9887
0.9924
0.9813
ESSURE CAL
cf/bbl.
deg. | 0
0
0
0 | 9993
9393
9393
ONS
Speci | 1.038
1.035
1.040 | ty Separ | 316
392
395
rator Gas | | | т
Т | 0,1820
0,3418
0,7851
1,0834
6,375
Liquid Hydro
ity of Liqui
0,8 | ocarbon Ra
id Hydroca
80
Pt | tio_153 rbons(1-e-s | 631.3
417.1
575.4
PR
1.000
(F _c Q) ² | 0.9804
0.9887
0.9924
0.9813
ESSURE CAL
cf/bbl.
deg. | 0
0
0
0
LCU'ATIO | 9993
9393
ONS
Speci
Pc | 1.038
1.035
1.040
fic Gravi | ty Separ
ty Flow: | 316
392
395
rator Gasing Fluid6
1078.1 | | | т
Т | 0,1820
0,3418
0,7851
1,0834
6,375
Liquid Hydro
ity of Liqui
0,8 | pcarbon Ra id Hydroca 80 Pt 687.6 | tio 15: rbons (1-e-s | 631,3
417.1
375.4
PR
1,000
) 0.119 | 0.9804
0.9887
0.9924
0.9813
ESSURE CAL
cf/bbl.
deg. | 0
0
0
0
LCUTATIO | 9993
9393
ONS
Speci
Pc | 1.038
1.035
1.040
fic Gravi
fic Gravi
1038.3 | ty Separ
ty Flow:
PC | 316
392
395
rator Gas
ing Fluid
.6
1078.1 | | | Ivi | 0,1820
0,3418
0,7851
1,0834
6,375
Liquid Hydro
ity of Liqui
0,8 | P _t 687.6 | tio 151 rbons (1-e-s | (F _c Q) ² | 0.9804
0.9887
0.9924
0.9813
ESSURE CAL
cf/bbl.
deg.
(Fc ⁰
(1-6
0.0020
0.0040 | 0
0
0
0
LCU'ATIO | 9993
9393
9393
ONS
Speci
Pc
P _w 2 | 1.038
1.035
1.040
fic Gravi
1038.3 | ty Separ
ty Flow:
P2
Cal
Pv | 316
392
395
rator Gas
ing Fluid
1078.1 | | | vi | 0.1820
0.3418
0.7851
1.0834
6.375
Liquid Hydro
ity of Liquid
0.8
Pw
Pt (psia)
829.2
631.3
417.1 | Pt 687.6 174.0 140.9 | tio_15: .rbons(1-e^-s F_cQ 0.1289 0.1289 0.2781 | (F _c Q) ² 0.0165 0.0338 0.0773 0.1190 | 0.9804
0.9887
0.9924
0.9813
ESSURE CAL
cf/bbl.
deg.
(1-6
0.0020
0.0040
0.0040
0.0040 | 0
0
0
0
CCU'ATIO | 9993
9393
9393
ONS
Speci
Pc
P _w 2
P _w 2
87.6
98.5
74.0 | 1.038
1.035
1.040
fic Gravi
fic Gravi
1038.3
Pc-Pw
390.5
679.5
904.1
937.2 | Cal
P _v
829-2
631.3
417.1 | 316
392
395
rator Gas
ing Fluid
6
1078.1 | | | | 0,1820
0,3418
0,7851
1,0834
6,375
Liquid Hydro
ity of Liquid
0,8
Pw
Pt (psia)
829,2
631,3
417,1
375,8
501,7 | P _t 687.6 398.5 174.0 140.9 251.7 | f _c Q
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285
1.1285 | (F _c Q) ² 0.0165 0.0338 0.0773 0.1190 0.1208 | 0.9804
0.9887
0.9924
0.9813
ESSURE CAR
cf/bbl.
deg.
(1-6
(1-6
0.0020
0.0040
0.0040
0.0044
0.0144 | 0
0
0
0
1
1
1
2
2
2
1 | P _w 2 | 1.038
1.035
1.040
fic Gravi
fic Gravi
1038.3 | ty Separty Flow: P2 Cal Py 631.3 | 316
392
395
rator Gas
ing Fluid
1078.1 | | | | 0.1820
0.3418
0.7851
1.0834
6.375
Liquid Hydro
ity of Liquid
0.8
Pw
Pt (psia)
829.2
631.3
417.1
375.8
501.7 | Pt 687.6 (398.5 (174.0 (1251.7 (1251.7 (1251.7 (1251.7 (1251.2 (1251.7 (1251.2 | f _c Q
0,1285
0,1285
0,1376
0,3476 | (F _c Q) ² 0.0165 0.0338 0.0773 0.1190 0.1208 | 0.9804
0.9887
0.9924
0.9813
ESSURE CAL
cf/bbl.
deg.
(1-6
0.0020
0.0040
0.0040
0.0040 | 0
0
0
0
1
1
1
2
2
2
1 | 9993
9393
9393
ONS
Speci
Pc
P _w 2
P _w 2
87.6
98.5
74.0 | 1.038
1.035
1.040
fic Gravi
fic Gravi
1038.3
Pc-Pw
390.5
679.5
904.1
937.2 | Cal
P _v
829-2
631-3
417-1 | 316
392
395
rator Gas
ing Fluid
6
1078.1 | | | I VI TINE SUFFICIENT OF THE PROPERTY PR | 0.1820
0.3418
0.7851
1.0834
6.375
Liquid Hydro
ity of Liquid
0.8
Pw
Pt (psia)
829.2
631.3
417.1
375.8
501.7
Puntle Potentical | Pt 687.6 (398.5 (174.0 (1110s Peta | F _c Q 1.285 0.1285 0.1285 0.1285 0.1285 0.3476 360 roleum Cobbe, N. | (F _c Q) ² 0.0165 0.0338 0.0773 0.1190 0.1208 | 0.9804
0.9887
0.9924
0.9813
ESSURE CAR
cf/bbl.
deg.
(Fc(
(1-6)
0.0020
0.0040
0.992
0.0142
MCFPD; r | 2) ² =-s) 64s | P _w 2 | 1.038
1.035
1.040
fic Gravi
fic Gravi
1038.3
Pc-Pw
390.5
679.5
904.1
937.2 | Cal
P _v
829-2
631-3
417-1 | 316
392
395
rator Gas
ing Fluid
6
1078.1 | | | | 0.1820
0.3418
0.7851
1.0834
6.375
Liquid Hydro
ity of Liquid
0.8
Pw
Pt (psia)
829.2
631.3
417.1
375.8
colute Potent
PANY Ph1 | Pt 687.6 (398.5 (174.0 (1110s Peta | F _c Q 1.285 0.1285 0.1285 0.1285 0.1285 0.3476 360 roleum Cobbe, N. | (F _c Q) ² 0.0165 0.0338 0.0773 0.1190 0.1208 | 0.9804
0.9887
0.9924
0.9813
ESSURE CAR
cf/bbl.
deg.
(Fc(
(1-6)
0.0020
0.0040
0.992
0.0142
MCFPD; r | 2) ² =-s) 64s | P _w 2 | 1.038
1.035
1.040
fic Gravi
fic Gravi
1038.3
Pc-Pw
390.5
679.5
904.1
937.2 | Cal
P _v
829-2
631-3
417-1 | 316
392
395
rator Gas
ing Fluid
6
1078.1 | | Peer point alignment and point spread, too much pulldown, but due to this being a retest, an average slope was drawn through the data points to be submitted to the Commission. ## INSTRUCTIONS This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe. The log log paper used for plotting the back pressure curve shall be of at least three inch cycles. ## NOMENCLATURE - Q = Actual rate of flow at end of flow period at W. H. working pressure (P_w). MCF/da. @ 15.025 psia and 60° F. - P_c = 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia - PwI Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia - P_t Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia - Pf Meter pressure, psia. - hw Differential meter pressure, inches water. - Fg Gravity correction factor. - Ft Flowing temperature correction factor. - Fpv Supercompressability factor. - n I Slope of back pressure curve. Note: If $P_{\rm W}$ cannot be taken because of manner of completion or condition of well, then $P_{\rm W}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\rm t}$.