Revised 12-1-55

MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS

							es									
Company R. Olsen Cil Company Lease Meyer B Well No. Mit F	to 4-12,															
### Property Sec. 13 Twp. 24 Rge. 36 Purchaser FI Paso Natural Gas asing 7 Wt. 20.0 I.D. Set at 2946 Perf. To whing 2 1/2 Wt. 6.5 I.D. Set at 1242 Perf. To as Pay: From 2955 To 3060 L 1242 XG 0.655 GL 814 Bar.Press roducing Thru: Casing Tubing X Type Well Single Bradenhead G. G. or G. G. Single Bradenhead G. G. or G.	1	No.	ell N	We		3	yer E	Me	Lease_		тy	Comp	sen Oil	R. C	pany	OII
Setable Seta																
Description Section Section Section Section Single S																
Tare Pressure Pr																
Tubing X Type Well Single Single Single Single Single Fradenhead G. G. or G. (Completion: 5-19-1948 Packer Reservoir Temp.																
Coefficient																
Pressure	O. Dual	or G.	Sing G.	nhead-G.	pe we B <mark>rade</mark>	ryp gle-B	Sin	X_	owie –	¹u		·——	Odbing		o of Com	.+
Type Taps			· 	ir Temp.	servo	Res				Раске	8	9-19)n: <u>5-1</u>	ibrer1	e oi com	10
Flow Data Tubing Data Casing Data Ca							ATAC	VED								
			ps_	Type Tap						(Meter)	KKX .	XXX	CROKERY	ugh	ted Thro	S
Cline Size Size psig hw OF. psig OF. psig OF.	- 	ta	Data	Casing I	a	Data	ubing	T							42	_
### ### ##############################		Temp.	Te	Press.	emp.	Te	ress.	P	Temp.	Diff.	ess.	X P	Orifice	e)	(Line	
### ### ##############################	of Fi Hr.	∘ _F .) o	psig	o _{F.}	0	sig		$^{\mathrm{o}}_{\mathrm{F}}$.	h _w	sig	' 1	Size	e´	Size	
4	72							$\overline{}$								
A	24						50									4
First Test Coefficient Coefficient Pressure Flow Temp. Gravity Compress. Ra Flg (24-Hour) V hwpf Psia Ft Fg Fpv ⊕	24															┪
First Test Coefficient Coefficient Pressure Flow CALCULATIONS Factor Fac	24		+-			 										
Coefficient																_
PRESSURE CALCULATIONS Liquid Hydrocarbon Ratio cf/bbl. Specific Gravity Separary of Liquid Hydrocarbons deg. Specific Gravity Flowing 5.866 (1-e-5) 0.056 Pc 615.2 Pc 371 Pux Pt (psia) Pt FcQ (FcQ)2 (FcQ)2 Pw2 Pc-Pw Fex 363.2 131.9 1.48 2.19 0.12 132.0 246.5 341.2 116.4 2.38 5.66 0.32 116.7 261.8 324.2 105.1 3.10 9.61 0.54 105.6 272.9 301.2 90.7 4.08 16.65 0.93 91.6 286.9 solute Potential: 920 MCFPD; n 1.000	Q-MCFPD 15.025 ps	Spv Q-MCF) @ 15.02			Factor F _g		tor			sia	of p) $\sqrt{h_{\mathbf{w}}p_{\mathbf{y}}}$		Flg (24-Hour)	
PRESSURE CALCULATIONS Liquid Hydrocarbon Ratio cf/bbl. Specific Gravity Separary of Liquid Hydrocarbons deg. Specific Gravity Flowing 5.866 (1-e-5) 0.056 Pc 615.2 Pc 371 Pux Pt (psia) Pt FcQ (FcQ)2 (FcQ)2 Pw2 Pc-Pw Fex 363.2 131.9 1.48 2.19 0.12 132.0 246.5 341.2 116.4 2.38 5.66 0.32 116.7 261.8 324.2 105.1 3.10 9.61 0.54 105.6 272.9 301.2 90.7 4.08 16.65 0.93 91.6 286.9 solute Potential: 920 MCFPD; n 1.000	253 406										┼─┈					t
PRESSURE CALCULATIONS Liquid Hydrocarbon Ratio cf/bbl. Specific Gravity Separaryity of Liquid Hydrocarbons deg. Specific Gravity Flowing 5.866 (1-e-5) 0.056 Pc 615.2 Pc 371 Pux Pt (psia) Pt FcQ (FcQ)2 (FcQ)2 Pw2 Pc-Pw Fex 363.2 131.9 1.48 2.19 0.12 132.0 246.5 341.2 116.4 2.38 5.66 0.32 116.7 261.8 324.2 105.1 3.10 9.61 0.54 105.6 272.9 301.2 90.7 4.08 16.65 0.93 91.6 286.9 solute Potential: 920 MCFPD; n 1.000	529	1.022 529														Ţ
PRESSURE CALCULATIONS Liquid Hydrocarbon Ratio cf/bbl. Specific Gravity Separaryity of Liquid Hydrocarbons deg. Specific Gravity Flowing 5.866 (1-e-5) 0.056 Pc 615.2 Pc 371 Pux Pt (psia) Pt FcQ (FcQ)2 (FcQ)2 Pw2 Pc-Pw Fex 363.2 131.9 1.48 2.19 0.12 132.0 246.5 341.2 116.4 2.38 5.66 0.32 116.7 261.8 324.2 105.1 3.10 9.61 0.54 105.6 272.9 301.2 90.7 4.08 16.65 0.93 91.6 286.9 solute Potential: 920 MCFPD; n 1.000	696)68	1.0			5.00	115	35	6.13	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ng \; Fluid^{T}$	Flowin	ity_N	ic Gravi	pecif	Sr Sr	ATIC	•	cf/bbl deg			bons	Hydrocar	quid	ty of Li	vi
363.2 131.9 1.48 2.19 0.12 132.0 246.5 341.2 116.4 2.38 5.66 0.32 116.7 261.8 324.2 105.1 3.10 9.61 0.54 105.6 272.9 301.2 90.7 4.08 16.65 0.93 91.6 286.9 colute Potential: 920 MCFPD; n 1.000				$P_c^2 - P_w^2$					((F _c Q) ²				. 1	Pt (psi	
324.2 105.1 3.10 9.61 0.54 105.6 272.9 301.2 90.7 4.08 16.65 0.93 91.6 286.9 olute Potential: 920 MCFPD; n 1.000							1						31.9		363.2 341.2	F
301.2 90.7 4.08 16.65 0.93 91.6 286.9 olute Potential: 920 MCFPD; n 1.000	+						·		+							
solute Porential: 920 MCFPD; n 1.000																
									pany			R. 0		L entia	ANY	P
ORESS 2805 Liberty Bank Building, Oklahoma City, Oklahoma ONT and TITLE Philip Randolph, Vice President			ma	. Oklahon	City	noma	UKla ient	resi	K Buil Vice	rty Ban ndolph.	D Ra	<u> 2003</u> Phil		TLE		
NESSED															ESSED	'N
IPANYREMARKS															ANY	ſΡ.

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q \equiv Actual rate of flow at end of flow period at W. H. working pressure (P_W). MCF/da. @ 15.025 psia and 60° F.
- P_c 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- Pw Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- Pf Meter pressure, psia.
- hw Differential meter pressure, inches water.
- F_g : Gravity correction factor.
- F_t Flowing temperature correction factor.
- F_{pv} Supercompressability factor.
- n I Slope of back pressure curve.
- Note: If P_W cannot be taken because of manner of completion or condition of well, then P_W must be calculated by adding the pressure drop due to friction within the flow string to P_+ .