AE Order Number Banner

Application Number: pMSG2313533970

SWD-2531

MACK ENERGY CORP [13837]

ived by OCD: 4/24/2	2023 2:41:14 PM			Page 2 Revised March 23, 2017
RECEIVED:	REVIEWER:	TYPE:	APP NO:	
	- Geologic	ABOVE THIS TABLE FOR OCCIDING O OIL CONSERVA Cal & Engineering Ancis Drive, Santa	TION DIVISION Bureau –	
THIS	CHECKLIST IS MANDATORY FOR AL	ATIVE APPLICATION LADMINISTRATIVE APPLICATE QUIRE PROCESSING AT THE E	TONS FOR EXCEPTIONS	
				RID Number:
_			API:_	Code:
		INDICATED BELOV		THE TYPE OF APPLICATION
A. Locatio	LICATION: Check those with a Spacing Unit - Simultanian Simultanian SP(PRO)			lsd
[1] Cor [II] Inje [II] Sinje NOTIFICATIO A. Offse B. Roya C. Appl D. Notif E. Notif	one only for [1] or [1] or [1] mmingling - Storage - Monday DHC	C	nced Oil Recov DR PPR ners	FOR OCD ONLY Notice Complete Application Content Complete
H. No n	all of the above, proof of otice required ON: I hereby certify that t	·		
administrativ understand t	e approval is accurate a hat no action will be tak are submitted to the Div	and complete to th en on this applicat	ne best of my kn	owledge. I also
1	Note: Statement must be complet	ted by an individual with r	managerial and/or su	pervisory capacity.
			Date	
Print or Type Name	9			
			Phone Numbe	ſ
Dea	na Weaver			

e-mail Address

Signature

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

FORM C-108 Revised June 10, 2003

APPLICATION FOR AUTHORIZATION TO INJECT

	APPLICATION FOR AUTHORIZATION TO INJECT
I.	PURPOSE:Secondary RecoveryPressure MaintenanceDisposalStorage Application qualifies for administrative approval?YesNo
II.	OPERATOR: Mack Energy Corporation
	ADDRESS: P.O. Box 960 Artesia, NM 88210
	CONTACT PARTY: Deana Weaver PHONE: 575-748-1288
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project?YesNo If yes, give the Division order number authorizing the project:
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and
	belief. NAME: Deana Weaver TITLE: Regulatory Technician II
	Deana Weaver NAME: Deana Weaver SIGNATURE: Deana Weaver DATE: 4/24/2023 DATE: 4/24/2023
*	E-MAIL ADDRESS:dweaver@mec.com If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,
- (4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

Side 1

INJECTION WELL DATA SHEET

Mack Energy Corporation OPERATOR: __

WELL NAME & NUMBER: McDonald SWD #1

WELLBORE SCHEMATIC

WELL LOCATION: _____1334 FSL 987 FEL 9 **15S** 32E **UNIT LETTER SECTION TOWNSHIP RANGE**

FOOTAGE LOCATION

WELL CONSTRUCTION DATA

(Perforated or Open Hole; indicate which)

In place 1997

In place 1997

In place 1997

			Sur	face Casing
Hole Size &	McDonald SWD #1-After Operator: Mack Energy Corporation Location: Sec. 9 1155 R32E 1334 FSQ. 987 FEL Objective: San Andres GL Elevation: 4303.7*		Hole Size:17_1/2"	
Depth Cement 17 12" hole 500sx, Circ		Casing Detail 13:36*, 45# Set in 1967	Cemented with: 500sx Top of Cement: 0	Method Determined: Circ
4500" 11" hole 1400sx, Cir		8 5/8", #32 Set in 1967	Hole Size: 11'	ediate Casing
4050* 7 7.85* hole 1950ex, Circ		510", 450 8417 Set in 1967	Cemented with:1400	sx. <i>or</i>
12,500*		7.8° 6.54 J-65 Tbg 10Kpacker w' 2.81 Offer shpile (§ 5,025' Part-5125-5647	Top of Cement:0 Produ	Method Determined: <u>Circ</u> In pl
			Hole Size: 7 7/8" Cemented with: 1950	-
		Plug & cross w 25 to crist CIBP & 9895	Top of Cement: 0 Total Depth: 5650'	Method Determined: Circ
	XXXX XXXX XXXXX	Per 1978-1844 wf-12,284-12,294 wf-12,382-12,397 wf-12,384-12,392		feet to 5640' perforated

INJECTION WELL DATA SHEET

Tub	oing Size:Lining Material: IPC
Тур	pe of Packer: Arrow Set 10K packer w/ 2.81 profile nipple
Pac	cker Setting Depth:5,025'
Oth	ner Type of Tubing/Casing Seal (if applicable):
	Additional Data
1.	Is this a new well drilled for injection?YesXNo
	If no, for what purpose was the well originally drilled? Gas Well
2.	Name of the Injection Formation: San Andres
3.	Name of Field or Pool (if applicable): SWD; San Andres 96121
4.	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. Perfs 9769-9844', 12,288-12,29-
	12,362-12,372', 12,384-12,392'; CIBP @ 9695', 25sx Cmt Plug @
5.	Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area:Overlying- Grayburg @ 3715' Underlying - Glorieta @ 5650'
	Tops- Yates @ 2483', Seven Rivers @ 2750', Queen @ 3298', Grayburg @ 3715',
	San Andres @ 4048', Glorieta @ 5650'

VII. DATA SHEET: PROPOSED OPERATIONS

1. Proposed average and maximum daily rate and volume of fluids to be injected;

Respectively, 10,000 BWPD and 15,000 BWPD

2. The system is closed or open;

Closed

3. Proposed average and maximum injection pressure;

0-1,024 psi

4. Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than re-injected produced water;

We will be re-injecting produced water

5. If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water:

See Attached

VIII. GEOLOGICAL DATA

- 1. Lithologic Detail; Dolomite
- 2. Geological Name; San Andres
- 3. Thickness; 1602'
- 4. Depth; 4048'-5650' Disposal Interval= 5120-5640'

IX. PROPOSED STIMULATION PROGRAM

1. To be treated with 10000 gallons 15% acid

X. LOGS AND TEST DATA

1. Well data will be filed with the OCD.

XI. ANALYSIS OF FRESHWATER WELLS

See attached Additional Information Waters Injected: San Andres

XII. AFFIRMATIVE STATEMENT

RE: McDonald SWD #1

We have examined the available geologic and engineering data and find no evidence of open faults or any other hydraulic connection between the disposal zone and any underground source of drinking water.

Mack Energy Corporation

Date: 2/1/23

Charles Sadler, Geologist

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

<u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV

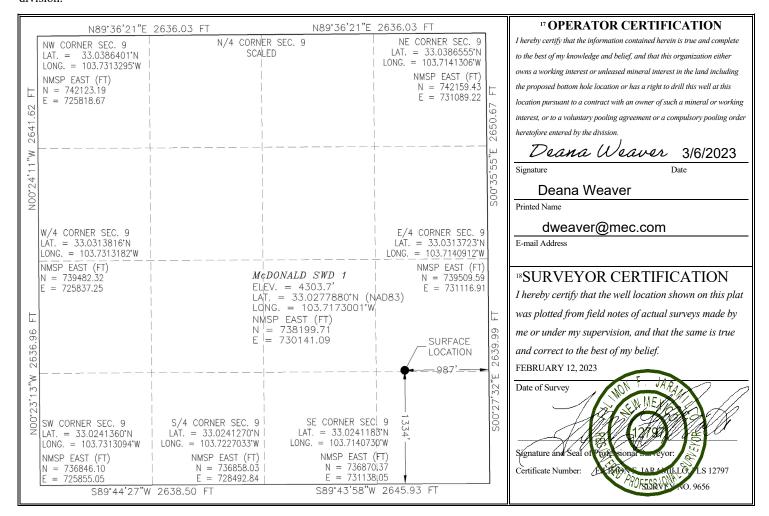
1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

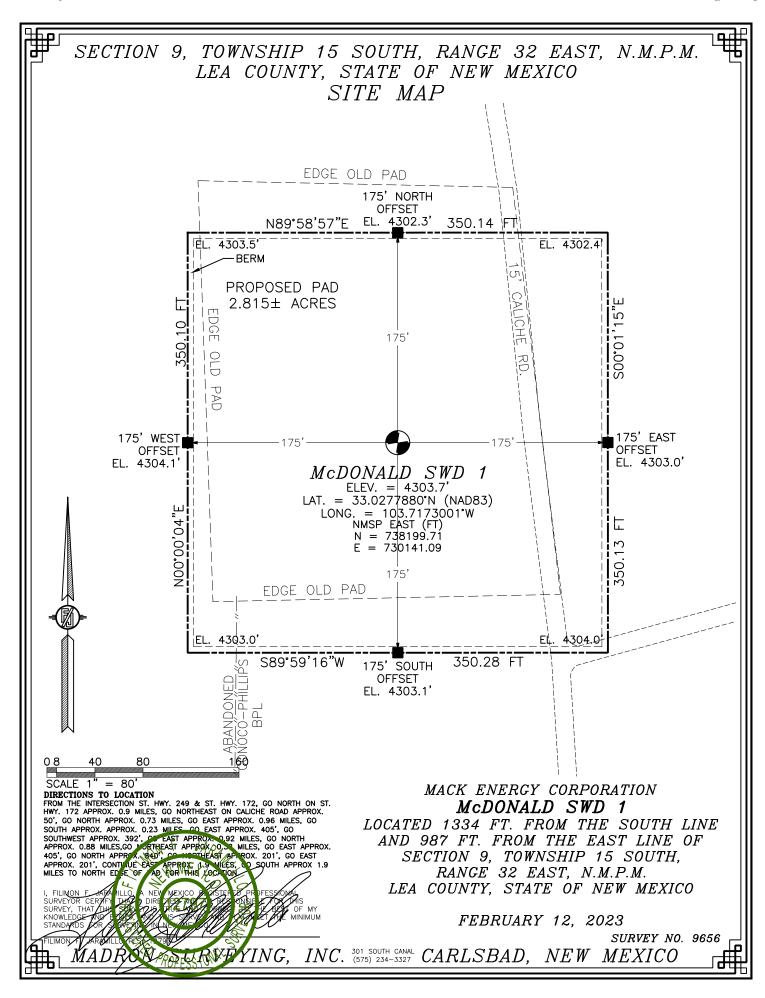
State of New Mexico

Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr.

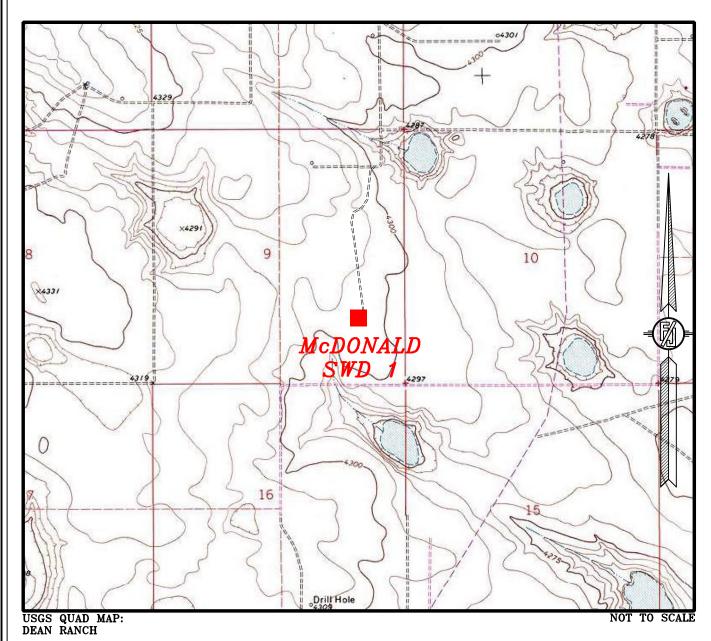
Santa Fe, NM 87505

Form C-102
Revised August 1, 2011
Submit one copy to appropriate
District Office


☐ AMENDED REPORT


WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number ² Pool Code					3 Pool Na	me							
-33678		!	96121		SWD; San Andres								
⁴ Property Code ⁵ Property Name					⁶ Well Number								
				McDONAL	D SWD		1						
⁷ OGRID No. ⁸ Operator Name						⁹ Elevation							
'			MACI	K ENERGY C	NERGY CORPORATION 4303.7					RGY CORPORATION 4303.7			4303.7
¹⁰ Surface Location													
Section	Township Range Lot Idn Feet from the North/South line Feet from the East/Wes						est line	County					
9	15 S	32 E		1334	SOUTH	987	EA	ST	LEA				
	-33678 Code No.	Section Township	-33678 Code No. Section Township Range	-33678 96121 Oode No. MACI Section Township Range Lot Idn	Section Township Range Lot Idn Feet from the Section Township Range Lot Idn Section Section	-33678 96121 SWD; San Sode Section Township Range Lot Idn Feet from the North/South line SWD; San SProperty Name McDONALD SWD Soperator Name MACK ENERGY CORPORATION Section Township Range Lot Idn Feet from the North/South line	-33678 96121 SWD; San Andres Sode Stroperty Name McDONALD SWD No. Soperator Name MACK ENERGY CORPORATION Section Township Range Lot Idn Feet from the North/South line Feet from the	-33678 96121 SWD; San Andres Section Township Range Lot Idn Feet from the North/South line Feet from the East/W					


Bottom Hole Location If Different From Surface Feet from the North/South line Feet from the UL or lot no. Section Township Range Lot Idn East/West line County 12 Dedicated Acres 13 Joint or Infill ¹⁴ Consolidation Code 15 Order No. 40

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

SECTION 9, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO LOCATION VERIFICATION MAP

MACK ENERGY CORPORATION

McDONALD SWD 1

LOCATED 1334 FT. FROM THE SOUTH LINE AND 987 FT. FROM THE EAST LINE OF SECTION 9, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO

FEBRUARY 12, 2023

SURVEY NO. 9656

 $\textit{MADRON SURVEYING, INC.} \ \ ^{\text{301 SOUTH CANAL}}_{\text{(575) 234-3327}} \ \textit{CARLSBAD, NEW MEXICO}$

SECTION 9, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO VICINITY MAP 840 405 201 0.32 MILES 201 392' 1.9 MILES 405 0.23 MILES 0.88 0.96 MILES -1.9 MILES MILES 1319 0.73 MILES 50' NO.92 MILES McDONALD 0.9 MILES ST. HWY. 249 ST. HWY. 172 OUTH CAPBOCK

DISTANCES IN MILES

NOT TO SCALE

DIRECTIONS TO LOCATION

OIL FIELD

ST ANDERSON OIL FIELD

DIRECTIONS TO LOCATION FROM THE INTERSECTION ST. HWY. 249 & ST. HWY. 172, GO NORTH ON ST. HWY. 172 APPROX. 0.9 MILES, GO NORTHEAST ON CALICHE ROAD APPROX. 50', GO NORTH APPROX. 0.73 MILES, GO EAST APPROX. 0.96 MILES, GO SOUTH APPROX. APPROX. 0.23 MILES, GO EAST APPROX. 405', GO SOUTHWEST APPROX. 392', GO EAST APPROX. 0.92 MILES, GO NORTH APPROX. 0.88 MILES,GO NORTHEAST APPROX. 0.32 MILES, GO FAST APPROX. 405', GO NORTH APPROX. 10.50 NORTH APP APPROX. 0.92 MILES, GO NORTH APPROX. 0.08 MILES, GO NORTH APROX. APPROX. 0.32 MILES, GO EAST APPROX. 405', GO NORTH APPROX. 840', GO NORTHEAST APPROX. 201', GO EAST APPROX. 201', CONTINUE EAST APPROX. 1.9 MILES, GO SOUTH APPROX 1.9 MILES TO NORTH EDGE OF PAD FOR THIS LOCATION.

(31

MACK ENERGY CORPORATION McDONALD SWD 1

LOCATED 1334 FT. FROM THE SOUTH LINE AND 987 FT. FROM THE EAST LINE OF SECTION 9. TOWNSHIP 15 SOUTH. RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO

FEBRUARY 12, 2023

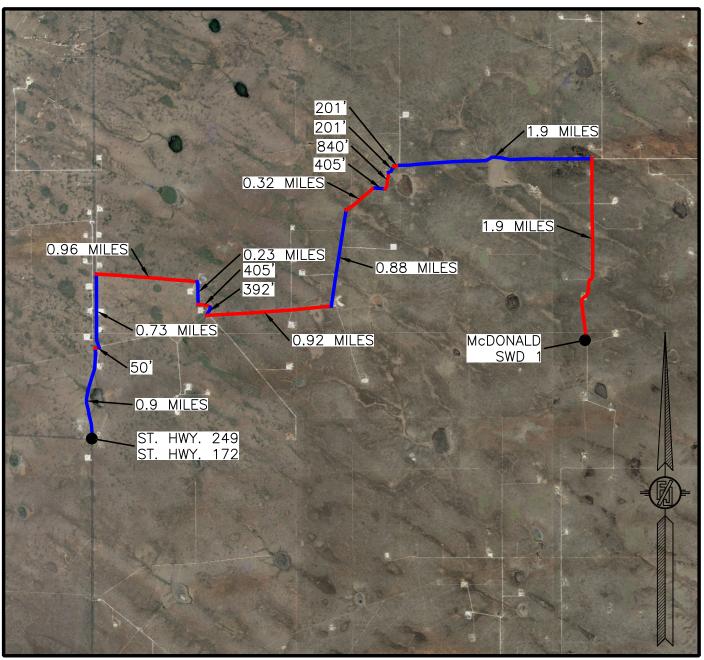
SURVEY NO. 9656

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO

SECTION 9, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO AERIAL PHOTO

NOT TO SCALE AERIAL PHOTO: GOOGLE EARTH JAN. 2018

MACK ENERGY CORPORATION McDONALD SWD 1


LOCATED 1334 FT. FROM THE SOUTH LINE AND 987 FT. FROM THE EAST LINE OF SECTION 9, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO

FEBRUARY 12, 2023

SURVEY NO. 9656

 $MADRON \quad SURVEYING, \quad INC. \quad {\tiny 505, 234-3327} \quad CARLSBAD, \quad NEW \quad MEXICO$

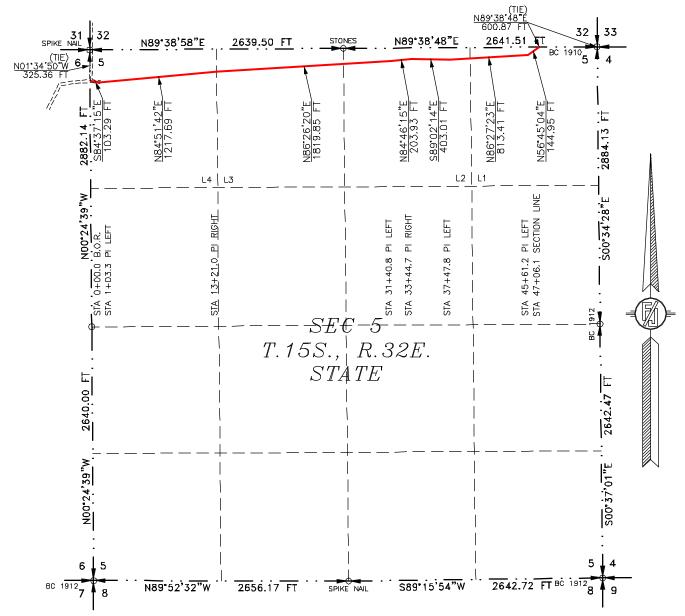
SECTION 9, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO AERIAL ACCESS ROUTE MAP

NOT TO SCALE AERIAL PHOTO: GOOGLE EARTH JAN. 2018

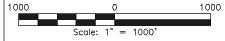
MACK ENERGY CORPORATION McDONALD SWD 1

LOCATED 1334 FT. FROM THE SOUTH LINE AND 987 FT. FROM THE EAST LINE OF SECTION 9, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO

FEBRUARY 12, 2023


SURVEY NO. 9656

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO


EXISTING CALICHE ROAD FOR ACCESS TO McDONALD SWD 1

MACK ENERGY CORPORATION

CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 5, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO FEBRUARY 12, 2023

SEE NEXT SHEET (2-10) FOR DESCRIPTION

GENERAL NOTES

1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.

2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

SHEET: 1-10

MADRON SURVEYING,

SURVEYOR CERTIFICATE

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MEXICO.

NEW MIXED THE PROPERTY OF TEBRUARY 2028

NEW MIXED THE NEW YOR THE NEW YORK THE NEW

301 SOUTH CANAL
CARLSBAD, NEW MEXICO 8822D
Phone (575) 234–3327

SURVEY NO. 9656

Reteased to Imaging: 5/15/2023 9:39:38 AM

EXISTING CALICHE ROAD FOR ACCESS TO McDONALD SWD 1

MACK ENERGY CORPORATION CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 5, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M.

LEA COUNTY, STATE OF NEW MEXICO FEBRUARY 12, 2023

DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 5, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M., LEA COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT WITHIN LOT 4 OF SAID SECTION 5, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M., WHENCE THE NORTHWEST CORNER OF SAID SECTION 5, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. BEARS NO1'34'50"W. A DISTANCE OF 325.36 FEET:

THENCE S84'37'15"E A DISTANCE OF 103.29 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE N84'51'42"E A DISTANCE OF 1217.69 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE N86'26'20"E A DISTANCE OF 1819.85 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE N84°46'15"E A DISTANCE OF 203.93 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S89'02'14"E A DISTANCE OF 403.01 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE N86'27'23"E A DISTANCE OF 813.41 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED: THENCE N56'45'04"E A DISTANCE OF 144.95 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE NORTHEAST CORNER OF SAID SECTION 5, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. BEARS N89'38'48"E, A DISTANCE OF 600.87 FEET;

SAID STRIP OF LAND BEING 4706.13 FEET OR 285.22 RODS IN LENGTH, CONTAINING 3.241 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS:

LOT 4	1318.12 L.F.	79.89	RODS	0.908	ACRES
LOT 3	1321.88 L.F.	80.11	RODS	0.910	ACRES
LOT 2	1322.53 L.F.	80.15	RODS	0.911	ACRES
LOT 1	743.60 L.F.	45.07	RODS	0.512	ACRES

SURVEYOR CERTIFICATE

NEW M

GENERAL NOTES

- 1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.
- 2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

SHEET: 2-10

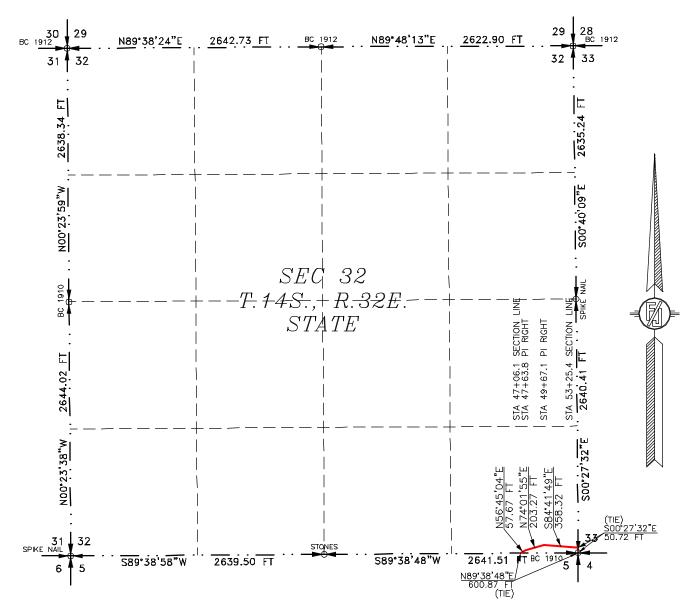
MADRON SURVEYING, INC. (575)

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN NEW MEXICO.

> CERTIFICATE IS EXECUTED AT CARLSBAD, EBRUARY 2028

MADRON SURVEYING, INC. 7301 SOUTH CANAL (CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3327

NEW MEXICO


SURVEY NO. 9656

Released to Imaging: 5/15/2023 9:39:38 AM


EXISTING CALICHE ROAD FOR ACCESS TO McDONALD SWD 1

MACK ENERGY CORPORATION

CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 32, TOWNSHIP 14 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO FEBRUARY 12, 2023

SEE NEXT SHEET (4-10) FOR DESCRIPTION

GENERAL NOTES

1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.

2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

SHEET: 3-10

MADRON SURVEYING

SURVEYOR CERTIFICATE

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE, SE NEW MEXICO.

NEW MIXED THE PROPERTY OF TEBRUARY 2028

NEW MIXED THE NEW YOR THE NEW YORK THE NEW

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3327

SURVEY NO. 9656

Released to Imaging: 5/15/2023 9:39:38 AM

EXISTING CALICHE ROAD FOR ACCESS TO McDONALD SWD 1

MACK ENERGY CORPORATION CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING

SECTION 32, TOWNSHIP 14 SOUTH, RANGE 32 EAST, N.M.P.M.

LEA COUNTY, STATE OF NEW MEXICO

FEBRUARY 12, 2023

DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 32, TOWNSHIP 14 SOUTH, RANGE 32 EAST, N.M.P.M., LEA COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT WITHIN THE SE/4 SE/4 OF SAID SECTION 32, TOWNSHIP 14 SOUTH, RANGE 32 EAST, N.M.P.M., WHENCE THE SOUTHEAST CORNER OF SAID SECTION 32, TOWNSHIP 14 SOUTH, RANGE 32 EAST, N.M.P.M. BEARS N89°38'48"E, A DISTANCE OF 600.87 FEET;

THENCE N56'45'04"E A DISTANCE OF 57.67 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE N74'01'55"E A DISTANCE OF 203.27 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S84'41'49"E A DISTANCE OF 358.32 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE SOUTHEAST CORNER OF SAID SECTION 32, TOWNSHIP 14 SOUTH, RANGE 32 EAST, N.M.P.M. BEARS S00'27'32"E, A DISTANCE OF 50.72 FEET;

SAID STRIP OF LAND BEING 619.26 FEET OR 37.53 RODS IN LENGTH, CONTAINING 0.426 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS:

SE/4 SE/4 619.26 L.F. 37.53 RODS 0.426 ACRES

SURVEYOR CERTIFICATE

NEW M

GENERAL NOTES

- 1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.
- 2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

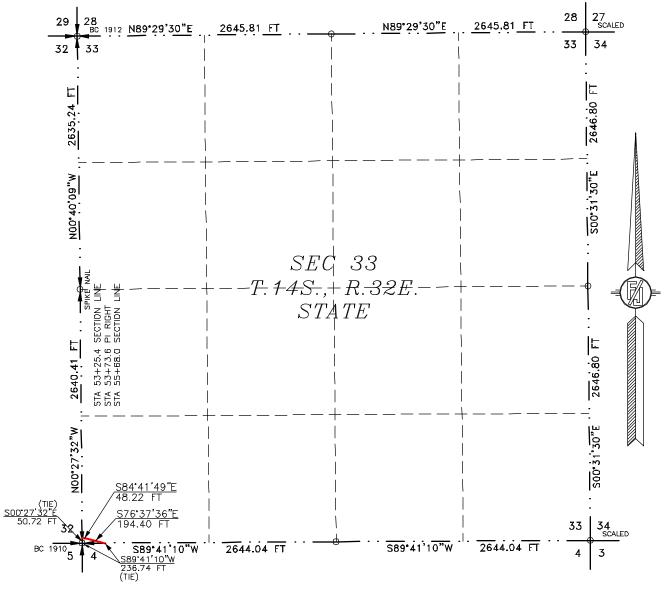
SHEET: 4-10

MADRON SURVEYING, INC. 301 St. (575)

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MEXICO.

FIGURE CERTIFICATE IS EXECUTED AT CARLSBAD,

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3327


SURVEY NO. 9656

BAD, NEW MEXICO

EXISTING CALICHE ROAD FOR ACCESS TO McDONALD SWD 1

MACK ENERGY CORPORATION

CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 33, TOWNSHIP 14 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO FEBRUARY 12, 2023

SEE NEXT SHEET (6-10) FOR DESCRIPTION

GENERAL NOTES

1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.

2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

SHEET: 5-10

MADRON SURVEYING, INC. (575)

SURVEYOR CERTIFICATE

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE, SE NEW MEXICO.

IN MEN DE MEDITAL CERTIFICATE IS EXECUTED AT CARLSBAD,

NEW MEN DE MAN OF EBRUARY 2023

MADRON SURVEYING, INC.

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 8822D Phone (575) 234-3327

SURVEY NO. 9656

BAD, NEW MEXICO

EXISTING CALICHE ROAD FOR ACCESS TO McDONALD SWD 1

MACK ENERGY CORPORATION CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 33, TOWNSHIP 14 SOUTH, RANGE 32 EAST, N.M.P.M.

LEA COUNTY, STATE OF NEW MEXICO
FEBRUARY 12, 2023

DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 33, TOWNSHIP 14 SOUTH, RANGE 32 EAST, N.M.P.M., LEA COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT WITHIN THE SW/4 SW/4 OF SAID SECTION 33, TOWNSHIP 14 SOUTH, RANGE 32 EAST, N.M.P.M., WHENCE THE SOUTHWEST CORNER OF SAID SECTION 33, TOWNSHIP 14 SOUTH, RANGE 32 EAST, N.M.P.M. BEARS SOO'27'32"E, A DISTANCE OF 50.72 FEET;

THENCE S84'41'49"E A DISTANCE OF 48.22 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S76'37'36"E A DISTANCE OF 194.40 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE SOUTHWEST CORNER OF SAID SECTION 33, TOWNSHIP 14 SOUTH, RANGE 32 EAST, N.M.P.M. BEARS S89'41'10"W, A DISTANCE OF 236.74 FEET;

SAID STRIP OF LAND BEING 242.62 FEET OR 14.70 RODS IN LENGTH, CONTAINING 0.167 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS:

SW/4 SW/4 242.62 L.F. 14.70 RODS 0.167 ACRES

SURVEYOR CERTIFICATE

NEW M

GENERAL NOTES

- 1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.
- 2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

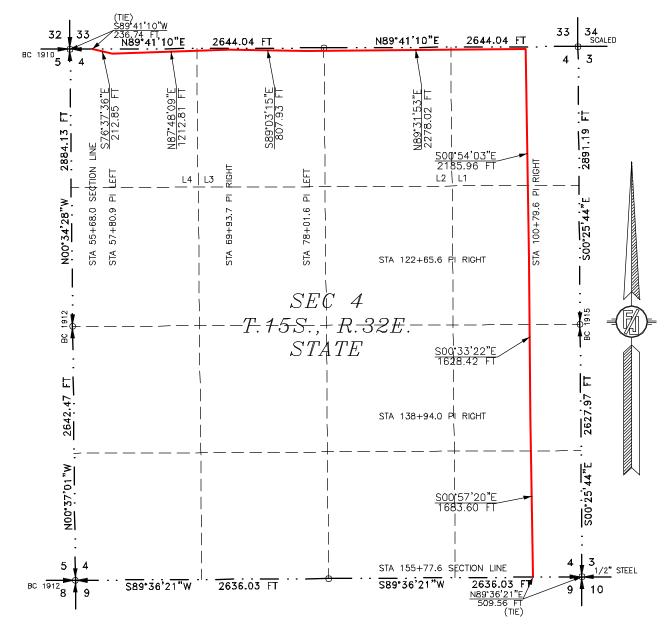
SHEET: 6-10

MADRON SURVEYING, INC. (575)

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MEXICO.

ENERGY OF EBRUARY 2028

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3327


SURVEY NO. 9656

BAD, NEW MEXICO

EXISTING CALICHE ROAD FOR ACCESS TO McDONALD SWD 1

MACK ENERGY CORPORATION

CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 4, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO FEBRUARY 12, 2023

SEE NEXT SHEET (8-10) FOR DESCRIPTION

GENERAL NOTES

1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.

2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

SHEET: 7-10

MADRON SURVEYING,

SURVEYOR CERTIFICATE

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MEXICO.

NEW MIXES THEN DE TOP OF EBRUARY 2028

NEW MADRON SURVEYING, INC.

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234–3327

SURVEY NO. 9656

Released to Imaging: 5/15/2023 9:39:38 AM

EXISTING CALICHE ROAD FOR ACCESS TO McDONALD SWD 1

MACK ENERGY CORPORATION

CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 4, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO FEBRUARY 12, 2023

DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 4, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M., LEA COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT WITHIN LOT 4 RR/4 OF SAID SECTION 4, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M., WHENCE THE NORTHWEST CORNER OF SAID SECTION 4, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. BEARS S89'41'10"W, A DISTANCE OF 236.74 FEET;

THENCE \$76'37'36"E A DISTANCE OF 212.85 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE N87'48'09"E A DISTANCE OF 1212.81 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$89'03'15"E A DISTANCE OF 807.93 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE N89'31'53"E A DISTANCE OF 2278.02 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$00'54'03"E A DISTANCE OF 2185.96 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$00'33'22"E A DISTANCE OF 1628.42 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$00'57'20"E A DISTANCE OF 1683.60 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE SOUTHEAST CORNER OF SAID SECTION 4, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. BEARS N89'36'21"E, A DISTANCE OF 509.56 FEET;

SAID STRIP OF LAND BEING 10009.59 FEET OR 606.94 RODS IN LENGTH, CONTAINING 6.894 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS:

LOT 4	1091.89 L.F.	66.18 RODS	0.752 ACRES
LOT 3	1322.40 L.F.	80.15 RODS	0.911 ACRES
LOT 2	1321.99 L.F.	80.12 RODS	0.910 ACRES
LOT 1	2198.52 L.F.	133.24 RODS	1.514 ACRES
SE/4 NE/4	1445.29 L.F.	87.59 RODS	0.995 ACRES
NE/4 SE/4	1314.74 L.F.	79.68 RODS	0.905 ACRES
SE/4 SE/4	1314.76 L.F.	79.68 RODS	0.905 ACRES

SURVEYOR CERTIFICATE

NEW M

GENERAL NOTES

- 1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.
- 2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

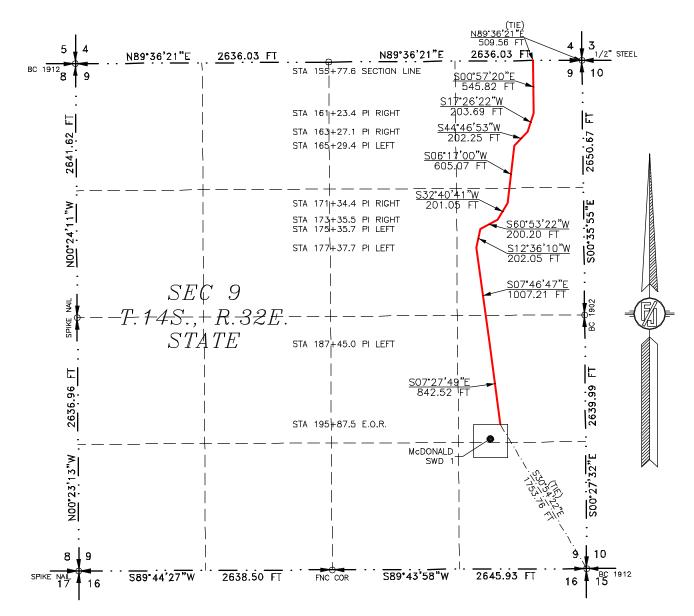
SHEET: 8-10

MADRON SURVEYING, INC. 301 St. (575)

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MEXICO.

MANUS CERTIFICATE IS EXECUTED AT CARLSBAD,

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3327


SURVEY NO. 9656

NEW MEXICO

EXISTING CALICHE ROAD FOR ACCESS TO McDONALD SWD 1

MACK ENERGY CORPORATION

CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 9, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO FEBRUARY 12, 2023

SEE NEXT SHEET (10-10) FOR DESCRIPTION

NEW M

GENERAL NOTES

1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.

2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

SHEET: 9-10

MADRON SURVEYING,

SURVEYOR CERTIFICATE

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MEXICO.

MADRON SURVEYING, INC.

301 SOUTH CANAL CARLSBAD, NEW MEXICO 8822D Phone (575) 234-3327

SURVEY NO. 9656

Released to Imaging: 5/15/2023 9:39:38 AM

EXISTING CALICHE ROAD FOR ACCESS TO McDONALD SWD 1

MACK ENERGY CORPORATION

CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 9, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO FEBRUARY 12, 2023

DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 9, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M., LEA COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT WITHIN THE NE/4 NE/4 OF SAID SECTION 9, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M., WHENCE THE NORTHEAST CORNER OF SAID SECTION 9, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. BEARS N89°36'21"E, A DISTANCE OF 509.56 FEET;

THENCE \$00°57′20″E A DISTANCE OF \$45.82 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$17'26′22″W A DISTANCE OF 203.69 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$44'46'53″W A DISTANCE OF 202.25 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$06'17'00″W A DISTANCE OF 605.07 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$32'40'41″W A DISTANCE OF 201.05 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$60'53'22″W A DISTANCE OF 200.20 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$12'36'10″W A DISTANCE OF 202.05 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$07'46'47″E A DISTANCE OF 1007.21 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$07'27'49″E A DISTANCE OF 842.52 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE SOUTHEAST CORNER OF SAID SECTION 9, TOWNSHIP 15 SOUTH, RANGE 32 EAST, N.M.P.M. BEARS \$30'54'22'E, A DISTANCE OF 1753.76 FEET;

SAID STRIP OF LAND BEING 4009.86 FEET OR 243.02 RODS IN LENGTH, CONTAINING 2.762 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS:

NE/4 NE/4 1397.18 L.F. 84.68 RODS 0.962 ACRES SE/4 NE/4 1472.96 L.F. 89.27 RODS 1.014 ACRES NE/4 SE/4 1139.72 L.F. 69.07 RODS 0.785 ACRES

SURVEYOR CERTIFICATE

NEW M

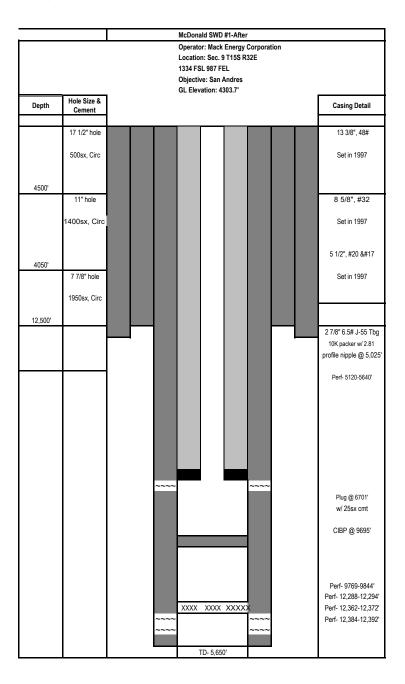
GENERAL NOTES

- 1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.
- 2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

SHEET: 10-10

MADRON SURVEYING, INC. 301 St. (575)

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MEXICO.


MANUS CERTIFICATE IS EXECUTED AT CARLSBAD,

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3327

SURVEY NO. 9656

AD, NEW MEXICO

				McDonald SWD #1-Befo	re	
				Operator: Mack Energy	Corporation	
				Location: Sec. 9 T15S R	32E	
				1334 FSL 987 FEL Objective: San Andres		
	_	_		GL Elevation: 4303.7'		
Depth	Hole Size &					Casing Detail
	Cement					
	17 1/2" hole					13 3/8", 48#
	500sx, Circ					Set in 1997
						Plug @ 585' -Surface
4500'						w/ 30sx cmt
	11" hole					8 5/8", #32
	1400sx, Circ	•				Set in 1997
						5 4 /OII - HOO 0 H47
4050'						5 1/2", #20 
	7 7/8" hole					Set in 1997
	4050 0:					
	1950sx, Circ					Plug @ 1564'
12,500'					1	w/ 25sx cmt
			7			
						Plug @ 4109'
						w/ 25sx cmt
						Plug @ 6701'
						w/ 25sx cmt
						CIBP @ 9695'
						Perf- 9769-9844' Perf- 12,288-12,294'
				XXXX XXXX XXXX	X	Perf- 12,362-12,372'
			~~~~		~~~	Perf- 12,384-12,392'
			~~~	1	~~~	
				TD- 12,500'		
				12 12,000	<u> </u>	

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated March 09, 2023 and ending with the issue dated March 09, 2023.

Publisher

Sworn and subscribed to before me this 9th day of March 2023.

In Plack

Business Manager

My commission expires

January 29, 2027

(Seal) STATE OF NEW MEXICO
NOTARY PUBLIC
GUSSIE RUTH BLACK
COMMISSION # 1087526
COMMISSION EXPIRES 01/29/2027

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said

LEGAL NOTICE March 9, 2023

Mack Energy Corporation, Post Office Box 960, Artesia, NM 88211-0960, has filed an Application with the New Mexico Oil Conservation Division seeking authorization to inject produced water into the McDonald SWD #1 1334 FSL 987 FEL of Section 9, T15S, R32E, NMPM, Lea County, New Mexico. The water will be injected into the San Andres at a disposal depth of 5,120-5,640'. Water will be injected at a maximum surface pressure of 1,024# and a maximum injection rate of 10,000-15,000 BWPD. Any interest party with questions or comments may contact Deana Weaver at Mack Energy Corporation, Post Office Box 960, Artesia, NM 88211-0960 or call 575-748-1288. Objections to this application or requests for hearing must be filed with the Oil Conservation Division, 1220 South Saint Francis Drive, Santa Fe, New Mexico 87505, within lifteen days of the date of publication of this notice.

67100900

00276451


NORA VAZQUEZ MACK ENERGY CORPORATION PO BOX 960 ARTESIA, NM 88211-0960

LEGAL NOTICE March 9, 2023

Mack Energy Corporation, Post Office Box 960, Artesia, NM 88211-0960, has filed an Application with the New Mexico Oil Conservation Division seeking authorization to inject produced water into the McDonald SWD #1 1334 FSL 987 FEL of Section 9, T15S, R32E, NMPM, Lea County, New Mexico. The water will be injected into the San Andres at a disposal depth of 5,120-5,640'. Water will be injected at a maximum surface pressure of 1,024# and a maximum injection rate of 10,000-15,000 BWPD. Any interest party with questions or comments may contact Deana Weaver at Mack Energy Corporation, Post Office Box 960, Artesia, NM 88211-0960 or call 575-748-1288. Objections to this application or requests for hearing must be filed with the Oil Conservation Division, 1220 South Saint Francis Drive, Santa Fe, New Mexico 87505, within fifteen days of the date of publication of this notice. #00276451

Released to Imaging: 5/15/2023 9:39:38 AM

OCD Well Locations

Areas Wells - Large Scale Oil, Plugged Override 1 Gas, Active **PLSS Second Division** Override 2 Gas, Plugged **PLSS First Division** Override 3 Oil, Active PLSS Townships

Oil, Cancelled

1:18,056 0.35 0.7 mi 0 0.17 0 0.28 0.55 1.1 km

Esri Community Maps Contributors, New Mexico State University, Texas Parks & Wildlife, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA, Esri, NASA, NGA,

Name	Address	City	State	e Zip	Certified Mail Id
Stearns	HC 65 Box 900	Crossroads	NM	88114	7021 0350 0000 4936 7403
Chevron USA Inc.	P.O. Box 1635	Houston	TX	77251-1635	7018 1130 0002 2208 6788
Commissioner of Public Lands	P.O. Box 1148	Santa Fe	NM	87504-1148	7018 1130 0002 2208 6795
State Land Office					

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 746-9539

April 24, 2023

<u>Via Certified Mail 7021 0350 0000 4936 7403</u> Return Receipt Requested

Stearns HC 65 Box 900 Crossroads, NM 88114

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a San Andres SWD well. Produced water will be injected at a proposed depth of 5,120-5,640'. The McDonald SWD #1 located 1334 FSL & 987 FEL, Sec. 9 T15S R32E, Lea County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

Deana Weaver

Regulatory Technician II

DW/

Attachments

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 746-9539

April 24, 2023

Via Certified Mail 7018 1130 0002 2208 6795 Return Receipt Requested

Commissioner of Public Lands New Mexico State Land Office P.O. Box 1148 Santa Fe, NM 87504-1148

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a San Andres SWD well. Produced water will be injected at a proposed depth of 5,120-5,640'. The McDonald SWD #1 located 1334 FSL & 987 FEL, Sec. 9 T15S R32E, Lea County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

Deana Weaver

Regulatory Technician II

DW/

Attachments

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 746-9539

April 24, 2023

<u>Via Certified Mail 7018 1130 0002 2208 6788</u> Return Receipt Requested

Chevron USA Inc P.O. Box 1635 Houston, TX 77251-1635

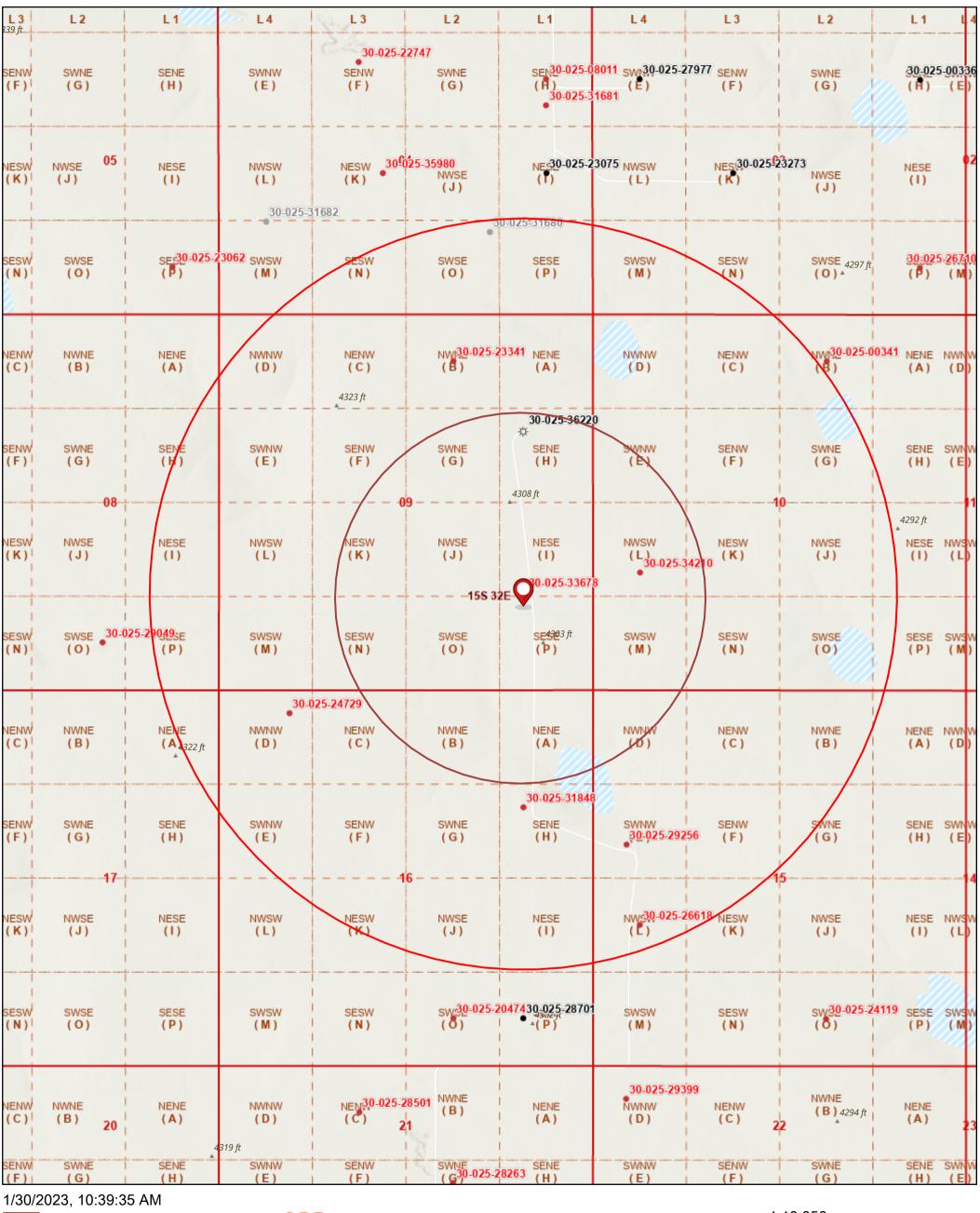
To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a San Andres SWD well. Produced water will be injected at a proposed depth of 5,120-5,640'. The McDonald SWD #1 located 1334 FSL & 987 FEL, Sec. 9 T15S R32E, Lea County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation


Deana Weaver

Regulatory Technician II

DW/

Attachments

OCD Well Locations

Override 1

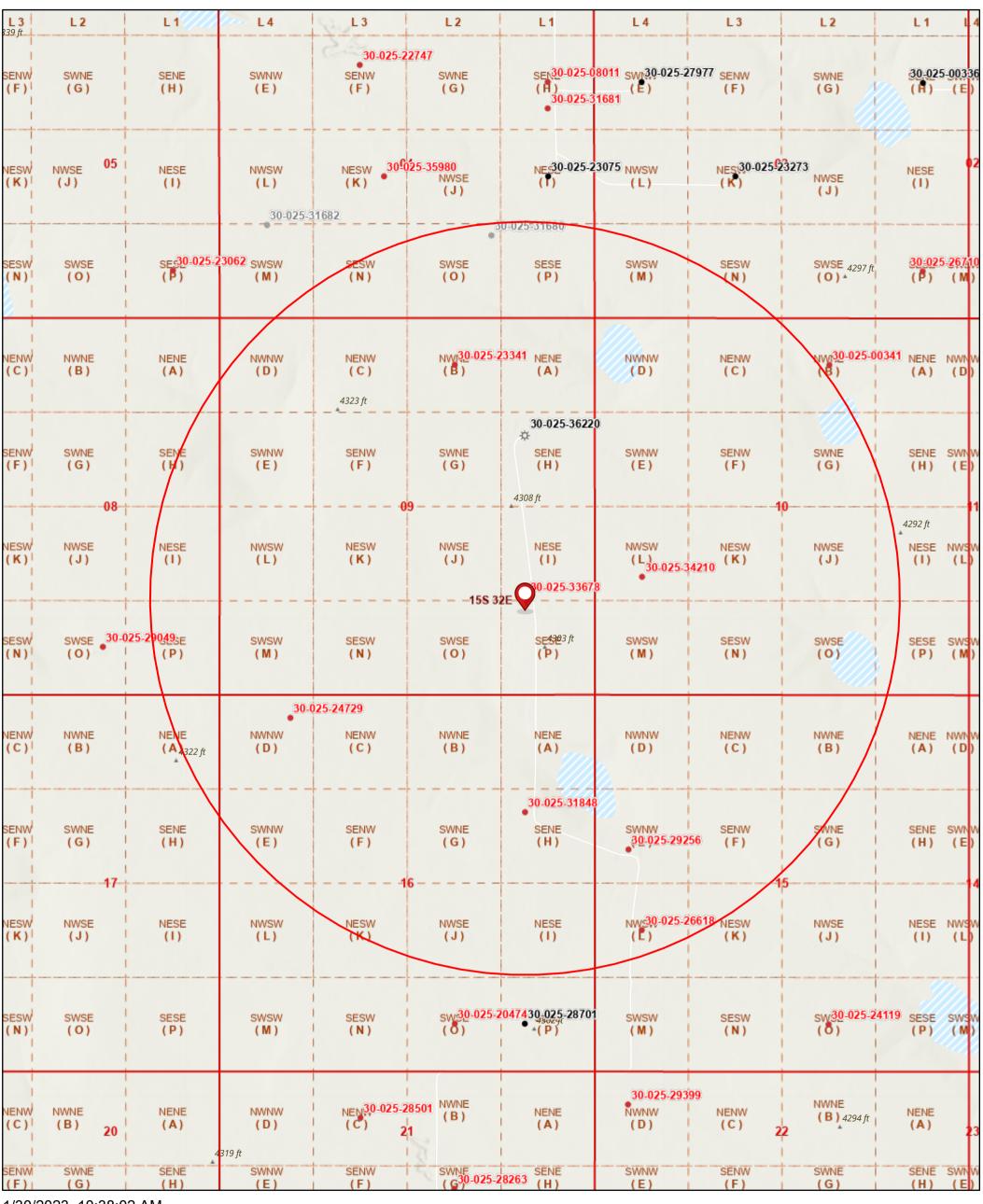
Oil, Active

PLSS Second Division

Wells - Large Scale

PLSS First Division Oil, Cancelled

Gas, Active


Gas, Plugged

Oil, Plugged **PLSS Townships**

1:18,056 0 0.17 0.35 0.7 mi 0 0.28 0.55 1.1 km

Esri Community Maps Contributors, New Mexico State University, Texas Parks & Wildlife, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA, Esri, NASA, NGA,

OCD Well Locations

1/30/2023, 10:38:02 AM

Wells - Large Scale
Oil, Plugged
Gas, Active
PLSS Second Division
PLSS First Division
Oil, Active
PLSS Townships

Esri Community Maps Contributors, New Mexico State University, Texas Parks & Wildlife, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA, Esri, NASA, NGA,

0.7 mi


1.1 km

1:18,056

0.35

0.55

Location Map

2/2/2023, 2:48:26 PM

Override 1

Wells - Large Scale

Gas, Active

Gas, Plugged

Oil, Active

PLSS Second Division

Oil, Cancelled

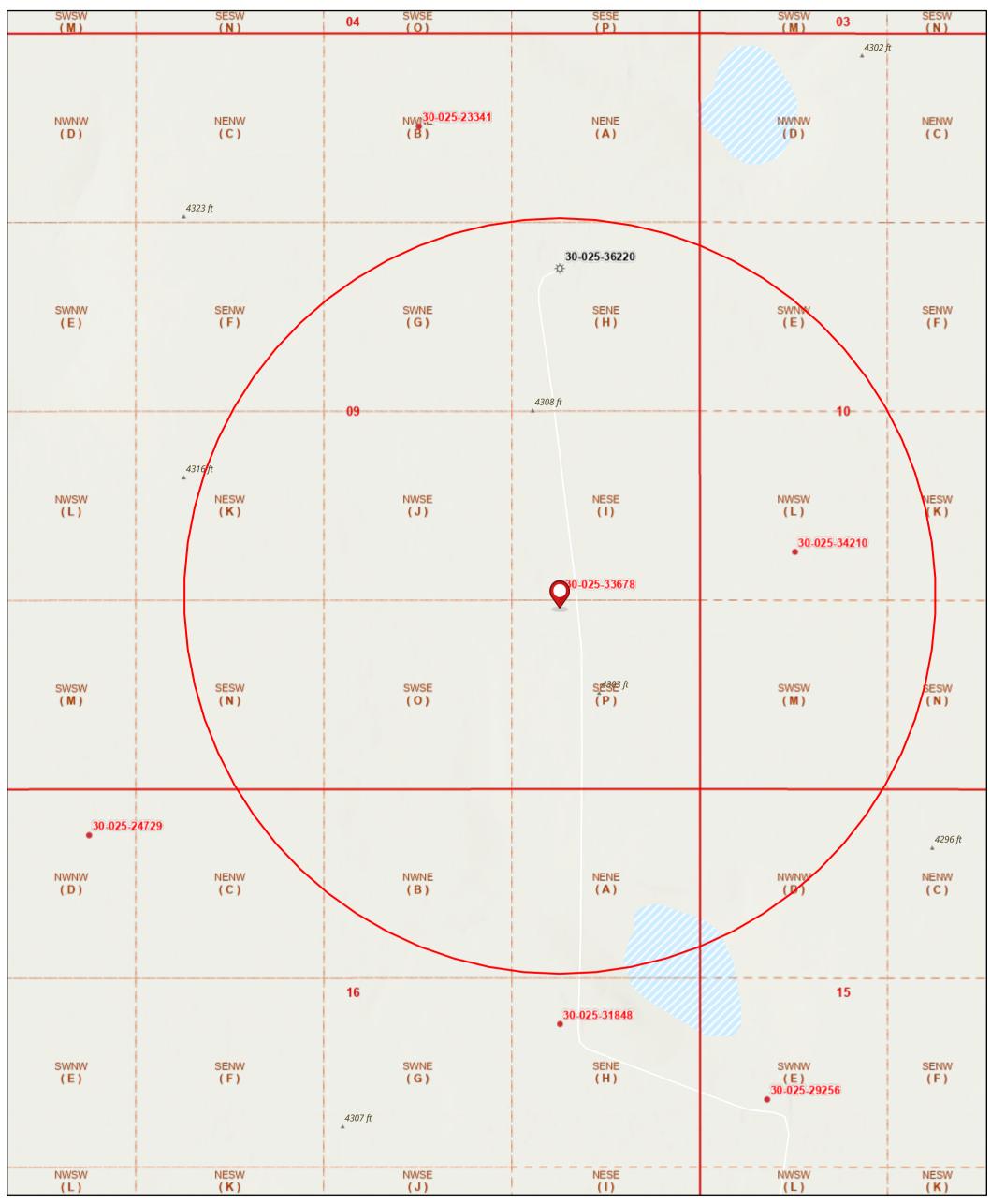
PLSS First Division

Oil, Plugged

PLSS Townships

1:18,056 0 0.17 0.35 0.7 mi

0.55

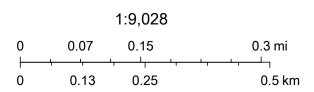

0

0.28

Oil Conservation Division of the New Mexico Energy, Minerals and Natural Resources Department., Esri, HERE, Garmin, iPC, Maxar, BLM

1.1 km

OCD Well Locations

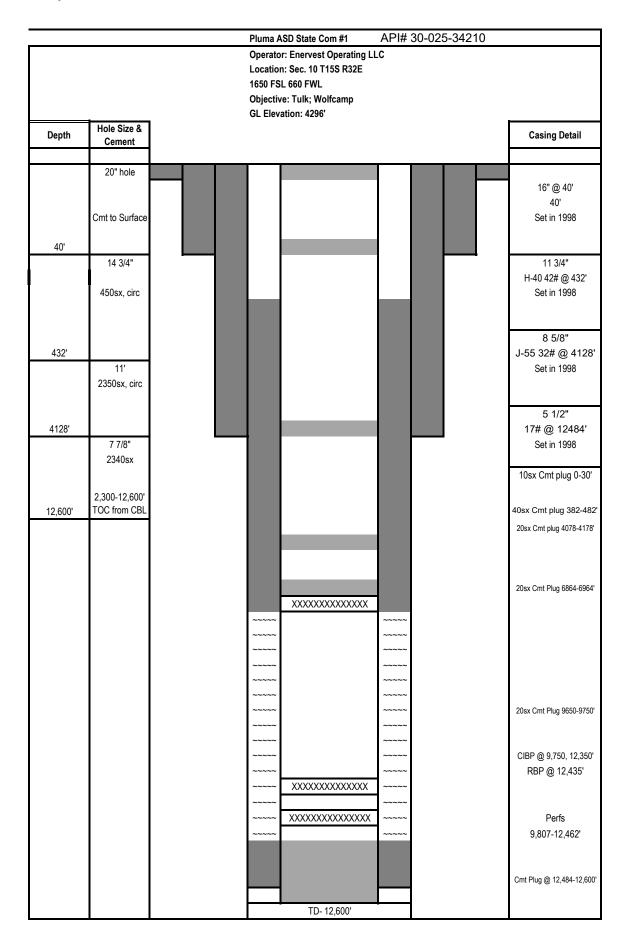

1/30/2023, 10:34:04 AM

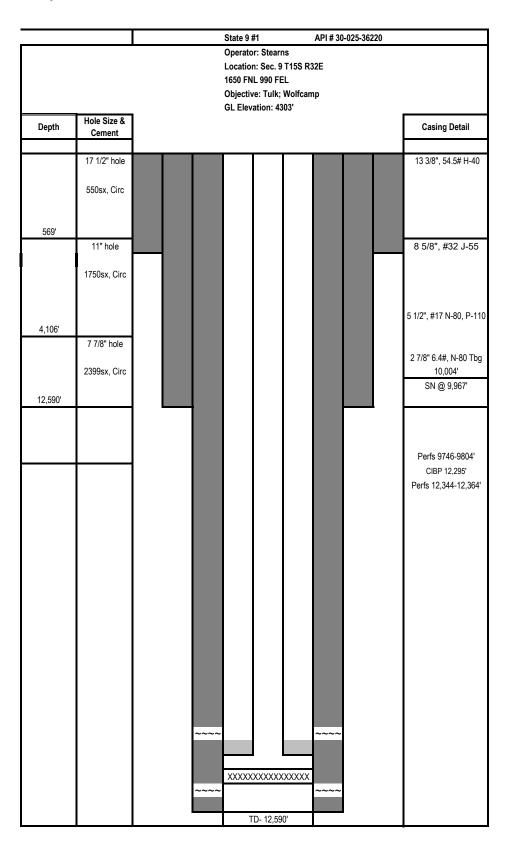
Wells - Large Scale

- Gas, Active
- Gas, Plugged
- Oil, Plugged

PLSS Second Division

PLSS First Division




Esri Community Maps Contributors, New Mexico State University, Texas Parks & Wildlife, © OpenStreetMap, Garmin, SafeGraph, HERE, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Received by OCD: 4/24/2023 2:41:14 PM

McDonald SWD #1 C-108 Well Tabulation Penetrating Injection Zone in Review Area Mack Energy Corporation Proposed Disposal Well

Well Name	API#	County	Footage	Sec	TWN	RNG	Type	Status	Spud Date	Comp Date	TD	PBTD	Comp Zone	Comp Interval	Hole Size	Casing Prog	Cement
North Feather State Unit #2	30-025-33678	Lea	1340 FSL 990 FEL	9	15S	32E	Gas	P&A	3/30/1997	8/14/1997	12,500'	12,477'	Feather; Morrow North	9769-9844', 12,288-12,294', 12,362-12,372', 12,384-12,392'	17 1/2"	13 3/8" 48# @ 4500'	500sx Class C, Circ
														CIBP @ 9695', 25sx Cmt Plug @ 6701,4109,1564', 30sx cmt	11"	8 5/8" 32# @ 4050'	1150sx Lead & 250sx Tail. Circ
														prug 000-0	7 7/8"	5 1/2" 17 & 20# @ 12,500'	1150sx CI C & 800sx CI H, Circ
Pluma ASD State Com #1	30-025-34210	Lea	1650 ESL 660 EWI	10	158	32F	Gas	P&A	12/5/1997	2/10/1998	12 600'	12 480'	Tulk: Wolfcamp	Cmt Plug @ 12,484-12,600', 9,807-12,462', CIBP @ 9,750',12,350', RRP, @ 12,435'	20"	16" @ 40'	Cmt to Surface
riana 702 date dom #1	00-020-04210	Lou	10001 02 0001 WE	10	100	UZL	Gus	1 001	12/0/1001	2/10/1000	12,000	12,400		40sx cmt plug 382-482'	14 3/4"	11 3/4" H-40 42# @ 432'	450sx Class C, Circ
														20sx cmt plug 4078-4178', 6864 6964', 9650-9750'	11"	8 5/8" J-55 32# @ 4128'	2350sx Class C, Circ
														10sx 30'-0	7 7/8"	5 1/2" 17# @ 12,484'	2340sx
State 9 #1	30-025-36220	Lea	1650 FNL 990 FEL	9	15S	32E	Gas	Producina	4/16/2003	7/3/2003	12.590'	12.260'	Tulk: Wolfcamp	9,746-9,804', CIBP @ 12,295', 12.344-12.364'	17 1/2"	13 3/8" 48# 54.5# H-40 @ 569'	550sx . Circ
								ŭ			, , , , , ,	,		7- 7	11"	8 5/8" 32# J-55 @ 4106'	1750sx, Circ
															7 7/8"		2399sx, Circ SN @ 9,967'
																	<u> </u>
										1							
F	North Feather State Unit #2 Pluma ASD State Com #1	North Feather State Unit #2 30-025-33678 Pluma ASD State Com #1 30-025-34210	North Feather State Unit #2 30-025-33678 Lea Pluma ASD State Com #1 30-025-34210 Lea	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL Pluma ASD State Com #1 30-025-34210 Lea 1650 FSL 660 FWL	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL 9 Pluma ASD State Com #1 30-025-34210 Lea 1650 FSL 660 FWL 10	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL 9 15S Pluma ASD State Com #1 30-025-34210 Lea 1650 FSL 660 FWL 10 15S	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL 9 15S 32E Pluma ASD State Com #1 30-025-34210 Lea 1650 FSL 660 FWL 10 15S 32E	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL 9 15S 32E Gas Pluma ASD State Com #1 30-025-34210 Lea 1650 FSL 660 FWL 10 15S 32E Gas	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL 9 15S 32E Gas P&A Pluma ASD State Com #1 30-025-34210 Lea 1650 FSL 660 FWL 10 15S 32E Gas P&A	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL 9 15S 32E Gas P&A 3/30/1997 Pluma ASD State Com #1 30-025-34210 Lea 1650 FSL 660 FWL 10 15S 32E Gas P&A 12/5/1997	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL 9 15S 32E Gas P&A 3/30/1997 8/14/1997 Pluma ASD State Com #1 30-025-34210 Lea 1650 FSL 660 FWL 10 15S 32E Gas P&A 12/5/1997 2/10/1998	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL 9 15S 32E Gas P&A 3/30/1997 8/14/1997 12,500' Pluma ASD State Com #1 30-025-34210 Lea 1650 FSL 660 FWL 10 15S 32E Gas P&A 12/5/1997 2/10/1998 12,600'	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL 9 15S 32E Gas P&A 3/30/1997 8/14/1997 12,500' 12,477' Pluma ASD State Com #1 30-025-34210 Lea 1850 FSL 660 FWL 10 15S 32E Gas P&A 12/5/1997 2/10/1998 12,600' 12,480'	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL 9 15S 32E Gas P&A 3/30/1997 8/14/1997 12,500' 12,477' Feather: Morrow North Pluma ASD State Com #1 30-025-34210 Lea 1650 FSL 660 FWL 10 15S 32E Gas P&A 12/5/1997 2/10/1998 12,600' 12,480' Tulk; Wolfcamp	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL 9 15S 32E Gas P&A 3/30/1997 8/14/1997 12,500' 12,477' Feather; Morrow North 9769-9844', 12,288-12,294', 12,362-12,372', 12,384-12,392' CIBP @ 9695', 25sx Cmt Plug @ 6701,4109,1564', 30sx cmt plug 585'-0 Pluma ASD State Com #1 30-025-34210 Lea 1650 FSL 660 FWL 10 15S 32E Gas P&A 12/5/1997 2/10/1998 12,600' 12,480' Tulk; Wolfcamp 9,750',12,350' RBP @ 12,435' 40sx cmt plug 382-482' 20sx cmt plug 4078-4178', 686' 6964', 9650-9750' 10sx 30'-0 9769-9844', 12,288-12,294', 12,362-12,392' CIBP @ 9695', 25sx Cmt Plug @ 6701,4109,1564', 30sx cmt plug 585'-0 Cmt Plug @ 12,484-12,600', 9,807-12,462', CIBP @ 9,750',12,350' RBP @ 12,2435' 40sx cmt plug 382-482' 20sx cmt plug 382-482' 20sx cmt plug 382-482' 20sx cmt plug 4078-4178', 686' 6964', 9650-9750' 10sx 30'-0 9,746-9,804', CIBP @ 12,295', 12,350' CIBP	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL 9 15S 32E Gas P&A 3/30/1997 8/14/1997 12,500' 12,477' Feather; Morrow North 12,362-12,372', 12,384-12,392' 17 1/2" CIBP @ 9695; 25sx Cmt Plug @ 6701.4109,1564', 30sx cmt plug 585-0 77/8" Pluma ASD State Com #1 30-025-34210 Lea 1650 FSL 660 FWL 10 15S 32E Gas P&A 12/5/1997 2/10/1998 12,600' 12,480' Tulk; Wolfcamp 9,750',12,350' RBP @ 12,435' 40sx cmt plug 382-482' 14 3/4" 20sx cmt plug 4078-4178', 6864-6864', 9550-9750' 11" State 9 #1 30-025-36220 Lea 1650 FNL 990 FEL 9 15S 32E Gas Producing 4/16/2003 7/3/2003 12,590' 12,260' Tulk; Wolfcamp 9,746-9,804', CIBP @ 12,295', 17 1/2" State 9 #1 10 30-025-36220 Lea 1650 FNL 990 FEL 9 15S 32E Gas Producing 4/16/2003 7/3/2003 12,590' 12,260' Tulk; Wolfcamp 12,344-12,364' 17 1/2"	North Feather State Unit #2 30-025-33678 Lea 1340 FSL 990 FEL 9 15S 32E Gas P&A 3/30/1997 8/14/1997 12.500* 12.477* Feather, Morrow North 12.362-12.372*, 12.384-12.392* 17 1/2* 13 3/8* 48# @ 4500* 12.477* Feather, Morrow North 12.362-12.372*, 12.384-12.392* 17 1/2* 13 3/8* 48# @ 4500* 12.477* Feather, Morrow North 12.362-12.372*, 12.384-12.392* 17 1/2* 13 3/8* 48# @ 4500* 12.477* Feather, Morrow North 12.362-12.372*, 12.384-12.392* 17 1/2* 13 3/8* 48# @ 4500* 12.477* Feather, Morrow North 12.362-12.372*, 12.384-12.392* 17 1/2* 13 3/8* 48# @ 4500* 17 1/2* 13 3/8* 48# @ 4500* 12.477* Feather, Morrow North 12.362-12.372*, 12.384-12.392* 17 1/2* 13 3/8* 48# @ 4500* 12.477* Feather, Morrow North 12.362-12.372*, 12.384-12.392* 17 1/2* 13 3/8* 48# @ 4500* 12.477* Feather, Morrow North 12.362-12.372*, 12.384-12.392* 17 1/2* 13 3/8* 48# @ 4500* 12.477* Feather, Morrow North 12.362-12.372*, 12.384-12.392* 17 1/2* 13 3/8* 48# @ 4500* 12.477* Feather, Morrow North 12.362-12.372*, 12.384-12.392* 17 1/2* 13 3/8* 48# @ 4500* 17 1/2* 13 3

				North Feather State Unit	#2		
				Operator: HL Brown Ope	erating L	LC	
				Location: Sec. 9 T15S R3	32E		
				1340 FSL 990 FEL Objective: Feather; Morr	ow North	1	
	_	_		GL Elevation: 4301'		-	_
Depth	Hole Size &						Casing Detail
	Cement						
	17 1/2" hole						13 3/8", 48#
							500sx, Circ
							Set in 1997
							Plug @ 585' -Surface
4500'							
	11" hole						8 5/8", #32
							1400sx, Circ Set in 1997
							96(III 199 <i>1</i>
4050'							5 1/2", #20  1950sx, Circ
4050	7 7/8" hole						Set in 1997
	, 6						55t 1551
10 500							Plug @ 1564'
12,500'		ŀ					w/ 25sx cmt
							Plug @ 4109'
							w/ 25sx cmt
							Div. @ 67041
							Plug @ 6701' w/ 25sx cmt
							W ZOOX OITE
							CIBP @ 9695'
							വലെ എ മമമാ
							Perf- 9769-9844'
							Perf- 12,288-12,294'
				XXXX XXXX XXXXX	<		Perf- 12,362-12,372'
			~~~		~~~		Perf- 12,384-12,392'
			~~~~		~~~~		
				TD- 12,500'		<u>l</u>	
				,000			

Water Analysis Report

Customer:	Mack Energy Corporation	Sample #:	4212360
Area:	Artesia	Analysis ID #:	184904
Lease:	McDonald	BOPD:	
Location:	Fresh Water Well 1	BWPD:	
Sample Point:	Wellhead		

Sampling date:	4/5/2023	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis date:	4/20/2023	Chloride:	237.8	6.71	Sodium:	139.7	6.08
Analysis:	Catalyst	Bicarbonate:	217.2	3.56	Magnesium:	13.1	1.08
TDS (mg/l or g/m3):	687	Carbonate:		0.00	Calcium:	49.4	2.47
Density (g/cm3):	1.003	Sulfate:	0.0	0.00	Potassium:	26.0	0.66
Density (g/eme/).	1.000	Borate:	2.6	0.02	Strontium:	0.0	0.00
Hydrogen Sulfide:	0	Phosphorus:		0.00	Barium:	1.1	0.02
Carbon Dioxide:	0				Iron:	0.0	0.00
Comments:		pH at time of samp	•	7.08	Manganese:	0.0	0.00
		pH used in Calcula	ation:	7.08	Conductivity (micro	o-ohms/cm):	1696
		Temperature @ lal	b conditions(F):	75	Resistivity (ohm m	eter):	5.8962

		Values Calculated at the Given Conditions - Amounts of Scale in lb/1000 bbl										
Temp	Calcite CaCO3		· · · ·		Anhydrite CaSO4		Celestite SrSO4		Barite BaSO4			
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount		
80	-0.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
100	-0.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
120	-0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
140	0.08	1.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
160	0.24	5.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
180	0.42	10.51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
200	0.60	15.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
220	0.79	19.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

Water Right Summary

get image lis

WR File Number: L 10748 Subbasin: L Cross Reference: -

Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NATURAL RESOURCE

Primary Status: PMT PERMIT

Total Acres: Subfile: - Header: -

Total Diversion: 0 Cause/Case: -

Owner: YATES PETROLEUM
Contact: CORKY GLENN

Documents on File

Status From/
Trn# Doc File/Act 1 2 Transaction Desc. To Acres Diversion Consumptive

\$\frac{\text{get}}{513603} \frac{72121}{72121} \frac{1997-12-10}{1997-12-10} \quad \text{EXP} \quad \text{EXP} \quad \text{L} \quad \text{10748} \quad \text{(T)} \quad \text{EXPIRED} \quad \text{T} \quad \text{3}

Current Points of Diversion

Q (NAD83 UTM in meters)

 POD Number
 Well Tag
 Source
 64 Q16 Q4Sec
 Tws Rng
 X
 Y
 Other Location Desc

 L 10303
 Shallow
 1 4 2 16 15S 32E
 619797 3654188*
 1650' FNL, 1190' FEL

An () after northing value indicates UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

2/2/23 9:41 AM WATER RIGHT SUMMARY

Water Right Summary

get image lis

WR File Number: L 06485 Subbasin: L Cross Reference:

Primary Purpose: STK 72-12-1 LIVESTOCK WATERING

Primary Status: PMT PERMIT

Total Acres: Subfile: - Header: -

Total Diversion: 3 Cause/Case: -

Owner: CACTUS DRILLING CORP

Contact: BETTY STRAUSER

Documents on File

Status							From/					
	Trn#	Doc	File/Act	1	2	Transaction Desc.	To	Acres	Diversion	Consumptive		
et iges	509803	72121	1969-12-05	PMT	APR	L 06485	T		3			
et iges	509800	72121	1969-03-19	PMT	LOG	L 06485 (T EXPIRED)	T		3			

Current Points of Diversion

O (NAD83 UTM in meters)

 POD Number
 Well Tag
 Source
 64 Q16 Q4 Sec Tws Rng
 X
 Y
 Other Location Desc

 L 06485
 Shallow
 4 4 4 05 15S 32E
 618358 3656383*
 3656383*

An () after northing value indicates UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

2/2/23 9:43 AM WATER RIGHT SUMMARY

Water Right Summary

get image lis

WR File Number: L 09614 Subbasin: L Cross Reference: -

Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NATURAL RESOURCE

Primary Status: PMT PERMIT

Total Acres: Subfile: - Header: -

Total Diversion: 0 Cause/Case: -

O

Owner: WILLBROS DRILLING

Contact: CORKY GLENN

Documents on File

				Sta	atus		From/			
	Trn#	Doc	File/Act	1	2	Transaction Desc.	To	Acres	Diversion	Consumptive
get imag	<u>515522</u>	72121	2006-08-04	EXP	EXP	L 09614 (T2) EXPIRED	T		3	
get imag	<u>515519</u>	72121	1985-01-28	PMT	LOG	L 09614 (T) EXPIRED	T		3	

Current Points of Diversion

(NAD83 UTM in meters)

 POD Number
 Well Tag
 Source
 64 Q16 Q4Sec
 Tws Rng
 X
 Y
 Other Location Desc

 L 09614
 Shallow
 3 3 4 08 15S 32E
 617875
 3654869
 E/2 - 1850'FEL, 660'FSL

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/2/23 9:43 AM WATER RIGHT SUMMARY

Water Right Summary

get image lis

WR File Number: L 12495 Subbasin: L Cross Reference: -

Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NATURAL RESOURCE

Primary Status: PMT PERMIT

Total Acres: Subfile: - Header: -

Total Diversion: 0 Cause/Case: -

User: NOVA MUD
Contact: CORKY GLENN

Documents on File

				Sta	itus		From/			
	Trn#	Doc	File/Act	1	2	Transaction Desc.	To	Acres	Diversion	Consumptive
get images	493325	72121	2009-12-03	PMT	APR	L 12495	T		3	
get images	445826	72121	2009-12-01	PMT	APR	L 12495	T		3	

Current Points of Diversion

Q (NAD83 UTM in meters)

POD Number	Well Tag	Source	64 Q16	6Q4	Sec	Tws Rng	X	Y	Other Location Desc
<u>L 08187</u>		Shallow	2	3	23	12S 32E	622362	3681552 🎳	
<u>L 08265</u>		Shallow	4	4	03	15S 32E	621405	3656521 🎒)

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

2/2/23 9:45 AM WATER RIGHT SUMMARY

Water Right Summary

get image list

WR File Number: L 05147 Subbasin: L Cross Reference:

Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NATURAL RESOURCE

Primary Status: PMT PERMIT

Total Acres: Subfile: - Header: -

Total Diversion: 0 Cause/Case: -

Owner: CARPER DRILLING COMPANY INC

Documents on File

 Status
 From/

 Trn #
 Doc
 File/Act
 1
 2
 Transaction Desc.
 To
 Acres
 Diversion
 Consumptive

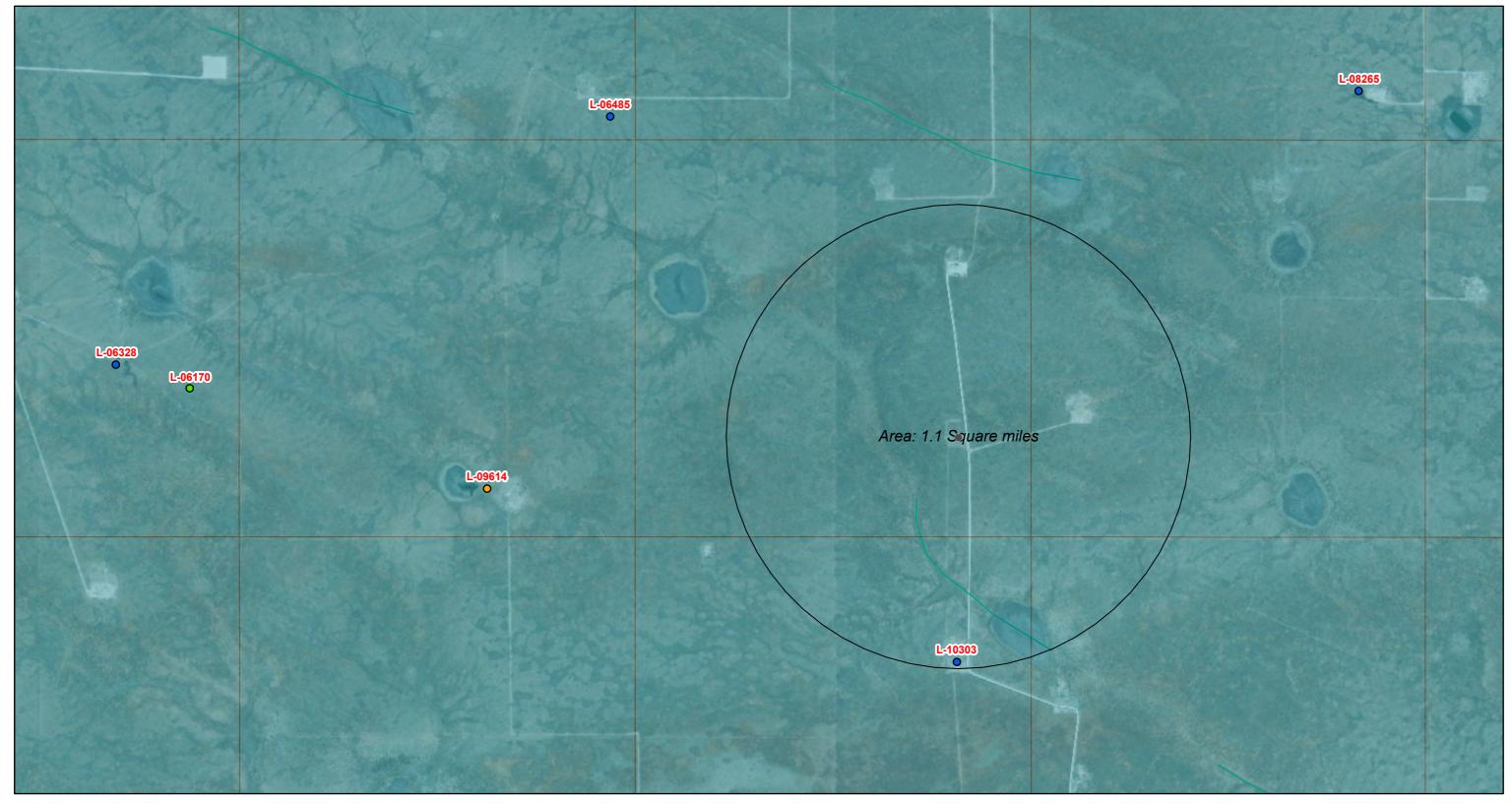
 503678
 72121
 1963-05-16
 PMT
 LOG
 L 05147 (T EXPRIED)
 T
 3

Current Points of Diversion

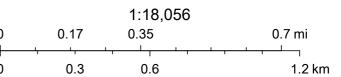
(NAD83 UTM in meters)

 POD Number
 Well Tag
 Source
 64 Q16 Q4Sec Tws Rng
 X
 Y
 Other Location Desc

 L 05147
 Shallow
 3 4 16 15S 32E
 619505 3653279*

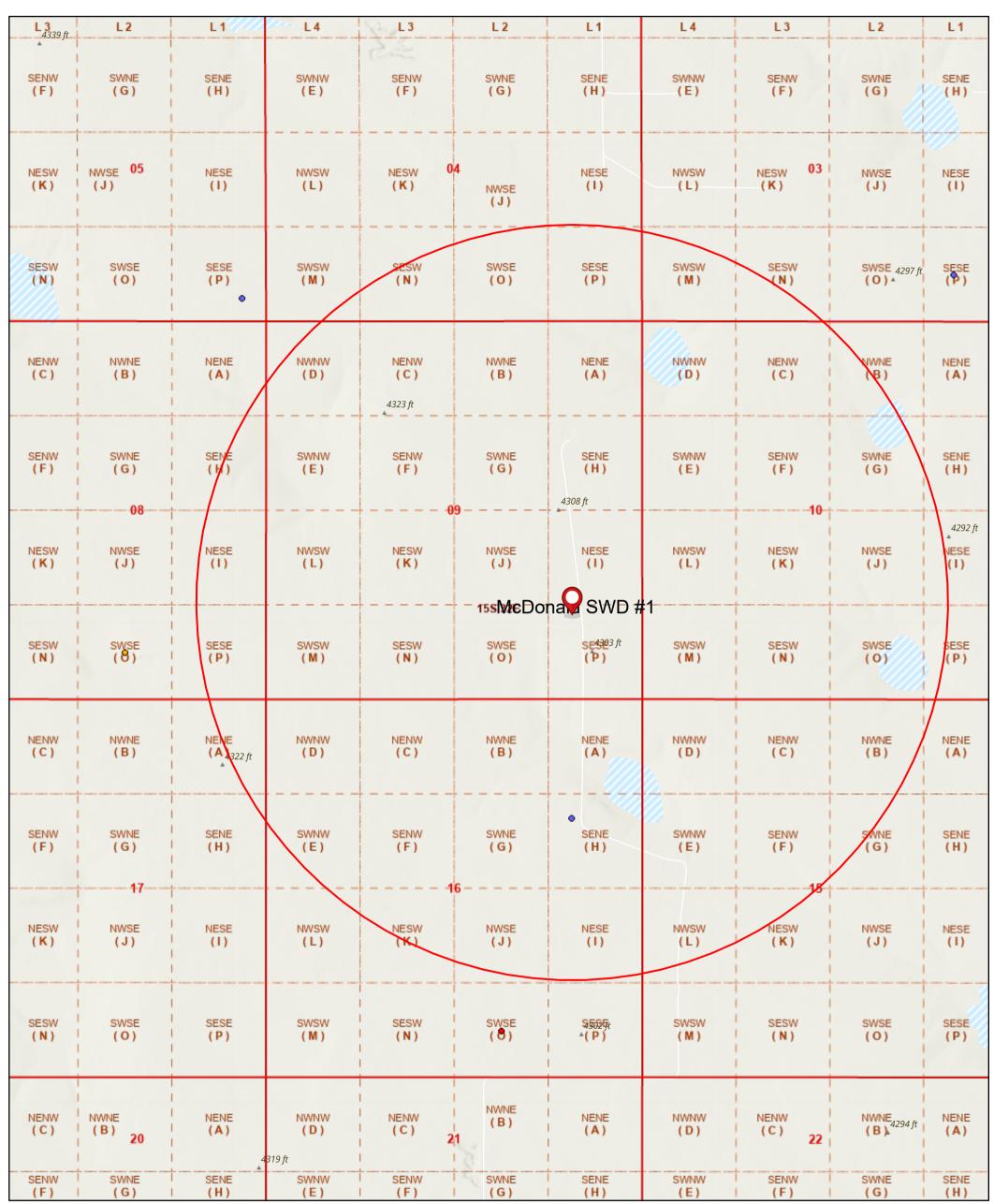

An () after northing value indicates UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.


2/2/23 9:46 AM WATER RIGHT SUMMARY

Page 48 of 65

OSE POD Locations Map



Esri, HERE, iPC, U.S. Department of Energy Office of Legacy Management, Esri, HERE, Garmin, iPC, Maxar

OCD Well Locations

1/31/2023, 9:08:18 AM

OSE PODs Changed Location of Well **PLSS Second Division** Active PLSS First Division Capped

Inactive Plugged

Pending Unknown

1:18,056 0 0.35 0.7 mi 0.17 0 0.28 0.55 1.1 km

Esri Community Maps Contributors, New Mexico State University, Texas Parks & Wildlife, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA, OSE GIS, Esri,

PLSS Townships

POD Location Map

2/2/2023, 9:39:42 AM

Inactive

Pending

Override 1 **Changed Location of Well**

OSE PODs Capped

> Active Plugged

> > Unknown

USGS Historical GW Wells

USGS Active Monitoring GW Wells **PLSS Second Division**

PLSS First Division

PLSS Townships

1:18,056 0 0.17 0.35 0.7 mi 0 0.28 0.55 1.1 km

OSE GIS, USGS, Esri, HERE, Garmin, iPC, Maxar, BLM

Water Analysis Report

0

Sample #:

Analysis ID #:

81463

80383

Customer: Mack Energy Corporation

Area: Artesia

Lease: Prince Rupert

Location: Fed #4H

Sample Point: Wellhead

		(*)					
Sampling Date:	1/10/2019	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	1/22/2019	Chloride:	89383.7	2521.19	Sodium:	53970.0	2347.56
Analyst:	Catalyst	Bicarbonate:	175.7	2.88	Magnesium:	1013.0	83.33
TDS (mg/l or g/m3):	150968.6	Carbonate:			Calcium:	2725.0	135.98
Density (g/cm3):	1.102	Sulfate:	2800.0	58.3	Potassium:	644.4	16.48
Density (g/cmo).	1.102	Borate*:	190.4	1.2	Strontium:	55.6	1.27
	,	Phosphate*			Barium:	0.9	0.01
Hydrogen Sulfide:	5			200	Iron:	9.0	0.32
Carbon Dioxide:	97		sed on measured on and phosphor		Manganese:	0.857	0.03
0		pH at time of sampl	ing:	6.65	ş:		
Comments:		pH at time of analys	is:				
		pH used in Calcula	ntion:	6.65	0		000070
20 5 3 8	1 200	Temperature @ lat	conditions (F):	75	Conductivity (mi- Resistivity (ohm		.0500

		Values Calculated at the Given Conditions - Amounts of Scale in lb/1000 bbl												
Гетр	1 70	alcite aCO ₃	Gypsum CaSO ₄ *2H ₂ 0		Anhydrile CaSO ₄		Celestite SrSO ₄		Barite BaSO ₄					
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount				
80	0.05	0.91	-0.13	0.00	-0.13	0.00	-0.11	0.00	1.22	0.60				
100	0.13	2.72	-0.20	0.00	-0.13	0.00	-0.13	0.00	1.02	0.30				
120	0.22	4.84	-0.26	0.00	-0.11	0.00	-0.15	0.00	0.84	0.30				
140	0.30	7.26	-0.30	0.00	-0.06	0.00	-0.15	0.00	0.69	0.30				
160	0.37	9.68	-0.34	0.00	0.00	6.96	-0.15	0.00	0.56	0.30				
180	0.45	12.70	-0.37	0.00	0.08	166.07	-0.14	0.00	0.45	0.30				
200	0.52	15.73	-0.40	0.00	0.18	328.81	-0.13	0.00	0.36	0.30				
220	0.60	18.75	-0.42	0.00	0.28	485.19	-0.11	0.00	0.28	0.30				

Water Analysis Report

Sample #:

Analysis ID #:

78595

76096

Customer:	Mack Energy Corporation	
Area:	Artesia	
Lease:	Chilliwack	
Location:	Fed Com 1H	0
Sample Point:	Wellhead	

Sampling Date:	11/28/2018	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	12/3/2018	Chloride:	104292.8	2941.72	Sodium:	63550.0	2764.27
Analyst:	Catalyst	Bicarbonate:	131.8	2.16	Magnesium:	1027.0	84.49
TDS (mg/l or g/m3):	175963.5	Carbonate:			Calcium:	2882.0	143.81
Density (g/cm3):	1.118	Sulfate:	3200.0	66.62	Potassium:	707.0	18.08
Density (g/cilis).	1.110	Borate*:	108.1	0.68	Strontium:	63.7	1.45
		Phosphate*			Barium:	0.8	0.01
Hydrogen Sulfide:	4	9 N			Iron:	0.1	0.
Carbon Dioxide:	108		ased on measured on and phosphore		Manganese:	0.189	0.01
•		pH at time of samp	oling:	6.95	=		
Comments:		pH at time of analy	sis:				
		pH used in Calcu	ation:	6.95			
		Temperature @ la	b conditions (F):	75	Conductivity (mi- Resistivity (ohm		200381 .0499

		Values C	alculated	at the Give	n Conditi	ons - Amou	unts of Sc	ale in lb/10	00 bbl		
Тетр	- 100	Calcite CaCO ₃		Gypsum CaSO ₄ *2H ₂ 0		Anhydrite CaSO ₄		Celestite SrSO ₄		Barite BaSO ₄	
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	
80	0.28	2.95	-0.07	0.00	-0.05	0.00	-0.04	0.00	1.17	0.30	
100	0.32	3.84	-0.14	0.00	-0.06	0.00	-0.07	0.00	0.97	0.30	
120	0.36	5.02	-0.21	0.00	-0.05	0.00	-0.09	0.00	0.79	0.30	
140	0.39	6.20	-0.26	0.00	-0.01	0.00	-0.10	0.00	0.63	0.30	
160	0.43	7.38	-0.31	0.00	0.05	111.64	-0.10	0.00	0.50	0.30	
180	0.46	9.16	-0.34	0.00	0.12	261.08	-0.09	0.00	0.38	0.30	
200	0.50	10.93	-0.38	0.00	0.21	418.50	-0.08	0.00	0.29	0.30	
220	0.55	12.99	-0.41	0.00	0.31	573.26	-0.07	0.00	0.21	0.30	

Water Analysis Report

Sample #:

Analysis ID #:

81533

80615

Customer:	Mack Energy Corporation	
Area:	Artesia	
Lease:	Saskatoon	
Location:	Fed Com 1H	0
Sample Point:	Wellhead	

	,			1 1		: 3	
Sampling Date:	1/10/2019	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	1/23/2019	Chloride:	91681.1	2585.99	Sodium:	54050.0	2351.04
Analyst:	Catalyst	Bicarbonate:	153.7	2.52	Magnesium:	1173.0	96.5
TDS (mall or a/m²):	151377.2	Carbonate:			Calcium:	2767.0	138.07
TDS (mg/l or g/m3): Density (g/cm3):	1.105	Sulfate:	700.0	14.57	Potassium:	647.0	16.55
Delisity (g/cilis).	1.105	Borate*:	144.3	0.91	Strontium:	60.1	1.37
		Phosphate*			Barium:	0.6	0.01
Hydrogen Sulfide:	4				Iron:	0.0	0.
Carbon Dioxide:	90		ed on measured n and phosphoru		Manganese:	0.416	0.02
0		pH at time of sampling	ng:	7.23	19		
Comments:		pH at time of analysi	s:	9			
		pH used in Calculat	tion:	7.23			407040
		Temperature @ lab	conditions (F):	75	Conductivity (mic Resistivity (ohm		197210 .0507

		Values C	alculated	at the Give	n Conditi	ons - Amou	ints of Sc	ale in lb/10	00 bbl	.75	
Гетр		Calcite CaCO ₃		Gypsum CaSO ₄ *2H ₂ 0		Anhydrite CaSO ₄		Celestite SrSO ₄		Barite BaSO ₄	
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	
80	0.57	6.35	-0.72	0.00	-0.71	0.00	-0.66	0.00	0.45	0.30	
100	0.57	7.26	-0.79	0.00	-0.72	0.00	-0.69	0.00	0.25	0.00	
120	0.58	8.77	-0.84	0.00	-0.69	0.00	-0.70	0.00	0.07	0.00	
140	0.59	10.28	-0.89	0.00	-0.65	0.00	-0.71	0.00	-0.08	0.00	
160	0.60	12.10	-0.93	0.00	-0.59	0.00	-0.70	0.00	-0.21	0.00	
180	0.63	13.91	-0.96	0.00	-0.51	0.00	-0.70	0.00	-0.32	0.00	
200	0.66	16.03	-0.99	0.00	-0.41	0.00	-0.69	0.00	-0.42	0.00	
220	0.71	18.45	-1.01	0.00	-0.31	0.00	-0.67	0.00	-0.49	0.00	

Water Analysis Report

0

Customer:

Mack Energy Corporation

Sample #:

118208

Area:

Artesia

Analysis ID #:

107555

Lease:

Montreal

Location:

1H

Sample Point:

Wellhead

Sampling Date:	2/13/2020	Anions	mg/l	meq/I	Cations	mg/l	meq/l
Analysis Date:	3/4/2020	Chloride:	101615.8	2866.21	Sodium:	62440.0	2715.99
Analyst:	Catalyst	Bicarbonate:	197.6	3.24	Magnesium:	965.3	79.41
TDS (mg/l or g/m3):	172020.9	Carbonate:			Calcium:	2569.0	128.19
Density (g/cm3):	1.116	Sulfate:	3400.0	70.79	Potassium:	660.8	16.9
Density (granis).	1.110	Borate*:	110.4	0.7	Strontium:	57.8	1.32
		Phosphate*			Barium:	3.4	0.05
Hydrogen Sulfide:	7.4				Iron:	0.2	0.01
Carbon Dioxide:	102		ased on measured on and phosphoru		Manganese:	0.550	0.02
Comments:		pH at time of samp		7.14			
		pH used in Calcul	ation:	7.14	Conductivity (mir	ne mbes/sm):	199270
		Temperature @ la	b conditions (F):	75	Conductivity (mic Resistivity (ohm		.0502

		Values C	alculated	at the Give	n Conditi	ons - Amou	nts of Sc	ale in lb/10	00 bbl	MINE	
Гетр	ALCOHOLD TO LINE SEC	alcite CaCO ₃	Gypsum CaSO ₄ *2H ₂ 0		100 TO STATE OF THE REST OF TH	Anhydrite CaSO ₄		Celestite SrSO ₄		Barite BaSO ₄	
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	
80	0.58	8.60	-0.09	0.00	-0.08	0.00	-0.05	0.00	1.83	1.78	
100	0.59	10.08	-0.16	0.00	-0.08	0.00	-0.08	0.00	1.63	1.78	
120	0.60	11.86	-0.23	0.00	-0.07	0.00	-0.10	0.00	1.45	1.78	
140	0.61	13.93	-0.28	0.00	-0.03	0.00	-0.10	0.00	1.30	1.78	
160	0.63	16.01	-0.32	0.00	0.03	69.97	-0.10	0.00	1.16	1.78	
180	0.65	18.38	-0.36	0.00	0.11	226.51	-0.10	0.00	1.05	1.78	
200	0.68	21.05	-0.39	0.00	0.19	391.65	-0.09	0.00	0.95	1.48	
220	0.73	24.01	-0.42	0.00	0.29	555.31	-0.08	0.00	0.87	1.48	

Water Analysis Report

Customer: Mack Energy Corporation Sample #: 100487

Area: Drilling Analysis ID #: 94751

Lease: Maple Ridge

Location: Fed #1 0

Sample Point: Wellhead

Sampling Date:	7/29/2019	Anions	mg/l	meq/I	Cations	mg/l	meq/I
Analysis Date:	8/8/2019	Chloride:	84902.3	2394.79	Sodium:	51250.0	2229.25
Analyst:	Catalyst	Bicarbonate:	241.6	3.96	Magnesium:	1177.0	96.82
TDC (144232	Carbonate:			Calcium:	2566.0	128.04
TDS (mg/l or g/m3):	1.097	Sulfate:	3300.0	68.71	Potassium:	564.2	14.43
Density (g/cm3):	1.097	Borate*:	173.9	1.1	Strontium:	53.5	1.22
		Phosphate*			Barium:	1.5	0.02
Hydrogen Sulfide:	14				Iron:	1.5	0.05
		*Calculated ba	sed on measure	1	Manganese:	0.460	0.02
Carbon Dioxide:	162.8	elemental boro	on and phosphor	us.			
		pH at time of sample	ing:	6.41			
Comments:		pH at time of analys	is:				
		pH used in Calcula	ition:	6.41			
		Temperature @ lab	conditions (F):	75	Conductivity (mi		194536 .0514

		Values C	alculated	at the Give	n Conditi	ons - Amou	ints of Sc	ale in lb/10	00 bbl	
Temp	Calcite CaCO ₃			CHETTA PARTITION	Anhydrite CaSO ₄		Celestite SrSO ₄		rite aSO ₄	
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount
80	-0.09	0.00	-0.09	0.00	-0.09	0.00	-0.04	0.00	1.52	0.91
100	0.01	0.30	-0.15	0.00	-0.08	0.00	-0.06	0.00	1.33	0.91
120	0.10	3.96	-0.20	0.00	-0.06	0.00	-0.08	0.00	1.15	0.61
140	0.21	8.22	-0.25	0.00	-0.01	0.00	-0.08	0.00	1.00	0.61
160	0.31	12.48	-0.28	0.00	0.06	131.82	-0.08	0.00	0.87	0.61
180	0.41	17.35	-0.31	0.00	0.14	299.86	-0.07	0.00	0.76	0.61
200	0.51	21.92	-0.33	0.00	0.24	471.86	-0.06	0.00	0.67	0.61
220	0.61	26.79	-0.35	0.00	0.35	637.46	-0.04	0.00	0.60	0.61

Water Analysis Report

Sample #:

Analysis ID #:

55880

53988

Customer:	Mack Energy Corporation	
Area:	Artesia	
Lease:	White Rock	
Location:	Federal #1H	(
Sample Point:	Wellhead	

Sampling Date:	12/21/2017	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	1/6/2018	Chloride:	93901.4	2648.62	Sodium:	58100.0	2527.21
Analyst:	Catalyst	Bicarbonate:	241.6	3.96	Magnesium:	969.6	79.76
TDS (mg/l or g/m3):	161820.5	Carbonate:			Calcium:	2737.0	136.58
Density (g/cm3):	1,107	Sulfate:	5000.0	104.1	Potassium:	571.6	14.62
Density (granis).	1.107	Borate*:	229.5	1.45	Strontium:	66.0	1.51
and the same of th		Phosphate*			Barium:	0.0	0.
Hydrogen Sulfide:	11	2000			Iron:	3.8	0.14
	3.3	The state of the s	sed on measure		Manganese:	0.000	0.
Carbon Dioxide:	242	elemental boro	on and phosphor	us.			
	, i	pH at time of sample	ling:	6.9			
Comments:		pH at time of analys	sis:				
	4	pH used in Calcula	ation:	6.9			
		Tomporatura @ lal	h aanditia (F).	75			176042 .0568
		pH used in Calcula Temperature @ lal		6.9 75	Conductivity (mic		

		Values C	alculated	at the Give	n Conditi	ons - Amou	ints of Sc	ale in lb/10	00 bbl	
Temp	Calcite CaCO ₃			Anhydrite CaSO ₄		Celestite SrSO ₄		Barite BaSO ₄		
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount
80	0.43	9.88	0.10	359.72	0.11	305.55	0.18	14.96	0.00	0.00
100	0.49	12.27	0.03	111.03	0.10	296.88	0.16	13.17	0.00	0.00
120	0.55	14.96	-0.03	0.00	0.13	355.53	0.14	11.97	0.00	0.00
140	0.60	17.96	-0.08	0.00	0.17	467.16	0.13	11.67	0.00	0.00
160	0.64	20.95	-0.12	0.00	0.23	615.30	0.14	11.67	0.00	0.00
180	0.69	24.54	-0.15	0.00	0.31	784.69	0.14	12.27	0.00	0.00
200	0.75	28.13	-0.18	0.00	0.40	962.15	0.15	12.87	0.00	0.00
220	0.80	31.72	-0.20	0.00	0.51	1137.23	0.17	13.77	0.00	0.00

AE Order Number Banner

Application Number: pMSG2313533970

SWD-2531

MACK ENERGY CORP [13837]

•				Revised March 23, 2017
RECEIVED:	REVIEWER:	TYPE:	APP NO:	
L	- Geolog	ABOVE THIS TABLE FOR OCD E CO OIL CONSERV ical & Engineering rancis Drive, Sant	ATION DIVISION g Bureau –	GODDINA DE LO COMPANDA DE LO COMPAND
		RATIVE APPLICATI		
THIS CF	ECKLIST IS MANDATORY FOR A REGULATIONS WHICH F	ALL ADMINISTRATIVE APPLICATE APPLICATION AT THE		
Applicant: Well Name:			OGRI API:	D Number:
Pool:			Pool	Code:
SUBMIT ACCURA	TE AND COMPLETE IN	IFORMATION REQUI		THE TYPE OF APPLICATION
A. Location -	ATION: Check those Spacing Unit – Simu SL NSP		n	SD
[I]Comm [[II]Inject	e only for [1] or [11] ningling – Storage – N DHC □CTB □F on – Disposal – Press WFX □PMX □S	sure Increase – Enha	anced Oil Recove	
A. Offset of B. Royalty C. Applica D. Notifica E. Surface		olders owners, revenue ow ned notice rent approval by SL rent approval by BL	ners O M	FOR OCD ONLY Notice Complete Application Content Complete
<u> </u>	of the above, proof of ce required	of notification or pu	blication is attacl	ned, and/or,
administrative a understand that	I hereby certify that approval is accurate t no action will be take submitted to the D	and complete to taken on this applica	he best of my kno	• •
Note	e: Statement must be comp	leted by an individual with	managerial and/or sup	ervisory capacity.
			Date	
Print or Type Name				
			Phone Number	

e-mail Address

Signature

Deana Weaver

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

FORM C-108 Revised June 10, 2003

APPLICATION FOR AUTHORIZATION TO INJECT

I.	PURPOSE:Secondary RecoveryPressure Maintenance							
II.	OPERATOR: Mack Energy Corporation							
	ADDRESS: P.O. Box 960 Artesia, NM 88210							
	CONTACT PARTY: Deana Weaver PHONE: 575-748-1288							
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.							
IV.	Is this an expansion of an existing project?YesNo If yes, give the Division order number authorizing the project:							
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.							
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.							
VII.	Attach data on the proposed operation, including:							
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.). 							
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.							
IX.	Describe the proposed stimulation program, if any.							
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).							
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.							
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.							
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.							
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and							
	belief. NAME: Deana Weaver Regulatory Technician II							
	SIGNATURE: Deana Weaver DATE: _4/24/2023							
*	E-MAIL ADDRESS:dweaver@mec.com If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:							

Side 2

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,
- (4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

Side 1

INJECTION WELL DATA SHEET

Mack Energy Corporation OPERATOR: _

WELL NAME & NUMBER: McDonald SWD #1

WELLBORE SCHEMATIC

WELL LOCATION: _____1334 FSL 987 FEL 9 15S 32E **UNIT LETTER SECTION TOWNSHIP RANGE**

FOOTAGE LOCATION

WELL CONSTRUCTION DATA

(Perforated or Open Hole; indicate which)

		Surface (<u>Casing</u>
McDonald SWD #1-After			
Operator: Mack Energy Corporation			
Location: Sec. 9 T15S R32E		4 = 4 (0)	40.0/0"
1334 FSL 987 FEL		Hole Size:17_1/2"	Casing Size: 13 3/8"
Objective: San Andres		Hole Bize.	Cusing Size:
GL Elevation: 4303.7*	$\overline{}$		
Depth Hole Size & Coment	Casing Detail	Cemented with:500sxsx.	\mathbf{r}
		SX.	<i>or</i> n
17 12° hole	1338*, 48#		
	1	Top of Cement:0	Mathad Datarminad: Circ
500sx, Circ	Set in 1997	Top of Cement.	Method Determined.
	1		In place 1997
4500°	1	<u>Intermediat</u>	te Casing
11° hole	8 5/8", #32		<u>. Cusing</u>
11 104	6 S/6 , #32		
1400sx, Circ	Set in 1997		
	l	11'	a . a. 0 5/0"
	1	Hole Size:11'	Casing Size: 0 3/0
4050*	510", #208#17		•
7.78° hole	Set in 1997	~ 1400	. 3
7 //0 1046	OR 81 1997	Cemented with:1400 sx.	<i>or</i> ft ³
1950ex, Circ	1		
		•	Oin-
12,500"		Top of Cement:0	Method Determined: CIC
	2 7/6* 6.5# J-55 Tbg		1007
	10K packer w/ 2.81	D	In place 1997
	profile nipple @ 5,025*	<u>Production</u>	<u>i Casing</u>
	Perl-5120-5640		
	PMI-0123-0040		
		/ - "	=
		Hole Size: 7 7/8"	Casing Size: 5 1/2"
		Hole bize.	Cusing Size.
		Cemented with: 1950 sx.	<i>or</i> ft ³
		SA.	<i>or</i> n
		Top of Cement:0	Method Determined: Circ
	Plug @ 6701*	Top of Cement.	
	w/25ex cmt		In place 1997
	0.00 4.444	Total Depth:	p.a.cc .cc.
	CIBP @ 9895	Total Deptil	
		Injection	Interval
		<u>mjection</u>	
	Perf-9769-9844*		
	Perf-12,288-12,294*	5120' feet	to 5640' perforated
XXXX XXXX XXXXX	Perf-12,362-12,372	1000	
	Perf-12,384-12,392		

INJECTION WELL DATA SHEET

Tub	oing Size: 2 7/8"Lining Material: IPC
Туј	pe of Packer: Arrow Set 10K packer w/ 2.81 profile nipple
Pac	cker Setting Depth: 5,025'
Otł	her Type of Tubing/Casing Seal (if applicable):
	Additional Data
1.	Is this a new well drilled for injection?YesXNo
	If no, for what purpose was the well originally drilled? Gas Well
2.	Name of the Injection Formation: San Andres
3.	Name of Field or Pool (if applicable): SWD; San Andres 96121
4.	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. Perfs 9769-9844', 12,288-12,294
	12,362-12,372', 12,384-12,392'; CIBP @ 9695', 25sx Cmt Plug @
5.	Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: Overlying- Grayburg @ 3715' Underlying - Glorieta @ 5650'
	Tops- Yates @ 2483', Seven Rivers @ 2750', Queen @ 3298', Grayburg @ 3715',
	San Andres @ 4048', Glorieta @ 5650'

VII. DATA SHEET: PROPOSED OPERATIONS

1. Proposed average and maximum daily rate and volume of fluids to be injected;

Respectively, 10,000 BWPD and 15,000 BWPD

2. The system is closed or open;

Closed

3. Proposed average and maximum injection pressure;

0-1,024 psi

4. Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than re-injected produced water;

We will be re-injecting produced water

5. If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water:

See Attached

VIII. GEOLOGICAL DATA

- 1. Lithologic Detail; Dolomite
- 2. Geological Name; San Andres
- 3. Thickness; 1602'
- 4. Depth; 4048'-5650' Disposal Interval= 5120-5640'

IX. PROPOSED STIMULATION PROGRAM

1. To be treated with 10000 gallons 15% acid

X. LOGS AND TEST DATA

1. Well data will be filed with the OCD.

XI. ANALYSIS OF FRESHWATER WELLS

See attached
Additional Information
Waters Injected:
San Andres

XII. AFFIRMATIVE STATEMENT

RE: McDonald SWD #1

We have examined the available geologic and engineering data and find no evidence of open faults or any other hydraulic connection between the disposal zone and any underground source of drinking water.

Mack Energy Corporation

Date: 2/1/23

Charles Sadler, Geologist

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 210243

CONDITIONS

Operator:	OGRID:
MACK ENERGY CORP	13837
P.O. Box 960	Action Number:
Artesia, NM 882110960	210243
	Action Type:
	[C-108] Fluid Injection Well (C-108)

CONDITIONS

Created By	ondition []	
mgebremic	This is an acknowledgment of that OCD has received the C-108 application.	5/15/2023