RECEIVED:	REVIEWER:	TYPE:	APP NO:	
	- Geolog	ABOVE THIS TABLE FOR OCD DI CO OIL CONSERVA ical & Engineering rancis Drive, Santa	TION DIVISION Bureau –	·
THIS CH	HECKLIST IS MANDATORY FOR A	RATIVE APPLICATION ALL ADMINISTRATIVE APPLICA REQUIRE PROCESSING AT THE	IONS FOR EXCEPTIONS TO DIVISION RULES AN	D
Well Name:				
 TYPE OF APPLIC A. Location - N N B. Check on [1] Comn [1] Comn [1] Inject [1] Comn [1] Co	CATION: Check those - Spacing Unit – Simu SL NSP e only for [1] or [11] ningling – Storage – M DHC CTB F ion – Disposal – Press WFX PMX S REQUIRED TO: Check operators or lease ho y, overriding royalty of ation requires publish ation and/or concurr ation and/or concurr of the above, proof of ice required	INDICATED BELO	P(PRORATION UNIT) SD S OLM nced Oil Recovery DR PPR FOR C Notice ners Applica Comple	DCD ONLY Complete ation it ete
notifications ar	e submitted to the Di	vision.	ion until the required information anagerial and/or supervisory capacity.	on and

Print or Type Name

Date

Phone Number

Cherylene Weston

Signature

e-mail Address

Received by OCD: 1/26/2024 2:49:51 PM

District I 1625 N. French Drive, Hobbs, NM 88240

District II 811 S. First St., Artesia, NM 88210

District III 1000 Rio Brazos Road, Aztec, NM 87410

District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Department Form C-107A Revised August 1, 2011

Page 2 of 53

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505 APPLICATION TYPE __Single Well __Establish Pre-Approved Pools EXISTING WELLBORE _X_Yes ___No

APPLICATION FOR DOWNHOLE COMMINGLING

Hilcorp Energy Comp	bany	382 Road 3100, Azte	ec, NM 87410		
Operator		Address			
Beaver Lodge Com	1M	I, 32, T30N, R08W		San Juan County,	NM
Lease	Well No.	Unit Letter-Section-Townshi	ip-Range	County	
OGRID No. 372171	_ Property Code <u>319133</u>	_ API No. <u>30-045-35552</u>	Lease Type:	Federal <u>X</u> State	Fee

DATA ELEMENT UPPER ZONE **INTERMEDIATE ZONE** LOWER ZONE **Basin Fruitland Coal** Blanco Mesaverde Basin Dakota Pool Name 71629 72319 71599 Pool Code 4110′ – 5546′ 2785' - 3116' 7420' - 7634' Top and Bottom of Pay Section (Perforated or Open-Hole Interval) Artificial Lift Artificial Lift Artificial Lift Method of Production (Flowing or Artificial Lift) Bottomhole Pressure (Note: Pressure data will not be required if the bottom 178 psi 639 psi 126 psi perforation in the lower zone is within 150% of the depth of the top perforation in the upper zone) Oil Gravity or Gas BTU (Degree API or Gas BTU) 1121 BTU 1284 BTU 1057 BTU Producing, Shut-In or New Zone Producing Producing New Zone Date and Oil/Gas/Water Rates of Last Production. (Note: For new zones with no production history, Date: 9/1/2023 Date: 9/1/2023 Date: Oil: 0 bbls Oil: 0 bbls applicant shall be required to attach production Rates: Gas: 2,394 Mcf Rates: Gas: 2,123 Mcf estimates and supporting data.) Rates: Water: 18 bbls Water: 22 bbls Fixed Allocation Percentage Oil Gas Oil Gas Oil Gas than current or past production, supporting data or % % % % % % explanation will be required.)

ADDITIONAL DATA

Are all working, royalty and overriding royalty interests identical in all commingled zones? If not, have all working, royalty and overriding royalty interest owners been notified by certified mail?	Yes Yes		No No
Are all produced fluids from all commingled zones compatible with each other?	Yes	Х	No
Will commingling decrease the value of production?	Yes		No_X
If this well is on, or communitized with, state or federal lands, has either the Commissioner of Public Lands or the United States Bureau of Land Management been notified in writing of this application?	Yes	Х	No
NMOCD Reference Case No. applicable to this well.			

NMOCD Reference Case No. applicable to this well:

Attachments:

C-102 for each zone to be commingled showing its spacing unit and acreage dedication. Production curve for each zone for at least one year. (If not available, attach explanation.) For zones with no production history, estimated production rates and supporting data.

Data to support allocation method or formula.

Notification list of working, royalty and overriding royalty interests for uncommon interest cases.

Any additional statements, data or documents required to support commingling.

PRE-APPROVED POOLS

If application is to establish Pre-Approved Pools, the following additional information will be required:

List of other orders approving downhole commingling within the proposed Pre-Approved Pools List of all operators within the proposed Pre-Approved Pools Proof that all operators within the proposed Pre-Approved Pools were provided notice of this application. Bottomhole pressure data.

I hereby certify that the information above is true and complete to the best of my knowledge and belief.

SIGNATURE Cherylene Weston		
TYPE OR PRINT NAME Chervlene Weston	TELEPHONE NO. (713) 289-2615	

E-MAIL ADDRESS _____ cweston@hilcorp.com

Received by OCD: 1/26/2024 2:49:51 PM

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone: (505) 334-6178 Fax: (505) 334-6170 **District IV**

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico **Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

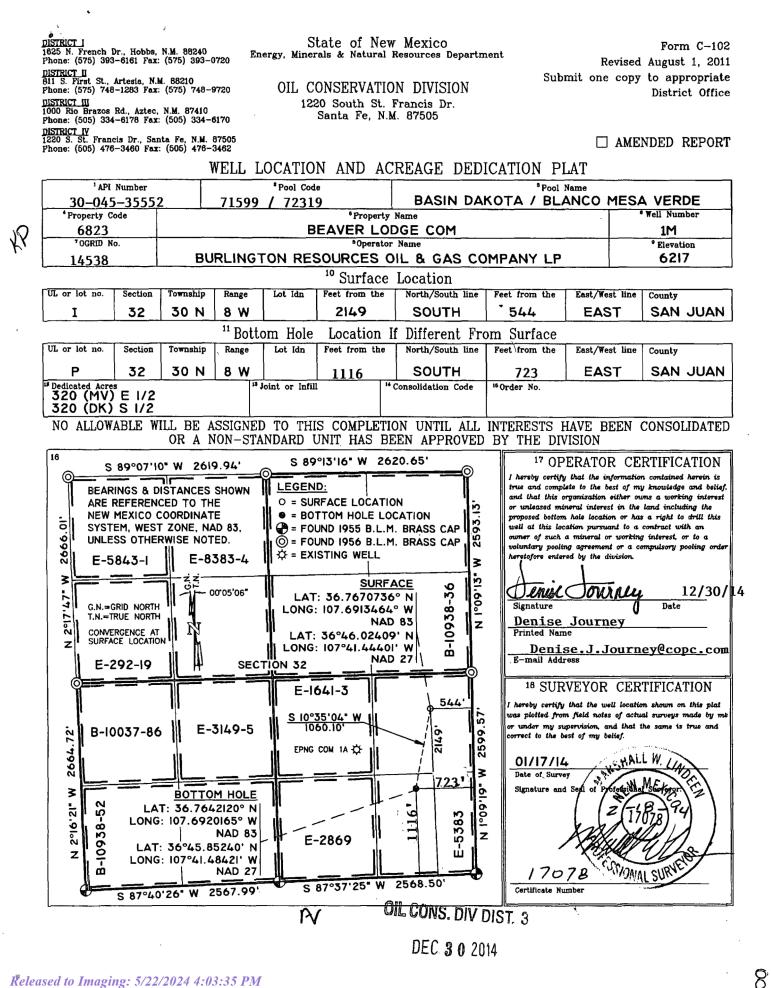
Page 3 of 53 Form C-102 August 1, 2011

Permit 355134

WELL LOCATION AND ACREAGE DEDICATION PLAT

1. API Number	2. Pool Code	3. Pool Name			
30-045-35552	71629	BASIN FRUITLAND COAL (GAS)			
4. Property Code	5. Property Name	6. Well No.			
319133	BEAVER LODGE COM	001M			
7. OGRID No.	8. Operator Name	9. Elevation			
372171	HILCORP ENERGY COMPANY	6217			

10. Surface Location


UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County	
1	32	30N	08W		2149	S	544	E	SAN JU	AN 📋

11. Bottom Hole Location If Different From Surface

UL - Lot	P Section	32	Township 30N	Range 08W	Lot Idn	Feet From 1116	N/S Line	Feet From 723	E/W Line E	County SAN JUAN
12. Dedicat	ed Acres 320.00			13. Joint or Infill		14. Consolidatio	n Code		15. Order No.	

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

OPERATOR CERTIFICATION I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location(s) or has a right to drill this well at this location pursuant to a contract with an owner of such a mineral or working interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered
by the division. E-Signed By: Cherylene Weston Title: Cherylene Weston Date: 12/04/2023
SURVEYOR CERTIFICATION I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.
Surveyed By:Marshall W. LindeenDate of Survey:1/17/2014
Certificate Number: 17078

Released to Imaging: 5/22/2024 4:03:35 PM

The near wellbore shut-in bottom hole pressures of the above reservoirs are much lower than the calculated far-field stabilized reservoir pressured due to the low permeability of the reservoirs. Based on pressure transient analysis performed in the San Juan Basin, it would take 7-25 years for shut-in bottom hole pressures to build up to the calculated far-field reservoir pressure. Our observation is that even for areas of high static reservoir pressures, the low permeability of the reservoir rock results in rapid depletion of the near-fracture region, quickly enough that the wells are unable to produce without the aid of a plunger. Given low permeabilities and low wellbore flowing pressures in the above reservoirs, loss of reserves due to cross-flow is not an issue during producing or shut-in periods. Given low shut-in bottom hole pressures in excess of any commingled pool's fracture parting pressure. The pressures provided in the C-107A are based on shut-in bottom hole pressures of offset standalone wells which match expected near-wellbore shut-in bottom hole pressures of this proposed commingled completion.

Note: BTU Data taken from standalone completions in the zone of interest within a 2 mile radius of the well.

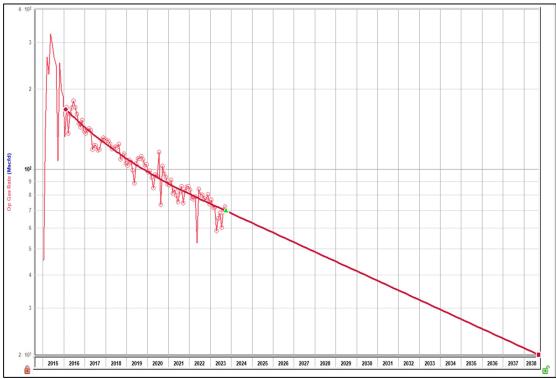
A farther radius is used if there is not enough data for a proper statistical analysis.

Beaver Lodge Com 1M Allocation

The forecasts for Fruitland Coal production have been generated using type curves of production in the surrounding trend.

These zones are proposed to be commingled because the application of dual completions impedes the ability to produce the shallow zone without artificial lift and the deeper zones with reduced artificial lift efficiency. All horizons will require artificial lift due to low bottomhole pressure (BHP) and permeability.

The BHPs of all zones, producing and non-producing, were estimated based upon basin wide Moving-Domain Material Balance models that have proven to approximate the pressure in the given reservoirs well in this portion of the basin, in conjunction with shut-in pressure build-ups. These models were constructed incorporating reservoir dynamics and physics, historic production, and observed pressure data. Historic commingling operations have proven reservoir fluids are compatible.

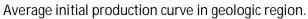

Production Allocation Method – Subtraction

Gas Allocation:


Production for the downhole commingle will be allocated using the subtraction method in agreement with local agencies. The base formations are the Mesaverde/Dakota and the added formation to be trimmingled is the Fruitland Coal. The subtraction method applies an average monthly production forecast to the base formations using historic production. All production from this well exceeding the base formation forecasts will be allocated to the new formation.

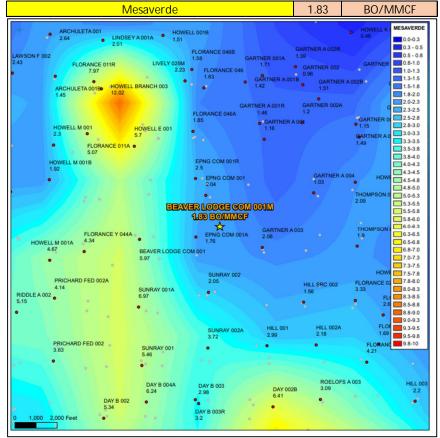
Hilcorp intends to continue to allocate the projected base production on the same fixed percentages to the following pools 47% (MV) 53% (DK) while the subtraction method is being used to determine the allocation to the new zone.

After 3 years production will stabilize. A production average will be gathered during the 4th year and will be utilized to create a fixed percentage-based allocation.


Current Zone 1 Forecast – Mesaverde

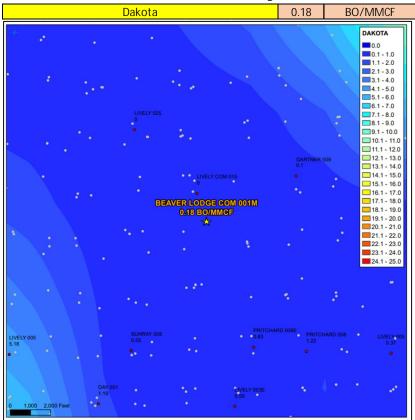
Current Zone 2 Forecast – Dakota

Proposed Zone Forecast – Fruitland Coal

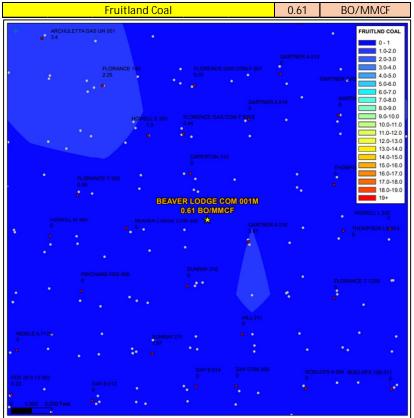


Oil Allocation:

Oil production will be allocated based on average formation yields from offset wells and will be a fixed rate for 4 years. After 4 years oil will be reevaluated and adjusted as needed based on average formation yields and new fixed gas allocation.


Formation	Yield (bbl/MM)	Remaining Reserves (MMcf)	% Oil Allocation
MV	1.83	217	43%
FRC	0.61	777	51%
DK 0.18		302	6%
			100%

Current Zone 1 – Mesaverde Oil Yield Map


9-Section Area Map of Standalone Oil Yields. Sampled well to this map.

Current Zone 2 – Dakota Oil Yield Map

9-Section Area Map of Standalone Oil Yields. Sampled well to this map.

Proposed Zone – Fruitland Coal Oil Yield Map

9-Section Area Map of Standalone Oil Yields. Sampled well to this map.

Supplemental Information:

Shut in pressures were calculated for operated offset standalone wells in each of the zones being commingled in the well in question via the following process:

- 1) Wells were shut in for 24 hours
- 2) Echometer was used to obtain a fluid level
- 3) Shut in BHP was calculated for the proposed commingled completion

List of wells used to calculate BHPs for the Project:

3004527835	ROELOFS A 4	FRC
3004526343	EPNG COM 1A	MV
3004526314	SUNRAY 8	DK

I believe each of the reservoirs to be continuous and in a similar state of depletion at this well and at each of the wells from which the pressures are being derived.

Water Compatibility in the San Juan Basin

- The San Juan basin has productive siliciclastic reservoirs (Pictured Cliffs, Blanco Mesaverde, Basin Dakota, etc.) and a productive coalbed methane reservoir (Basin Fruitland Coal).

- These siliciclastic and coalbed methane reservoirs are commingled extensively throughout the basin in many different combinations with no observed damage from clay swelling due to differing formation waters.

The samples below all show water with low TDS.

Well Name	API
BEAVER LODGE COM 1M	3004535552

API 300452704 API 2004526313 API 2004526314 CationBarium 0 CationBarium 0.1 CationBarium 0.1 CationBarium 0.1 CationBarium 0.1 CationBarium 0.1 CationCatclum 4.0 CationCatclum 165 CationCatclum 93 CationToin 7.3 CationMagnesium 0.49 CationMagnesium 0.49 CationMagnese 0.09 CationMagnese 0.7 CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationStrontium 0.02 CationStrontium 0.09 CationStrontium 0.12 CationStrontium 0.2 CationStrontium 0.02 CationStrontium 0.2 CationStrontium 0.2 CationStrontium CationAuminum CationAuminum CationAuminum CationAuminum CationCationCation CationAuminum CationCationCation CationAuminum CationCationCation CationCationCation CationCation	FRC Offset		MV Offs	et	DK Offset		
CationBarium 0.1 CationBarium 0.1 CationBarium 0.1 CationBaron CationCalcium 4.02 CationCalcium 166 CationCalcium 93 CationTron 7.23 CationTron 135 CationTron 93 CationManganese 0.09 CationManganese 0.7 CationManganese 0.9 CationTron 0.24 CationManganese 0.7 CationManganese 0.9 CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationStrontium 0.09 CationStrontium 0.1 CationStrontium 0.2 CationStrontium 0.09 CationStrontium 0.1 CationStrontium 0.2 CationStrontium CationStrontium 0.2 CationStrontium 0.2 CationCationStrontium CationCationStrontium CationCationStrontium 0.2 CationCation CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationC							
CationBarium O.1 CationBarium O.1 CationBoron CationBarium 0.1 CationCalcium 0.1 CationCalcium 4.02 CationCalcium 165 CationAgnesium 93 CationMagnaese 0.09 CationManganese 0.09 CationManganese 0.9 CationManganese 0.09 CationManganese 0.9 CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationStrontium 0.02 CationStrontium 0.02 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationAluminum CationCationXtrontium CationCationXtrontium CationCationXtrontium CationCationXtrontium CationCationXtrontium CationCationXtrontium CationCationXtrontium CationCationXtrontium CationCationXtrontium CationXtrontium	Property	DAY COM 200	Property	EPNG COM 1A	Property	SUNRAY 8	
CationBoron CationBoron CationBoron CationCatclum 4.02 CationCatclum 165 CationCatclum 93 CationIron 7.23 CationIron 135 CationIron 249 CationMagnesium 0.49 CationMagnese 0.72 CationMagnese 0.97 CationMagnese 0.97 CationMagnese 0.97 CationMagnese 0.97 CationMagnese 0.97 CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationStrontium 0.9 CationStrontium 0.1 CationStrontium 0.2 CationStrontium CationCapper						0.1	
Cationtion 7.23 Cation Manganese 135 Cation Manganese 0.49 Cation Manganese 0.07 Cation Manganese 0.7 Cation Manganese 0.9 Cation Phosphorus Cation Statism 0.1 Cation Statism 0.2 Cation Capper Cation Cation Cabit Cation Cabit Cation Cabit Cation Cabit Cation Capper Cation Cation Capper Cation Cation Capper Cation Cation Capper Cation Cabit Cation Capper Cation Cabit Cation Capper							
CationMagnesium 0.40 CationManganese 0.7 CationManganese 0.9 CationManganese 0.07 CationManganese 0.9 CationProtossium CationProtosphorus CationProtosphorus CationProtosphorus CationProtosphorus CationStrontium 0.09 CationStrontium 0.10 CationStrontium 0.12 CationStrontium 0.2 CationStrontium 0.09 CationStrontium 0.65 CationStrontium 0.2 CationStrontium CationStrontium CationAluminum Catio	CationCalcium	4.02	CationCalcium	165	CationCalcium	93	
CationManganese 0.00 CationManganese 0.7 CationManganese 0.9 CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationStorium 0.01 CationStorium 0.1 CationStorium 0.2 CationStorium 0.229 CationStorium 0.659 CationStorium 12.14 CationStorium CationStorium CationStorium 12.14 CationAluminum CationStorium CationAluminum CationAluminum CationCopper CationCopper CationCopper CationCopper CationCopper CationNickel CationCoptint CationCopper CationNickel CationCoptint CationCoptint CationCoptint CationCoptint CationCoptint CationCoptint CationNickel CationMolydenum CationMolydenum CationMolydenum CationMolydenum CationMolydenum CationMolydenum CationMolydenum CationMolydenum CationNickel CationNickel CationMolydenum CationMolydenum CationMolydenum CationMolydenum CationMolydenum <td>CationIron</td> <td>7.23</td> <td>CationIron</td> <td>135</td> <td>CationIron</td> <td>249</td>	CationIron	7.23	CationIron	135	CationIron	249	
CationManganese 0.9 CationManganese 0.7 CationManganese 0.9 CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationStrontium 0.1 CationStrontium 0.1 CationStrontium 0.1 CationStrontium 0.2 CationStrontium 0.1 CationStrontium 0.2 CationStrontium 0.1 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium CationStrontium CationCopper CationNickel CationChoritikel CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationNickel CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationNickel	CationMagnesium	0.49	CationMagnesium	83	CationMagnesium	49	
CationPhosphorus CationPotassium CationPotassium CationStrontium 0.09 CationStrontium 0.1 CationStrontium 0.2 CationStrontium 0.22 Q CationSoftica CationStrontium 0.1 CationStrontium 0.2 CationStrontium 0.2 CationSoftica CationStrontium 0.1 CationStrontium 0.2 CationStrontium CationStrontium CationStrontium 1.2 1.4 CationCopper CationAluminum CationAluminum CationCopper CationCopper CationCopper CationCopper CationCobat CationMolybdenum CationMolybdenum CationMolybdenum CationSticon CationSticon CationSticon CationCobat CationCobat CationCobat AnionCarbonate 0 AnionCarbonate 0 AnionCarbonate 0 AnionCarbonate 0 AnionProvide AnionProvide AnionProvide AnionProvide AnionProvide AnionProvide<	CationManganese	0.09	CationManganese				
CationPotassium CationPotassium CationStrontium 0.1 CationStrontium 0.2 CationStrontium 0.10 CationStrontium 0.1 CationStrontium 0.2 CationStrontium 62.29 CationSodium 66.59 CationSodium 1.2.14 CationAlluminum CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationChoopper							
CationStrontium 0.09 CationStorntium 0.1 CationStorntium 0.2 CationSodium 82.29 CationStorntium 12.14 CationSilica CationSilica CationSilica 12.14 CationZinc CationSilica CationSilica CationSilica CationAluminum CationAluminum CationCopper CationCopper CationCopper CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationSilicon CationMolybdenum CationMolybdenum CationSilicon CationMolybdenum CationMolybdenum CationMolybdenum CationSilicon CationSilicon CationMolybdenum CationMolybdenum CationSilicon CationSilicon CationMolybdenum CationMolybdenum CationSilicon CationSilicon CationMolybdenum CationMolybdenum CationSilicon CationSilicon CationMolybdenum CationMolybdenum CationBirarbonate 17.06 AnionBromide AnionFuoride AnionFuor							
CationSilica CationSilica CationSilica CationZinc CationXinc CationZinc CationAuminum CationAuminum CationAuminum CationCopper CationCopper CationCopper CationCopper CationCopper CationList CationCopation CationCopation CationCopation CationCopation CationCobalt CationChomium CationChromium CationChomium CationAlphone CationChomium CationAlphone CationChomium CationAlphone CationMolybdenum CationAlphone CationMolybdenum CationAlphone CationMolybdenum CationFloride AnionCarbonate AnionCarbonate O AnionCarbonate AnionFlooride AnionFlooride		0.09	CationStrontium	0.1	CationStrontium	0.2	
CationZinc CationZinc CationAluminum CationAluminum CationAluminum CationAluminum CationCopper CationCopper CationCopper CationLinkad CationLinkum CationLinkum CationLinkum CationLinkum CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationMolybdenum CationMolybdenum CationAlonDybdenum CationMolybdenum CationMolybdenum CationAlonChiride 50 AnionChiride 84 AnionChiride 50 AnionBicarbonate 00 AnionBicarbonate 7108 AnioBicarbonate 50 AnionBicarbonate 280 AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionSulfate 0 AnionSulfate 515 AnionSulfate 108 phFiel	CationSodium	82.29	CationSodium	-66.59	CationSodium	12.14	
CationAluminum CationAluminum CationCopper CationCopper CationCopper CationCopper CationLead CationLead CationLead CationLithium CationLithium CationLithium CationAlickel CationCobalt CationCobalt CationChomium CationChonium CationCobalt CationAlickel CationChomium CationChomium CationAlionCarbonate OAnionCarbonate OAnionCarbonate AnionChoronium CationMolybdenum CationMolybdenum CationAliorAdomate OAnionCarbonate OAnionCarbonate AnionCarbonate OAnionCarbonate OAnionCarbonate AnionBromide AnionBromide AnionBromide AnionFluoride AnionFluoride AnionFluoride AnionPhosphate AnionPhosphate AnionPhosphate AnionPhosphate AnionPhosphate AnionPhosphate AnionPhosphate AnionPhosphate AnionSuifate OtherSpecificGravity OtherSpecificGravity OtherSpecificGravity OtherSpecificGravity OtherGobalt CherroDal	CationSilica		CationSilica		CationSilica		
CationCopper CationCopper CationCopper CationLead CationLead CationLead CationLithium CationLithium CationLithium CationLithium CationNickel CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationNolybdenum CationMolybdenum CationMolybdenum CationCobalt CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum AnionChorate 0 AnionCatonate 0 AnionBicarbonate 0 AnionBicarbonate 110.08 AnionFluoride AnionFluoride AnionPhoryl 0 AnionProxyl AnionPhoryl AnionPhoryl 0 AnionPhoryl 0 AnionPhoryl	CationZinc		CationZinc		CationZinc		
CationCopper CationCopper CationCopper CationLead CationLead CationLead CationLithium CationLithium CationLithium CationLithium CationNickel CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationNolybdenum CationMolybdenum CationMolybdenum CationCobalt CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum AnionChorate 0 AnionCatonate 0 AnionBicarbonate 0 AnionBicarbonate 110.08 AnionFluoride AnionFluoride AnionPhoryl 0 AnionProxyl AnionPhoryl AnionPhoryl 0 AnionPhoryl 0 AnionPhoryl	CationAluminum		CationAluminum		CationAluminum		
CationLead CationLithium CationLithium CationLithium CationNickel CationNickel CationNickel CationNickel CationNickel CationNickel CationNickel CationNickel CationNickel CationNickel CationNomum CationChoromium CationNolybdenum CationNolybdenum CationNolybdenum CationNolybdenum CationNolybdenum AnionChoride 50.05 AnionChoride 288 AnionChoride AnionRomide AnionRomide AnionRomide AnionRomide AnionRomide AnionRomide AnionPhorphate AnionPhorphate AnionPhorphate AnionState O AnionState 0 AnionPhosphate AnionPhosphate AnionPhosphate AnionState O AnionSufate 108 phField phField 5.51 AnionSufate OtherSpecificGravity O OtherSpecificGravity O OtherSpecificGravity OtherSpecificGravity OtherSpecificGravity O OtherConductivity 10414xalinity OtherSpecificGravity 0 OtherConductivity 004104525 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
CationLithium CationLithium CationLithium CationNickel CationNickel CationCobalt CationChoalt CationCobalt CationChoalt CationChormium CationChonium CationChormium CationChormium CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum AnionCarbonate 0 AnionCarbonate 0 AnionBicarbonate 171.08 AnionBicarbonate 50 AnionFluoride AnionFluoride AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionPhorphate AnionSulfate 0 AnionSulfate 108 FempField 5.5.4 FempField 6.5.1 phField phField 5.6.4 phCalculated 5.6.4 FempLab OthersPpecificGravity 0 0 OtherSpecificGravity 0 OthersPpecificGravity 0 OthersPpecificGravity 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
CationNickel CationNickel CationCobalt CationCobalt CationCobalt CationCobalt CationChromium CationChromium CationChromium CationMolybdenum CationMolybdenum CationMolybdenum CationChromium CationMolybdenum CationMolybdenum AnionChioride 505 AnionChioride 288 AnionChioride 84 AnionCarbonate 0 AnionCarbonate 0 AnionBicarbonate 200 AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate 280 AnionHydroxyl AnionHydroxyl 0 AnionNitrate 280 AnionPhorphate AnionPhorphate AnionNitrate 280 AnionPhorphate AnionPhorphate AnionNitrate 280 AnionPhorphate AnionPhorphate AnionNitrate 280 AnionPhorphate AnionPhorphate 31 280 281 AnionPhorphate AnionPhorphate 31 281 281 PhField TempField 60 17 287 31 OtherSpecifficGravity <td< td=""><td></td><td>İ</td><td></td><td>l</td><td></td><td>1 1</td></td<>		İ		l		1 1	
CationCobalt CationChromium CationChromium CationChromium CationIChromium CationSilicon CationSilicon CationSilicon CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum AnionCarbonate 0 AnionCarbonate 0 AnionCarbonate 0 AnionCarbonate 0 AnionBicarbonate 0 AnionCarbonate 0 AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionPhosphate AnionFluoride AnionPhosphate AnionPhosphate AnionPhosphate AnionSulfate 155 AnionSulfate 108 AnionPhosphate AnionPhosphate AnionPhosphate 40 AnionPhosphate AnionSulfate 155 AnionSulfate 108 PhField phField 5.64 phCalculated phCalculated 6.64 TempField TempLab TempEid 64 64 TempField TempLab TempLab 0 0 OtherCaC03 12.060 Other						1	
CationChromium CationChromium CationChromium CationMolybdenum CationMolybdenum CationMolybdenum AnionChloride 50.05 AnionChloride 288 AnionChloride 0 AnionChloride 288 AnionBicarbonate 0 AnionBicarbonate 0 AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate AnionPhorophate AnionPhorophate AnionNitrate AnionNitrate AnionNitrate AnionSulfate 108 AnionSulfate 0 AnionSulfate 108 phField phField 5.49 phCalculated phCalculated TempField TempField TempField 60 TempField 64 OtherSpecificGravity 0 OtherSpecificGravity 0 OtherCaC03 0		İ		l		1 1	
CationSilicon CationSilicon CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum AnionChoride 508 AnionChloride 288 AnionChloride 84 AnionCarbonate 0 AnionBromide AnionBromide AnionBromide AnionBromide AnionBromide AnionBromide AnionBromide AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPluoride AnionPlu							
CationMolybdenum CationMolybdenum CationMolybdenum AnionChloride 288 AnionChloride 84 AnionCarbonate 0 AnionCarbonate 0 AnionChloride 84 AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate 280 AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionPytroxyl AnionFluoride AnionNitrate 0 AnionPytroxyl AnionPhroxyl 0 AnionNitrate 0 AnionPhroxyl AnionPhroxyl 0 AnionNitrate 0 AnionPhosphate AnionPhosphate AnionPhosphate 0 AnionPhosphate AnionPhosphate 0 0 0 AnionPhosphate AnionSulfate 108 0 0 0 phField phField 55 AnionSulfate 108 0 0 phField TempField 60 TempLab 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
AnionChloride 50.05 AnionChloride 288 AnionChloride 84 AnionBicarbonate 0 AnionBicarbonate 0 AnionBicarbonate 0 AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate 280 AnionBromide AnionBicarbonate AnionBicarbonate 280 AnionHydroxyl AnionFluoride AnionFluoride AnionFluoride AnionHydroxyl AnionHydroxyl 0 AnionNitrate AnionNitrate AnionPhosphate AnionPhosphate AnionSulfate 108 phField 5.31 phField 6.51 phField phField TempField 60 TempField 6.41 TempLab TempField 60 TempField 6.42 OtherSpecificGravity 1 OtherSpecificGravity 0 OtherTiedAlkalinity 0 OtherCodQ 0 0 0 0 0 0 0 OtherSpecificGravity 1 OtherCacO3 0 0 0 0 0 0 0 0 0 0 0							
AnionCarbonate 0 AnionCarbonate 0 AnionCarbonate 0 AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate 280 AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionPlydroxyl 0 AnionNitrate AnionNitrate AnionNitrate AnionNontrate AnionPhosphate AnionSulfate 0 AnionSulfate 155 AnionPhosphate 108 AnionSulfate 0 AnionSulfate 155 AnionPhosphate 6.51 AnionPhosphate AnionPhosphate AnionPhosphate 6.51 phCalculated 6.4 TempField TempField 60 TempField 64 TempLab TempLab TempLab TempLab 10therSpecificGravity 0 OtherFieldAlkalinity OtherFieldAlkalinity 0 0therCaC03 0 0 OtherCoductivity 1266.11 OtherCaC03 0 0 0 DissolvedO2 DissolvedO2 0 0 0	,	50.05		288	,	84	
AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate 280 AnionBromide AnionBromide AnionBromide AnionFluoride AnionFluoride AnionHydroxyl AnionHydroxyl 0 AnionHydroxyl 0 AnionPhosphate AnionPhosphate AnionPhosphate AnionSulfate 108 AnionSulfate 0 AnionSulfate 155 AnionSulfate 108 phField phCalculated phCalculated 6.51 phCalculated 6 phcalculated 5.64 phCalculated 0 6.51 phCalculated 64 tempLab TempLab TempLab TempLab 0 64 64 OtherFieldAlkalinity OtherFieldAlkalinity OtherSpecificGravity 0 0 67.34 OtherCaC03 12.06 OtherCaC03 0 0 876.34 0 0 1369.28 0.52 1369.28 0.52 0 1369.28 0.52 0 1369.28 0.52 0 0 56.49 638425 0.52 0 0 56.34 0 0							
AnionBromideAnionBromideAnionBromideAnionFluorideAnionFluorideAnionFluorideAnionFludroylAnionFluorideAnionFluorideAnionHydroxylAnionHydroxyl0AnionPhosphateAnionNitrateAnionPhosphateAnionPhosphateAnionSulfate0AnionSulfate0AnionSulfate0AnionSulfate0AnionSulfate0AnionSulfate155AnionSulfate0DrCalculated5.64phCalculatedphFieldCherrieldAlkalinity0OtherSpecificGravity0OtherSpecificGravity0OtherSpecificGravity0OtherSpecificGravity0OtherCaCO30OtherCo30OtherCo20DissolvedC020DissolvedC020DissolvedC020DissolvedC020DissolvedC020DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC2 <td>AnionBicarbonate</td> <td>-</td> <td></td> <td>50</td> <td>AnionBicarbonate</td> <td>-</td>	AnionBicarbonate	-		50	AnionBicarbonate	-	
AnionFluoride AnionFluoride AnionFluoride AnionFlydroxyl O AnionFlydroxyl O AnionFlydroxyl 0 AnionNitrate AnionPhosphate AnionPhosphate AnionPhosphate AnionSulfate 0 AnionSulfate 155 AnionSulfate 108 phField 0 5.64 phCalculated 6.51 phCalculated 6.51 phCalculated 5.64 phCalculated phCalculated 6.41 TempField TempField 60 TempField 64 TempLab TempLab TempLab 0 0 OtherFieldAlkalinity OtherFieldAlkalinity 0 0 0 OtherFieldAlkalinity OtherFieldAlkalinity 0 0 0 0 OtherCaC03 12.06 OtherCaC03 0						200	
AnionHydroxylAnionHydroxyl0AnionHydroxyl0AnionNitrateAnionNitrateAnionNitrateAnionNitrateAnionPhosphateAnionSulfate155AnionSulfate108phField0AnionSulfate155AnionSulfate108phField05.4phCalculatedphCalculated6.51phCalculated5.64phCalculated06.51phCalculatedTempField606064TempField0TempField6464TempField0TempField6464OtherSpecificGravity00TempField64OtherSpecificGravity006464OtherSpecificGravity10064OtherSpecificGravity106464OtherConductivity106464OtherConductivity106464OtherSpecificGravity00064OtherConductivity106464OtherConductivity106464OtherConductivity106464OtherConductivity106664OtherConductivity106664OtherConductivity12.6601066OtherConductivity12.6601066OtherConductivity001666OtherConductivity0							
AnionNitrateAnionNitrateAnionNitrateAnionPhosphateAnionPhosphateAnionPhosphateAnionPhosphate0AnionSulfate0.55AnionSulfate0.55AnionSulfate0.56phFieldphCalculatedphCalculated5.44phCalculatedphCalculatedTempField60TempField60TempField0OtherFieldAlkalinity0OtherFieldAlkalinity0OtherSpecificGravity0OtherSpecificGravity0OtherConductivity0OtherConductivity0OtherConductivity0OtherConductivity0OtherConductivity0OtherConductivity0DissolvedO20DissolvedO20DissolvedO20DissolvedO20ObsolvedO20OfasCO2PP0GasCO2PP0GasCO2PP0GasH2SP0GasH2SPP0OPitzerCaSO4_70PitzerCaSO4_70PitzerCaSO4_70PitzerCaSO4_70PitzerCaSO4_70PitzerCaSO4_70PitzerCaSO4_70PitzerCaSO4_70PitzerCaSO4_70PitzerCaSO4_70PitzerCaSO4_70PitzerCaSO4_70PitzerCaSO4_70PitzerCaSO4_20PitzerCaSO4_20PitzerCaSO4_20PitzerCaSO4_20PitzerCaSO4_20PitzerCaSO4_20PitzerCaSO4_20PitzerCaSO4_20PitzerCaSO4_20Pitze				0		0	
AnionPhosphateAnionPhosphateAnionPhosphateAnionSulfate0 AnionSulfate155 AnionSulfate108phField0.31 phField6.51phCalculated5.64 phCalculatedphCalculatedTempFieldTempField60 TempField64TempLabTempLabTempLab0 therFieldAlkalinityOtherFieldAlkalinity0 therFieldAlkalinity0 therFieldAlkalinityOtherSpecificGravity0 OtherSpecificGravity0 OtherSpecificGravityOtherConductivity1 OtherSpecificGravity0 OtherConductivityOtherConductivity0 OtherCaCO30 therCaCO3OtherConductivity0 OtherConductivity1369.28DissolvedO20 DissolvedO220 DissolvedO2DissolvedO20 DissolvedO20 DissolvedO2DissolvedH2S0.15DissolvedH2S0.52GasPressure100 GasCO20 GasCO20 GasCO2GasH2SP0 GasH2SP0 GasH2SPP0 GasH2SPPOgasH2SGasH2SPP0 GasH2SPP0 GasH2SPPPitzerCaCO3_70PitzerCaSO4_70-1.15PitzerCaCO3_70PitzerCaCO3_70PitzerCaSO4_70-1.54PitzerCaCO3_70PitzerGaCO3_70PitzerCaSO4_70-1.54PitzerCaCO3_70PitzerGaCO3_20PitzerGaSO4_20PitzerCaCO3_20-0.52PitzerGaCO3_70PitzerCaCO3_70-2.54PitzerCaCO3_70PitzerGaSO4_70PitzerCaSO4_70-1.54PitzerCaCO3_70PitzerGaSO4_70PitzerCaSO4_70-1.54PitzerCaCO3_20Pitz				-	, ,	-	
AnionSulfate0AnionSulfate155AnionSulfate108phFieldphField5.31phField6.51phCalculated5.64phCalculatedphCalculatedTempFieldTempField60TempField64TempLabTempLabTempLabTempLab0OtherFieldAlkalinityOtherFieldAlkalinity000OtherSpecificGravity100000OtherSpecificGravity0000000OtherCaC0312.0600<							
phFieldphField5.31phField6.51phCalculated5.64phCalculatedphCalculated60TempField60TempField64TempLabTempLabTempLab0therFieldAlkalinity0therFieldAlkalinityOtherSpecificGravity00therFieldAlkalinity00therFieldAlkalinityOtherSpecificGravity00therSpecificGravity00OtherCaC0312.06OtherCaC0300therCaC03OtherConductivity1266.110therConductivity1369.28DissolvedC020DissolvedC02280DissolvedC02DissolvedC020DissolvedC0200DissolvedC20DissolvedC200DissolvedC20DissolvedC200DissolvedC20DissolvedC200DissolvedD20DissolvedH2S0.15DissolvedD2DissolvedP20GasC0200GasC02PP0GasC02PP00GasH2S0GasH2S00GasH2SPP0GasH2SPP00.31PitzerBaS04_70-1.15PitzerCaS04_70-1.54PitzerGaC3_200PitzerGaC3_20PitzerGaC3_200-0.01PitzerBaS04_70-2.68PitzerSid_70-2.54PitzerGaS0_20PitzerGaC3_20PitzerGaC3_200-0.01PitzerBaS04_70-2.68PitzerSid_70-2.54PitzerGaC3_200PitzerGaC3_200Pitz		0		155		108	
phCalculated5.64 phCalculatedphCalculatedTempFieldTempField60 TempField64TempLabTempLabTempLabTempLabOtherFieldAlkalinityOtherFieldAlkalinity0 therSpecificGravity0OtherSpecificGravity1 OtherSpecificGravity0 OtherSpecificGravity0OtherCoductivity315.26 OtherTDS810.31 OtherTDS876.34OtherCoductivity0 OtherCoductivity1266.11 OtherCoductivity1369.28DissolvedCO20 DissolvedCO2280 DissolvedCO2110DissolvedCO20 DissolvedCO2280 DissolvedCO2110DissolvedCO20 DissolvedCO20.15 DissolvedCO20.52GasPressureGasPressure100GasPressure100GasCO20 GasCO2000GasCO2PP0 GasH2S0.6300GasH2SPP0 GasH2SPP0 GasH2S00PitzerCaCO3_70PitzerCaCO3_70-2.54PitzerCaCO3_70-0.81PitzerGaCO3_70PitzerGaSO4_70-1.15PitzerCaCO3_70-2.54PitzerGaCO3_70PitzerGaCO3_70-2.54PitzerGaSO4_70-2.54PitzerGaCO3_70PitzerGaCO3_70-2.54PitzerGaSO4_70-2.54PitzerGaCO3_70PitzerGaSO4_70-2.54PitzerGaSO4_70-2.54PitzerGaCO3_70PitzerGaSO4_70-2.54PitzerGaSO4_70-2.54PitzerGaSO4_70PitzerGaSO4_70-2.54PitzerGaSO4_70-2.54PitzerGaSO4_70PitzerGaSO4_70<		0					
TempFieldTempField60TempField64TempLabTempLabTempLabTempLabTempLabOtherFieldAlkalinityOtherFieldAlkalinityOtherFieldAlkalinity0OtherSpecificGravity1OtherSpecificGravity00OtherTDS315.26OtherTDS810.31OtherCaC03OtherCaC0312.06OtherCaC03OtherCaC030OtherCaC030OtherCaC0300OtherCaC020DissolvedC02280DissolvedC02110DissolvedC020DissolvedC02000DissolvedC20DissolvedH2S0.15DissolvedH2S0.52GasPressureGasPressure100GasC0200GasC02GasC020GasC0200GasH2SPGasH2S0GasH2S00OtherCaS04_70PitzerCaC03_70-2.54PitzerCaC03_70-0.81PitzerSo4_70PitzerGaS04_70-1.15PitzerGaC03_70-2.54PitzerGaS04_70PitzerFeC03_70PitzerFeC03_70-2.54PitzerGaS04_220PitzerFaS04_20-2.54PitzerFaC03_20-0.52PitzerGaS04_220PitzerFaS04_20-2.54PitzerFaC03_20-0.52PitzerGaS04_220PitzerFaS04_20-2.54PitzerFaC03_70-2.54PitzerGaS04_220PitzerFaS04_20-2.54PitzerFaC03_70-2.54PitzerGaS04_220PitzerFaS04_20PitzerFaC03_70-2.54Pitze		5.64					
TempLabTempLabTempLabOtherFieldAlkalinityOtherFieldAlkalinityOtherFieldAlkalinityOtherSpecificGravity1OtherSpecificGravity0OtherSpecificGravity1OtherSpecificGravity0OtherDS315.26OtherTDS810.31OtherCaC03OtherCaC0312.06OtherCaC03OtherCaC030OtherConductivity12.06OtherConductivity1266.11OtherConductivityDissolvedC020DissolvedC02280DissolvedC02110DissolvedC020DissolvedC020DissolvedC02100DissolvedC20DissolvedH2S0.15DissolvedH2S0.52GasPressureGasPressure100GasC0200GasC02GasC020GasC0200GasH2SGasH2S0GasH2S00GasH2SPPGasH2SPP0GasH2SPP00PitzerCaC03_70PitzerCaS04_70-1.15PitzerCaS04_70-1.54PitzerFeC03_70PitzerFeC03_70PitzerFeC03_70-2.68PitzerFeC03_70PitzerGaC03_220PitzerFaS04_220PitzerFaS04_220-0.22-2.34PitzerCaS04_220PitzerGaS04_220PitzerGaS04_220-0.22PitzerSrS04_220PitzerGaS04_220PitzerSrS04_220-2.34PitzerSrS04_220PitzerGaS04_220PitzerSrS04_220-2.34PitzerSrS04_220PitzerSrS04_220PitzerSrS04_220-2.34		0101		60		64	
OtherFieldAlkalinityOtherFieldAlkalinityOtherFieldAlkalinityOtherSpecificGravity1OtherSpecificGravity0OtherSpecificGravity0OtherTDS315.26OtherTDS810.31OtherTDS876.34OtherCaC0312.06OtherCaC03OtherCaC030OtherConductivity0DissolvedC02280DissolvedC02110DissolvedC020DissolvedC020DissolvedC02110DissolvedC20DissolvedC2000.52GasPressure0DissolvedH2S0.520.52GasPressure0GasC020GasC020GasC020GasC020GasC020GasH2S0GasH2S0GasH2S00GasH2SPP0GasH2SPP0GasH2SPP00PitzerCaC03_70PitzerGaC03_70-2.54PitzerGaC03_70-0.81PitzerSA4_700PitzerGaC03_70-2.54PitzerGaC03_70-2.54PitzerGaC03_70PitzerGaC03_70-2.54PitzerGaC03_70-2.54PitzerGaC03_70PitzerGaC03_70-2.54PitzerGaC03_70-2.54PitzerFeC03_70PitzerFaC03_70PitzerFaC03_70-2.54PitzerFaC03_200PitzerFaC03_200PitzerFaC03_20-0.01PitzerFaC03_200PitzerFaC03_20PitzerGaC03_20-2.54PitzerGaC04_200PitzerGaC03_20PitzerGaC03_20-2.54PitzerGaC03_200PitzerFaC03_70-2							
OtherSpecificGravity1OtherSpecificGravity0OtherSpecificGravity0OtherTDS315.26OtherTDS810.31OtherTDS876.34OtherCaC0312.06OtherCaC03OtherCaC030OtherConductivityOtherConductivity1266.11OtherConductivity1369.28DissolvedC020DissolvedC02280DissolvedC02110DissolvedC020DissolvedC02000DissolvedO20DissolvedC02000DissolvedH2S00.15DissolvedH2S0.520GasPressureGasPressure100GasPressure100GasC02GasC020GasC0200GasH2SGasH2S0GasH2S00GasH2SPPGasH2SPP0GasH2SPP00PitzerCaC03_70PitzerCaC03_70-2.54PitzerCaC03_70-0.81PitzerSS04_70PitzerSS04_70-1.15PitzerCaC03_70-2.54PitzerGaC03_220PitzerGaC3_70-2.68PitzerSC3_70-2.54PitzerGaC03_220PitzerGaC03_220PitzerGaC03_220-0.01PitzerGaC03_220PitzerGaC03_220PitzerGaC03_220-0.02PitzerGaC03_220PitzerGaC03_220PitzerGaC03_220-0.22PitzerGaC04_220PitzerGaC04_220PitzerGaC04_220-1.43PitzerSrS04_220PitzerSrS04_220PitzerSrS04_220-2.34							
OtherTDS 315.26 OtherTDS 810.31 OtherTDS 876.34 OtherCaCO3 12.06 OtherCaCO3 OtherCaCO3<		1		0		0	
OtherCaCO312.06OtherCaCO3OtherCaCO3OtherConductivityOtherConductivity1266.11OtherConductivity1369.28DissolvedCO20DissolvedCO2280DissolvedCO2110DissolvedO2DissolvedO2DissolvedO2000DissolvedH2S0DissolvedH2S0.15DissolvedH2S0.52GasPressureGasPressure100GasCO200GasCO2GasCO20GasCO200GasCO2GasCO20GasCO200GasH2SGasH2S0GasH2S00GasH2SPPGasH2SPP0GasH2SPP00PitzerCaCO3_70PitzerCaCO3_70-2.54PitzerCaSO4_70-0.81PitzerSo4_70PitzerFeCO3_70-1.15PitzerCaSO4_70-1.54PitzerFcCO3_70PitzerFeCO3_70-2.68PitzerCaSO4_70-2.54PitzerGaCO3_220PitzerFcCO3_70PitzerFeCO3_70-2.54PitzerGaCO3_220PitzerGaCO3_220PitzerGaSO4_220-0.01PitzerBaSO4_220PitzerGaSO4_220PitzerGaSO4_220-0.22PitzerCaSO4_220PitzerGaSO4_220PitzerGaSO4_220-0.23PitzerSrSO4_220PitzerSrSO4_220PitzerSrSO4_220-2.34							
OtherConductivityOtherConductivity1266.11OtherConductivity1369.28DissolvedCO20DissolvedCO2280DissolvedCO2110DissolvedO2DissolvedO2DissolvedO2DissolvedO20DissolvedH2S0DissolvedH2S0.15DissolvedH2S0.52GasPressureGasPressure100GasCO200GasCO2GasCO20GasCO200GasCO2PPGasCO2PP0GasCO2PP00GasH2SPPGasH2S0GasH2SPP00PitzerCaCO3_70PitzerCaCO3_70-2.54PitzerGaSO4_70-0.81PitzerSO4_70PitzerFaSO4_70-1.15PitzerCaSO4_70-1.54PitzerGaCO3_220PitzerGaCO3_70-2.68PitzerCaCO3_70-2.54PitzerGaCO3_220PitzerGaCO3_220PitzerGaSO4_220-0.01PitzerBaSO4_220PitzerGaSO4_220PitzerGaSO4_220-0.22PitzerSrSO4_220PitzerGaSO4_220PitzerGaSO4_220-0.23PitzerSrSO4_220PitzerSrSO4_220PitzerSrSO4_220-2.34							
DissolvedCO20DissolvedCO2280DissolvedCO2110DissolvedO2DissolvedO2DissolvedO2DissolvedO20DissolvedH2S0DissolvedH2S0.15DissolvedH2S0.52GasPressureGasPressure100GasCO200GasCO2GasCO20GasCO200GasCO2PPGasCO2PP0GasCO2PP00GasH2SGasH2S0GasH2S00PitzerCaCO3_70PitzerCaCO3_70-2.54PitzerCaCO3_70-0.81PitzerSO4_70PitzerGaSO4_700-1.15PitzerCaSO4_70-1.54PitzerSO4_70PitzerFeCO3_70-2.68PitzerCaCO3_70-2.54PitzerCaCO3_220PitzerGaCO3_220PitzerCaCO3_220-0.01PitzerBaSO4_220PitzerGaSO4_220PitzerGaSO4_220-0.22PitzerCaSO4_220PitzerGaSO4_220PitzerGaSO4_220-0.22PitzerSrSO4_220PitzerSrSO4_220PitzerSrSO4_220-2.34PitzerSrSO4_220PitzerSrSO4_220PitzerSrSO4_220-2.34				1266.11		1369.28	
DissolvedO2DissolvedO2DissolvedO2DissolvedH2S0DissolvedH2S0.15DissolvedH2S0DissolvedH2S0.52GasPressureGasPressure100GasPressure100GasCO2GasCO20GasCO20GasCO2PPGasCO2PP0GasCO2PP0GasH2SGasH2S0GasH2S0GasH2SPPGasH2SPP0GasH2SPP0PitzerCaCO3_70PitzerCaCO3_70-2.54PitzerCaCO3_70-0.81PitzerSo4_70PitzerGaSO4_700-1.15PitzerCaSO4_70-1.54PitzerSo4_70PitzerFaCO3_70PitzerFaCO3_70-2.54PitzerCaCO3_70-2.54PitzerGaCO3_220PitzerFaCO3_70PitzerFeCO3_70-2.54PitzerCaCO3_20-0.01PitzerBaSO4_220PitzerGaCO3_220PitzerGaSO4_220-0.22-0.22PitzerGaSO4_220PitzerGaSO4_220PitzerGaSO4_220-0.22PitzerSrSO4_220PitzerSrSO4_220PitzerSrSO4_220-2.34PitzerSrSO4_220PitzerSrSO4_220PitzerSrSO4_220-2.34	, ,	0	,				
GasPressure GasPressure 100 GasPressure 100 GasPressure 100 GasCO2 0 GasH2S 0			DissolvedO2				
GasPressure GasPressure 100 GasPressure 100 GasPressure 100 GasCO2 0 GasH2S 0	DissolvedH2S	0	DissolvedH2S	0.15	DissolvedH2S	0.52	
GasCO2 GasCO2 0 GasCO2 0 GasCO2PP GasCO2PP 0 GasH2S 0 GasH2S 0 GasH2SPP 0 GasH2SPP 0 GasH2SPP 0 GasH2SPP 0 GasH2SPP 0 GasH2SPP 0 PitzerCaCO3_70 -0.81 PitzerCaCO3_70 -1.54 PitzerCaCO3_70 -1.54 PitzerFaCO3_70 -1.54 PitzerFaCO3_70 PitzerFaCO3_70 PitzerFaCO3_70 PitzerFaCO3_70 PitzerFaCO3_220 -0.01 PitzerFaCO3_220 -0.01 PitzerFaCO3_220 -0.01 PitzerFaSO4_220 -0.22 PitzerCaSO4_220 -0.22 PitzerCaSO4_220	GasPressure						
GasCO2PP GasCO2PP 0 GasCO2PP 0 GasH2S GasH2S 0 GasH2S 0 GasH2SPP GasH2SPP 0 GasH2SPP 0 PitzerCaCO3_70 PitzerCaCO3_70 -2.54 PitzerCaCO3_70 -0.81 PitzerBaSO4_70 PitzerBaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerCaSO4_70 PitzerSiSO4_70 -1.15 PitzerCaSO4_70 -1.54 PitzerSiSO4_70 PitzerSiSO4_70 -2.68 PitzerSiSO4_70 -2.54 PitzerFeCO3_70 PitzerFeCO3_70 PitzerSiSO4_70 -2.54 PitzerSiSO4_70 -2.54 PitzerFeCO3_70 PitzerSiSO4_70 -2.68 PitzerSiSO4_70 -2.54 PitzerFeCO3_70 PitzerFeCO3_70 PitzerSiSO4_70 -2.54 PitzerFeCO3_70 PitzerGaCO3_220 PitzerGaCO3_220 -0.01 PitzerSaSO4_220 PitzerGaSO4_220 PitzerGaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerSiSO4_220 -1.43 PitzerSiSO4_220 PitzerSiSO4_220 Pi							
GasH2S GasH2S 0 GasH2S 0 GasH2SPP GasH2SPP 0 GasH2SPP 0 GasH2SPP 0 PitzerCaC03_70 PitzerCaC03_70 -2.54 PitzerCaC03_70 -0.81 PitzerBaSO4_70 PitzerBaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerCaSO4_70 PitzerCaSO4_70 -1.15 PitzerCaSO4_70 -1.54 PitzerSrSO4_70 PitzerSrSO4_70 -2.68 PitzerSrSO4_70 -2.54 PitzerFeC03_70 PitzerFeC03_70 PitzerSrSO4_70 -2.54 PitzerSaSO4_220 PitzerCaC03_220 PitzerSrSO4_70 -2.54 PitzerSaSO4_220 PitzerCaC03_220 PitzerSaSO4_70 -2.54 PitzerSaSO4_220 PitzerCaC03_220 PitzerSaSO4_220 -0.01 PitzerBaSO4_220 PitzerBaSO4_220 PitzerBaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -0.23 PitzerSrSO4_220 PitzerSrSO4_220 PitzerSrSO4_220 -2.34	GasCO2PP		GasCO2PP				
GasH2SPP GasH2SPP O GasH2SPP O PitzerCaCO3_70 PitzerCaCO3_70 -2.54 PitzerCaCO3_70 -0.81 PitzerBaSO4_70 PitzerBaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerCaSO4_70 PitzerCaSO4_70 -1.15 PitzerCaSO4_70 -1.54 PitzerSrSO4_70 PitzerSrSO4_70 -2.68 PitzerSrSO4_70 -2.54 PitzerFeCO3_70 PitzerFeCO3_70 PitzerSrSO4_70 -2.54 PitzerFeCO3_70 PitzerFeCO3_70 PitzerFeCO3_70 PitzerCaCO3_220 PitzerCaCO3_220 PitzerCaCO3_220 -0.01 PitzerBaSO4_220 PitzerBaSO4_220 -0.22 PitzerBaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -0.22 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -0.23 -0.22 PitzerSrSO4_220 PitzerSrSO4_220 PitzerSrSO4_220 -2.34		İ					
PitzerCaCO3_70 PitzerCaCO3_70 -2.54 PitzerCaCO3_70 -0.81 PitzerBaSO4_70 PitzerBaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerCaSO4_70 PitzerCaSO4_70 -1.15 PitzerCaSO4_70 -1.54 PitzerSrSO4_70 PitzerSrSO4_70 -2.68 PitzerSrSO4_70 -2.54 PitzerFeCO3_70 PitzerFeCO3_70 PitzerFeCO3_70 -2.54 PitzerSaSO4_220 PitzerCaCO3_220 PitzerSaSO4_220 -0.01 PitzerBaSO4_220 PitzerBaSO4_220 PitzerBaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -0.22 PitzerSrSO4_220 PitzerCaSO4_220 -1.43 PitzerSrSO4_220 PitzerSrSO4_220 -2.34							
PitzerBaSO4_70 PitzerBaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerCaSO4_70 PitzerCaSO4_70 -1.15 PitzerCaSO4_70 -1.54 PitzerSrSO4_70 PitzerSrSO4_70 -2.68 PitzerSrSO4_70 -2.54 PitzerFeCO3_70 PitzerFeCO3_70 PitzerFeCO3_70 PitzerFeCO3_70 PitzerSrSO4_220 -0.01 PitzerBaSO4_220 PitzerBaSO4_220 PitzerBaSO4_220 -0.22 PitzerCaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -1.43 PitzerSrSO4_220 -2.34	PitzerCaCO3_70					-	
PitzerCaSO4_70 PitzerCaSO4_70 -1.15 PitzerCaSO4_70 -1.54 PitzerSrSO4_70 PitzerSrSO4_70 -2.68 PitzerSrSO4_70 -2.54 PitzerFeCO3_70 PitzerFeCO3_70 PitzerFeCO3_70 PitzerFeCO3_70 PitzerSrSO4_220 -0.01 PitzerBaSO4_220 PitzerBaSO4_220 PitzerBaSO4_220 -0.22 PitzerCaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -1.43 PitzerSrSO4_220 -1.43 PitzerSrSO4_220 PitzerSrSO4_220 PitzerSrSO4_220 -2.34 PitzerSrSO4_220 -2.34	PitzerBaSO4_70						
PitzerSrS04_70 PitzerSrS04_70 -2.68 PitzerSrS04_70 -2.54 PitzerFeC03_70 Pitzer	PitzerCaSO4_70		-				
PitzerFeC03_70 PitzerFeC03_70 PitzerFeC03_70 PitzerCaC03_220 PitzerCaC03_220 PitzerCaC03_220 -0.01 PitzerBaS04_220 PitzerBaS04_220 PitzerBaS04_220 -0.22 PitzerCaS04_220 PitzerCaS04_220 PitzerCaS04_220 -1.43 PitzerSrS04_220 PitzerSrS04_220 PitzerSrS04_220 -2.34	PitzerSrSO4_70				_		
PitzerCaCO3_220 PitzerCaCO3_220 PitzerCaCO3_220 -0.01 PitzerBaSO4_220 PitzerBaSO4_220 PitzerBaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -0.22 PitzerSrSO4_220 PitzerSrSO4_220 PitzerSrSO4_220 -1.43 PitzerSrSO4_220 PitzerSrSO4_220 PitzerSrSO4_220 -2.34	PitzerFeCO3_70						
PitzerBaSO4_220 PitzerBaSO4_220 PitzerBaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -1.43 PitzerSrSO4_220 PitzerSrSO4_220 PitzerSrSO4_220 -2.34		İ	—	l	_	-0.01	
PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -1.43 PitzerSrSO4_220 PitzerSrSO4_220 PitzerSrSO4_220 -2.34	PitzerBaSO4 220	İ	-	l	-		
PitzerSrSO4_220 PitzerSrSO4_220 -2.34			-				
		İ	_	l	_		
	PitzerFeCO3 220		PitzerFeCO3 220	1	PitzerFeCO3 220		

Gas Compatibility in the San Juan Basin

- The San Juan basin has productive siliciclastic reservoirs (Pictured Cliffs, Blanco Mesaverde, Basin Dakota, etc.) and a productive coalbed methane reservoir (Basin Fruitland Coal).

- These siliciclastic and coalbed methane reservoirs are commingled extensively throughout the basin in many different combinations with no observed damage from clay swelling due to differing formation waters or gas composition.

- The samples below all show offset gas analysis varibality by formation is low.

Well Name	API
BEAVER LODGE COM 1M	3004535552

FRC	Offset	MV	Offset	DK Offset			
AssetCode	3004527429	AssetCode	3004526343	AssetCode	3004526314		
AssetName	THOMPSON LS 3	AssetName	EPNG COM 1A	AssetName	SUNRAY 8		
CO2	0.02	CO2	0.02	CO2	0.02		
N2	0	N2	0	N2	0		
C1	0.88	C1	0.8	C1	0.92		
C2	0.06	C2	0.09	C2	0.05		
С3	0.03	C3	0.05	C3	0.01		
ISOC4	0	ISOC4	0.01	ISOC4	0		
NC4	0	NC4	0.01	NC4	0		
ISOC5	0	ISOC5	0.01	ISOC5	0		
NC5	0	NC5	0	NC5	0		
NEOC5		NEOC5		NEOC5			
С6	0	C6		С6			
C6_PLUS		C6_PLUS	0.01	C6_PLUS	0		
С7	0	C7		C7			
C8	0	C8		C8			
С9	0	С9		С9			
C10		C10		C10			
AR		AR		AR			
СО		CO		CO			
H2		H2		H2			
02		02		02			
H20		H20		H20			
H2S	0	H2S		H2S			
HE		HE		HE			
C_O_S		C_O_S		C_O_S			
CH3SH		CH3SH		CH3SH			
C2H5SH		C2H5SH		C2H5SH			
CH2S3_2CH3S		CH2S3_2CH3S		CH2S3_2CH3S			
CH2S		CH2S		CH2S			
C6HV		C6HV		C6HV			
CO2GPM		CO2GPM	0	CO2GPM	0		
N2GPM		N2GPM		N2GPM	0		
C1GPM		C1GPM		C1GPM	0		
C2GPM		C2GPM	2.47	C2GPM	1.21		
C3GPM		C3GPM	1.31	C3GPM	0.26		
ISOC4GPM		ISOC4GPM	0.3	ISOC4GPM	0.11		
NC4GPM		NC4GPM		NC4GPM	0.06		
ISOC5GPM		ISOC5GPM	0.21	ISOC5GPM	0.06		
NC5GPM		NC5GPM	0.16	NC5GPM	0.03		
C6_PLUSGPM		C6_PLUSGPM	0.57	C6_PLUSGPM	0.14		

Water Compatibility in the San Juan Basin

- The San Juan basin has productive siliciclastic reservoirs (Pictured Cliffs, Blanco Mesaverde, Basin Dakota, etc.) and a productive coalbed methane reservoir (Basin Fruitland Coal).

- These siliciclastic and coalbed methane reservoirs are commingled extensively throughout the basin in many different combinations with no observed damage from clay swelling due to differing formation waters.

The samples below all show water with low TDS.

Well Name	API
BEAVER LODGE COM 1M	3004535552

API 300452704 API 3004526343 API 3004526314 CationBarlum DAY COM 200 Property EVRG COM 1A Property SUMRAY E CationBarlum O. CationBarlum O. CationBarlum O. CationBarlum O. 1 CationEdicium 4.0 CationBarlum 1.8 CationFacilum 93 CationAngenesium 0.4 Q CationMagnesium 82 CationMangenesium 249 CationMangenesium 0.4 Q CationMagnesium 82 CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationStrontium 0.0 ZationStrontium 0.0 ZationStrontium 0.2 ZationStrontium 0.2 ZationStrontium 0.2 ZationStrontium 0.2 ZationStrontium 0.2 ZationStrontium CationCapper CationCationCapper CationCationCapper CationCationCapper CationCationCapper CationCationCapper CationCationCation CationStrontium CationStrontium CationStrontium CationStrontium CationStrontium CationStrontium CationStrontium CationStrontium CationStron	FRC Offset		MV Offs	set	DK Offset			
CationBarium 0.1 CationBarium 0.1 CationBarium 0.1 CationCalcium 4.02 CationCalcium 165 CationCalcium 93 CationCalcium 0.40 CationCalcium 135 CationTron 249 CationMagnaese 0.09 CationMagnaese 0.7 CationMagnaese 0.9 CationMagnaese 0.9 CationMagnaese 0.9 CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus 0.2 CationStrontium 0.0 2 CationStrontium 0.0 2 CationStrontium 0.0 2 CationStrontium 0.0 2 CationStrontium 0.0 2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium CationCationZine CationCatine CationCationZine CationCati	API							
CationBartum 0.1 CationBartum 0.1 CationBartum 0.1 CationBartum CationCalcium 4.02 CationCalcium 165 CationCalcium 93 CationTon 7.22 CationCalcium 135 CationInton 93 CationMagnesium 0.49 CationMagnesium 83 CationMagnesium 49 CationMagnese 0.7 CationMangnese 0.7 CationMangnese 0.9 CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationStrontium 0.0 CationStrontium 0.12 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationStrontium 0.2 CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationCationStrontium CationCationStront	Property	DAY COM 200	Property	EPNG COM 1A	Property	SUNRAY 8		
CationBoron CationBoron CationBoron CationAcidum 4.02 CationCalcium 165 CationInco 240 CationAngenesium 0.40 CationMagnesium 8.3 CationMagnesium 4.40 CationMagnesium 0.40 CationMagnesium 8.3 CationMagnesium 4.40 CationPhosphorus C						0.1		
Cationizion 7.23 Cationizani 135 Cationizani 249 Cationizanizani 0.49 Cationizani 83 Cationizani 49 Cationizanizani 0.40 Cationizanizani 63 Cationizanizani 49 Cationizanizani Cationizanizanizani Cationizanizanizani 49 40 Cationizanizani Cationizanizanizani Cationizanizani 40 40 Cationizani Cationizanizani 40 40 40 40 Cationizani Cationizanizani 40	CationBoron		CationBoron					
Cation/con 7.23 Cation/Angresium 135 Cation/Angresium 249 Cation/Angresium 0.49 Cation/Angresium 83 Cation/Angresium 49 Cation/Angresium Cation/Phosphorus	CationCalcium	4.02	CationCalcium	165	CationCalcium	93		
CationMagnesium 0.49 CationManganese 0.7 CationManganese 0.9 CationManganese 0.00 CationPhosphorus CationStrontium 0.09 CationStrontium 0.02 CationStrontium 0.02 CationStrontium 0.22 CationStrontium CationStrontium CationStrontium CationStrontium CationCationAluminum CationAluminum CationAluminum <t< td=""><td>CationIron</td><td>7.23</td><td>CationIron</td><td>135</td><td>CationIron</td><td></td></t<>	CationIron	7.23	CationIron	135	CationIron			
CationManganese 0.07 CationManganese 0.9 CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationPhosphorus CationStornium 0.1 CationStornium 0.09 CationStornium 0.1 CationStornium 0.21 CationStornium 0.229 CationStornium 0.65 CationStornium 0.1 CationStornium CationStornium CationStornium CationStornium 12.14 CationAluminum CationCapper CationAluminum CationCapper CationCapper CationCapper CationCationEad CationCationCad CationChickel CationChickel CationCopati CationCapit CationChickel CationChickel CationChickel CationCopati CationMolydenum CationMolydenum CationMolydenum CationStilcon CationStilcon CationStilcon CationMolydenum CationStilcon CationMolydenum AnionChoride 288 AnionChoride 84 AnionChoride 84		0.49	CationMagnesium	83	CationMagnesium			
CationPhosphorus CationPhosphorus CationPotassium CationPotassium CationPotassium 0.1 CationStrontium 0.1 CationStrontium 0.2 CationSolum CationSilica CationSilica CationSilica CationSilica CationSilica CationSilica CationSilica CationSilica CationSilica CationSilica CationAluminum CationAluminum CationAluminum CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationCobalt CationSilicon CationSilicon CationSilicon CationMolybdenum CationSilicon CationSilicon CationSilicon CationSilicon CationMolybdenum CationSilicon CationSilicon CationSilicon CationSilicon CationSilicon CationSilicon CationSilicon CationSilicon CationSilicon CationSilicon CationSilicon CationSilicon CationSilicon CationSilicon <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>								
CationPlotassium CationPlotassium CationStrontium 0.0 CationStrontium 0.0 CationStrontium 0.1 CationStrontium 0.2 CationStontium CationStrontium CationStrontium 0.2 CationStrontium 0.2 CationStontium CationAluminum CationCopper CationCopper CationCopper CationCopper CationCopolitic CationAluminum CationCopolitic CationCopolitic CationAlumice CationCopolitic CationCopolitic CationCopolitic CationCopolitic CationCopolitic CationCopolitic CationAlumice CationCopolitic CationAlumice CationAlumice CationCopolitic CationAlumice CationCopolitic CationAlumice CationCopolitic			0		0			
CationSodium 82.29 CationSilica CationSilica CationSilica CationSilica CationSilica CationSilica CationSilica CationZinc CationZinc CationCoper CationCoper CationAluminum CationCoper CationCopper CationCopper CationLead CationCoper CationCopper CationCopper CationLikel CationNikel CationNikel CationCopolitica CationCobalt CationCobalt CationSilicon CationSilicon CationSilicon CationSilicon CationSilicon CationSilicon CationNickel CationMolybdenum CationSilicon CationSilicon CationMolybdenum CationMolybdenum CationSilicon CationSilicon CationSilicon CationMolybdenum CationSilicon CationSilicon CationSilica AnionBromide AnionBromide AnionBromide AnionBromide AnionBromide AnionBromide AnionPydroxyl O AnionBromide AnionPydroxyl O OnionSuffate 108 A	CationPotassium							
CationSilica CationSilica CationSilica CationZinc CationSilica CationZinc CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationCopper CationLithium CationLithium CationCopal CationCobalt CationCobalt CationCobalt CationChornium CationChornium CationCobalt CationNickel CationNickel CationNickel CationSilicon CationSilicon CationSilicon CationNickel OAnionCarbonate 0 AnionCarbonate AnionCarbonate OAnionCarbonate 0 AnionCarbonate AnionFiboride AnionFiboride AnionFiboride AnionFiboride	CationStrontium	0.09	CationStrontium	0.1	CationStrontium	0.2		
CationSilica CationZinc CationZinc CationZinc CationZinc CationZinc CationAluminum CationAluminum CationCopper CationCopper CationCopper CationLead CationLead CationLinum CationLead CationLinum CationCopalt CationCobalt CationCobalt CationCobalt CationSilicon CationSilicon CationSilicon CationSilicon CationNickel CationMolybdenum CationMolybdenum CationSilicon CationSilicon CationSilicon CationSilicon CationSilicon CationNibride	CationSodium	82.29	CationSodium	-66.59	CationSodium	12.14		
CationZinc CationZinc CationAluminum CationAluminum CationAluminum CationAluminum CationCopper CationCopper CationCopper CationLinkum CationLinkum CationLinkum CationLinkum CationLinkum CationLinkum CationLinkum CationCobalt CationCobalt CationLinkum CationCobalt CationChromium CationAlobenum CationCobalt CationChromium CationAlobenum CationChromium CationMolybdenum CationAlobenum CationChromium CationAlobenum CationAlobenum CationAlobybdenum CationAlobenum CationAlobenum CationAlobybdenum CationAlobenum CationAlobenum CationAlobybdenum CationAlobybdenum CationAlobybdenum CationAlobybdenum CationAlobybdenum CationBloride AnionChioride 280 AnionBrande AnionBrande AnionBrande AnionBrande AnionHydroxyl O AnionAlobydroxyl O AnionBrande AnionNitrate AnionNitrate <	CationSilica		CationSilica		CationSilica			
CationCopper CationCopper CationCopper CationLead CationLead CationLead CationLead CationLithium CationLithium CationLithium CationNickel CationNickel CationCobalt CationCobalt CationCobalt CationCobalt CationSilicon CationCobalt CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum CationChordie 50.05 AnionChoride 288 AnionChoride 84 AnionEcarbonate 0 AnionBicarbonate 0 AnionBicarbonate 0 AnionBromide AnionPhormide AnionPhormide AnionPhorphate 280 AnionPhorphate AnionPhorphate 4nionPhorphate 280 AnionSulfate 0 100	CationZinc							
CationCopper CationCopper CationCopper CationLead CationLead CationLead CationLead CationLithium CationLithium CationLithium CationNickel CationNickel CationCobalt CationCobalt CationCobalt CationCobalt CationSilicon CationCobalt CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum CationChordie 50.05 AnionChoride 288 AnionChoride 84 AnionEcarbonate 0 AnionBicarbonate 0 AnionBicarbonate 0 AnionBromide AnionPhormide AnionPhormide AnionPhorphate 280 AnionPhorphate AnionPhorphate AnionPhorphate 280 AnionPhorphate AnionPhorphate AnionPhorphate 280 AnionPhorphate AnionPhorphate AnionPhorphate 280 AnionPhorphate AnionPhorphate AnionPhorphate 280 AnionSulfate 0 155 AnionPhorphate 280 AnionSulfate 0 160 <td>CationAluminum</td> <td></td> <td>CationAluminum</td> <td></td> <td></td> <td></td>	CationAluminum		CationAluminum					
CationLead CationLead CationLead CationLithium CationLithium CationNickel CationNickel CationNickel CationNickel CationNickel CationNickel CationNickel CationNickel CationNickel CationNickel CationNomum CationNomum CationNomum CationNomum CationNolybdenum CationNolybdenum CationNolybdenum CationNontde 208 AnionChoride 84 AnionChoride 208 AnionChoride 84 AnionChoride 208 AnionChoride 84 AnionChoride 208 AnionChoride 84 AnionChoride AnionPhorphate 0 AnionPhorphate 0 AnionFluoride AnionPhorphate AnionPhorphate AnionPhorphate 108 AnionSulfate 0 AnionSulfate 155 AnionNitrate 108 AnionSulfate 0 AnionSulfate 166 64 166 64 166 64 66 66 66 66 66 66 66 66 66 66 66								
CationLithium CationLithium CationLithium CationLickel CationNickel CationCobalt CationCobalt CationChomium CationCobalt CationChomium CationChomium CationChomium CationChomium CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum AnionCarbonate 0 AnionCarbonate 0 AnionBicarbonate 171.08 AnionBicarbonate 50 AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionPhydroxyl 0 AnionHydroxyl 0 AnionPhosphate AnionPhosphate AnionSulfate 108 AnionPhosphate AnionPhosphate AnionSulfate 108 AnionPhosphate AnionSulfate 108 AnionSulfate 108 PhiCaluated 5.64 phCalculated 5.61 phCalculated 5.61 DherryBeld/Kalinity OtherSpecificGravity 0 OtherSpecificGravity 0 OtherSpecificGr								
CationNickel CationNickel CationCobalt CationCobalt CationCobalt CationCobalt CationChromium CationChromium CationChromium CationMolybdenum CationMolybdenum CationMolybdenum CationChromium CationMolybdenum CationMolybdenum CationAnorbonate 0 AnionChoride 288 AnionBcarbonate 1108 AnionBcarbonate 50 AnionBromide AnionRhomide AnionPhrosphate 280 AnionPhytoxyl AnionHydroxyl 0 AnionNutrate AnionPhytoxyl AnionPhytoxyl 0 AnionNutrate AnionPhytoxyl AnionPhytoxyl 0 AnionNutrate AnionPhytoxyl AnionPhytoxyl 0 AnionNutrate AnionPhytoxyl AnionPhytoxyl 0 AnionNutrate 108 phField phField 5.31 phField 6.51 phCalculated 5.64 phCalculated 101herSpecificGravity 0 OtherSpecificGravity 0 OtherSpecificGravity 0 <td>CationLithium</td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	CationLithium					1		
CationCobalt CationChornium CationChromium CationChromium CationRincon CationSilicon CationSilicon CationSilicon CationMolybdenum CationMolybdenum CationMolybdenum CationSilicon AnionCarbonate 0 AnionCarbonate 0 AnionCarbonate 0 AnionCarbonate 0 AnionFluoride AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate 280 AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionPhosphate AnionPhosphate AnionSurfate 155 AnionPhosphate AnionPhosphate AnionSurfate 155 AnionPhosphate AnionPhosphate AnionSurfate 155 AnionSurfate 108 PhField phField 5.64 phCalculated 5.64 phCalculated 5.64 phCalculated 5.64 phCalculated 5.64 phCalculated 5.64 phCalculated 104 64 104 65.19 01467562 01467562 01467562						1 1		
CationChromium CationChromium CationSilicon CationMolybdenum CationMolybdenum CationMolybdenum AnionChloride 50.05 AnionChloride 288 AnionChloride 0 AnionChloride 288 AnionBicarbonate 0 AnionBicarbonate 0 AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate 171.08 AnionFlucarbonate 50 AnionBicarbonate 171.08 AnionFlucarbonate 50 AnionHydroxyl AnionHydroxyl 0 AnionHydroxyl 0 AnionNitrate AnionNitrate AnionSulfate 155 AnionSulfate 108 AnionSulfate 0 AnionSulfate 155 AnionSulfate 108 phField 5.64 phCalculated phCalculated 6.51 phCalculated TempField TempField 60 TempField 64 TempField 64 OtherSpecificGravity 0 OtherSpecificGravity 0 OtherCaC03 0	CationCobalt					1		
CationSilicon CationSilicon CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum CationMolybdenum AnionChoride 50 AnionChoride 288 AnionChoride 84 AnionCarbonate 0 AnionBromide AnionBromide AnionBromide AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionPydroxy1 0 AnionNitrate AnionPydroxy1 0 AnionPydroxy1 0 AnionNitrate AnionPhosphate AnionPhosphate AnionPhosphate AnionSulfate 155 AnionSulfate 108 PhField phField 5.31 phField 6.51 phField TempField 60 TempField 64 TempLab TempLab TempLab TempLab OtherFieldAlkalinity OtherFoS 810.31 OtherTOS 876.34 OtherCO2 0 DissolvedCO2 280 DissolvedCO2 110 DissolvedCO2 0 DissolvedCO2 0 DissolvedCO2 0.50 0.50 DissolvedCO2 0 DissolvedCO2 0 DissolvedCO2			CationChromium					
CationMolybdenum CationMolybdenum CationMolybdenum AnionChloride 288 AnionChloride 84 AnionChloride 84 AnionChloride 84 AnionChloride 84 AnionChloride 84 AnionChloride 84 AnionChloride 84 AnionElarbonate 0 AnionChloride 84 AnionElarbonate 0 AnionChloride 84 AnionElarbonate 280 AnionBicarbonate 280 AnionElarbonate 280 AnionElarb	CationSilicon					1		
AnionChloride 50.05 AnionChloride 288 AnionChloride 84 AnionBicarbonate 0 AnionBicarbonate 0 AnionBicarbonate 0 AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate 280 AnionBicarbonate AnionBicarbonate 50 AnionBicarbonate 280 AnionBicarbonate AnionBicarbonate 280 AnionBicarbonate 280 AnionHydroxyl AnionFluoride AnionPhydroxyl 0 AnionNitrate AnionPhosphate AnionPhosphate AnionSulfate 108 AnionSulfate 0 AnionSulfate 108 phField phField 5.31 phField 6.51 phField TempField 60 TempField 64 TempLab TempField 60 TempField 64 OtherSpecificGravity 0 OtherSpecificGravity 0 0 OtherSpecificGravity 1 OtherCacO3 0 0 0 OtherConductivit								
AnionCarbonate 0 AnionCarbonate 0 AnionCarbonate 0 AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate 280 AnionFluoride AnionFluoride AnionBromide AnionBromide AnionBromide AnionBromide AnionFluoride AnionFluoride AnionPhydroxyl 0 AnionPhydroxyl 0 AnionNitrate AnionNitrate AnionPhosphate AnionPhosphate 108 AnionPhosphate AnionSulfate 155 AnionSulfate 108 phField phField 5.64 phField 6.51 phCalculated 5.64 phCalculated 6.41 64 TempField TempLab TempLab TempLab 104 64 OtherSpecificGravity 0 OtherSpecificGravity 0 0467.634 64 OtherCodO3 12.06 OtherCodO3 040 64 64 64 TempLab TempLab TempLab TempLab 876.34 04 64 OtherCodO3 12.06 OtherCodO3 040 64 64		50.05	2	288		84		
AnionBicarbonate 171.08 AnionBicarbonate 50 AnionBicarbonate 280 AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionFluoridydroxyl AnionHydroxyl 0 AnionFluoride AnionFluoride AnionPhosphate AnionPhosphate AnionPhosphate AnionSulfate 108 AnionSulfate 0 AnionSulfate 155 AnionSulfate 108 phField 5.64 phCalculated phCalculated 6.51 phCalculated 6.51 phCalculated 5.64 phCalculated phCalculated 6.51 phCalculated 64 TempField TempLab TempLab TempLab 0 0 0 OtherFieldAlkalinity OtherFieldAlkalinity 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
AnionBromideAnionBromideAnionBromideAnionFluorideAnionFluorideAnionFluorideAnionHydroxylAnionHydroxyl0AnionHydroxylAnionHydroxyl0AnionPhosphateAnionNitrateAnionPhosphateAnionSulfate155AnionSulfate0DhCalculated5.64phField5.64phCalculated5.64DeCalculatedphFieldCherrigical6.51phField108phField60TempField60TempField60TempField0OtherSpecificGravity0OtherSpecificGravity0OtherSpecificGravity0OtherSpecificGravity0OtherCaC030OtherConductivity1266.11OtherConductivity1369.28DissolvedC020DissolvedC020DissolvedC020DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20DissolvedC20Dissolve						280		
AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionFluoride AnionNitrate AnionNitrate AnionPhosphate AnionSulfate AnionPhosphate AnionPhosphate AnionSulfate 0 AnionSulfate 155 AnionSulfate 0 5.64 phField 5.31 phCalculated 5.64 phCalculated 6.51 phCalculated 5.64 phCalculated 64 TempField TempField 60 TempField 64 TempLab TempLab TempLab 0 0 0 0 OtherFieldAlkalinity OtherFieldAlkalinity 0<								
AnionHydroxylAnionHydroxyl0AnionHydroxyl0AnionNitrateAnionNitrateAnionNitrateAnionNitrateAnionPhosphateAnionSulfate155AnionSulfate108phrionSulfate0AnionSulfate155AnionSulfate108phField05.64phCalculatedphCalculated6.51phCalculated5.64phCalculated06.51phCalculatedTempField606064TempField0TempLabTempLab64OtherFieldAlkalinityOtherFieldAlkalinity064OtherSpecificGravity10076OtherSpecificGravity107680.31OtherCoductivity12.6607676OtherCoductivity12.6607676OtherCoductivity007676OtherCoductivity007676OtherCoductivity007676OtherCoductivity007676OtherCoductivity007676OtherCoductivity007676OtherCoductivity007676OtherCoductivity007676OtherCoductivity007676OtherCoductivity007676OtherCoductivity007676OtherCoductivity00 <td>AnionFluoride</td> <td></td> <td></td> <td></td> <td></td> <td></td>	AnionFluoride							
AnionNitrate AnionNitrate AnionNitrate AnionPhosphate AnionPhosphate AnionPhosphate AnionSulfate 0 AnionSulfate 155 AnionSulfate Displeted phField 5.31 phField 6.51 phField 5.44 phCalculated phCalculated 9hCalculated TempField TempField 60 TempField 64 TempLab TempLab TempLab 0therSpecificGravity 0 OtherSpecificGravity 0 OtherSpecificGravity 0 OtherSpecificGravity 0 OtherSpecificGravity 0 OtherCaC03 0therCaC03 0therCaC03 0therCaC03 0therCaC03 0therCaC03 0therCaC03 0therCaC03 0therCaC02 0 DissolvedC02 0 GasC02PP 0 GasH2SP 0 GasH2SP 0 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85				0		0		
AnionPhosphateAnionPhosphateAnionPhosphateAnionSulfate0 AnionSulfate155 AnionSulfate108phField0.31 phField6.51phCalculated5.64 phCalculatedphCalculated60TempFieldTempField60TempField64TempLabTempLabTempLab064OtherFieldAlkalinityOtherFieldAlkalinity00810.31OtherSpecificGravity000810.310OtherConductivity1010810.31010OtherConductivity000136.260136.26OtherConductivity000136.260136.26OtherConductivity000136.260136.26OtherConductivity00136.260136.260OtherConductivity00136.260136.260OtherConductivity00136.260136.260OtherConductivity001266.110016.26OtherConductivity001266.110010.260DissolvedO2000000000000000000000000000000000000000 <td>, ,</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td>	, ,			-		-		
AnionSulfate0AnionSulfate155AnionSulfate108phFieldphField5.31phField6.51phCalculatedphCalculatedphCalculated6.51TempFieldCempField60TempField64TempLabTempLabTempLab0OtherFieldAlkalinityOtherFieldAlkalinity00OtherSpecificGravity1OtherSpecificGravity00OtherSpecificGravity000876.34OtherCaC0312.06OtherCaC03001369.28DissolvedC020DissolvedC02280DissolvedC02110DissolvedO20DissolvedC2000DissolvedO20DissolvedH2S0.15DissolvedO20DissolvedA2S0DissolvedH2S0.150.520.52GasPressure0GasC02000GasC02PP0GasC02PP000GasH2SPP0GasH2SPP000.33PitzerCaC03_70PitzerCaC03_70-2.54PitzerCaC03_70-0.81PitzerSiSO4_70PitzerGaSO4_70-1.54PitzerGaS04_70-2.54PitzerGaC3_20PitzerGaS04_70-2.68PitzerSiS04_70-2.54PitzerGaS04_70PitzerGaS04_70-2.68PitzerSiS04_70-2.54PitzerGaSO4_70PitzerGaS04_70-2.68PitzerSiS04_70-2.54PitzerGaS04_70PitzerGaS04_70-2.68								
phFieldphField5.31phField6.51phCalculated5.64phCalculatedphCalculated6.51TempField60TempField64TempLabTempLabTempLab0therFieldAlkalinity0therFieldAlkalinityOtherSpecificGravity0OtherFieldAlkalinity00therSpecificGravity0OtherSpecificGravity0OtherSpecificGravity000therSpecificGravity0OtherCaC0312.06OtherCaC0300therCaC0300OtherCaC030DissolvedC02280DissolvedC02110DissolvedC020DissolvedC020000DissolvedC020DissolvedC20000DissolvedD20DissolvedH2S0.15DissolvedH2S0.520.52GasPressure0GasC0200GasC02000GasC02PPGasC02PP0GasC02PP0000000GasH2S0GasH2S0GasH2SPP00000.3300		0		155		108		
phCalculated5.64 phCalculatedphCalculatedTempFieldTempField60TempLabTempLabOtherFieldAlkalinityOtherFieldAlkalinityOtherSpecificGravity0OtherSpecificGravity0OtherSpecificGravity0OtherSpecificGravity0OtherCaC03315.26OtherDS810.31OtherCaC030OtherCaC030OtherConductivity1266.11OtherConductivity1369.28DissolvedO20DissolvedO20DissolvedO20DissolvedO20DissolvedO20DissolvedP2S0O0GasPressure100GasC02PP0GasC02PP0GasH2S0GasH2SPP0GasH2SPP0GasH2SPP0OPitzerGaC03_70PitzerGaC03_70PitzerGaS04_70OPitzerGaS04_70PitzerGaC03_20PitzerGaC03_20PitzerGaC03_20 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
TempFieldTempField60TempField64TempLabTempLabTempLabTempLabTempLabOtherFieldAlkalinityOtherFieldAlkalinityOtherFieldAlkalinity0OtherSpecificGravity1OtherSpecificGravity00OtherSpecificGravity1OtherSpecificGravity00OtherSpecificGravity10810.310876.34OtherCaC0312.06OtherCaC0300876.34OtherCaC030001369.28876.34OtherCaC030001369.2801369.28DissolvedC0200001369.2801369.28DissolvedC0200001369.2801369.28DissolvedC200001369.280100DissolvedC2000010001369.28DissolvedD20000010000GasC02000000000GasC0200GasC0200		5.64						
TempLabTempLabTempLabOtherFieldAlkalinityOtherFieldAlkalinityOtherFieldAlkalinityOtherSpecificGravity1OtherSpecificGravity0OtherSpecificGravity1OtherSpecificGravity0OtherDS315.26OtherTDS810.31OtherCaC0312.06OtherCaC03OtherCaC03OtherConductivity0OtherConductivity1266.11OtherConductivity0DissolvedC02110DissolvedC020DissolvedC020DissolvedC20DissolvedC20DissolvedD20DissolvedH2S0.52GasPressure100GasPressure100GasC02GasC020GasC02GasC2PPGasC02PP0GasC2PPGasH2SPPGasH2SPP0GasH2SPOPitzerCaC03_70PitzerCaC03_70-2.54PitzerGaS04_70PitzerGaS04_70-1.54PitzerGaC3_70PitzerGaS04_70-2.54PitzerGaC3_70PitzerGaS04_70-2.54PitzerGaC3_70PitzerGaS04_70-2.54PitzerGaC3_70PitzerGaS04_70-2.54PitzerGaC3_20PitzerGaS04_20PitzerGaC03_20OPitzerGaS04_20PitzerGaS04_20-2.54PitzerGaS04_220PitzerFaC03_70-2.68PitzerFaC03_70PitzerFaC03_70-2.64PitzerGaS04_220PitzerFaC3_20-0.02PitzerGaS04_220PitzerFaS04_20-2.54PitzerGaS04_220PitzerFaS04_20-2.54 </td <td></td> <td></td> <td></td> <td>60</td> <td></td> <td>64</td>				60		64		
OtherSpecificGravity0OtherSpecificGravity0OtherTDS315.26OtherTDS810.31OtherTDS876.34OtherCaC0312.06OtherCaC03OtherCaC03OtherCaC03OtherConductivityOtherConductivity1266.11OtherConductivity1369.28DissolvedC02ODissolvedC02DissolvedC02110DissolvedC2ODissolvedC200DissolvedH2SODissolvedH2S0.15DissolvedH2S0.52GasPressureGasPressure100GasC0200GasC02OGasC02O00GasH2SGasH2SOGasH2S00GasH2SPPGasH2SPPOGasH2SPP00PitzerCaC03_70PitzerCaC03_70-2.54PitzerCaS04_70-0.81PitzerSS04_70PitzerSS04_70-1.15PitzerCaS04_70-2.54PitzerCaC03_70PitzerGaS04_70-2.68PitzerSS04_70-2.54PitzerCaC03_70PitzerGaS04_70-2.54PitzerCaS04_70-2.54PitzerCaS04_70PitzerSS04_70-2.54PitzerCaS04_70-2.54PitzerSS04_70PitzerSS04_70-2.54PitzerSS04_70-2.54PitzerSS04_70PitzerSS04_70-2.54PitzerSS04_70-2.54PitzerSS04_70PitzerSS04_70-2.68PitzerSS04_70-2.54PitzerSS04_70PitzerSS04_70-2.54PitzerSS04_70-2.54PitzerSS04_70PitzerSS04_70-2.54 <td>TempLab</td> <td></td> <td></td> <td></td> <td></td> <td></td>	TempLab							
OtherSpecificGravity0OtherSpecificGravity0OtherTDS315.26OtherTDS810.31OtherTDS876.34OtherCaC0312.06OtherCaC03OtherCaC03OtherCaC03OtherConductivityOtherConductivity1266.11OtherConductivity1369.28DissolvedC02ODissolvedC02DissolvedC02110DissolvedC2ODissolvedC200DissolvedH2SODissolvedH2S0.15DissolvedH2S0.52GasPressureGasPressure100GasC0200GasC02OGasC02O00GasH2SGasH2SOGasH2S00GasH2SPPGasH2SPPOGasH2SPP00PitzerCaC03_70PitzerCaC03_70-2.54PitzerCaS04_70-0.81PitzerSS04_70PitzerSS04_70-1.15PitzerCaS04_70-2.54PitzerCaC03_70PitzerGaS04_70-2.68PitzerSS04_70-2.54PitzerCaC03_70PitzerGaS04_70-2.54PitzerCaS04_70-2.54PitzerCaS04_70PitzerSS04_70-2.54PitzerCaS04_70-2.54PitzerSS04_70PitzerSS04_70-2.54PitzerSS04_70-2.54PitzerSS04_70PitzerSS04_70-2.54PitzerSS04_70-2.54PitzerSS04_70PitzerSS04_70-2.68PitzerSS04_70-2.54PitzerSS04_70PitzerSS04_70-2.54PitzerSS04_70-2.54PitzerSS04_70PitzerSS04_70-2.54 <td>OtherFieldAlkalinity</td> <td></td> <td>OtherFieldAlkalinity</td> <td></td> <td>OtherFieldAlkalinity</td> <td></td>	OtherFieldAlkalinity		OtherFieldAlkalinity		OtherFieldAlkalinity			
OtherTDS 315.26 OtherTDS 810.31 OtherTDS 876.34 OtherCaCO3 12.06 OtherCaCO3 OtherCaCO3<		1		0		0		
OtherConductivityOtherConductivity1266.11OtherConductivity1369.28DissolvedCO20DissolvedCO2280DissolvedCO2110DissolvedO2DissolvedO2DissolvedO200DissolvedH2S0DissolvedH2S0.15DissolvedH2S0.52GasPressureGasPressure100GasCO200GasCO2GasCO20GasCO200GasCO2PPGasCO2PP0GasCO2PP00GasH2SPGasH2S0GasH2SPP00PitzerGaCO3_70PitzerGaCO3_70-2.54PitzerGaCO3_70-0.81PitzerSO4_70PitzerGaSO4_70-1.15PitzerGaSO4_70-1.54PitzerFcCO3_70PitzerFcCO3_70-2.54PitzerGaSO4_70-2.54PitzerSO4_70PitzerFcCO3_70PitzerFcCO3_70-2.54PitzerGaCO3_220PitzerGaCO3_220PitzerGaSO4_220-0.01PitzerGaSO4_220PitzerGaSO4_220PitzerGaSO4_220-0.22PitzerSrSO4_220PitzerGaSO4_220PitzerSrSO4_220-0.23PitzerSrSO4_220PitzerSrSO4_220PitzerSrSO4_220-2.34	OtherTDS	315.26				876.34		
DissolvedCO20DissolvedCO2280DissolvedCO2110DissolvedO2DissolvedO2DissolvedO2DissolvedO20DissolvedH2S0DissolvedH2S0.15DissolvedH2S0.52GasPressureGasPressure100GasCO200GasCO20GasCO20GasCO2PP00GasCO2PP0GasCO2PP00GasCO2PP00GasH2SGasH2S0GasH2S00000PitzerCaCO3_70PitzerCaCO3_70-2.54PitzerCaCO3_70-0.8100033PitzerSo4_70PitzerFaCO3_70-2.68PitzerSo4_70-1.540-2.540 <td>OtherCaCO3</td> <td>12.06</td> <td>OtherCaCO3</td> <td></td> <td>OtherCaCO3</td> <td></td>	OtherCaCO3	12.06	OtherCaCO3		OtherCaCO3			
DissolvedO2 DissolvedO2 DissolvedO2 DissolvedH2S 0 DissolvedH2S 0.15 GasPressure GasPressure 100 GasPressure 100 GasCO2 GasCO2 0 GasCO2 0 GasCO2PP GasCO2PP 0 GasCO2PP 0 GasH2S GasH2S 0 GasH2SPP 0 PitzerCaCO3_70 PitzerCaCO3_70 -2.54 PitzerCaCO3_70 -0.81 PitzerSA4_70 PitzerGaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerSA4_70 PitzerGaSO4_70 -2.68 PitzerSA54_70 -2.54 PitzerGaSO4_70 PitzerGaSO4_70 -2.68 PitzerSA54_70 -2.54 PitzerGaSO4_70 PitzerGaSO4_70 -2.68 PitzerSA54_70 -2.54 PitzerGaSO4_220 PitzerGaSO4_220 PitzerFaSO4_220 -0.01 PitzerGaSO4_220 PitzerGaSO4_220 PitzerFaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerSA54_220 -0.22 PitzerSrSO4_220 Pit	OtherConductivity		OtherConductivity	1266.11	OtherConductivity	1369.28		
DissolvedH2S 0 DissolvedH2S 0.15 DissolvedH2S 0.52 GasPressure GasPressure 100 GasPressure 100 GasCO2 GasCO2 0 GasCO2 0 GasCO2PP GasCO2PP 0 GasCO2PP 0 GasH2S GasH2S 0 GasH2S 0 GasH2SPP GasH2SPP 0 GasH2SPP 0 PitzerCaCO3_70 PitzerCaCO3_70 -2.54 PitzerCaCO3_70 -0.81 PitzerSo4_70 PitzerGaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerSo4_70 PitzerGaSO4_70 -1.15 PitzerCaCO3_70 -1.54 PitzerSo4_70 PitzerSo4_70 -2.68 PitzerSo4_70 -2.54 PitzerGaCO3_220 PitzerGaCO3_220 PitzerFeCO3_70 -2.54 PitzerGaCO3_220 PitzerGaCO3_220 -0.01 PitzerGaCO4_220 PitzerGaCO3_220 -0.02 PitzerGaSO4_220 PitzerGaSO4_220 -0.22 PitzerCaSO4_220 PitzerSrSO4_220 -1.43	DissolvedCO2	0	DissolvedCO2	280	DissolvedCO2	110		
GasPressure GasPressure 100 GasPressure 100 GasPressure 100 GasCO2 0 GasH2S 0	DissolvedO2		DissolvedO2		DissolvedO2			
GasCO2 GasCO2 0 GasCO2 0 GasCO2PP GasCO2PP 0 GasCO2PP 0 GasCO2PP 0 GasH2S GasH2S 0 GasH2S 0 GasH2S 0 GasH2SPP GasH2SPP 0 GasH2SPP 0 GasH2SPP 0 PitzerCaCO3_70 PitzerCaCO3_70 -2.54 PitzerCaCO3_70 -0.81 PitzerBaSO4_70 PitzerBaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerCaSO4_70 PitzerCaSO4_70 -1.15 PitzerCaSO4_70 -1.54 PitzerSSO4_70 PitzerSrSO4_70 -2.68 PitzerSrS04_70 -2.54 PitzerFaCO3_70 PitzerFaCO3_70 PitzerFaCO3_70 -2.54 PitzerFaCO3_70 PitzerCaCO3_220 PitzerCaCO3_220 PitzerFaCO3_70 PitzerFaCO3_70 -2.54 PitzerCaCO3_220 PitzerCaCO3_220 PitzerFaCO3_70 -2.68 PitzerFaCO3_220 -0.01 PitzerBaSO4_220 PitzerGaCO3_220 PitzerGaCO3_220 -0.02 -0.02 -0.02 -0.02	DissolvedH2S	0	DissolvedH2S	0.15	DissolvedH2S	0.52		
GasCO2PP GasCO2PP O GasCO2PP O GasH2S GasH2S O GasH2S O GasH2SPP GasH2SPP O GasH2SPP O PitzerCaCO3_70 PitzerCaCO3_70 -2.54 PitzerCaCO3_70 -0.81 PitzerBaSO4_70 PitzerBaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerCaCO3_70 PitzerSiSO4_70 -1.15 PitzerCaSO4_70 -1.54 PitzerSiSO4_70 PitzerSiSO4_70 -2.68 PitzerSiSO4_70 -2.54 PitzerFeCO3_70 PitzerFeCO3_70 PitzerSiSO4_70 -2.54 PitzerSiSO4_70 -2.54 PitzerFeCO3_70 PitzerSiSO4_70 -1.54 PitzerSiSO4_70 -2.54 PitzerFeCO3_70 PitzerFeCO3_70 PitzerSiSO4_70 -2.54 PitzerFeCO3_70 PitzerGaCO3_220 PitzerGaCO3_220 -0.01 PitzerCaCO3_220 PitzerGaSO4_220 PitzerGaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerGaSO4_220 -1.43 PitzerSiSO4_220 PitzerSiSO4_220 Pi	GasPressure		GasPressure	100	GasPressure	100		
GasH2S GasH2S 0 GasH2S 0 GasH2SPP GasH2SPP 0 GasH2SPP 0 GasH2SPP 0 PitzerCaC03_70 PitzerCaC03_70 -2.54 PitzerCaC03_70 -0.81 PitzerBaSO4_70 PitzerBaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerCaC03_70 PitzerCaSO4_70 -1.15 PitzerCaSO4_70 -1.54 PitzerSrS04_70 PitzerSrSO4_70 -2.68 PitzerSrSO4_70 -2.54 PitzerFeC03_70 PitzerFeC03_70 PitzerSrS04_70 -2.54 PitzerCaC03_220 PitzerCaC03_220 PitzerSrS04_70 -2.54 PitzerCaC03_220 PitzerCaC03_220 PitzerCaC03_220 -0.01 PitzerCaC03_220 PitzerCaC03_220 PitzerCaC03_220 -0.02 PitzerBaSO4_220 PitzerCaSO4_220 PitzerBaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -1.43 PitzerSrSO4_220 PitzerSrSO4_220 PitzerSrSO4_220 -2.34	GasCO2							
GasH2SPP GasH2SPP 0 GasH2SPP 0 GasH2SPP 0 GasH2SPP 0 PitzerCaC03_70 -0.81 PitzerCaC03_70 -0.81 PitzerCaC03_70 -0.81 PitzerCaC03_70 -0.81 PitzerBaSO4_70 0.33 PitzerBaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerCaSO4_70 -1.54 PitzerCaSO4_70 -1.54 PitzerCaSO4_70 -1.54 PitzerCaSO4_70 -1.54 PitzerSrSO4_70 -2.54 PitzerSrSO4_70 -2.54 PitzerCaSO4_70 -2.54 PitzerSrSO4_70 -2.54 PitzerSrSO4_70 -2.54 PitzerCaSO3_70 PitzerSrSO4_70 -2.54 PitzerSrSO4_70 -2.54 PitzerSrSO4_70 -2.54 PitzerCaC03_220 PitzerFeC03_70 -2.54 PitzerCaC03_220 PitzerSrSO4_70 -2.54 PitzerSrSO4_220 -0.01 PitzerSrSO4_220 -0.01 PitzerCaC03_220 PitzerCaC03_220 -0.01 PitzerBaSO4_220 -0.02 PitzerCaSO4_220 -0.22 PitzerCaSO4_220 -0.22 PitzerCaSO4_220 -0.22 PitzerSrSO4_220 -0.22 PitzerSrSO4_220 -1.43 PitzerSrSO4_220 <	GasCO2PP		GasCO2PP	0	GasCO2PP	0		
PitzerCaCO3_70 PitzerCaCO3_70 -2.54 PitzerCaCO3_70 -0.81 PitzerBaSO4_70 PitzerBaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerCaSO4_70 PitzerCaSO4_70 -1.15 PitzerCaSO4_70 -1.54 PitzerSrSO4_70 PitzerSrSO4_70 -2.68 PitzerSrSO4_70 -2.54 PitzerFeCO3_70 PitzerFeCO3_70 PitzerSrSO4_70 -2.54 PitzerCaCO3_220 PitzerCaCO3_220 PitzerFeCO3_70 PitzerBaSO4_220 PitzerCaCO3_220 PitzerBaSO4_220 -0.01 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -0.22 PitzerSrSO4_220 PitzerSrSO4_220 -1.43 PitzerSrSO4_220 PitzerSrSO4_220 -2.34	GasH2S		GasH2S	0	GasH2S	0		
PitzerBaSO4_70 PitzerBaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerCaSO4_70 PitzerCaSO4_70 -1.15 PitzerCaSO4_70 -1.54 PitzerSrSO4_70 PitzerSrSO4_70 -2.68 PitzerSrSO4_70 -2.54 PitzerCaCO3_20 PitzerFeCO3_70 PitzerFeCO3_70 PitzerFeCO3_70 PitzerSrSO4_220 -0.01 PitzerBaSO4_220 PitzerBaSO4_220 PitzerBaSO4_220 -0.22 PitzerCaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -1.43 PitzerSrSO4_220 -2.34	GasH2SPP		GasH2SPP	0	GasH2SPP	0		
PitzerBaSO4_70 PitzerBaSO4_70 0.49 PitzerBaSO4_70 0.33 PitzerCaSO4_70 PitzerCaSO4_70 -1.15 PitzerCaSO4_70 -1.54 PitzerSrSO4_70 PitzerSrSO4_70 -2.68 PitzerSrSO4_70 -2.54 PitzerCaCO3_20 PitzerFeCO3_70 PitzerFeCO3_70 PitzerFeCO3_70 PitzerSrSO4_220 -0.01 PitzerBaSO4_220 PitzerBaSO4_220 PitzerBaSO4_220 -0.22 PitzerCaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -1.43 PitzerSrSO4_220 -2.34	PitzerCaCO3_70		PitzerCaCO3_70	-2.54	PitzerCaCO3_70	-0.81		
PitzerSrS04_70 PitzerSrS04_70 -2.68 PitzerSrS04_70 -2.54 PitzerFeC03_70 Pitzer	PitzerBaSO4_70		PitzerBaSO4_70	0.49	PitzerBaSO4_70	0.33		
PitzerSrS04_70 PitzerSrS04_70 -2.68 PitzerSrS04_70 -2.54 PitzerFeC03_70 Pitzer	PitzerCaSO4_70	1			—			
PitzerFeCO3_70 PitzerFeCO3_70 PitzerFeCO3_70 PitzerCaCO3_220 PitzerCaCO3_220 PitzerCaCO3_220 -0.01 PitzerBaSO4_220 PitzerBaSO4_220 PitzerBaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -0.22 PitzerSrSO4_220 PitzerSrSO4_220 PitzerSrSO4_220 -1.43	PitzerSrSO4_70		– PitzerSrSO4_70		—			
PitzerCaCO3_220 PitzerCaCO3_220 PitzerCaCO3_220 -0.01 PitzerBaSO4_220 PitzerBaSO4_220 PitzerBaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -0.22 PitzerSrSO4_220 PitzerSrSO4_220 PitzerSrSO4_220 -1.43 PitzerSrSO4_220 PitzerSrSO4_220 PitzerSrSO4_220 -2.34	PitzerFeCO3_70		_					
PitzerBaSO4_220 PitzerBaSO4_220 PitzerBaSO4_220 -0.22 PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -1.43 PitzerSrSO4_220 PitzerSrSO4_220 PitzerSrSO4_220 -2.34	PitzerCaCO3_220		PitzerCaCO3_220		PitzerCaCO3_220	-0.01		
PitzerCaSO4_220 PitzerCaSO4_220 PitzerCaSO4_220 -1.43 PitzerSrSO4_220 PitzerSrSO4_220 PitzerSrSO4_220 -2.34	PitzerBaSO4_220		-		· · · · · · · · · · · · · · · · · · ·			
PitzerSrSO4_220 PitzerSrSO4_220 -2.34	PitzerCaSO4_220		=					
	PitzerSrSO4_220				-			
	PitzerFeCO3_220		PitzerFeCO3_220		PitzerFeCO3_220			

Gas Compatibility in the San Juan Basin

- The San Juan basin has productive siliciclastic reservoirs (Pictured Cliffs, Blanco Mesaverde, Basin Dakota, etc.) and a productive coalbed methane reservoir (Basin Fruitland Coal).

- These siliciclastic and coalbed methane reservoirs are commingled extensively throughout the basin in many different combinations with no observed damage from clay swelling due to differing formation waters or gas composition.

- The samples below all show offset gas analysis varibality by formation is low.

Well Name	API
BEAVER LODGE COM 1M	3004535552

FRC Offs	MV	Offset	DK Offset			
AssetCode	3004527429	AssetCode	3004526343	AssetCode	3004526314	
AssetName	THOMPSON LS 3	AssetName	EPNG COM 1A	AssetName	SUNRAY 8	
CO2	0.02	CO2	0.02	CO2	0.02	
N2	0	N2	0	N2	0	
C1	0.88	C1	0.8	C1	0.92	
C2	0.06	C2	0.09	C2	0.05	
С3	0.03	C3	0.05	C3	0.01	
ISOC4	0	ISOC4	0.01	ISOC4	0	
NC4	0	NC4	0.01	NC4	0	
ISOC5	0	ISOC5	0.01	ISOC5	0	
NC5	0	NC5	0	NC5	0	
NEOC5		NEOC5		NEOC5		
С6	0	C6		C6		
C6_PLUS		C6_PLUS	0.01	C6_PLUS	0	
C7	0	C7		C7		
C8	0	C8		C8		
С9	0			С9		
C10		C10		C10		
AR		AR		AR		
CO		СО		CO		
H2		H2		H2		
02		02		02		
H20		H20		H20		
H2S	0	H2S		H2S		
HE		HE		HE		
C_O_S		C_O_S		C_O_S		
CH3SH		CH3SH		CH3SH		
C2H5SH		C2H5SH		C2H5SH		
CH2S3_2CH3S		CH2S3_2CH3S		CH2S3_2CH3S		
CH2S		CH2S		CH2S		
C6HV		C6HV		C6HV		
CO2GPM		CO2GPM	0	CO2GPM	0	
N2GPM		N2GPM	0	N2GPM	0	
C1GPM		C1GPM	0	C1GPM	0	
C2GPM		C2GPM	2.47	C2GPM	1.21	
C3GPM		C3GPM	1.31	C3GPM	0.26	
ISOC4GPM		ISOC4GPM	0.3	ISOC4GPM	0.11	
NC4GPM		NC4GPM	0.46	NC4GPM	0.06	
ISOC5GPM		ISOC5GPM	0.21	ISOC5GPM	0.06	
NC5GPM		NC5GPM	0.16	NC5GPM	0.03	
C6_PLUSGPM		C6_PLUSGPM	0.57	C6_PLUSGPM	0.14	

ceived by Ocp i 1426/20124 2:49:51 PM Office <u>District I</u> – (575) 393-6161	State of New Me Energy, Minerals and Natu			Form C-103 Revised July 18, 2013
1625 N. French Dr., Hobbs, NM 88240 <u>District II</u> – (575) 748-1283 811 S. First St., Artesia, NM 88210 <u>District III</u> – (505) 334-6178 1000 Bio Program Rd, Artes NM 87410	OIL CONSERVATION 1220 South St. Fran		WELL API 1 5. Indicate 7 STAT	30-045-35552
1000 Rio Brazos Rd., Aztec, NM 87410 <u>District IV</u> – (505) 476-3460 1220 S. St. Francis Dr., Santa Fe, NM 87505	Santa Fe, NM 87		6. State Oil	& Gas Lease No. E-5383-6
SUNDRY NOTICI (DO NOT USE THIS FORM FOR PROPOSA DIFFERENT RESERVOIR. USE "APPLICA" PROPOSALS.)	TION FOR PERMIT" (FORM C-101) FO	UG BACK TO A		me or Unit Agreement Name Beaver Lodge Com nber 1M
2. Name of Operator HILCORP ENERGY COMPANY	as Well 🛛 Other		9. OGRID N	372171
 Address of Operator 382 Road 3100, Aztec, NM 87410 Well Location 				ne or Wildcat Basin Fruitland Coal
4. Wen Location Unit Letter I : 2149 Section 32	feet from the <u>South</u> line a Township 30N	and <u>544</u> feet f Range 08W	rom the <u>Eas</u> NMPM	tline County San Juan
	11. Elevation (Show whether DR, 6217)	, RKB, RT, GR, etc.		
12. Check App	ropriate Box to Indicate Na	ture of Notice, R	Report or Otl	her Data
TEMPORARILY ABANDON	ENTION TO: PLUG AND ABANDON CHANGE PLANS MULTIPLE COMPL	SUB REMEDIAL WOR COMMENCE DRI CASING/CEMEN	K LLING OPNS.	REPORT OF: ALTERING CASING P AND A
CLOSED-LOOP SYSTEM OTHER: RECOMPLETE 13. Describe proposed or complete of starting any proposed work). proposed completion or recomp	SEE RULE 19.15.7.14 NMAC.			
Hilcorp Energy Company requests p commingle with the existing Mesav natural gas management plan. A clo	erde/Dakota. Please see the attac			
Spud Date:	Rig Release Dat	e:		
hereby certify that the information abo	ve is true and complete to the bes	st of my knowledge	and belief.	
SIGNATURE <u>Cherylene West</u>	TITLE Operation	s/Regulatory Techn	ician – Sr. D	ATE 12/05/2023

Type or print name	Cherylene Weston	E-mail address:	cweston@hilcorp.com_	_ PHONE: _(713) 289-2615

For State Use Only

APPROVED BY:____

__TITLE_

DATE

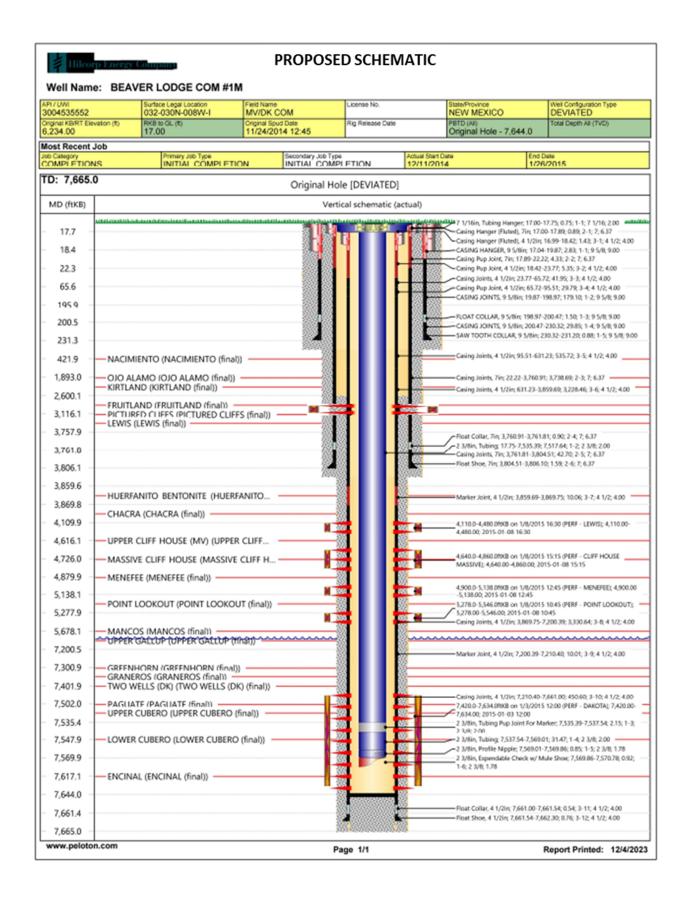
.

Conditions of Approval (if any): Released to Imaging: 5/22/2024 4:03:35 PM

Beaver Lodge Com 1M

API#: 3004535552

Fruitland Coal Recompletion Procedure


12/4/2023

Procedure:

- 1. MIRU PU and associated equipment. Kill well and NDWH.
- 2. NUBOP, unseat tubing, tag for fill and lay down 2-3/8" string
- 3. Set 4.5" CIBP at +/-4100' to isolate existing Mesaverde and Dakota Perforations
- 4. RU wellcheck and MIT wellbore to 500 PSI
- 5. Perforate and frac the Fruitland Coal from 2785' to 3116'.
- 6. MI flow back and flow well to relieve pressure if needed.
- 7. MIRU service rig and test BOP's.
- 8. Cleanout sand and plugs to PBTD.
- 9. TIH and land 2-3/8" production tubing in Dakota.
- 10. ND BOP's, NU production tree.
- 11. RDMO service rig & turn well over to production as commingled Fruitland Coal/Mesaverde/Dakota producer.

•

	BIRING COM		Schematic - Cu	rrent			
97.UWI	Surface Legal Location	Field Name	License No.		State/Province		Well Configuration Type
004535552 riginal KB/RT Eleve	032-030N-008W-1 tion (t) RKB to GL (t)	MV/DK COM Original Spud D		Date	NEW MEXICO PBTD (AII)		DEVIATED Total Depth All (TVD)
,234.00	17.00	11/24/2014	12:45		Original Hole - 7,	644.0	
lost Recent Je to Category	Primary Job Type	S	econdary Job Type	Actual Sta		End	
OMPLETIONS		FTION	NITIAL COMPLETION	12/11/2	014	1/26	3/2015
D: 7,665.0			Original Hole [DEVIA	TED]			
MD (ftKB)			Vertical scheme	atic (actual)			
-	Harddaanaanaanaanaanaa	ninadimentation					17.75; 0.75; 1-1; 7 1/16; 2.00
17.7							00-17.89; 0.89; 2-1; 7; 6.37 16.99-18.42; 1.43; 3-1; 4 1/2; 4.00
18.4					CASING HANGER, 9 Casing Pup Joint, 7i		I-19.87; 2.83; 1-1; 9 5/8; 9.00 I2; 4.33; 2-2; 7; 6.37
22.3					Casing Pup Joint, 4	1/2in; 18.42	23.77; 5.35; 3-2; 4 1/2; 4.00 72; 41.95; 3-3; 4 1/2; 4.00
65.6				500 80	Casing Pup Joint, 4	1/2in; 65.72	95.51; 29.79; 3-4; 4 1/2; 4.00
195.9					CASING JOINTS, 9 5	/8in; 19.87-	198.97; 179.10; 1-2; 9 5/8; 9.00
200.5							200.47; 1.50; 1-3; 9 5/8; 9.00
231.3							-230.32-231.20; 0.88; 1-5; 9 5/8; 9.00 30.32-231.20; 0.88; 1-5; 9 5/8; 9.00
421.9	-NACIMIENTO (NACIMIENTO (fically			Casing Joints, 4 1/2i	rx 95.51-631	23; 535.72; 3-5; 4 1/2; 4.00
1,893.0	 OJO ALAMO (OJO ALAMO (fir KIRTLAND (KIRTLAND (final)) 	iai)J					1; 3,738.69; 2-3; 7; 6.37 859.69; 3,228.46; 3-6; 4 1/2; 4.00
2,600.1	FRUITLAND (FRUITLAND (fina						
3,116.1	PICTURED CLIFFS (PICTURED (LEWIS (LEWIS (final))						
3,757.9 -	cervis (cervis (inial))				Float Collar, 7in; 3,7	50.91-3,761	81; 0.90; 2-4; 7; 6.37
3,761.8					-2 3/8in, Tubing: 17.2	5-7,535.39;	7,517,64; 1-2; 2 3/8; 2.00
3,806.1					Float Shoe, 7irc 3,80		
3.859.6			1010101	2000000			
-	HUERFANITO BENTONITE (H	JERFANITO			Marker Joint, 4 1/2ir	r; 3,859.69-3	,869.75; 10.06; 3-7; 4 1/2; 4.00
3,869.8	- CHACRA (CHACRA (final)) -						
4,109.9			1 200	200	4,110.0-4,490.0%8 4,480.00; 2015-01-0		16:30 (PERF - LEWIS); 4,110.00-
4,616.1	- UPPER CLIFF HOUSE (MV) (U	PPER CLIFF					
4,726.0	MASSIVE CLIFF HOUSE (MAS	SIVE CLIFF H	355	122	4,640.0-4,860.01tKB MASSIVEL: 4,640.00		5 15:15 (PERF - CLIFF HOUSE
4,879.9				100			
5,138.1				100	4,900.0-5,138.0t/KB -5,138.00; 2015-01-6	on 1/8/2015 08 12:45	12:45 (PERF - MENEFEE); 4,900.00
5,277.9	POINT LOOKOUT (POINT LOC	DKOUT (final)) -			5,278.0-5,546.01%B		0.45 (PERF - POINT LOOKOUT);
	MANCOG ALANCOG (EP)		800	500			7,200.39; 3,330.64; 3-8; 4 1/2; 4.00
	- MANCOS (MANCOS (finali) -	P (Hhat))		S			*****
7,200.5				899 382	Marker Joint, 4 1/2ir	; 7,200.39-7	,210,40; 10.01; 3-9; 4 1/2; 4.00
7,300.9	GREENHORN (GREENHORN (GRANEROS (GRANEROS (final						
7,401.9	TWO WELLS (DK) (TWO WELL						
7,502.0	PAGLIATE (PAGLIATE (final))			100-1-			7,661.00; 450.60; 3-10; 4 1/2; 4.00 5 12:00 (PERF - DAKOTA); 7,420.00-
7,535.4	- UPPER CUBERO (UPPER CUBE	RO (final))		20-			arker; 7,535.39-7,537.54; 2.15; 1-3;
7,547.9	-LOWER CUBERO (LOWER CUB	ERO (final))	333	10%	2 3/8; 2 00		01; 31.47; 1-4; 2 3/8; 2.00
7,569.9			355	68	-2 3/8in, Profile Nipp	le; 7,569.01	-7,569.86; 0.85; 1-5; 2 3/8; 1.78 tule Shoe; 7,569.86-7,570.78; 0.92;
				- 88	2 3/8in, Espendable 1-6; 2 3/8; 1.78	CHIECK W/ N	ure snoe; 7,367.86-7,570.78;0.92;
7,617.1	- ENCINAL (ENCINAL (final))		332	100			
7,644.0				1000 X			
7,661.4							661.54; 0.54; 3-11; 4 1/2; 4.00 62.30; 0.76; 3-12; 4 1/2; 4.00
7,665.0				222 222			

Received by OCD: 1/26/2024 2:49:51 PM

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form C-102 August 1, 2011

Page 19 of 53

Permit 355134

WELL LOCATION AND ACREAGE DEDICATION PLAT

1. API Number	2. Pool Code	3. Pool Name				
30-045-35552	71629	BASIN FRUITLAND COAL (GAS)				
4. Property Code	5. Property Name	6. Well No.				
319133	BEAVER LODGE COM	001M				
7. OGRID No. 372171	8. Operator Name HILCORP ENERGY COMPANY	^{9. Elevation} 6217				

10. Surface Location UL - Lot Lot Idn N/S Line E/W Line Section Feet From County Township Range Feet From 32 30N 08W S SAN JUAN 2149 544 Е

11. Bottom I	Hole Location	If Different Fi	rom Surface	

UL - Lot	Section	32	Township 30N	Range 08W	Lot Idn	Feet From 1116	N/S Line	S	Feet From 723	E/W Line	Ε	County SAN JUAN
12. Dedicated 32	Acres 0.00			13. Joint or Infill		14. Consolidatio	on Code			15. Order N	lo.	

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

OPERATOR CERTIFICATION I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location(s) or has a right to drill this well at this location pursuant to a contract with an owner of such a mineral or working
interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.
E-Signed By: Cherylene Weston
Title: Cherylene Weston
Date: 12/04/2023
SURVEYOR CERTIFICATION I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.
Surveyed By: Marshall W. Lindeen
Date of Survey: 1/17/2014
Certificate Number: 17078

Rec	eived	by	OCD:	1/26/2024	2:49:51 PM
-----	-------	----	------	-----------	------------

		ubmit Electronically ia E-permitting					
		ATURAL G					
This Natural Gas Manag	gement Plan mi	Section	1th each Applicat	escription)rıll (Al	D) for a new	v or recompleted well.
I. Operator: Hilcorp E	nergy Compar	ıy	OGRID:	372171		Date:	2 / 05 / 2023
II. Type: 🛛 Original	Amendment	due to □ 19.15.27	.9.D(6)(a) NMAC	C 🗆 19.15.27.9.D(6)(b) N	MAC 🗆 Oth	er.
If Other, please describe	::						
III. Well(s): Provide the be recompleted from a s					wells pro	oposed to be	drilled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		cipated MCF/D	Anticipated Produced Water BBL/D
Beaver Lodge Com 1M	3004535552	P-32-30N-08W	1116 FSL, 723 FEL	0 bbl/d	195	mcf/d	1.2 bbl/d
IV. Central Delivery P	oint Name:	Chaco-Blar	nco Plant	<u> </u>		[See 19.1	5.27.9(D)(1) NMAC]
V. Anticipated Schedul proposed to be recomple					ell or se	et of wells pro	oposed to be drilled or
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial Flow Back Date	
Beaver Lodge Com 1M	3004535552						<u>2024</u>
VI. Separation Equipn VII. Operational Prac Subsection A through F VIII. Best Managemen during active and planne	tices: 🛛 Attac of 19.15.27.8] ht Practices: 🛙	h a complete desc NMAC.	ription of the act	ions Operator will	l take to	o comply wit	h the requirements of

.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \square Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:	Cherylene Weston
Printed Name:	Cherylene Weston
Title:	Operations/Regulatory Tech-Sr.
E-mail Address	cweston@hilcorp.com
Date:	12/05/2023
Phone:	713-289-2615
	OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:	
Title:	
Approval Date:	
Conditions of A	pproval:

VI. Separation Equipment:

Hilcorp Energy Company (HEC or Operator) production facilities include separation equipment designed to efficiently separate gas from liquid phases to optimize gas capture based on projected and estimated volumes from the targeted pool of our recomplete project. HEC will utilize flowback separation equipment and production separation equipment designed and built to industry specifications after the recomplete to optimize gas capture and send gas to sales or flare based on analytical composition. HEC operates facilities that are typically one-well facilities. Production separation equipment is upgraded prior to well being completed, if determined to be undersized or inadequate. This equipment is already on-site and tied into our sales gas lines prior to the recomplete operations.

- VII. Operational Practices:
- 1. Subsection (A) Venting and Flaring of Natural Gas
 - HEC understands the requirements of NMAC 19.15.27.8 which outlines that the venting and flaring of natural gas during drilling, completion or production operations that constitutes waste as defined in 19.15.2 are prohibited.
- 2. Subsection (B) Venting and Flaring during drilling operations
 - This gas capture plan isn't for a well being drilled.
- 3. Subsection (C) Venting and flaring during completion or recompletion
 - Flowlines will be routed for flowback fluids into a completion or storage tank and if feasible under well conditions, flare rather than vent and commence operation of a separator as soon as it is technically feasible for a separator to function.
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
- 4. Subsection (D) Venting and flaring during production operations
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
 - Monitor manual liquid unloading for wells on-site or in close proximity (<30 minutes' drive time), take reasonable actions to achieve a stabilized rate and pressure at the earliest practical time, and take reasonable actions to minimize venting to the maximum extent practicable.
 - HEC will not vent or flare except during the approved activities listed in NMAC 19.15.27.8 (D) 1 4.
- 5. Subsection (E) Performance standards
 - All tanks and separation equipment are designed for maximum throughput and pressure to minimize waste.
 - If a flare is utilized during production operations it will have a continuous pilot and is located more than 100 feet from any known well or storage tanks.
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.

- 6. Subsection (F) Measurement or estimation of vented and flared natural gas
 - Measurement equipment is installed to measure the volume of natural gas flared from process piping.
 - When measurement isn't practicable, estimation of vented and flared natural gas will be completed as noted in 19.15.27.8 (F) 5-6.

VIII. Best Management Practices:

- 1. Operator has adequate storage and takeaway capacity for wells it chooses to recomplete as the flowlines at the sites are already in place and tied into a gathering system.
- 2. Operator will flare rather than vent vessel blowdown gas when technically feasible during active and/or planned maintenance to equipment on-site.
- 3. Operator combusts natural gas that would otherwise be vented or flared, when technically feasible.
- 4. Operator will shut in wells in the event of a takeaway disruption, emergency situation, or other operations where venting or flaring may occur due to equipment failures.

December 22, 2023

Mailed Certified / Electronic Return Receipt Requested

To: ALL INTEREST OWNERS

RE: Application to Downhole Commingle Production Well: Beaver Lodge Com 1M API: 30-045-35552 Section 32, Township 30 North, Range 08 West San Juan County, New Mexico

Ladies and Gentlemen:

Hilcorp Energy Company ("Hilcorp"), as Operator of the subject well, has filed application with the New Mexico Oil Conservation Division for approval to downhole commingle production from the **Fruitland Coal**, a formation Hilcorp soon intends to perforate, with existing production from the **Mesaverde and Dakota** formation. This letter and the application copy enclosed serve to provide you, an owner in one or more of the aforementioned formations, with written notice as prescribed by Subsection C of 19.15.12.11 New Mexico Administrative Code.

No action is required by you <u>unless</u> you wish to pursue a formal protest (see details italicized below).

If you no longer own an interest in this well or need to make changes to your address, etc., please email <u>ownerrelations@hilcorp.com</u>. For those without email access, please call (713) 209-2457.

Hilcorp is eager to explore this potential opportunity to enhance production. Thank you for your support.

Sincerely. Come Parters Phin

Carson Rice Landman – San Juan North (713) 757-7108 <u>carice@hilcorp.com</u>

cc:bmg Enclosures

Protesting:

Protests must be in writing and received with<u>in twenty (20) days from the date of this letter. In your</u> response, please include your contact information, details referenced herein and the specific concerns and/or reasoning behind your decision. You are encouraged to email me an electronic copy and, subsequently, mailing (overnight) a hard copy to my attention at the address in the footer below. Upon receipt, I will follow up by phone to discuss your concerns. Should we be unable to resolve them, a formal protest will be set for hearing with the New Mexico Oil & Conservation Division in Santa Fe, NM, wherein your attendance and testimony will be required.

1111 Travis Street Houston, TX 77002 Phone: 713/209-2400 Fax 713/209-2420

Received by OCD: 1/26/2024 2:49:51 PM

District I 1625 N. French Drive, Hobbs, NM 88240

District II 811 S. First St., Artesia, NM 88210

District III 1000 Rio Brazos Road, Aztec, NM 87410

District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Department Form C-107A Revised August 1, 2011

Page 27 of 53

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

APPLICATION TYPE Single Well Establish Pre-Approved Pools EXISTING WELLBORE <u>X</u>Yes No

APPLICATION FOR DOWNHOLE COMMINGLING

Hilcorp Energy Company		382 Road 3100, Aztec, NM 87410	
Operator		Address	
Beaver Lodge Com	1M	I, 32, T30N, R08W	San Juan County, NM
Lease	Well No.	Unit Letter-Section-Township-Range	County

OGRID No. <u>372171</u> Property Code <u>319133</u> API No. <u>30-045-35552</u> Lease Type: ____Federal <u>X</u> State ____Fee

DATA ELEMENT	UPPER ZONE	INTERMEDIATE ZONE	LOWER ZONE	
Pool Name	Basin Fruitland Coal	Blanco Mesaverde	Basin Dakota	
Pool Code	71629	72319	71599	
Top and Bottom of Pay Section (Perforated or Open-Hole Interval)	2785′ – 3116′	4110′ – 5546′	7420′ – 7634′	
Method of Production (Flowing or Artificial Lift)	Artificial Lift	Artificial Lift	Artificial Lift	
Bottomhole Pressure (Note: Pressure data will not be required if the bottom perforation in the lower zone is within 150% of the depth of the top perforation in the upper zone)	178 psi	639 psi	126 psi	
Oil Gravity or Gas BTU (Degree API or Gas BTU)	1121 BTU	1284 BTU	1057 BTU	
Producing, Shut-In or New Zone	New Zone	Producing	Producing	
Date and Oil/Gas/Water Rates of Last Production. (Note: For new zones with no production history, applicant shall be required to attach production estimates and supporting data.)	Date: Rates:	Date: 9/1/2023 Oil: 0 bbls Rates: Gas: 2,123 Mcf Water: 18 bbls	Date: 9/1/2023 Oil: 0 bbls Rates: Gas: 2,394 Mcf Water: 22 bbls	
Fixed Allocation Percentage (Note: If allocation is based upon something other than current or past production, supporting data or explanation will be required.)	Oil Gas % %	Oil Gas %	Oil Gas %	

ADDITIONAL DATA

Are all working, royalty and overriding royalty interests identical in all commingled zones? If not, have all working, royalty and overriding royalty interest owners been notified by certified mail?	Yes Yes_X	No No
Are all produced fluids from all commingled zones compatible with each other?	Yes_X	No
Will commingling decrease the value of production?	Yes	NoX
If this well is on, or communitized with, state or federal lands, has either the Commissioner of Public Lands or the United States Bureau of Land Management been notified in writing of this application?	Yes_X	No

NMOCD Reference Case No. applicable to this well: _

Attachments:

C-102 for each zone to be commingled showing its spacing unit and acreage dedication. Production curve for each zone for at least one year. (If not available, attach explanation.)

For zones with no production history, estimated production rates and supporting data.

Data to support allocation method or formula.

Notification list of working, royalty and overriding royalty interests for uncommon interest cases.

Any additional statements, data or documents required to support commingling.

PRE-APPROVED POOLS

If application is to establish Pre-Approved Pools, the following additional information will be required:

List of other orders approving downhole commingling within the proposed Pre-Approved Pools List of all operators within the proposed Pre-Approved Pools Proof that all operators within the proposed Pre-Approved Pools were provided notice of this application. Bottomhole pressure data.

I hereby certify that the information above is true and complete to the best of my knowledge and belief.

SIGNATURE Cherylene Weston	TITLE Operations/Regulatory Tech-Sr.	DATE 12/12/2023
TYPE OR PRINT NAME Cherylene Weston	TELEPHONE NO. (713) 289-2615

E-MAIL ADDRESS cweston@hilcorp.com

Certified Number	Sender	Recipient	Date Mailed	Delivery Status
92148969009997901831825807	Brenda Guzman	, LINDSAY PRODUCTION, and ROYALTIES LTD, FREDERICKSBURG, TX, 78624 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825814	Brenda Guzman	, THE NORDAN TRUST, RANDOLPH C MARCEAU TRUSTEE, SAN ANTONIO, TX, 78209 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825821	Brenda Guzman	, PRIMITIVE PETROLEUM INC, , MIDLAND, TX, 79707 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825838	Brenda Guzman	, WESLEY WEST MINERALS LTD, , HOUSTON, TX, 77001 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825845	Brenda Guzman	, KENNEDY MINERALS LTD, , MIDLAND, TX, 79701 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825852	Brenda Guzman	, MARGARET A KEARNS TRUST FBO, HELENE D GORMAN AND AS TRUSTEE, NAPLES, FL, 34102 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825869	Brenda Guzman	, MARGARET A KEARNS TRUST FBO, JAMES B DRAPER TRUSTEE, COLORADO SPRINGS, CO, 80904-1029 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825876	Brenda Guzman	, CYNTHIA GRAY MILANI ESTATE, BARBARA B GRAY INDEP EXECUTRIX, FT WORTH, TX, 76199-0084 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825883	Brenda Guzman	, STATE OF NEW MEXICO, BATAAN MEMORIAL BUILDING, SANTA FE, NM, 87501 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825890	Brenda Guzman	, ELLEN BOONE SCHWETHELM, , SAN ANTONIO, TX, 78209-6716 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825906	Brenda Guzman	, CLAUD W RAYBOURN, , APPLE VALLEY, CA, 92307 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825913	Brenda Guzman	, ELSR LP, C/O PETROLEDGER FINANCIAL SERV, FORT WORTH, TX, 76107 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825920	Brenda Guzman	, GROVER FAMILY LP, , MIDLAND, TX, 79702- 3666 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825937	Brenda Guzman	, ARCHER PEARL ENERGY LTD, , SAN ANTONIO, TX, 78209 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825944	Brenda Guzman	, CHARLES RUSSELL BELL JR, , BELLVILLE, TX, 77418-0042 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825951	Brenda Guzman	, VALERIE L JONES HUNDLEY, , CORPUS CHRISTI, TX, 78468-1242 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825968	Brenda Guzman	, JOHN HUNTER JONES, , AUSTIN, TX, 78746 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825975	Brenda Guzman	, JESSICA DAVANT STANLEY, , AUSTIN, TX, 78732 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825982	Brenda Guzman	, AMELIA ANNE SUNDBERG, , RICHMOND, TX, 77406-6727 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825999	Brenda Guzman	, HDBC INVESTMENTS LTD, A TEXAS LTD PTRSHP, DALLAS, TX, 75225 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826002	Brenda Guzman	, PAUL DAVIS LTD, , MIDLAND, TX, 79702 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826019	Brenda Guzman	, MULLIGAN LP, , RICHARDSON, TX, 75080- 4611 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826026	Brenda Guzman	, REBECCA ANN HOWARD MUNNELL, , SUGAR LAND, TX, 77479-1470	12/22/2023	

ized.p.y.9CA; 1/26/2024 2:		aser Substrates, Inc. – USPS Electronic Return F Code: Beaver Lodge Com 1M DHC		Signature Pending
02148969009997901831826033	Brenda Guzman	, RICHARD HOWARD, , HOUSTON, TX, 77024 Code: Beaver Lodge Com 1M DHC	12/22/2023	
02148969009997901831826040	Brenda Guzman	, ROBERT LOUIS HOWARD JR, , CLARKESVILLE, GA, 30523 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending Signature Pending
02148969009997901831826057	Brenda Guzman	, CROSS TIMBERS ENERGY LLC, C/O DRILLINGINFO MAIL, FORT WORTH, TX, 76102 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826064	Brenda Guzman	, WILLIAM C EILAND, , MIDLAND, TX, 79702 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826071	Brenda Guzman	, DELACOSTA ENERGY LP, ANTHONY SPEIER REGISTER AGENT, SAN ANTONIO, TX, 78212 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826088	Brenda Guzman	, PNH RESOURCES LLC, PHILIP N HUDSON MANAGER, SAN ANTONIO, TX, 78280 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826095	Brenda Guzman	, FRED ELDON SPENCER, and JANE B SPENCER JTWROS, MUSTANG, OK, 73064 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826101	Brenda Guzman	, JAMES R LEETON JR, , MIDLAND, TX, 79702 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826118	Brenda Guzman	, ROBERT UMBACH CANCER FOUNDATION, MARTINDALE CONSULTANTS INC AGENT, OKLAHOMA CITY, OK, 73112-2311 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826125	Brenda Guzman	, MARTHA M TUCKER, , HOUSTON, TX, 77252-2822 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826132	Brenda Guzman	, THOMPSON FAMILY LLC, , SANTA FE, NM, 87501 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826149	Brenda Guzman	, VIRGINIA THOMPSON CREPS REV TRUST, ELIZABETH R HARNED SUCC TRUSTEE, WEST CHESTER, PA, 19380 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826156	Brenda Guzman	, ATKO PARTNERS LTD, , HUNTSVILLE, TX, 77340 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826163	Brenda Guzman	, DAVID H GRAY, JPMORGAN CHASE BANK AGENT and AIF, FORT WORTH, TX, 76199- 0084 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826170	Brenda Guzman	, JOHN L GRAY, JPMORGAN CHASE BANK AGENT and AIF, FORT WORTH, TX, 76199- 0084 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826187	Brenda Guzman	, LAURA A GUNN, , SAN ANTONIO, TX, 78216-2227 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826194	Brenda Guzman	, SHARON A LONG, , BARTLESVILLE, OK, 74006 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826200	Brenda Guzman	, GUY DAVID WARD, , SPRING HILL, TN, 37174 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826217	Brenda Guzman	, TIMOTHY WINSTON WARD, , CARROLLTON, TX, 75007 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826224	Brenda Guzman	, JAMES WENDELL WEST, , LOS ANGELES, CA, 90049-8382 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826231	Brenda Guzman	, HELEN BLOXSOM DAVIS, , HOUSTON, TX, 77025 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826248	Brenda Guzman	, CORNELIA DAVANT PERRY, JAMES E DAVANT POA, BLESSING, TX, 77419-0206 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826255	Brenda Guzman	, DAVID ELBERT REESE, , RICHMOND, TX, 77469 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending

.

Laser Substrates, Inc. – USPS Electronic Return Receipt Certified Mail Software

жазру ₁ .GC АН; 1/26/2024 2:		aser Substrates, Inc. – USPS Electronic Return	Receipt Certified N	/ail Software
92148969009997901831826262	Brenda Guzman	, WILLIAM SHUPP, , MURFREESBORO, TN, 37128 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826279	Brenda Guzman	, JAMES SHUPP, , SHREWSBURY, PA, 17361 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826286	Brenda Guzman	, ANGELA SLAIS, , GARDNERVILLE, NV, 86460 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826293	Brenda Guzman	, JEAN ASHLEY WARD CARTER, , HOUSTON, TX, 77062 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826309	Brenda Guzman	, SANDRA T CURRIE, , LLANO, TX, 78643 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826316	Brenda Guzman	, WILLIAM LOUIS DAVANT, , BLESSING, TX, 77419 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826323	Brenda Guzman	, JAMES E DAVANT DVM, , BLESSING, TX, 77419-0695 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826330	Brenda Guzman	, KATHRYN DAVANT DODSON, , CLARKSDALE, MS, 38614 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826347	Brenda Guzman	, THOMAS E DUNNAM III, , SAN ANTONIO, TX, 78269 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826354	Brenda Guzman	, JAMES H ESSMAN, , MIDLAND, TX, 79702 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826361	Brenda Guzman	, WILLIAM F GORDON, , LE CLAIRE, IA, 52753 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826378	Brenda Guzman	, JULIE A GRAHAM, , NORTH PORT, FL, 34291 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826385	Brenda Guzman	, ADAIR M HADLEY, , SUNSET BEACH, NC, 28468 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826392	Brenda Guzman	, THEODORE W SCHICK JR, and MARCELLA MOYER SCHICK, ALLENTOWN, PA, 18104 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826408	Brenda Guzman	, BRADFORD TUCKER, , HOUSTON, TX, 77056-1421 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826415	Brenda Guzman	, F LOUIS TUCKER JR, , HOUSTON, TX, 77056 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826422	Brenda Guzman	, EUGENIA DAVANT WILSON, , SULPHUR, LA, 70664-1160 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826439	Brenda Guzman	, PAMELA GRAY BALDWIN, JPMORGAN CHASE BANK AGENT and AIF, FORT WORTH, TX, 76199-0084 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826446	Brenda Guzman	, SUSAN FRY BRACKEN, , TYLER, TX, 75701 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826453	Brenda Guzman	, MARSHA HENDERSON COLLINS, , HELENA, MT, 59602 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826460	Brenda Guzman	, ANNA REBECCA WARD DELKRUG, , HOUSTON, TX, 77062 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826477	Brenda Guzman	, DICK HOLLAND, , MIDLAND, TX, 79702-2926 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826484	Brenda Guzman	, CLAY JOHNSON, , MIDLAND, TX, 79701 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826491	Brenda Guzman	, MARY KATHRYN DUNNAM LADEWIG, , TROPHY CLUB, TX, 76262 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826507	Brenda Guzman	, KEVIN K LEONARD, , MIDLAND, TX, 79710 Code: Beaver Lodge Com 1M DHC	12/22/2023	

				Signature Pending
2148969009997901831826514	Brenda Guzman	, CHRISTIAN MUELLER, , THE VILLAGES, FL, 32162 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826521	Brenda Guzman	, LOIS MUELLER, , BOLIVAR, MO, 65613 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826538	Brenda Guzman	, LILLY L NEWKIRK, , INDIANOLA, IA, 50125 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826545	Brenda Guzman	, PARADOX VALLEY PARTNERS LTD, , LLANO, TX, 78643 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826552	Brenda Guzman	, NANCY J SPENCER, , RANCHO CUCAMONGA, CA, 91739-2565 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826569	Brenda Guzman	, JANICE P CAMPBELL, AUSTEN S CAMPBELL POA, MIDLAND, TX, 79702-1714 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826576	Brenda Guzman	, RICHARD W MCDOUGAL, , JENKS, OK, 74037 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826583	Brenda Guzman	, ROBERT B MCDOUGAL JR, , THE VILLAGES, FL, 32163 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826590	Brenda Guzman	, L J and R R MONEY 1990 TR, DATED 10-9- 90, SACRAMENTO, CA, 95864 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826606	Brenda Guzman	, OAK TREE MINERALS LLC, , FRISCO, TX, 75034 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826613	Brenda Guzman	, MARY E PRIESTER, , BETTENDORF, IA, 52722 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826620	Brenda Guzman	, RAYBOURN ENTERPRISES LLC, , NEWTOWN SQUARE, PA, 19073 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826637	Brenda Guzman	, CATHARINE GRAY REMENICK, JPMORGAN CHASE BANK AGENT and A/I/F, FORT WORTH, TX, 76199-0084 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826644	Brenda Guzman	, WILLIAM R ARCHER JR 2003 GRANTOR, TRUST WILLIAM R ARCHER JR TRUSTEE, MCLEAN, VA, 22101 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826651	Brenda Guzman	, BARBARA A BRYANT 2003 GRANTOR TRUST, KATHERINE BRYAN LYNCH and, MCLEAN, VA, 22101 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826668	Brenda Guzman	, ROBIN T HENDERSON, , WESTERNPORT, MD, 21562 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826675	Brenda Guzman	, SHIRLEY JARAMILLO, , ALBUQUERQUE, NM, 87102 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826682	Brenda Guzman	, NORTHGATE ROYALTY FUND B LLC, , NOTRE DAME, IN, 46556-0757 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826699	Brenda Guzman	, IM H PORTER TUW, FBO JOHN PORTER, DAVENPORT, FL, 33837 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826705	Brenda Guzman	, RICHARD A GROENENDYKE JR, , TULSA, OK, 74114 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826712	Brenda Guzman	, SHERRI HULT HEINTSCHEL, , ROCKPORT, TX, 78382 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826729	Brenda Guzman	, GLENN HEINTSCHEL, , ROCKPORT, TX, 78382 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826736	Brenda Guzman	, MARY L HERROLD REVOC TR, DTD 1/7/92, TULSA, OK, 74133 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826743	Brenda Guzman	, ICON PETROLEUM INC, , MIDLAND, TX,	12/22/2023	

				Signature Pending
92148969009997901831826750	Brenda Guzman	, HELEN MACALISTER, , BETTENDORF, IA, 52722 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826767	Brenda Guzman	, NINETY SIX CORPORATION, , MIDLAND, TX, 79701-4695 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826774	Brenda Guzman	, ENDURING RESOURCES IV, LLC, , CENTENNIAL, CO, 80111 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826781	Brenda Guzman	, JANE B SPENCER, , YUKON, OK, 73099 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826798	Brenda Guzman	, WATERS S DAVIS III BYPASS TRUST, C/O PDS/SSandC INNOVEST, FT WORTH, TX, 76102 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826804	Brenda Guzman	, RUGELEY TRUST, FRANK M RUGELEY CO- TTEE, BATON ROUGE, LA, 70816 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826811	Brenda Guzman	, JULIANNE DEAN, , SPRING, TX, 77393 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826828	Brenda Guzman	, ROBERT HENDERSON, , WESTERNPORT, MD, 21562 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826835	Brenda Guzman	, SIMCOE, LLC, , HOUSTON, TX, 77002-5632 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826842	Brenda Guzman	, BETTY ANN STEDMAN ESTATE, , HOUSTON, TX, 77001 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826859	Brenda Guzman	, ROY RANDOLPH REESE, , SUGAR LAND, TX, 77478 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826866	Brenda Guzman	, MWOODHAM LLC, , DENVER, CO, 80220 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826873	Brenda Guzman	, MARILYNN L JACKSON, , PONCA CITY, OK, 74604 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826880	Brenda Guzman	, MARBAR HOLDINGS LLC, , BELLAIRE, TX, 77401 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826897	Brenda Guzman	, MARY DAVANT FRICKE, , PORT LAVACA, TX, 77979 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826903	Brenda Guzman	, LISA F BERGER, , TULSA, OK, 74132 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826910	Brenda Guzman	, LAURA F GRUNDHOEFER, , SAN ANTONIO, TX, 78258 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826927	Brenda Guzman	, RDJL HOLDINGS LLC, , RICHMOND, TX, 77469 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826934	Brenda Guzman	, GEOJAC LLC, , HOUSTON, TX, 77079-6422 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826941	Brenda Guzman	, ANDREW MCDOUGAL, , OAK RIDGE, NC, 27310 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826958	Brenda Guzman	, CHARLES MCDOUGAL, , WAKE FOREST, NC, 27587 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending

.

APPLICATION FOR

NEW MEXICO STATE LAND OFFICE

COMMINGLING AND OFF-LEASE STORAGE

ON STATE TRUST LANDS

This application form is required for all commingling applications requiring approval by the Commissioner of Public Lands.

Applicant:	Cherylene Weston	OGRID #:	
Well Name:	Beaver Lodge Com 1M	API #:	
Pool:	Basin Fruitland Coal, Blanco Mesaverde, Basin Dakota		
OPERATOR NA	ME:Hilcorp Energy Company		
OPERATOR AD	382 Road 3100, Aztec, NM 87410		

APPLICATION REQUIREMENTS – SUBMIT:

- 1. New Mexico Oil Conservation Division (NMOCD) application packet (or equivalent information if no application is required by NMOCD),
- 2. Commingling application fee of \$150.

CERTIFICATION: To the best of my knowledge,

- All business leases and rights-of-way necessary for conducting the proposed operation on State Trust lands have been applied for or obtained,
- The information submitted with this application is **accurate** and **complete**, and
- No loss will accrue to the state of New Mexico as a result of the proposed operation.

I also understand that **no action** will be taken on this application until the required information and fee are submitted to the State Land Office.

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

Cherylene Weston

Print or Type Name

Cherylene Weston

Signature

1/10/2024

Date

713-289-2615

Phone Number

cweston@hilcorp.com

e-mail Address

Submit application to: Commissioner of Public Lands Attn: Commingling Manager PO Box 1148 Santa Fe, NM 87504-1148

Questions? Contact the Commingling Manager: 505.827.5791

Upon approval, the requesting organization will receive an acknowledgment letter from the Commissioner of Public Lands.

From:	McClure, Dean, EMNRD on behalf of Engineer, OCD, EMNRD
То:	<u>Cheryl Weston;</u> <u>Mandi Walker</u>
Cc:	McClure, Dean, EMNRD; Lowe, Leonard, EMNRD; Rikala, Ward, EMNRD; Wrinkle, Justin, EMNRD; Powell, Brandon, EMNRD; Lamkin, Baylen L.
Subject:	Approved Administrative Order DHC-5354
Date:	Wednesday, May 22, 2024 3:51:09 PM
Attachments:	DHC5354 Order.pdf

NMOCD has issued Administrative Order DHC-5354 which authorizes Hilcorp Energy Company (372171) to downhole commingle production within the following well:

Well Name:	Beaver Lodge Com #1M
Well API:	30-045-35552

The administrative order is attached to this email and can also be found online at OCD Imaging.

Please review the content of the order to ensure you are familiar with the authorities granted and any conditions of approval. If you have any questions regarding this matter, please contact me.

Dean McClure Petroleum Engineer, Oil Conservation Division New Mexico Energy, Minerals and Natural Resources Department (505) 469-8211

Stephanie Garcia Richard COMMISSIONER

State of New Mexico Commissioner of Public Lands 310 OLD SANTA FE TRAIL P.O. BOX 1148

SANTA FE, NEW MEXICO 87504-1148

COMMISSIONER'S OFFICE Phone (505) 827-5760

Fax (505) 827-5766 www.nmstatelands.org

February 6, 2024

Hilcorp Energy Company ATTN: Ms. Cherylene Weston 382 Road 3100 Aztec, NM 87410

Re: Application for Downhole Commingling Wells approved for Downhole Commingling Beaver Lodge Com #001M (30-045-35552) POOLS: [71629] Basin; Fruitland Coal (Gas) [72319] Blanco-Mesaverde (Prorated Gas) [71599] Basin Dakota (Prorated Gas) San Juan County, New Mexico

Dear Ms. Weston,

We have received your \$150 application fee and request for downhole commingling for the abovecaptioned well(s).

Since it appears that all the rules and regulations for the New Mexico Oil Conservation Division and the State Land Office have been complied with and there will be no loss of revenue to the State of New Mexico as a result of your proposed operation, your request is hereby approved.

Our approval

- is subject to approval from all relevant agencies,
- does not constitute the granting of any right-of-way or construction rights not granted by the lease instrument.

If you have any questions or if we may be if further assistance, please contact Baylen Lamkin at 505.827.6628 or blamkin@slo.state.nm.us.

Respectfully,

5.6721/03

Stephanie Garcia Richard Commissioner of Public Lands

SGR/bl cc: OCD – Mr. Dean McClure OGMD and Units Reader Files Released to Imaging: 5/22/2024 4:03:35 PM

December 22, 2023

Mailed Certified / Electronic Return Receipt Requested

To: ALL INTEREST OWNERS

RE: Application to Downhole Commingle Production Well: Beaver Lodge Com 1M API: 30-045-35552 Section 32, Township 30 North, Range 08 West San Juan County, New Mexico

Ladies and Gentlemen:

Hilcorp Energy Company ("Hilcorp"), as Operator of the subject well, has filed application with the New Mexico Oil Conservation Division for approval to downhole commingle production from the **Fruitland Coal**, a formation Hilcorp soon intends to perforate, with existing production from the **Mesaverde and Dakota** formation. This letter and the application copy enclosed serve to provide you, an owner in one or more of the aforementioned formations, with written notice as prescribed by Subsection C of 19.15.12.11 New Mexico Administrative Code.

No action is required by you <u>unless</u> you wish to pursue a formal protest (see details italicized below).

If you no longer own an interest in this well or need to make changes to your address, etc., please email <u>ownerrelations@hilcorp.com</u>. For those without email access, please call (713) 209-2457.

Hilcorp is eager to explore this potential opportunity to enhance production. Thank you for your support.

Sincerely. Come Parters Phin

Carson Rice Landman – San Juan North (713) 757-7108 <u>carice@hilcorp.com</u>

cc:bmg Enclosures

Protesting:

Protests must be in writing and received with<u>in twenty (20) days from the date of this letter. In your</u> response, please include your contact information, details referenced herein and the specific concerns and/or reasoning behind your decision. You are encouraged to email me an electronic copy and, subsequently, mailing (overnight) a hard copy to my attention at the address in the footer below. Upon receipt, I will follow up by phone to discuss your concerns. Should we be unable to resolve them, a formal protest will be set for hearing with the New Mexico Oil & Conservation Division in Santa Fe, NM, wherein your attendance and testimony will be required.

1111 Travis Street Houston, TX 77002 Phone: 713/209-2400 Fax 713/209-2420

Received by OCD: 1/26/2024 2:49:51 PM

District I 1625 N. French Drive, Hobbs, NM 88240

District II 811 S. First St., Artesia, NM 88210

District III 1000 Rio Brazos Road, Aztec, NM 87410

District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Department Form C-107A Revised August 1, 2011

Page 37 of 53

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505 APPLICATION TYPE __Single Well __Establish Pre-Approved Pools EXISTING WELLBORE __X_Yes ___No

APPLICATION FOR DOWNHOLE COMMINGLING

Hilcorp Energy Comp	bany	382 Road 3100, Azte	ec, NM 8/410		
Operator		Address			
Beaver Lodge Com	1M	I, 32, T30N, R08W		San Juan Count	y, NM
Lease	Well No.	Unit Letter-Section-Townshi	ip-Range	Count	у
OGRID No. 372171	_ Property Code <u>319133</u>	_ API No. <u>30-045-35552</u>	Lease Type:	Federal <u>X</u> Stat	eFee

DATA ELEMENT UPPER ZONE **INTERMEDIATE ZONE** LOWER ZONE **Basin Fruitland Coal** Blanco Mesaverde Basin Dakota Pool Name 71629 72319 71599 Pool Code 4110′ – 5546′ 2785' - 3116' 7420' - 7634' Top and Bottom of Pay Section (Perforated or Open-Hole Interval) Artificial Lift Artificial Lift Artificial Lift Method of Production (Flowing or Artificial Lift) Bottomhole Pressure (Note: Pressure data will not be required if the bottom 178 psi 639 psi 126 psi perforation in the lower zone is within 150% of the depth of the top perforation in the upper zone) Oil Gravity or Gas BTU (Degree API or Gas BTU) 1121 BTU 1284 BTU 1057 BTU Producing, Shut-In or New Zone Producing Producing New Zone Date and Oil/Gas/Water Rates of Last Production. (Note: For new zones with no production history, Date: 9/1/2023 Date: 9/1/2023 Date: Oil: 0 bbls Oil: 0 bbls applicant shall be required to attach production Rates: Gas: 2,123 Mcf Rates: Gas: 2,394 Mcf estimates and supporting data.) Rates: Water: 18 bbls Water: 22 bbls Fixed Allocation Percentage Oil Gas Oil Gas Oil Gas than current or past production, supporting data or % % % % % % explanation will be required.)

ADDITIONAL DATA

Are all working, royalty and overriding royalty interests identical in all commingled zones? If not, have all working, royalty and overriding royalty interest owners been notified by certified mail?	Yes Yes		NoX No	
Are all produced fluids from all commingled zones compatible with each other?	Yes	Χ	No	
Will commingling decrease the value of production?	Yes		No_>	<
If this well is on, or communitized with, state or federal lands, has either the Commissioner of Public Lands or the United States Bureau of Land Management been notified in writing of this application?	Yes	Х	No	
NMACD Defense Correlia to the smalle				

NMOCD Reference Case No. applicable to this well:

Attachments:

C-102 for each zone to be commingled showing its spacing unit and acreage dedication.Production curve for each zone for at least one year. (If not available, attach explanation.)For zones with no production history, estimated production rates and supporting data.Data to support allocation method or formula.Notification list of working, royalty and overriding royalty interests for uncommon interest cases.Any additional statements, data or documents required to support commingling.

PRE-APPROVED POOLS

If application is to establish Pre-Approved Pools, the following additional information will be required:

List of other orders approving downhole commingling within the proposed Pre-Approved Pools List of all operators within the proposed Pre-Approved Pools Proof that all operators within the proposed Pre-Approved Pools were provided notice of this application. Bottomhole pressure data.

I hereby certify that the information above is true and complete to the best of my knowledge and belief.

SIGNATURE Cherylene Weston	TITLE_Operations/Regulatory Tech-Sr. DATE 12/12/2023	
TYPE OR PRINT NAME Cherylene Weston	TELEPHONE NO. (713) 289-2615	

E-MAIL ADDRESS _____ cweston@hilcorp.com

GANNETT

AFFIDAVIT OF PUBLICATION

Hilcorp Energy Hilcorp Energy 382 Rd 3100 Aztec NM 87410

STATE OF WISCONSIN, COUNTY OF BROWN

The Farmington Daily Times, a daily newspaper published in the city of Farmington, San Juan County, State of New Mexico, and personal knowledge of the facts herein state and that the notice hereto annexed was Published in said newspapers in the issue:

03/20/2024

and that the fees charged are legal. Sworn to and subscribed before on 03/20/2024 PO Box 631667 Cincinnati, OH 45263-1667

Notice by Hilcorp Energy Company for Downhole Commingling, San Juan County, New Mexico. Pursuant to Paragraph (2) of Subsection C of 19.15.12.11 NMAC, Hilcorp Energy Company, as Operator, has filed form C-107-A with the New Mexico Energy, Minerals and Natural Resources Department – Oil Conservation Division (NMOCD) seeking administrative approval to downhole commingle new production from the Basin-Fruitland Coal Gas Pool (71629) with existing production from the Blanco-Mesaverde Gas Pool (72319) and Basin-Dakota Gas Pool (71599) in the BEAVER LODGE COM 1M well (API No. 30-045-35552) located in Unit I, Section 32, Township 30 North, Range 8 West, NMPM, San Juan County, New Mexico. Commingling will not reduce the value of production. The allocation of production between zones will occur via subtraction method. This notice is intended for certain unlocatable interest owners in the aforementioned well for which certified mail delivery is not possible. Should you (the interest owner for which this notice is intended) have an objection, you must notify the NMOCD in writing within twenty (20) days from the date of this publication. Thereafter, the matter may be set for hearing with the NMOCD in Santa Fe, NM, wherein your attendance and testimony would be required. #9972629, Daily Times, March 20, 2024

Z	eegen l	Loran
Legal Clerk	-	
Notary, State of WI	County of Brown	
	0-25-2	F
My commission exp	bires	1
Publication Cost:	\$84.50	
Order No:	9972629	# of Copies:
Customer No:	1366050	1

PO #: THIS IS NOT AN INVOICE!

Please do not use this form for payment remittance.

RYAN SPELLER Notary Public State of Wisconsin

Certified Number	Sender	Recipient	Date Mailed	Delivery Status
92148969009997901831825807	Brenda Guzman	, LINDSAY PRODUCTION, and ROYALTIES LTD, FREDERICKSBURG, TX, 78624 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825814	Brenda Guzman	, THE NORDAN TRUST, RANDOLPH C MARCEAU TRUSTEE, SAN ANTONIO, TX, 78209 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825821	Brenda Guzman	, PRIMITIVE PETROLEUM INC, , MIDLAND, TX, 79707 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825838	Brenda Guzman	, WESLEY WEST MINERALS LTD, , HOUSTON, TX, 77001 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825845	Brenda Guzman	, KENNEDY MINERALS LTD, , MIDLAND, TX, 79701 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825852	Brenda Guzman	, MARGARET A KEARNS TRUST FBO, HELENE D GORMAN AND AS TRUSTEE, NAPLES, FL, 34102 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825869	Brenda Guzman	, MARGARET A KEARNS TRUST FBO, JAMES B DRAPER TRUSTEE, COLORADO SPRINGS, CO, 80904-1029 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825876	Brenda Guzman	, CYNTHIA GRAY MILANI ESTATE, BARBARA B GRAY INDEP EXECUTRIX, FT WORTH, TX, 76199-0084 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825883	Brenda Guzman	, STATE OF NEW MEXICO, BATAAN MEMORIAL BUILDING, SANTA FE, NM, 87501 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825890	Brenda Guzman	, ELLEN BOONE SCHWETHELM, , SAN ANTONIO, TX, 78209-6716 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825906	Brenda Guzman	, CLAUD W RAYBOURN, , APPLE VALLEY, CA, 92307 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825913	Brenda Guzman	, ELSR LP, C/O PETROLEDGER FINANCIAL SERV, FORT WORTH, TX, 76107 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825920	Brenda Guzman	, GROVER FAMILY LP, , MIDLAND, TX, 79702- 3666 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825937	Brenda Guzman	, ARCHER PEARL ENERGY LTD, , SAN ANTONIO, TX, 78209 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825944	Brenda Guzman	, CHARLES RUSSELL BELL JR, , BELLVILLE, TX, 77418-0042 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825951	Brenda Guzman	, VALERIE L JONES HUNDLEY, , CORPUS CHRISTI, TX, 78468-1242 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825968	Brenda Guzman	, JOHN HUNTER JONES, , AUSTIN, TX, 78746 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825975	Brenda Guzman	, JESSICA DAVANT STANLEY, , AUSTIN, TX, 78732 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825982	Brenda Guzman	, AMELIA ANNE SUNDBERG, , RICHMOND, TX, 77406-6727 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831825999	Brenda Guzman	, HDBC INVESTMENTS LTD, A TEXAS LTD PTRSHP, DALLAS, TX, 75225 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826002	Brenda Guzman	, PAUL DAVIS LTD, , MIDLAND, TX, 79702 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826019	Brenda Guzman	, MULLIGAN LP, , RICHARDSON, TX, 75080- 4611 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826026	Brenda Guzman	, REBECCA ANN HOWARD MUNNELL, , SUGAR LAND, TX, 77479-1470	12/22/2023	

ized.p.y.9CA; 1/26/2024 2:		aser Substrates, Inc. – USPS Electronic Return F Code: Beaver Lodge Com 1M DHC		Signature Pending
02148969009997901831826033	Brenda Guzman	, RICHARD HOWARD, , HOUSTON, TX, 77024 Code: Beaver Lodge Com 1M DHC	12/22/2023	
02148969009997901831826040	Brenda Guzman	, ROBERT LOUIS HOWARD JR, , CLARKESVILLE, GA, 30523 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending Signature Pending
02148969009997901831826057	Brenda Guzman	, CROSS TIMBERS ENERGY LLC, C/O DRILLINGINFO MAIL, FORT WORTH, TX, 76102 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826064	Brenda Guzman	, WILLIAM C EILAND, , MIDLAND, TX, 79702 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826071	Brenda Guzman	, DELACOSTA ENERGY LP, ANTHONY SPEIER REGISTER AGENT, SAN ANTONIO, TX, 78212 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826088	Brenda Guzman	, PNH RESOURCES LLC, PHILIP N HUDSON MANAGER, SAN ANTONIO, TX, 78280 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826095	Brenda Guzman	, FRED ELDON SPENCER, and JANE B SPENCER JTWROS, MUSTANG, OK, 73064 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826101	Brenda Guzman	, JAMES R LEETON JR, , MIDLAND, TX, 79702 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826118	Brenda Guzman	, ROBERT UMBACH CANCER FOUNDATION, MARTINDALE CONSULTANTS INC AGENT, OKLAHOMA CITY, OK, 73112-2311 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826125	Brenda Guzman	, MARTHA M TUCKER, , HOUSTON, TX, 77252-2822 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826132	Brenda Guzman	, THOMPSON FAMILY LLC, , SANTA FE, NM, 87501 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826149	Brenda Guzman	, VIRGINIA THOMPSON CREPS REV TRUST, ELIZABETH R HARNED SUCC TRUSTEE, WEST CHESTER, PA, 19380 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826156	Brenda Guzman	, ATKO PARTNERS LTD, , HUNTSVILLE, TX, 77340 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826163	Brenda Guzman	, DAVID H GRAY, JPMORGAN CHASE BANK AGENT and AIF, FORT WORTH, TX, 76199- 0084 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826170	Brenda Guzman	, JOHN L GRAY, JPMORGAN CHASE BANK AGENT and AIF, FORT WORTH, TX, 76199- 0084 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826187	Brenda Guzman	, LAURA A GUNN, , SAN ANTONIO, TX, 78216-2227 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826194	Brenda Guzman	, SHARON A LONG, , BARTLESVILLE, OK, 74006 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826200	Brenda Guzman	, GUY DAVID WARD, , SPRING HILL, TN, 37174 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826217	Brenda Guzman	, TIMOTHY WINSTON WARD, , CARROLLTON, TX, 75007 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826224	Brenda Guzman	, JAMES WENDELL WEST, , LOS ANGELES, CA, 90049-8382 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826231	Brenda Guzman	, HELEN BLOXSOM DAVIS, , HOUSTON, TX, 77025 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826248	Brenda Guzman	, CORNELIA DAVANT PERRY, JAMES E DAVANT POA, BLESSING, TX, 77419-0206 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826255	Brenda Guzman	, DAVID ELBERT REESE, , RICHMOND, TX, 77469 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending

.

Laser Substrates, Inc. – USPS Electronic Return Receipt Certified Mail Software

West, p. 1. GC AM 1/26/2024 2:		aser Substrates, Inc. – USPS Electronic Return	Receipt Certified N	Aail Software
92148969009997901831826262	Brenda Guzman	, WILLIAM SHUPP, , MURFREESBORO, TN, 37128 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826279	Brenda Guzman	, JAMES SHUPP, , SHREWSBURY, PA, 17361 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826286	Brenda Guzman	, ANGELA SLAIS, , GARDNERVILLE, NV, 86460 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826293	Brenda Guzman	, JEAN ASHLEY WARD CARTER, , HOUSTON, TX, 77062 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826309	Brenda Guzman	, SANDRA T CURRIE, , LLANO, TX, 78643 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826316	Brenda Guzman	, WILLIAM LOUIS DAVANT, , BLESSING, TX, 77419 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826323	Brenda Guzman	, JAMES E DAVANT DVM, , BLESSING, TX, 77419-0695 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826330	Brenda Guzman	, KATHRYN DAVANT DODSON, , CLARKSDALE, MS, 38614 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826347	Brenda Guzman	, THOMAS E DUNNAM III, , SAN ANTONIO, TX, 78269 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826354	Brenda Guzman	, JAMES H ESSMAN, , MIDLAND, TX, 79702 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826361	Brenda Guzman	, WILLIAM F GORDON, , LE CLAIRE, IA, 52753 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826378	Brenda Guzman	, JULIE A GRAHAM, , NORTH PORT, FL, 34291 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826385	Brenda Guzman	, ADAIR M HADLEY, , SUNSET BEACH, NC, 28468 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826392	Brenda Guzman	, THEODORE W SCHICK JR, and MARCELLA MOYER SCHICK, ALLENTOWN, PA, 18104 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826408	Brenda Guzman	, BRADFORD TUCKER, , HOUSTON, TX, 77056-1421 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826415	Brenda Guzman	, F LOUIS TUCKER JR, , HOUSTON, TX, 77056 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826422	Brenda Guzman	, EUGENIA DAVANT WILSON, , SULPHUR, LA, 70664-1160 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826439	Brenda Guzman	, PAMELA GRAY BALDWIN, JPMORGAN CHASE BANK AGENT and AIF, FORT WORTH, TX, 76199-0084 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826446	Brenda Guzman	, SUSAN FRY BRACKEN, , TYLER, TX, 75701 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826453	Brenda Guzman	, MARSHA HENDERSON COLLINS, , HELENA, MT, 59602 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826460	Brenda Guzman	, ANNA REBECCA WARD DELKRUG, , HOUSTON, TX, 77062 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826477	Brenda Guzman	, DICK HOLLAND, , MIDLAND, TX, 79702-2926 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826484	Brenda Guzman	, CLAY JOHNSON, , MIDLAND, TX, 79701 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826491	Brenda Guzman	, MARY KATHRYN DUNNAM LADEWIG, , TROPHY CLUB, TX, 76262 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826507	Brenda Guzman	, KEVIN K LEONARD, , MIDLAND, TX, 79710 Code: Beaver Lodge Com 1M DHC	12/22/2023	

				Signature Pending
02148969009997901831826514	Brenda Guzman	, CHRISTIAN MUELLER, , THE VILLAGES, FL, 32162 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826521	Brenda Guzman	, LOIS MUELLER, , BOLIVAR, MO, 65613 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826538	Brenda Guzman	, LILLY L NEWKIRK, , INDIANOLA, IA, 50125 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826545	Brenda Guzman	, PARADOX VALLEY PARTNERS LTD, , LLANO, TX, 78643 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826552	Brenda Guzman	, NANCY J SPENCER, , RANCHO CUCAMONGA, CA, 91739-2565 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826569	Brenda Guzman	, JANICE P CAMPBELL, AUSTEN S CAMPBELL POA, MIDLAND, TX, 79702-1714 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826576	Brenda Guzman	, RICHARD W MCDOUGAL, , JENKS, OK, 74037 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826583	Brenda Guzman	, ROBERT B MCDOUGAL JR, , THE VILLAGES, FL, 32163 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826590	Brenda Guzman	, L J and R R MONEY 1990 TR, DATED 10-9- 90, SACRAMENTO, CA, 95864 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826606	Brenda Guzman	, OAK TREE MINERALS LLC, , FRISCO, TX, 75034 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826613	Brenda Guzman	, MARY E PRIESTER, , BETTENDORF, IA, 52722 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826620	Brenda Guzman	, RAYBOURN ENTERPRISES LLC, , NEWTOWN SQUARE, PA, 19073 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826637	Brenda Guzman	, CATHARINE GRAY REMENICK, JPMORGAN CHASE BANK AGENT and A/I/F, FORT WORTH, TX, 76199-0084 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826644	Brenda Guzman	, WILLIAM R ARCHER JR 2003 GRANTOR, TRUST WILLIAM R ARCHER JR TRUSTEE, MCLEAN, VA, 22101 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826651	Brenda Guzman	, BARBARA A BRYANT 2003 GRANTOR TRUST, KATHERINE BRYAN LYNCH and, MCLEAN, VA, 22101 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826668	Brenda Guzman	, ROBIN T HENDERSON, , WESTERNPORT, MD, 21562 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826675	Brenda Guzman	, SHIRLEY JARAMILLO, , ALBUQUERQUE, NM, 87102 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826682	Brenda Guzman	, NORTHGATE ROYALTY FUND B LLC, , NOTRE DAME, IN, 46556-0757 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826699	Brenda Guzman	, IM H PORTER TUW, FBO JOHN PORTER, DAVENPORT, FL, 33837 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826705	Brenda Guzman	, RICHARD A GROENENDYKE JR, , TULSA, OK, 74114 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826712	Brenda Guzman	, SHERRI HULT HEINTSCHEL, , ROCKPORT, TX, 78382 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826729	Brenda Guzman	, GLENN HEINTSCHEL, , ROCKPORT, TX, 78382 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826736	Brenda Guzman	, MARY L HERROLD REVOC TR, DTD 1/7/92, TULSA, OK, 74133 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
2148969009997901831826743	Brenda Guzman	, ICON PETROLEUM INC, , MIDLAND, TX, 79701	12/22/2023	

				Signature Pending
92148969009997901831826750	Brenda Guzman	, HELEN MACALISTER, , BETTENDORF, IA, 52722 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826767	Brenda Guzman	, NINETY SIX CORPORATION, , MIDLAND, TX, 79701-4695 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826774	Brenda Guzman	, ENDURING RESOURCES IV, LLC, , CENTENNIAL, CO, 80111 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826781	Brenda Guzman	, JANE B SPENCER, , YUKON, OK, 73099 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826798	Brenda Guzman	, WATERS S DAVIS III BYPASS TRUST, C/O PDS/SSandC INNOVEST, FT WORTH, TX, 76102 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
02148969009997901831826804	Brenda Guzman	, RUGELEY TRUST, FRANK M RUGELEY CO- TTEE, BATON ROUGE, LA, 70816 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826811	Brenda Guzman	, JULIANNE DEAN, , SPRING, TX, 77393 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826828	Brenda Guzman	, ROBERT HENDERSON, , WESTERNPORT, MD, 21562 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826835	Brenda Guzman	, SIMCOE, LLC, , HOUSTON, TX, 77002-5632 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826842	Brenda Guzman	, BETTY ANN STEDMAN ESTATE, , HOUSTON, TX, 77001 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826859	Brenda Guzman	, ROY RANDOLPH REESE, , SUGAR LAND, TX, 77478 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826866	Brenda Guzman	, MWOODHAM LLC, , DENVER, CO, 80220 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826873	Brenda Guzman	, MARILYNN L JACKSON, , PONCA CITY, OK, 74604 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826880	Brenda Guzman	, MARBAR HOLDINGS LLC, , BELLAIRE, TX, 77401 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826897	Brenda Guzman	, MARY DAVANT FRICKE, , PORT LAVACA, TX, 77979 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826903	Brenda Guzman	, LISA F BERGER, , TULSA, OK, 74132 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826910	Brenda Guzman	, LAURA F GRUNDHOEFER, , SAN ANTONIO, TX, 78258 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826927	Brenda Guzman	, RDJL HOLDINGS LLC, , RICHMOND, TX, 77469 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826934	Brenda Guzman	, GEOJAC LLC, , HOUSTON, TX, 77079-6422 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826941	Brenda Guzman	, ANDREW MCDOUGAL, , OAK RIDGE, NC, 27310 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending
92148969009997901831826958	Brenda Guzman	, CHARLES MCDOUGAL, , WAKE FOREST, NC, 27587 Code: Beaver Lodge Com 1M DHC	12/22/2023	Signature Pending

.

 From:
 Cheryl Weston

 To:
 McClure, Dean, EMNRD

 Subject:
 FW: [EXTERNAL] Action ID: 308500; DHC-5354

 Date:
 Friday, April 19, 2024 11:06:44 AM

 Attachments:
 image001.png

Dean,

Per, Reservoir Engineer, Griff Selby, we believe the original allocated volumes for the existing zones is correct and accurate. We are not proposing a new allocation for the existing zones. Let me know if I can help clarify anything further.

Thanks, Cheryl

From: Cheryl Weston <<u>cweston@hilcorp.com</u>>
Sent: Thursday, April 18, 2024 2:56 PM
To: Griffin Selby <<u>Griffin.Selby@hilcorp.com</u>>; Sikandar Khan <<u>Sikandar.Khan@hilcorp.com</u>>
Subject: FW: [EXTERNAL] Action ID: 308500; DHC-5354

Griffin,

Please see Dean's request below for the Beaver Lodge Com 1M DHC.

Cheryl

From: McClure, Dean, EMNRD <<u>Dean.McClure@emnrd.nm.gov</u>>
Sent: Thursday, April 18, 2024 2:23 PM
To: Cheryl Weston <<u>cweston@hilcorp.com</u>>
Cc: Mandi Walker <<u>mwalker@hilcorp.com</u>>
Subject: RE: [EXTERNAL] Action ID: 308500; DHC-5354

CAUTION: External sender. DO NOT open links or attachments from UNKNOWN senders.

Cheryl,

I looked at the application again and see that the GOR is coming from the Gartner A #15 which I had missed the first time. As such we should be fine regarding the GOR.

However, with the recalculation of remaining reserves for the MV formation, it seems that perhaps Hilcorp is proposing a new allocation. If so, please provide additional information regarding using a calculation to 1 MCF per day rather than the econ limit.

Dean McClure Petroleum Engineer, Oil Conservation Division New Mexico Energy, Minerals and Natural Resources Department (505) 469-8211

From: Cheryl Weston <<u>cweston@hilcorp.com</u>>
Sent: Wednesday, March 20, 2024 7:00 AM
To: McClure, Dean, EMNRD <<u>Dean.McClure@emnrd.nm.gov</u>>
Cc: Mandi Walker <<u>mwalker@hilcorp.com</u>>
Subject: FW: [EXTERNAL] Action ID: 308500; DHC-5354

Dean,

Please see our Reservoir Engineer's comment below regarding your question on the GOR. Will this work for the DHC?

Regarding the DHC notice to interest owners, it will be published today on 3/20/24.

Thanks, Cheryl

From: Griffin Selby <<u>Griffin.Selby@hilcorp.com</u>>
Sent: Monday, March 18, 2024 4:31 PM
To: Cheryl Weston <<u>cweston@hilcorp.com</u>>; Sikandar Khan <<u>Sikandar.Khan@hilcorp.com</u>>
Cc: Mandi Walker <<u>mwalker@hilcorp.com</u>>
Subject: RE: [EXTERNAL] Action ID: 308500; DHC-5354

I used the existing forecasts from each zone as allocated paired with the oil yield maps we have. Those yield values were taken from standalone offset wells for each formation then gridded in PETRA. I changed the forecast to run out to 1 mcfd for each formation instead of the economic limit, talking with Mandi that more closely lines up with the allocated volumes for the base formation – that gives the following values. That is the only thing we can change and I think nullifies any errors based on economic life for the existing DK and MV....as far as Deans question goes with the yields though, these should are derived from standalone offsets so we feel good about the values there.

Let me know if we need to discuss further.

New allocations with MV and DK remaining reserves ran out to 1 mcfd

Formation	Yield (bbl/MM)	Remaining Reserves	% Oil
MV	1.83	679	67%
FRC	0.61	777	25%
DK	0.18	806	8%
			100%

From: Cheryl Weston <cweston@hilcorp.com>
Sent: Monday, March 18, 2024 8:16 AM
To: Sikandar Khan <<u>Sikandar.Khan@hilcorp.com</u>>; Griffin Selby <<u>Griffin.Selby@hilcorp.com</u>>
Subject: FW: [EXTERNAL] Action ID: 308500; DHC-5354

Griffin,

Please see Dean's note below regarding the Oil allocation. Please provide an update or explanation.

Thanks, Cheryl

From: McClure, Dean, EMNRD <<u>Dean.McClure@emnrd.nm.gov</u>>
Sent: Friday, March 15, 2024 4:54 PM
To: Cheryl Weston <<u>cweston@hilcorp.com</u>>; Mandi Walker <<u>mwalker@hilcorp.com</u>>
Subject: [EXTERNAL] Action ID: 308500; DHC-5354

CAUTION: External sender. DO NOT open links or attachments from UNKNOWN senders.

To whom it may concern (c/o Cheryl Weston for Hilcorp Energy Company),

Action ID	308500
Admin No.	DHC-5354
Applicant	Hilcorp Energy Company (372171)
Title	BEAVER LODGE COM #001M
Sub. Date	1/26/2024

The Division is reviewing the following application:

Please provide the following additional supplemental documents:

•

Please provide additional information regarding the following:

- Was public notice provided of this application? If so, please provide the affidavit of publication.
- Please provide more explanation regarding the allocation of oil, specifically regarding where the GOR for the FLC was derived.
- Please provide the address to which notice was provided of this application to the SLO and the certified tracking number associated with it.

Additional notes:

٠

All additional supplemental documents and information may be provided via email and should be done by replying to this email. The produced email chain will be uploaded to the file for this application.

Please note that failure to take steps to address each of the requests made in this email within 10 business days of receipt of this email may result in the Division rejecting the application requiring the submittal of a new application by the applicant once it is prepared to address each of the topics raised.

Dean McClure Petroleum Engineer, Oil Conservation Division New Mexico Energy, Minerals and Natural Resources Department (505) 469-8211

The information contained in this email message is confidential and may be legally privileged and is intended only for the use of the individual or entity named above. If you are not an intended recipient or if you have received this message in error, you are hereby notified that any dissemination, distribution, or copy of this email is strictly prohibited. If you have received this email in error, please immediately notify us by return email or telephone if the sender's phone number is listed above, then promptly and permanently delete this message.

While all reasonable care has been taken to avoid the transmission of viruses, it is the responsibility of the recipient to ensure that the onward transmission, opening, or use of this message and any attachments will not adversely affect its systems or data. No responsibility is accepted by the company in this regard and the recipient should carry out such virus and other checks as it considers appropriate.

The information contained in this email message is confidential and may be legally privileged and is intended only for the use of the individual or entity named above. If you are not an intended recipient or if you have received this message in error, you are hereby notified that any dissemination, distribution, or copy of this email is strictly prohibited. If you have received this email in error, please immediately notify us by return email or telephone if the sender's phone number is listed above, then promptly and permanently delete this message.

While all reasonable care has been taken to avoid the transmission of viruses, it is the responsibility of the recipient to ensure that the onward transmission, opening, or use of this message and any attachments will not adversely affect its systems or data. No responsibility is accepted by the company in this regard and the recipient should carry out such virus and other checks as it considers appropriate.

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

APPLICATION FOR DOWNHOLE COMMINGLINGSUBMITTED BY HILCORP ENERGY COMPANYORDER NO. DHC-5354

<u>ORDER</u>

The Director of the New Mexico Oil Conservation Division ("OCD"), having considered the application and the recommendation of the Engineering Bureau, issues the following Order.

FINDINGS OF FACT

- 1. Hilcorp Energy Company ("Applicant") submitted a complete application ("Application") to downhole commingle the pools described in Exhibit A ("the Pools") within the well bore of the well identified in Exhibit A ("the Well").
- 2. Applicant proposed a method to allocate the oil and gas production from the Well to each of the Pools that is satisfactory to the OCD and protective of correlative rights.
- 3. Applicant has certified that the proposed commingling of the Pools shall not result in shutin or flowing well bore pressure in excess of the commingled pool's fracture parting pressure.
- 4. Applicant has certified that all produced fluids from all the Pools are compatible with each other.
- 5. Applicant has certified that downhole commingling the Pools will not decrease the value of the oil and gas production.
- 6. To the extent that ownership is diverse, Applicant identified all owners of interest in the Pools, provided evidence a copy of the Application was given to each person, and those persons either submitted a written waiver or did not file an objection to the Application.
- 7. Applicant provided notice of the Application to the Bureau of Land Management ("BLM") or New Mexico State Land Office ("NMSLO"), as applicable.

CONCLUSIONS OF LAW

- 8. OCD has jurisdiction to issue this Order pursuant to the Oil and Gas Act, NMSA 1978, Sections 70-2-6, 70-2-11, 70-2-12, 70-2-16, 70-2-17, and 19.15.12 NMAC.
- 9. The downhole commingling of the Pools is common, or Applicant has provided evidence that the fluids are compatible and will not damage the Pools in accordance with 19.15.12.11(A)(1) NMAC.
- 10. The bottom perforation of the lower zone is within one hundred fifty percent (150%) of the depth of the top perforation in the upper zone or Applicant has provided evidence that the proposed commingling of the Pools shall not result in shut-in or flowing well bore pressure

Order No. DHC-5354

in excess of the commingled pool's fracture parting pressure in accordance with 19.15.12.11(A)(3) NMAC.

- 11. Applicant's proposed method of allocation, as modified herein, complies with 19.15.12.11(A)(8) NMAC.
- 12. To the extent that ownership is diverse, Applicant identified all owners of interest in the Pools and provided evidence the application was given to those persons in accordance with 19.15.12.11(C)(1)(b) NMAC.
- 13. By granting the Application with the conditions specified below, this Order prevents waste and protects correlative rights, public health, and the environment.

<u>ORDER</u>

- 1. Applicant is authorized to downhole commingle the Pools described in Exhibit A within the well bore of the well identified in Exhibit A.
- 2. This Order supersedes Order DHC-3897.
- 3. Applicant shall allocate a fixed percentage of the oil production from the Well to each of the Pools until a different plan to allocate oil production is approved by OCD. Of the oil production from the Well:
 - a. fifty-one percent (51%) shall be allocated to the BASIN FRUITLAND COAL (GAS) pool (pool ID: 71629);
 - b. forty-three percent (43%) shall be allocated to the BLANCO-MESAVERDE (PRORATED GAS) pool (pool ID: 72319); and
 - c. six percent (6%) shall be allocated to the BASIN DAKOTA (PRORATED GAS) pool (pool ID: 71599).

Applicant shall allocate gas production to the new pool(s) equal to the total gas production from the Well minus the projected gas production from the current pool(s) until a different plan to allocate gas production is approved by OCD. The new pool(s) are:

a. the BASIN FRUITLAND COAL (GAS) pool (pool ID: 71629).

The current pool(s) are:

- a. the BLANCO-MESAVERDE (PRORATED GAS) pool (pool ID: 72319); and
- b. the BASIN DAKOTA (PRORATED GAS) pool (pool ID: 71599).

Until a different plan to allocate gas production is approved by OCD, of the projected gas production allocated to the current pools:

- a. forty-seven percent (47%) shall be allocated to the BLANCO-MESAVERDE (PRORATED GAS) pool (pool ID: 72319); and
- b. fifty-three percent (53%) shall be allocated to the BASIN DAKOTA (PRORATED GAS) pool (pool ID: 71599).

Applicant shall calculate the oil and gas production average during the fourth year after the commencement of commingling, which shall be used to establish a fixed percentage of the total oil and gas production that shall be allocated to each of the Pools ("fixed percentage

allocation plan"). No later than ninety (90) days after the fourth year, Applicant shall submit a Form C-103 to the OCD Engineering Bureau that includes the fixed percentage allocation plan and all data used to determine it. If Applicant fails to do so, this Order shall terminate on the following day. If OCD denies the fixed percentage allocation plan, this Order shall terminate on the date of such action. If OCD approves the percentage allocation plan with or without modifications, then the approved percentage allocation plan shall be used to determine oil and gas allocation starting on the date of such action until the Well is plugged and abandoned.

- 4. If an alteration is made to the Well or a condition within the Well changes which may cause the allocation of production to the Pools as approved within this Order to become inaccurate, then no later than sixty (60) days after that event, Applicant shall submit Form C-103 to the OCD Engineering Bureau describing the event and include a revised allocation plan. If OCD denies the revised allocation plan, this Order shall terminate on the date of such action.
- 5. If any of the pools being commingled is prorated, or the Well's production has been restricted by an OCD order in any manner, the allocated production from each producing pool in the commingled well bore shall not exceed the top oil or gas allowable rate for a well in that pool or rate restriction applicable to the well.
- 6. If the Well is deepened, then no later than forty-five (45) days after the Well is deepened, Applicant shall conduct and provide logs to OCD that are sufficient for OCD to determine which pool(s) each new completed interval of the Well will produce from.
- 7. If the downhole commingling of the Pools reduces the value of the oil and gas production to less than if it had remained segregated, no later than sixty (60) days after the decrease in value has occurred Applicant shall submit a new downhole commingling application to OCD to amend this Order to remove the pool that caused the decrease in value. If Applicant fails to submit a new application, this Order shall terminate on the following day, and if OCD denies the application, this Order shall terminate on the date of such action.
- 8. If a completed interval of the Well is altered from what is submitted within the Application as identified in Exhibit A, then no later than sixty (60) days after the alteration, Applicant shall submit Form C-103 to the OCD Engineering Bureau detailing the alteration and completed interval.
- 9. If OCD determines that Applicant has failed to comply with any provision of this Order, OCD may take any action authorized by the Oil and Gas Act or the New Mexico Administrative Code (NMAC).
- 10. OCD retains jurisdiction of this matter and reserves the right to modify or revoke this Order as it deems necessary.

Order No. DHC-5354

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

DYLAN M. FUGE DIRECTOR (ACTING) DATE: 5/22/24

Order No. DHC-5354

.

En	ergy, Minerals and Natural Resour	ces Department	
	Exhibit A		
	Order: DHC-5354		
	Operator: Hilcorp Energy Co	mpany (372171)	
	Well Name: Beaver Lodge Con	n #1M	
	Well API: 30-045-35552		
	Pool Name: BASIN FRUITLAND	COAL (GAS)	
Linnar Zana	Pool ID: 71629	Current:	New: X
Upper Zone	Allocation: Subtraction	Oil: 51.0%	Gas: subt
	Interval: Perforations	Top: 2,785	Bottom: 3,116
	Pool Name: BLANCO-MESAVE	RDE (PRORATED GAS)	
Intermediate Zone	Pool ID: 72319	Current: X	New:
intermediate zone	Allocation: Fixed Percent	Oil: 43.0%	Gas: 47.0%
	Interval: Perforations	Top: 4,110	Bottom: 5,546
Bottom of Inter	val within 150% of Upper Zone's To	op of Interval:	
	Pool Name: BASIN DAKOTA (P	RORATED GAS)	
Lower Zono	Pool ID: 71599	Current: X	New:
Lower Zone	Allocation: Fixed Percent	Oil: 6.0%	Gas: 53.0%
	Interval: Perforations	Top: 7,420	Bottom: 7,634
Bottom of Inter	val within 150% of Upper Zone's To	op of Interval: NO	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

CONDITIONS

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	308500
	Action Type:
	[C-107] Down Hole Commingle (C-107A)

CONDITION OF THE OWNER OF		
Created By	Condition	Condition Date
dmcclure	Please review the content of the order to ensure you are familiar with the authorities granted and any conditions of approval. If you have any questions regarding this matter, please contact me.	5/22/2024

Page 53 of 53

Action 308500