| From:    | McClure, Dean, EMNRD                                              |
|----------|-------------------------------------------------------------------|
| То:      | Cheryl Weston; Mandi Walker                                       |
| Cc:      | Lowe, Leonard, EMNRD; Wrinkle, Justin, EMNRD; Rikala, Ward, EMNRD |
| Subject: | RE: [EXTERNAL] Action ID: 356651; DHC-5405                        |
| Date:    | Thursday, August 22, 2024 1:13:00 PM                              |
|          |                                                                   |

The application designated as Application ID: 356651 and DHC-5405 has been rejected by the Division due to the applicant's failure to conduct notice such that the stipulations within 19.15.12.11 C.(1)(a) NMAC may be met. The applicant may resubmit an application for this proposed downhole commingling project once proper notice has been conducted. If you have any questions, please feel free to reach out.

Dean McClure Petroleum Engineer, Oil Conservation Division New Mexico Energy, Minerals and Natural Resources Department (505) 469-8211

From: McClure, Dean, EMNRD <Dean.McClure@emnrd.nm.gov>
Sent: Wednesday, July 17, 2024 5:05 PM
To: Cheryl Weston <cweston@hilcorp.com>; Mandi Walker <mwalker@hilcorp.com>
Cc: Lowe, Leonard, EMNRD <Leonard.Lowe@emnrd.nm.gov>; McClure, Dean, EMNRD
<Dean.McClure@emnrd.nm.gov>
Subject: RE: [EXTERNAL] Action ID: 356651; DHC-5405

Cheryl,

Review of this application cannot continue until notice is conducted such that the stipulations within 19.15.12.11 C.(1)(a) NMAC may be met. As such, the Division will be placing review of this application on hold for the earlier of either: (a) Hilcorp has provided documentation demonstrating that the interest owners have been instructed to provide their protests to the Division; or (b) 30 days. The Division will make an evaluation of how to proceed in this case upon re-opening the application for review.

If you have any questions, please feel free to reach out.

Dean McClure Petroleum Engineer, Oil Conservation Division New Mexico Energy, Minerals and Natural Resources Department (505) 469-8211

From: Cheryl Weston <<u>cweston@hilcorp.com</u>>
Sent: Saturday, July 13, 2024 9:32 AM

To: McClure, Dean, EMNRD <<u>Dean.McClure@emnrd.nm.gov</u>>; Mandi Walker <<u>mwalker@hilcorp.com</u>> Cc: Lowe, Leonard, EMNRD <<u>Leonard.Lowe@emnrd.nm.gov</u>> Subject: RE: [EXTERNAL] Action ID: 356651; DHC-5405

Dean,

The administrative checklist, revised C-107A page, water analysis and allocation is attached.

Thanks, Cheryl

From: McClure, Dean, EMNRD <<u>Dean.McClure@emnrd.nm.gov</u>>
Sent: Friday, July 12, 2024 2:15 PM
To: Cheryl Weston <<u>cweston@hilcorp.com</u>>; Mandi Walker <<u>mwalker@hilcorp.com</u>>
Cc: Lowe, Leonard, EMNRD <<u>Leonard.Lowe@emnrd.nm.gov</u>>
Subject: [EXTERNAL] Action ID: 356651; DHC-5405

CAUTION: External sender. DO NOT open links or attachments from UNKNOWN senders.

To whom it may concern (c/o Cheryl Weston for Hilcorp Energy Company),

The Division is reviewing the following application:

| Action ID          | 356651                             |  |  |  |  |
|--------------------|------------------------------------|--|--|--|--|
| Admin No. DHC-5405 |                                    |  |  |  |  |
| Applicant          | nt Hilcorp Energy Company (372171) |  |  |  |  |
| Title              | State Com O #12                    |  |  |  |  |
| Sub. Date          | 6/21/24                            |  |  |  |  |

Please provide the following additional supplemental documents:

• Please provide an application checklist

Please provide additional information regarding the following:

- Please review the MV and DK perfs on form C-107A and submit an amended form C-107A with those perfs corrected.
- Please provide a method to allocate the gas for the MV and DK pools.
- Please confirm the quantity of other total dissolved solids within the FLC water sample.

### Additional notes:

All additional supplemental documents and information may be provided via email and should be done by replying to this email. The produced email chain will be uploaded to the file for this application.

Please note that failure to take steps to address each of the requests made in this email within 10 business days of receipt of this email may result in the Division rejecting the application requiring the submittal of a new application by the applicant once it is prepared to address each of the topics raised.

Dean McClure Petroleum Engineer, Oil Conservation Division New Mexico Energy, Minerals and Natural Resources Department (505) 469-8211

The information contained in this email message is confidential and may be legally privileged and is intended only for the use of the individual or entity named above. If you are not an intended recipient or if you have received this message in error, you are hereby notified that any dissemination, distribution, or copy of this email is strictly prohibited. If you have received this email in error, please immediately notify us by return email or telephone if the sender's phone number is listed above, then promptly and permanently delete this message.

While all reasonable care has been taken to avoid the transmission of viruses, it is the responsibility of the recipient to ensure that the onward transmission, opening, or use of this message and any attachments will not adversely affect its systems or data. No responsibility is accepted by the company in this regard and the recipient should carry out such virus and other checks as it considers appropriate.



## AFFIDAVIT OF PUBLICATION

#### STATE OF NEW MEXICO

#### County of San Juan

Odette Zenizo, the undersigned, authorized Representative of the Tri-City Record, on oath states that this newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Session Law of 1937, that payment therefore has been made of assessed as court cost; and that the notice, copy of which is hereto attached, was published in said paper in the regular daily edition, for \_\_\_\_\_ time(s) on the following date(s):

#### <u>6/26/2024</u>

Sworn and subscribed before me, a notary public in and for the county of La Plata and the State of Colorado, 6/28/2024.

| 5             | -M.B  | R |   |
|---------------|-------|---|---|
| Notary Public | 0.0 - |   | - |
| PRICE:        | 82-16 |   |   |

Statement to come at the end of the month.

ACCOUNT NUMBER: 109863

ERIN MELISSA BLACK BRANDT NOTRAY PUBLIC STATE OF COLORADO NOTRAY ID 20234047443 MY COMMISSION EXPIREB DECEMBER 20, 2027

#### COPY OF ADVERTISEMENT

# 22318

Notice by Hilcorp Energy Company for Downhole Commingling, San Juan County, New Mexico. Pursuant to Paragraph (2) of Subsection C of 19.15.12.11 NMAC. Hilcorp Energy Company, as Operator, has filed form C-107A with the New Mexico Energy, Minerals and Natural Resources Department **Oil Conservation Division** (NMOCD) seekina approval administrative to downhole commingle new production from the Basin-Fruitland Coal Pool (71629) with existing production from Basin-Dakota Gas Pool the (71599)and the Blanco-Mesaverde Gas Pool (72319) in the State Com O 012 well (API No. 30-045-29748) located in Unit I, Section 16, Township 29 North, Range 08 West, NMPM, San Juan County, New Mexico. Commingling will not reduce the value of production. Allocation method to be determined upon completion of this project. This notice is intended for certain unlocatable royalty interest owners in the aforementioned well for which certified mail delivery is not possible. Should (the interest owner for vou

Released to Imaging: 8/22/2024 1:19:14 PM

ALTENE ZNOTIAS

which this notice is intended) have an objection, you are required to respond within twenty (20) days from the date of this publication. Please mail your objection letter, referencing the well details above, to the following address: Hilcorp Energy Company, Attn: San Juan Land, 1111 Travis Street, Houston, TX 77002

Published in Tri-City Record June 26, 2024

> notifies for Granal Strategy and Strategy MATE DE TOTORIZON MATE DE TOTORIZON MATE DE TOTORIZON

Page 5 of 50

District I 1625 N. French Drive, Hobbs, NM 88240

District II 811 S. First St., Artesia, NM 88210

District III 1000 Rio Brazos Road, Aztec, NM 87410

District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State Com O

Lease

State of New Mexico Energy, Minerals and Natural Resources Department Form C-107A Revised August 1, 2011

Page 6 of 50

**Oil Conservation Division** 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

APPLICATION TYPE Single Well Establish Pre-Approved Pools EXISTING WELLBORE <u>X</u>Yes No

# APPLICATION FOR DOWNHOLE COMMINGLING

382 Road 3100, Aztec, NM 87410

Hilcorp Energy Company Operator

12

Well No.

Address I-16-T29N-R08W Unit Letter-Section-Township-Range

San Juan County, NM County

OGRID No. 372171 Property Code 319097 API No. 30-045-29748 Lease Type: Federal X State Fee

| DATA ELEMENT                                                                                                                                                                                   | UPPER ZONE                      |             | INTERMEDIATE ZONE |                  |                 | LOWER ZONE                                                                |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|-------------------|------------------|-----------------|---------------------------------------------------------------------------|--|--|
| Pool Name                                                                                                                                                                                      | Fruitland Coal                  |             | Bla               | nco Mesaverde    |                 | Basin Dakota                                                              |  |  |
| Pool Code                                                                                                                                                                                      | 71629                           |             |                   | 72319            |                 | 71599                                                                     |  |  |
| Top and Bottom of Pay Section<br>(Perforated or Open-Hole Interval)                                                                                                                            | 2,875' - 3,055'                 |             |                   | 5,254' - 5,398'  |                 | 7,530' - 7,316'                                                           |  |  |
| Method of Production<br>(Flowing or Artificial Lift)                                                                                                                                           | Artificial Lift Artificial Lift |             |                   |                  | Artificial Lift |                                                                           |  |  |
| Bottomhole Pressure<br>(Note: Pressure data will not be required if the bottom<br>perforation in the lower zone is within 150% of the<br>depth of the top perforation in the upper zone)       | 88 psi                          | 127 psi     |                   |                  | 153 psi         |                                                                           |  |  |
| Oil Gravity or Gas BTU<br>(Degree API or Gas BTU)                                                                                                                                              | 1261 BTU                        | 1261 BTU 11 |                   |                  |                 | 1127 BTU                                                                  |  |  |
| Producing, Shut-In or<br>New Zone                                                                                                                                                              | New Zone                        |             | Producing         |                  |                 | Producing                                                                 |  |  |
| Date and Oil/Gas/Water Rates of<br>Last Production.<br>(Note: For new zones with no production history,<br>applicant shall be required to attach production<br>estimates and supporting data.) | Date:<br>Rates:                 |             | Date:<br>Rates:   | Gas = 2.260  mcf |                 | Date: 4/1/2024<br>Rates: Oil - 4 bbl<br>Gas - 1,578 mcf<br>Water - 40 bbl |  |  |
| Fixed Allocation Percentage<br>(Note: If allocation is based upon something other<br>than current or past production, supporting data or<br>explanation will be required.)                     | Oil Gas<br>%                    | %           | Oil               | Gas<br>%         | %               | Oil Gas<br>% %                                                            |  |  |

# ADDITIONAL DATA

| Are all working, royalty and overriding royalty interests identical in all commingled zones?<br>If not, have all working, royalty and overriding royalty interest owners been notified by certified mail?  |              | No <u>X</u><br>No |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
| Are all produced fluids from all commingled zones compatible with each other?                                                                                                                              | Yes_X        | No                |
| Will commingling decrease the value of production?                                                                                                                                                         | Yes          | No_X              |
| If this well is on, or communitized with, state or federal lands, has either the Commissioner of Public Lands or the United States Bureau of Land Management been notified in writing of this application? | Yes <u>X</u> | No                |
| NMOCD Deference Core Ne condicable to this well.                                                                                                                                                           |              |                   |

NMOCD Reference Case No. applicable to this well:

Attachments:

C-102 for each zone to be commingled showing its spacing unit and acreage dedication. Production curve for each zone for at least one year. (If not available, attach explanation.) For zones with no production history, estimated production rates and supporting data.

Data to support allocation method or formula.

Notification list of working, royalty and overriding royalty interests for uncommon interest cases.

Any additional statements, data or documents required to support commingling.

# PRE-APPROVED POOLS

If application is to establish Pre-Approved Pools, the following additional information will be required:

List of other orders approving downhole commingling within the proposed Pre-Approved Pools List of all operators within the proposed Pre-Approved Pools Proof that all operators within the proposed Pre-Approved Pools were provided notice of this application. Bottomhole pressure data.

| Thomahr  |       | +hat t  | he int | formation | aharra | in terms | and   |      | lata ta | the | hast | of mar | 1 morel | daa | and | haliat | 2 |
|----------|-------|---------|--------|-----------|--------|----------|-------|------|---------|-----|------|--------|---------|-----|-----|--------|---|
| I nereby | cerun | y mai i | the m  | formation | above  | is true  | e and | comp | iele lo | une | Dest | or my  | KIIOWIE | age | ana | bener  | • |

| SIGNATURE Cherylene Weston          | TITLE_Operations/Regulatory Tech-Sr. DATE 6/19/202 | 4 |
|-------------------------------------|----------------------------------------------------|---|
|                                     |                                                    |   |
| TYPE OR PRINT NAME Cherylene Weston | TELEPHONE NO. ( 713 ) 289-2615                     |   |

E-MAIL ADDRESS cweston@hilcorp.com

#### District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

### District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form C-102 August 1, 2011 Permit 367272

Page 7 of 50

WELL LOCATION AND ACREAGE DEDICATION PLAT

| 1. API Number        | 2. Pool Code           | 3. Pool Name               |  |  |  |  |  |
|----------------------|------------------------|----------------------------|--|--|--|--|--|
| 30-045-29748         | 71629                  | BASIN FRUITLAND COAL (GAS) |  |  |  |  |  |
| 4. Property Code     | 5. Property Name       | 6. Well No.                |  |  |  |  |  |
| 319097               | STATE COM O            | 012                        |  |  |  |  |  |
| 7. OGRID No.         | 8. Operator Name       | 9. Elevation               |  |  |  |  |  |
| 372171               | HILCORP ENERGY COMPANY | 6396                       |  |  |  |  |  |
| 10. Surface Location |                        |                            |  |  |  |  |  |

|          | To Buildee Ebeauon |          |       |         |           |          |           |          |          |
|----------|--------------------|----------|-------|---------|-----------|----------|-----------|----------|----------|
| UL - Lot | Section            | Township | Range | Lot Idn | Feet From | N/S Line | Feet From | E/W Line | County   |
| I        | 16                 | 29N      | 08W   |         | 1825      | S        | 790       | E        | SAN JUAN |
|          |                    |          |       |         |           |          |           |          |          |

**11. Bottom Hole Location If Different From Surface** UL - Lot Lot Idn Feet From N/S Line Feet From E/W Line Section Township Range County 14. Consolidation Code 12. Dedicated Acres 13. Joint or Infill 15. Order No. 320.00 E/2

#### NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

| <b>OPERATOR CERTIFICATION</b><br>I hereby certify that the information contained herein is true and complete to the best of my<br>knowledge and belief, and that this organization either owns a working interest or unleased<br>mineral interest in the land including the proposed bottom hole location(s) or has a right to drill<br>this well at this location pursuant to a contract with an owner of such a mineral or working |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered<br>by the division.                                                                                                                                                                                                                                                                                                                   |
| E-Signed By: Cherylene Weston<br>Title: Operations/Regulatory Tech-Sr.                                                                                                                                                                                                                                                                                                                                                               |
| Date: 6/13/2024                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SURVEYOR CERTIFICATION I hereby certify that the well location shown on this plat was plotted from field notes of actual                                                                                                                                                                                                                                                                                                             |
| surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.                                                                                                                                                                                                                                                                                                                          |
| Surveyed By: Neale C. Edwards                                                                                                                                                                                                                                                                                                                                                                                                        |
| Date of Survey: 11/14/1998                                                                                                                                                                                                                                                                                                                                                                                                           |
| Certificate Number: 6857                                                                                                                                                                                                                                                                                                                                                                                                             |

District I PO Box 1980, Hobbs, NM 88241-1980 District II 811 South First, Artesia, NM 88210 District III 1000 Rio Brazos Rd., Aztec, NM 87410 District IV 2040 South Pacheco, Santa Fe, NM 87505

#### State of New Mexico Energy, Minerals & Natural Resources Department

#### OIL CONSERVATION DIVISION 2040 South Pacheco Santa Fe, NM 87505

Form C-102 Revised October 18, 1994 Instruction on back Submit to Appropriate District Office State Lease - 4 Copies Fee Lease - 3 Copies

AMENDED REPORT

|                       | WELL LOCATION AND ACREAGE DEDICATION PLAT                                                                           |          |                 |                      |                    |         |                  |               |           |      |                          |
|-----------------------|---------------------------------------------------------------------------------------------------------------------|----------|-----------------|----------------------|--------------------|---------|------------------|---------------|-----------|------|--------------------------|
| 1                     | API Numb                                                                                                            | er       |                 | <sup>2</sup> Pool Co | de                 |         |                  | Pool          | iame      |      |                          |
| 30-045-297            | 48                                                                                                                  |          | 7231            | 9/71599              | )                  | BLA     | ANCO MESAVE      |               |           | 4    |                          |
| <sup>1</sup> Property | Code                                                                                                                | OT LTE O |                 |                      | <sup>5</sup> Pre   | operty  | Name             |               |           |      | <sup>o</sup> Well Number |
| 003275                |                                                                                                                     | STATE CO | <u>OM O</u>     |                      |                    |         |                  |               |           | 12   |                          |
| <sup>7</sup> OGRID    | No.                                                                                                                 |          |                 |                      | * Op               | perator | Name             |               |           |      | <sup>9</sup> Elevation   |
| 005073                |                                                                                                                     | CONOCO   | , INC.          |                      |                    |         |                  |               |           |      |                          |
|                       |                                                                                                                     |          |                 |                      | <sup>10</sup> Surf | face    | Location         |               |           |      |                          |
| UL or lot no.         | Section                                                                                                             | Township | Range           | Lot Idn              | Feet from th       | 1e      | North/South line | Feet from the | East West | line | County                   |
| 1                     | 16                                                                                                                  | 29N      | 8W              |                      | 1825               |         | SOUTH            | 790           | EAST      |      | SAN JUAN                 |
|                       |                                                                                                                     |          | <sup>11</sup> B | ottom Ho             | ole Locati         | on If   | f Different Fro  | m Surface     |           |      |                          |
| UL or lot no.         | Section                                                                                                             | Township | Range           | Lot Idn              | Feet from th       | ne      | North/South line | Feet from the | East/West | line | County                   |
|                       |                                                                                                                     |          |                 |                      |                    |         |                  |               |           |      |                          |
|                       | <sup>2</sup> Dedicated Acres <sup>13</sup> Joint or Infill <sup>14</sup> Consolidation Code <sup>15</sup> Order No. |          |                 |                      |                    |         |                  |               |           |      |                          |
| BCHOO ER              |                                                                                                                     |          |                 |                      |                    |         |                  |               |           |      |                          |

#### NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

|    | ر ۲.<br>۲. |                                          | Signature and Seal of Professional SurveyerCertificate Number                                                                                                 |
|----|------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |            | 1825'                                    | 18 SURVEYOR CERTIFICATION I hereby certify that the well location shown on this plot was plotted from field notes of actual surveys made by me or under       |
|    | RECE       | 2000<br>EIVED<br>W. Drv<br>DT. 3<br>U.L. | Signature Librah Marlielly<br>Printed Name<br>DEBORAH MARBERRY<br>Title REGULATORY ANALYST<br>Date 04/06/2000                                                 |
| 16 | 531123     | 4565                                     | <sup>17</sup> OPERATOR CERTIFICATION<br>I hereby certify that the information contained herein is true<br>and complete to the best of my knowledge and belief |

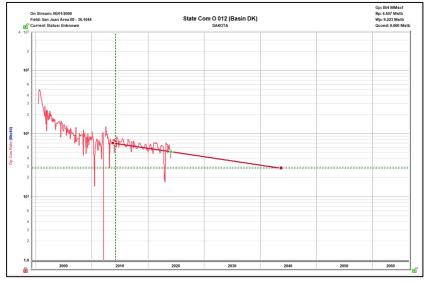
### Page 8 of 50

The near wellbore shut-in bottom hole pressures of the above reservoirs are much lower than the calculated far-field stabilized reservoir pressured due to the low permeability of the reservoirs. Based on pressure transient analysis performed in the San Juan Basin, it would take 7-25 years for shut-in bottom hole pressures to build up to the calculated far-field reservoir pressure. Our observation is that even for areas of high static reservoir pressures, the low permeability of the reservoir rock results in rapid depletion of the near-fracture region, quickly enough that the wells are unable to produce without the aid of a plunger. Given low permeabilities and low wellbore flowing pressures in the above reservoirs, loss of reserves due to cross-flow is not an issue during producing or shut-in periods. Given low shut-in bottom hole pressures, commingling the above reservoirs in this well will not result in shut-in or flowing wellbore pressures in excess of any commingled pool's fracture parting pressure. The pressures provided in the C-107A are based on shut-in bottom hole pressures of offset standalone wells which match expected near-wellbore shut-in bottom hole pressures of this proposed commingled completion.

Note: BTU Data taken from standalone completions in the zone of interest within a 2 mile radius of the well.

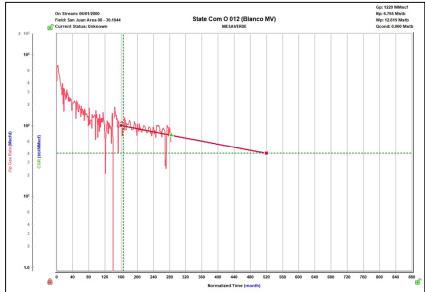
A farther radius is used if there is not enough data for a proper statistical analysis.

# State Com O 12 Production Allocation Method – Subtraction

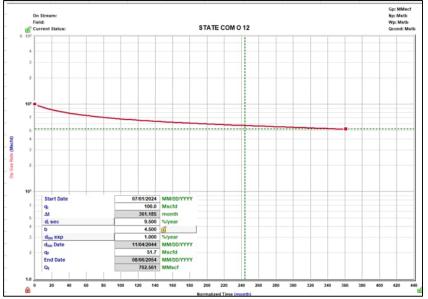

These zones are proposed to be commingled because the application of dual completions impedes the ability to produce the shallow zone without artificial lift and the deeper zones with reduced artificial lift efficiency. All horizons will require artificial lift due to low bottomhole pressure (BHP) and permeability.

The BHPs of all zones, producing and non-producing, were estimated based upon basin wide Moving-Domain Material Balance models that have proven to approximate the pressure in the given reservoirs well in this portion of the basin, in conjunction with shut-in pressure build-ups. These models were constructed incorporating reservoir dynamics and physics, historic production, and observed pressure data. Historic commingling operations have proven reservoir fluids are compatible.

#### **Gas Allocation:**


Production for the downhole commingle will be allocated using the subtraction method in agreement with local agencies. The base formation is the Mesaverde/Dakota and the added formation to be commingled is Fruitland Coal. The subtraction method applies an average monthly production forecast to the base formation using historic production. All production from this well exceeding the base formation forecasts will be allocated to the new formation.

After 3 years production will stabilize. A production average will be gathered during the 4th year and will be utilized to create a fixed percentage-based allocation.

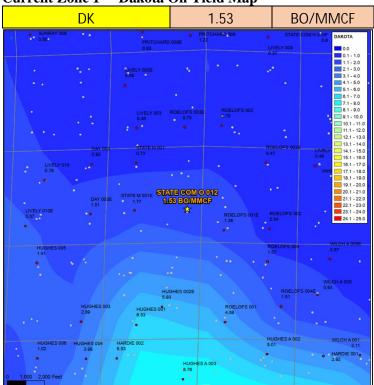



#### Current Zone 1 Forecast - Dakota





# **Proposed Zone Forecast – Fruitland Coal**



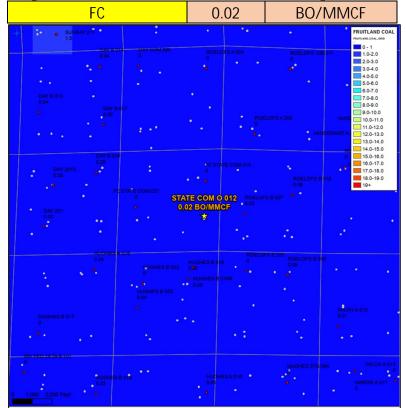

Average initial production curve in geologic region.

# **Oil Allocation:**

Oil production will be allocated based on average formation yields from offset wells and will be a fixed rate for 4 years. After 4 years oil will be reevaluated and adjusted as needed based on average formation yields and new fixed gas allocation.

| Formation | Yield (bbl/MM) | Remaining Reserves (MMcf) | % Oil Allocation |
|-----------|----------------|---------------------------|------------------|
| FRC       | 0.02           | 702                       | 0.333%           |
| MV        | 9.54           | 397                       | 89.735%          |
| DK        | 1.53           | 274                       | 9.933%           |




## Current Zone 1 – Dakota Oil Yield Map

9-Section Area Map of Standalone Oil Yields. Sampled well to this map.

#### MV 9.54 **BO/MMCF** SUNR/ MESAVERD 0.0-0.3 0.3 - 0.5 0.5 - 0.8 0.8-1.0 1.0-1.3 DAY B 003 2.98 HILL 003 2.2 DAY B 6.24 3.00 DAY 002B 6.41 HILL 2.74 •. R 003E 1.3-1.5 DA 3.2 1.5-1.8 ROELOFS A 001 6.6 2.0-2.3 2.0-2.3 2.3-2.5 2.5-2.8 2.8-3.0 3.0-3.3 3.3-3.5 3.5-3.8 3.8-4.0 4.0-4.3 4.3-4.5 3.11 • DAY B 004 3.37 DAY 8.25 DAY B 003A 3.91 3.18 ROELOFS 1 DEL DAY B 3.93 STATE COM O 01 15.28 . DAY 4.93 4.5-4.8 4.8-5.0 5.0-5.3 5.3-5.5 THREE STATES COM 001A ROEL 2.36 LIVELY 010N 9.92 STATE COM O 012 9.54 BOMMCF STATE TAM 0 011A 9.87 • ROE 5.8 5.5-5.8 DAY 5.22 5.8-6.0 DAY 6.71 ROE 4.12 ROELOF 3.09 ROELOFS B 003 8.62 6.3-6.5 • 6.8-7.0 7.0-7.3 ROELOFS B 001 4.24 NE L HUGHES B 004A 6.55 6.75 7.5-7.8 HUGHES B 00 12.06 ROELOFS A 3.55 HUGH 12.08 ES B 005A 04 8.0-8.3 8.3-8.5 8.5-8.8 8.8-9.0 UGHES 002M HUG ROELO 5.92 • HU • 9.0-9.0 9.0-9.3 9.3-9.5 9.5-9.8 9.8-10 ROELOFS A 004 3.64 ROEL 8.25 ES B 005 • HES B 004 HUGI 6.01 18.31 3.94 • HUGHES C 002 3.58 ARDIE A 001B 6.81 HUG 4.81 ۰. HUG 4.17 HARDIE LS 001 10.23 2,000 Feet .000

#### Current Zone 2 – Mesaverde Oil Yield Map

**Proposed Zone – Fruitland Coal Oil Yield Map** 



9-Section Area Map of Standalone Oil Yields. Sampled well to this map.

# **Supplemental Information:**

Shut in pressures were calculated for operated offset standalone wells in each of the zones being commingled in the well in question via the following process:

- 1) Wells were shut in for 24 hours
- 2) Echometer was used to obtain a fluid level
- 3) Shut in BHP was calculated for the proposed commingled completion

List of wells used to calculate BHPs for the Project:

| 3004508245 | DAY 1          | MV |
|------------|----------------|----|
| 3004524939 | HARDIE 2E      | DK |
| 3004527513 | FC STATE COM 5 | FC |

I believe each of the reservoirs to be continuous and in a similar state of depletion at this well and at each of the wells from which the pressures are being derived.

Water Compatibility in the San Juan Basin

- The San Juan basin has productive siliciclastic reservoirs (Pictured Cliffs, Blanco Mesaverde, Basin Dakota, etc.) and a productive coalbed methane reservoir (Basin Fruitland Coal).

- These siliciclastic and coalbed methane reservoirs are commingled extensively throughout the basin in many different combinations with no observed damage from clay swelling due to differing formation waters.

- The samples below all show fresh water with low TDS.

| Well Name      | API        |
|----------------|------------|
| STATE COM O 12 | 3004529748 |

| FRC Offset           |                | MV Offse             | <u>e</u> t | DK OFFSET            |            |  |
|----------------------|----------------|----------------------|------------|----------------------|------------|--|
| API                  | 3004527513     |                      | 3004535193 |                      | 3004526314 |  |
| Property             | FC STATE COM 5 |                      |            | Property             | SUNRAY 8   |  |
| CationBarium         |                | CationBarium         |            | CationBarium         | 0.1        |  |
| CationBoron          |                | CationBoron          | 0.2        | CationBoron          | 0.1        |  |
| CationCalcium        |                | CationCalcium        | 0.06       | CationCalcium        | 93         |  |
| CationIron           |                | CationIron           |            | CationIron           | 249        |  |
| CationMagnesium      |                | CationMagnesium      |            | CationMagnesium      | 49         |  |
| CationManganese      |                | CationManganese      |            | CationManganese      | 0.9        |  |
| CationPhosphorus     |                | CationPhosphorus     |            | CationPhosphorus     | 0.7        |  |
| CationPotassium      |                | CationPotassium      |            | CationPotassium      |            |  |
| CationStrontium      |                | CationStrontium      |            | CationStrontium      | 0.2        |  |
| CationSodium         |                | CationSodium         |            | CationSodium         | 12.14      |  |
| CationSilica         | 5000.55        | CationSilica         | = -        | CationSilica         | 12.14      |  |
| CationZinc           | 0.79           | CationZinc           |            | CationZinc           |            |  |
| CationAluminum       | 0.77           | CationAluminum       | 1          | CationAluminum       |            |  |
| CationCopper         |                | CationCopper         |            | CationCopper         |            |  |
| CationLead           |                | CationLead           | 2          | CationLead           |            |  |
| CationLithium        |                | CationLithium        | 2          | CationLithium        | ╂────┤     |  |
| CationNickel         |                | CationNickel         |            | CationNickel         | ╂────┤     |  |
| CationCobalt         |                | CationNicker         |            | CationCobalt         | ╂────┤     |  |
| CationCobalt         |                | CationCobalt         |            | CationCobait         | ┼───┤      |  |
| CationSilicon        |                | CationSilicon        | 10         | CationChromium       | ┼───┤      |  |
|                      |                |                      | 10         |                      |            |  |
| CationMolybdenum     |                | CationMolybdenum     | 10         | CationMolybdenum     | 0.4        |  |
| AnionChloride        |                | AnionChloride        |            | AnionChloride        | 84         |  |
| AnionCarbonate       |                | AnionCarbonate       |            | AnionCarbonate       | 0          |  |
| AnionBicarbonate     |                | AnionBicarbonate     | 17         | AnionBicarbonate     | 280        |  |
| AnionBromide         |                | AnionBromide         |            | AnionBromide         |            |  |
| AnionFluoride        |                | AnionFluoride        | 10         | AnionFluoride        | 0          |  |
| AnionHydroxyl        |                | AnionHydroxyl        | 10         | AnionHydroxyl        | 0          |  |
| AnionNitrate         |                | AnionNitrate         | 0.00       | AnionNitrate         |            |  |
| AnionPhosphate       |                | AnionPhosphate       |            | AnionPhosphate       | 100        |  |
| AnionSulfate         |                | AnionSulfate         |            | AnionSulfate         | 108        |  |
| phField              |                | phField              |            | phField              | 6.51       |  |
| phCalculated         |                | phCalculated         |            | phCalculated         |            |  |
| TempField            |                | TempField            | 54.5       | TempField            | 64         |  |
| TempLab              |                | TempLab              |            | TempLab              |            |  |
| OtherFieldAlkalinity |                | OtherFieldAlkalinity |            | OtherFieldAlkalinity |            |  |
| OtherSpecificGravity |                | OtherSpecificGravity |            | OtherSpecificGravity | 0          |  |
| OtherTDS             |                | OtherTDS             |            | OtherTDS             | 876.34     |  |
| OtherCaCO3           | 48             | OtherCaCO3           |            | OtherCaCO3           | 10/0.00    |  |
| OtherConductivity    |                | OtherConductivity    |            | OtherConductivity    | 1369.28    |  |
| DissolvedCO2         |                | DissolvedCO2         | 120        | DissolvedCO2         | 110        |  |
| DissolvedO2          |                | DissolvedO2          |            | DissolvedO2          | 0.50       |  |
| DissolvedH2S         | 0              | DissolvedH2S         | 0          | DissolvedH2S         | 0.52       |  |
| GasPressure          |                | GasPressure          |            | GasPressure          | 100        |  |
| GasCO2               |                | GasCO2               |            | GasCO2               | 0          |  |
| GasCO2PP             |                | GasCO2PP             |            | GasCO2PP             | 0          |  |
| GasH2S               |                | GasH2S               |            | GasH2S               | 0          |  |
| GasH2SPP             |                | GasH2SPP             |            | GasH2SPP             | 0          |  |
| PitzerCaCO3_70       |                | PitzerCaCO3_70       |            | PitzerCaCO3_70       | -0.81      |  |
| PitzerBaSO4_70       |                | PitzerBaSO4_70       |            | PitzerBaSO4_70       | 0.33       |  |
| PitzerCaSO4_70       |                | PitzerCaSO4_70       |            | PitzerCaSO4_70       | -1.54      |  |
| PitzerSrSO4_70       |                | PitzerSrSO4_70       |            | PitzerSrSO4_70       | -2.54      |  |
| PitzerFeCO3_70       |                | PitzerFeCO3_70       |            | PitzerFeCO3_70       |            |  |
| PitzerCaCO3_220      |                | PitzerCaCO3_220      |            | PitzerCaCO3_220      | -0.01      |  |
| PitzerBaSO4_220      |                | PitzerBaSO4_220      |            | PitzerBaSO4_220      | -0.22      |  |
| PitzerCaSO4_220      |                | PitzerCaSO4_220      |            | PitzerCaSO4_220      | -1.43      |  |
| PitzerSrSO4_220      |                | PitzerSrSO4_220      |            | PitzerSrSO4_220      | -2.34      |  |
| PitzerFeCO3_220      |                | PitzerFeCO3_220      |            | PitzerFeCO3_220      |            |  |
|                      |                |                      |            |                      |            |  |

Gas Compatibility in the San Juan Basin

- The San Juan basin has productive siliciclastic reservoirs (Pictured Cliffs, Blanco Mesaverde, Basin Dakota, etc.) and a productive coalbed methane reservoir (Basin Fruitland Coal).

- These siliciclastic and coalbed methane reservoirs are commingled extensively throughout the basin in many different combinations with no observed damage from clay swelling due to differing formation waters or gas composition.

- The samples below all show offset gas analysis varibality by formation is low.

| Well Name      | API        |
|----------------|------------|
| STATE COM O 12 | 3004529748 |

| FRO         | COffset        | M           | / Offset       | DK OFFSET            |           |  |
|-------------|----------------|-------------|----------------|----------------------|-----------|--|
| AssetCode   | 3004527513     | AssetCode   | 3004508336     | AssetCode 3004520255 |           |  |
| AssetName   | FC STATE COM 5 | AssetName   | STATE COM O 11 | AssetName            | ROELOFS 2 |  |
| CO2         | 0.05           |             | 0.01           | CO2                  | 0.02      |  |
| N2          | 0.02           | N2          | 0              | N2                   | 0         |  |
| C1          | 0.85           | C1          | 0.82           | C1                   | 0.9       |  |
| C2          | 0.04           | C2          | 0.08           | C2                   | 0.06      |  |
| C3          | 0.02           | C3          | 0.05           | C3                   | 0.01      |  |
| ISOC4       | 0              | ISOC4       | 0.01           | ISOC4                | 0         |  |
| NC4         | 0              | NC4         | 0.01           | NC4                  | 0         |  |
| ISOC5       | 0              | ISOC5       | 0              | ISOC5                | 0         |  |
| NC5         | 0              | NC5         | 0              | NC5                  | 0         |  |
| NEOC5       |                | NEOC5       |                | NEOC5                |           |  |
| С6          | 0              | C6          | 0.01           | C6                   |           |  |
| C6_PLUS     |                | C6_PLUS     |                | C6_PLUS              | 0         |  |
| С7          | 0              | C7          | 0              | C7                   |           |  |
| С8          | 0              | C8          | 0              | C8                   |           |  |
| С9          | 0              | С9          | 0              | С9                   |           |  |
| C10         |                | C10         |                | C10                  |           |  |
| AR          |                | AR          |                | AR                   |           |  |
| СО          |                | CO          |                | CO                   |           |  |
| H2          |                | H2          |                | H2                   |           |  |
| 02          | 0              | 02          | 0              | 02                   |           |  |
| H20         |                | H20         |                | H20                  |           |  |
| H2S         | 0              | H2S         | 0              | H2S                  | 0         |  |
| HE          |                | HE          |                | HE                   |           |  |
| C_O_S       |                | C_O_S       |                | C_O_S                |           |  |
| CH3SH       |                | CH3SH       |                | CH3SH                |           |  |
| C2H5SH      |                | C2H5SH      |                | C2H5SH               |           |  |
| CH2S3_2CH3S |                | CH2S3_2CH3S |                | CH2S3_2CH3S          |           |  |
| CH2S        |                | CH2S        |                | CH2S                 |           |  |
| C6HV        |                | C6HV        |                | C6HV                 |           |  |
| CO2GPM      |                | CO2GPM      |                | CO2GPM               | 0         |  |
| N2GPM       |                | N2GPM       |                | N2GPM                | 0         |  |
| C1GPM       |                | C1GPM       |                | C1GPM                | 0         |  |
| C2GPM       |                | C2GPM       |                | C2GPM                | 1.51      |  |
| C3GPM       |                | C3GPM       |                | C3GPM                | 0.36      |  |
| ISOC4GPM    |                | ISOC4GPM    |                | ISOC4GPM             | 0.11      |  |
| NC4GPM      |                | NC4GPM      |                | NC4GPM               | 0.08      |  |
| ISOC5GPM    |                | ISOC5GPM    |                | ISOC5GPM             | 0.06      |  |
| NC5GPM      |                | NC5GPM      |                | NC5GPM               | 0.03      |  |
| C6_PLUSGPM  |                | C6_PLUSGPM  |                | C6_PLUSGPM           | 0.12      |  |

|  | Received 1 | w ( | CD: | 8/22/2024 | 1:16:17 PM |
|--|------------|-----|-----|-----------|------------|
|--|------------|-----|-----|-----------|------------|

 District I

 1625 N. French Dr., Hobbs, NM 88240

 Phone: (575) 393-6161 Fax: (575) 393-0720

 District II

 811 S. First St., Artesia, NM 88210

 Phone: (575) 748-1283 Fax: (575) 748-9720

 District III

 1000 Rio Brazos Road, Aztec, NM 87410

 Phone: (505) 334-6178 Fax: (505) 334-6170

 District IV

 1220 S. St. Francis Dr., Santa Fe, NM 87505

 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy Minerals and Natural Resources Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

**AMENDED REPORT** 

# APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE

|                                       | <sup>1</sup> Operator Name and Address<br>Hilcorp Energy Company<br>382 Road 3100 | <sup>2</sup> OGRID Number<br>372171     |
|---------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|
|                                       | 382 Road 3100<br>Aztec, NM 87410                                                  | <sup>3</sup> API Number<br>30-045-29748 |
| <sup>4.</sup> Property Code<br>319097 | <sup>5.</sup> Property Name<br>State Com O                                        | <sup>6.</sup> Well No.<br>12            |
|                                       |                                                                                   |                                         |

|                                                                                      | <sup>7</sup> Surface Location    |          |       |         |           |          |           |          |          |
|--------------------------------------------------------------------------------------|----------------------------------|----------|-------|---------|-----------|----------|-----------|----------|----------|
| UL - Lot                                                                             | Section                          | Township | Range | Lot Idn | Feet from | N/S Line | Feet From | E/W Line | County   |
| Ι                                                                                    | 16                               | 029N     | 08W   |         | 1825      | South    | 790       | East     | San Juan |
|                                                                                      | 8. Proposed Bottom Hole Location |          |       |         |           |          |           |          |          |
| UL - Lot Section Township Range Lot Idn Feet from N/S Line Feet From E/W Line County |                                  |          |       |         |           |          | County    |          |          |
|                                                                                      |                                  |          |       |         |           |          |           |          |          |
|                                                                                      |                                  |          |       |         |           |          |           |          |          |

<sup>9.</sup> Pool Information

| Pool Name            |  |  |  |  |  |
|----------------------|--|--|--|--|--|
| Basin Fruitland Coal |  |  |  |  |  |

~ •

Pool Code 71629

#### **Additional Well Information**

| <sup>11.</sup> Work Type                              | <sup>11.</sup> Work Type <sup>12.</sup> Well Type |                          | <sup>13.</sup> Cable/Rotary <sup>14.</sup> Lease |  | Lease Type               | 15. Ground Level Elevation |
|-------------------------------------------------------|---------------------------------------------------|--------------------------|--------------------------------------------------|--|--------------------------|----------------------------|
| Recomplete                                            | Commingle                                         |                          |                                                  |  | State                    | 6396' GR                   |
| <sup>16.</sup> Multiple <sup>17.</sup> Proposed Depth |                                                   | <sup>18.</sup> Formation | <sup>19.</sup> Contractor                        |  | <sup>20.</sup> Spud Date |                            |
| Commingle                                             | Commingle                                         |                          | Basin Fruitland Coal//Blanco MV/Basin DK         |  |                          |                            |
| Depth to Ground water                                 |                                                   | Distance from            | nearest fresh water well                         |  | Distance to ne           | earest surface water       |
|                                                       |                                                   |                          |                                                  |  |                          |                            |

#### We will be using a closed-loop system in lieu of lined pits

#### <sup>21.</sup> Proposed Casing and Cement Program

| Туре | Hole Size                                  | Casing Size | Casing Weight/ft | Setting Depth | Sacks of Cement | Estimated TOC |  |  |  |  |
|------|--------------------------------------------|-------------|------------------|---------------|-----------------|---------------|--|--|--|--|
|      |                                            |             |                  |               |                 |               |  |  |  |  |
|      |                                            |             |                  |               |                 |               |  |  |  |  |
|      |                                            |             |                  |               |                 |               |  |  |  |  |
| 8    | Casing/Cement Program: Additional Comments |             |                  |               |                 |               |  |  |  |  |

#### <sup>22.</sup> Proposed Blowout Prevention Program

| Туре | Working Pressure | Test Pressure | Manufacturer |
|------|------------------|---------------|--------------|
|      |                  |               |              |

| of my knowledge and belief.                                        | tiven above is true and complete to the best | OIL CONSERVATION DIVISION       |                  |  |  |
|--------------------------------------------------------------------|----------------------------------------------|---------------------------------|------------------|--|--|
| 19.15.14.9 (B) NMAC , if applicable<br>Signature: Cherylene Westor | with 19.15.14.9 (A) NMAC 🗌 and/or<br>e.      | Approved By:                    |                  |  |  |
|                                                                    |                                              |                                 |                  |  |  |
| Printed name: Cherylene Weston                                     |                                              | Title:                          |                  |  |  |
| Title: Operations Regulatory Tech Sr.                              |                                              | Approved Date:                  | Expiration Date: |  |  |
| E-mail Address: cweston@hilcorp.com                                |                                              |                                 |                  |  |  |
| Date: 6/19/2024                                                    | Phone: 713-289-2615                          | Conditions of Approval Attached |                  |  |  |



#### HILCORP ENERGY COMPANY STATE COM O 12 FRUITLAND COAL RECOMPLETE SUNDRY API 3004529748

#### JOB PROCEDURES

|     | JOB PROCEDURES                                                                                                                      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | MIRU workover rig and associated equipment; NU and test BOP.                                                                        |
| 2.  | TOOH with tubing.                                                                                                                   |
| 3.  | Set a plug within 50' of the top Mesaverde perforation (4,464') for zonal isolation.                                                |
| 4.  | Load hole with fluid. RU WL and run CBL to verify TOC. Review results with operations engineer and regulatory agencies.             |
| 5.  | Perform MIT on casing with NMOCD witness (notify NMOCD 24+ hours before test) and submit results to regulatory group.               |
| 6.  | If frac'ing down casing: pressure test casing to frac pressure.                                                                     |
| 7.  | RU WL. Perforate the Fruitland Coal. Top perforation @ 2,875', bottom perforation @ 3,055'.                                         |
| 8.  | If frac'ing down frac string: RIH w/ frac string and packer.                                                                        |
| 9.  | ND BOP, NU frac stack. Pressure test frac stack to frac pressure. Pressure test frac string (if applicable) to frac pressure. RDMO. |
| 10. | RU stimulation crew. Frac the Fruitland Coal in one or more stages. Set plugs in between stages, if necessary.                      |
| 11. | MIRU workover rig and associated equipment; NU and test BOP.                                                                        |
| 12. | If frac was performed down frac string: POOH w/ frac string and packer.                                                             |
| 13. | TIH with mill and clean out to isolation plug.                                                                                      |
| 14. | Mill out isolation plug. Cleanout to PBTD. TOOH with cleanout assembly.                                                             |
| 15. | TIH and land production tubing. Flowback the well. Return well to production as a Fruitland Coal/Mesaverde/Dakota Producer.         |
| -   |                                                                                                                                     |

.



#### HILCORP ENERGY COMPANY STATE COM O 12 FRUITLAND COAL RECOMPLETE SUNDRY

| All LVM         Differences         Description         Differences         Differences <thdifferences< th=""> <thdifferences< th=""> <th< th=""><th>Compare soft T Bereton (f)         P           6,409.00         Most Recent Job           Jac Callegory         Expense Workover           TD: 7,573.0         MD (ft:KB)           13.1         attraction (f)           46.6         Jasse Workover           335.0         759.8           2,264.1         KIRTLAND           2,576.1         FRUITLAND           2,576.1         FRUITLAND           3,383.9        </th><th>No 5 6 (4)<br/>No 5 6 (4)<br/>13.00<br/>Primary 300 Type<br/>TUBING REPAIR<br/>10 (OJO ALAMO (final))<br/>(KIRTLAND (final))<br/>D COAL (FRUITLAND CC)<br/>0 CLIFFS (PICTURED CLIF<br/>SE (CLIFFHOUSE (final))<br/>(MENEFEE (final))<br/>OKOUT (POINT LOOKOU</th><th>NV/DK COM Organs Sout Ote 4/30/2000 00:00 Secondary Jo Origin Origin ODAL (final)) FFS (final))</th><th>Pig Resse<br/>5/10/200<br/>h Type<br/>nal Hole [Vertic<br/>Vertical schem:</th><th>atic (actual)</th><th>NEW MEXICO           PBT2 (All)           10 are           3           2 /9           10 are           2 /3 /8 /10           2 /3/8 /10           2 /3/8 /10           2 /3/8 /10           2 /3/8 /10           3 /2 /2           3 /2 /2           2 /3/8 /10           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2           3 /2 /2           3 /2           3 /2           3 /2           3 /2           3 /2           3 /</th><th>Vertical<br/>Total Degen AI (TVD)<br/>300-14.00; 1.00; 3-1; 7; 2.00<br/>/ Band); 14.00-46.57; 32.57;<br/>ints; 46.57-66.17; 19.60; 3-<br/>'8in; 13.00-335.00; 322.00;<br/>136.00; 1.00; 1-2; 9 5/8;<br/>G, 7in; 13.00-3,384.00;<br/>45.00; 1.00; 2-2; 7; 6.46<br/></th></th<></thdifferences<></thdifferences<> | Compare soft T Bereton (f)         P           6,409.00         Most Recent Job           Jac Callegory         Expense Workover           TD: 7,573.0         MD (ft:KB)           13.1         attraction (f)           46.6         Jasse Workover           335.0         759.8           2,264.1         KIRTLAND           2,576.1         FRUITLAND           2,576.1         FRUITLAND           3,383.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No 5 6 (4)<br>No 5 6 (4)<br>13.00<br>Primary 300 Type<br>TUBING REPAIR<br>10 (OJO ALAMO (final))<br>(KIRTLAND (final))<br>D COAL (FRUITLAND CC)<br>0 CLIFFS (PICTURED CLIF<br>SE (CLIFFHOUSE (final))<br>(MENEFEE (final))<br>OKOUT (POINT LOOKOU | NV/DK COM Organs Sout Ote 4/30/2000 00:00 Secondary Jo Origin Origin ODAL (final)) FFS (final)) | Pig Resse<br>5/10/200<br>h Type<br>nal Hole [Vertic<br>Vertical schem: | atic (actual)                                 | NEW MEXICO           PBT2 (All)           10 are           3           2 /9           10 are           2 /3 /8 /10           2 /3/8 /10           2 /3/8 /10           2 /3/8 /10           2 /3/8 /10           3 /2 /2           3 /2 /2           2 /3/8 /10           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2 /2           3 /2           3 /2 /2           3 /2           3 /2           3 /2           3 /2           3 /2           3 / | Vertical<br>Total Degen AI (TVD)<br>300-14.00; 1.00; 3-1; 7; 2.00<br>/ Band); 14.00-46.57; 32.57;<br>ints; 46.57-66.17; 19.60; 3-<br>'8in; 13.00-335.00; 322.00;<br>136.00; 1.00; 1-2; 9 5/8;<br>G, 7in; 13.00-3,384.00;<br>45.00; 1.00; 2-2; 7; 6.46<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.409.00         13.00         14.00/2000.00.00         [5/10/2000.00.00           0.00 st Recent Job<br>Screenty         The strenty with strenty with the strent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.409.00         1           Most Recent Job         2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.00 Primary Job Type TUBING REPAIR IUBING REPAIR IO (OJO ALAMO (final)) (KIRTLAND (final)) COAL (FRUITLAND CC) CLIFFS (PICTURED CLIF SE (CLIFFHOUSE (final)) (MENEFEE (final)) OKOUT (POINT LOOKOU                                              | [4/30/2000 00:00<br>Secontary Joo<br>Origin<br>Dial (final))<br>EFS (final))                    | Isinozoo                                                               | atic (actual)                                 | Totale         End C           3         2/9           3         2/9           3         2/9           2         3/81, Tubing (Yellow           3.2; 2         3/8; 2.00           2         3/81, Tubing Pup Jo           3; 2         3/8; 2.00           SUBACE CASING, 95/           1-1; 9         5/8; 8.92           Shoe, 9         5/81/7; 335.00-3           3.971.00; 2-1; 7; 64.6           Shoe, 71; 3, 384.00-3, 31           2         3/81, Tubing (Yellow           6, 651.00; 3-4; 2         3/8; 20           9         5/81, 7.100; 2-1; 7; 64.6           9         5/81, 7.100; 2-1; 7; 64.7           2         3/81, Tubing (Yellow           2         3/81, Tubing (Yellow           4464.4822ft/8 on 5/26         4.464.00-4,822.00; 2000                                                                                        | 2023<br>3.00-14.00; 1.00; 3-1; 7; 2.00<br>/ Band); 14.00-46.57; 32.57;<br>ints; 46.57-66.17; 19.60; 3-<br>/8in; 13.00-335.00; 322.00;<br>136.00; 1.00; 1-2; 9 5/8;<br>G, 7in; 13.00-3,384.00;<br>B5.00; 1.00; 2-2; 7; 6.46<br>/ Band); 66.17-6,717.17;<br>- 0<br>, 4 1/2in; 13.00-7,566.00;<br>- 5<br>/2000 00:00 (Perforated);<br>/2000 00:00 (Perforated);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Beckey         Parkey we have<br>true in the intervention         Parkey we have<br>provided in the intervention         Parkey we have<br>provided intervention           13.1         Intervention         Intervention <th>State         Provide and a state           13.1         Interface           13.1         Interface           46.6         Interface           335.0         Interface           759.8         OJO ALAM           2,264.1         FRUITLAND           2,576.1         FRUITLAND           3,383.9         Interface           4,664.0         MENEFEE (           4,664.0         MENEFEE (           5,164.0         POINT LOC           5,253.9         Signal           5,600.1         MANCOS (           7,315.9         OAKOTA (C           7,351.4         Interface</th> <th>10 (OJO ALAMO (final))<br/>(KIRTLAND (final))<br/>D COAL (FRUITLAND CC)<br/>CLIFFS (PICTURED CLIF<br/>SE (CLIFFHOUSE (final))<br/>(MENEFEE (final))<br/>OKOUT (POINT LOOKOU</th> <th>Origin<br/>OAL (final))<br/>———————————————————————————————————</th> <th>nal Hole [Vertic<br/>Vertical schem:</th> <th>2/2/202</th> <th>3         2/9           2 //Sin, Tubing Hanger; 13         2 //Sin, Tubing (Yellow           3.2; 2 3/8; 2.00         2 3/8; 1.00           2 3/8; 1.00         2 3/8; 2.00           SURFACE CASING, 9 5/         1.1; 9 5/8; 8.92           Shoe, 9 5/8in; 335.00-3         3.92           INTERMEDIATE CASIN         3.371.00; 2-1; 7; 64.6           Shoe, 7in; 3.384.00-3.3i         2 3/8in, Tubing (Yellow           6,651.00; 3-4; 2 3/8; 2.00         200UTION CASING           7,553.00; 3-1; 4 1/2; 4.00         4464-4822ftKB on 5/26           4,464.00-4,822.00; 2000         2000</th> <th>2023<br/>3.00-14.00; 1.00; 3-1; 7; 2.00<br/>Band); 14.00-46.57; 32.57<br/>ints; 46.57-66.17; 19.60; 3-<br/>'8in; 13.00-335.00; 322.00;<br/>36.00; 1.00; 1-2; 9 5/8;<br/>G, 7in; 13.00-3,384.00;<br/>Band); 66.17-6,717.17;<br/>, 4 1/2in; 13.00-7,566.00;<br/>5<br/>5/2000 00:00 (Perforated);<br/>2/2000 00:00 (Perforated);</th>                                                     | State         Provide and a state           13.1         Interface           13.1         Interface           46.6         Interface           335.0         Interface           759.8         OJO ALAM           2,264.1         FRUITLAND           2,576.1         FRUITLAND           3,383.9         Interface           4,664.0         MENEFEE (           4,664.0         MENEFEE (           5,164.0         POINT LOC           5,253.9         Signal           5,600.1         MANCOS (           7,315.9         OAKOTA (C           7,351.4         Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 (OJO ALAMO (final))<br>(KIRTLAND (final))<br>D COAL (FRUITLAND CC)<br>CLIFFS (PICTURED CLIF<br>SE (CLIFFHOUSE (final))<br>(MENEFEE (final))<br>OKOUT (POINT LOOKOU                                                                             | Origin<br>OAL (final))<br>———————————————————————————————————                                   | nal Hole [Vertic<br>Vertical schem:                                    | 2/2/202                                       | 3         2/9           2 //Sin, Tubing Hanger; 13         2 //Sin, Tubing (Yellow           3.2; 2 3/8; 2.00         2 3/8; 1.00           2 3/8; 1.00         2 3/8; 2.00           SURFACE CASING, 9 5/         1.1; 9 5/8; 8.92           Shoe, 9 5/8in; 335.00-3         3.92           INTERMEDIATE CASIN         3.371.00; 2-1; 7; 64.6           Shoe, 7in; 3.384.00-3.3i         2 3/8in, Tubing (Yellow           6,651.00; 3-4; 2 3/8; 2.00         200UTION CASING           7,553.00; 3-1; 4 1/2; 4.00         4464-4822ftKB on 5/26           4,464.00-4,822.00; 2000         2000                                                                                                                                                                                                                                                            | 2023<br>3.00-14.00; 1.00; 3-1; 7; 2.00<br>Band); 14.00-46.57; 32.57<br>ints; 46.57-66.17; 19.60; 3-<br>'8in; 13.00-335.00; 322.00;<br>36.00; 1.00; 1-2; 9 5/8;<br>G, 7in; 13.00-3,384.00;<br>Band); 66.17-6,717.17;<br>, 4 1/2in; 13.00-7,566.00;<br>5<br>5/2000 00:00 (Perforated);<br>2/2000 00:00 (Perforated);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TD:       7,573.0       Original Hole [Vertical]         MD (fX8)       Vertical schematic (actual)         13.1       23/8in Tubing Warger; 13.00-14.00; 1.00; 3-1; 7; 2.0         46.6       23/8in Tubing Warger; 13.00-14.00; 1.00; 3-1; 7; 2.0         335.0       23/8in Tubing Pub Joints; 465.766.17; 1960; 3.         759.8       OIO ALAMO (OIO ALAMO (final))         11.1       FRUITAND COAL (final))         12.257.1       FRUITAND COAL (final))         13.333.9       Shoe, 9.5/8in; 33.00-3385.00; 1.00; 2-2; 7; 6.46         2.576.1       FRUITAND COAL (final))         1463.9       CUFFHOUSE (CUFFS (final))         2.464.0       MENEREE (ALAND (100) COAL (final))         1463.9       CUFFHOUSE (CUFFS (final))         4.463.9       CUFFHOUSE (CUFFO COAL (final))         5.164.0       7550.00 -510 (12, 25, 25, 26, 200 0, 000 (Perforated))         4.464.402.2NE on 5/26/2000 0000 (Perforated))       4479-5164.00 (2000-05-25         5.253.9       FOINT LOOKOUT (POINT LOOKOUT (final))       T316-7360.00 338.00; 2000-05-17         7.315.9       CUFFHOUSE (final))       T316-7360.00; 71.00 0.000 (Perforated))         7.315.9       CUFFHOUSE (final))       T316-7360.00; 71.77.000 0.000 0.000 (Perforated))         7.315.9       CUFFHOUSE (final))       T316-7360.00; 70.00; 0.000 (Perfora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FD:         7,573.0           MD (ftKB)         13.1           13.1         14.11.11.11.11.11.11.11.11.11.11.11.11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 (OJO ALAMO (final))<br>(KIRTLAND (final))<br>D COAL (FRUITLAND CC)<br>CLIFFS (PICTURED CLIF<br>SE (CLIFFHOUSE (final))<br>(MENEFEE (final))<br>OKOUT (POINT LOOKOU                                                                             | Origin<br>OAL (final))<br>———————————————————————————————————                                   | nal Hole [Vertic<br>Vertical schem:                                    | atic (actual)                                 | <ul> <li>7in, Tubing Hanger; 13</li> <li>2 3/8in, Tubing (Yellow</li> <li>3-2; 2 3/6; 2.00</li> <li>2 3/8in, Tubing Pup Jo</li> <li>3; 2 3/8; 2.00</li> <li>SURFACE CASING, 9 5/</li> <li>1-1; 9 5/8; 8.92</li> <li>Shoe, 9 5/8in; 335.00-3</li> <li>8:92</li> <li>NITERMEDIATE CASIN</li> <li>3;371.00; 2-1; 7; 646</li> <li>Shoe, 7in; 3;384.00-3;3i</li> <li>2 3/8in, Tubing (Yellow</li> <li>6,651.00; 3-4; 2 3/8; 2.00</li> <li>PRODUCTION CASING</li> <li>7,553.00; 3-1; 4 1/2; 4.0</li> <li>4,464.4822ft/8 on 5/26</li> <li>4,464.00-4,822.00; 2000</li> </ul>                                                                                                                                                                                                                                                                                       | 3.00-14.00; 1.00; 3-1; 7; 2.00<br>/ Band); 14.00-46.57; 32.57<br>ints; 46.57-66.17; 19.60; 3-<br>'8in; 13.00-335.00; 322.00;<br>136.00; 1.00; 1-2; 9 5/8;<br>G, 7in; 13.00-3,384.00;<br>BS.00; 1.00; 2-2; 7; 6.46<br>/ Band]; 66.17-6,717.17;<br>0<br>; 4 1/2in; 13.00-7,566.00;<br>5<br>; 2000 00:00 (Perforated);<br>; 2000 00:00 (Perforated);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Drightal Finde (Vertical)           Vertical schematic (actual)           13.1         Vertical schematic (actual)           14.1         Vertical schematic (actual)           14.2         Vertical schematic (actual)           14.2         Vertical schematic (actual)           14.2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MD (ftKB)  13.1 46.6 335.0 759.8 OJO ALAM 2,264.1 KIRTLAND 2,576.1 FRUITLAND 2,576.1 FRUITLAND 4,663.9 4,463.9 4,463.9 4,463.9 5,164.0 4,821.9 5,164.0 5,253.9 5,600.1 MANCOS ( 6,717.2 7,315.9 7,351.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (KIRTLAND (final))<br>D COAL (FRUITLAND CO<br>O CLIFFS (PICTURED CLIF<br>SE (CLIFFHOUSE (final))<br>(MENEFEE (final))<br>OKOUT (POINT LOOKOU                                                                                                      | DAL (final))                                                                                    | Vertical schem.                                                        | atic (actual)                                 | 2 3/8in, Tubing (Yellow<br>3-2; 2 3/8i, 7.00<br>2 3/8in, Tubing Pup Jo<br>3; 2 3/8; 2.00<br>SURFACE CASING, 9 5y<br>1-1; 9 5/8; 8.92<br>Shoe, 9 5/8in; 335.00-3<br>8.92<br>INTERMEDIATE CASIN<br>3,371.00; 2-1; 7; 6.46<br>Shoe, 7in; 3,844.00-3,31<br>2 3/8in, Tubing (Yellow<br>6,651.00; 3-4; 2 3/8; 2.00<br>PRODUCTION CASING<br>7,553.00; 3-1; 4 1/2; 4.0<br>4464.4822tKB on 5/26<br>4,464.00-4,822.00; 2000                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>V Band); 14.00-46.57; 32.57</li> <li>ints; 46.57-66.17; 19.60; 3-</li> <li>'8'in; 13.00-335.00; 322.00;</li> <li>i36.00; 1.00; 1-2; 9 5/8;</li> <li>G, 7in; 13.00-3,384.00;</li> <li>Bond); 66.17-6,717.17;</li> <li>0</li> <li>,4 1/2in; 13.00-7,566.00;</li> <li>5/2000 00:00 (Perforated);</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13.1         71, Tubling Hanger; 13.00-14.00; 1.00; 3-1; 7; 2.0           46.6         2, 3/81, Tubling (Pellow Band); 14.00-46.57; 32.57           335.0         335.0           335.0         Sine, Type (Pellow Band); 14.00-46.57; 32.57           335.0         Sine,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.1         Image: Constraint of the second se                                                                                                                                                                                                                                                                                                                                                                              | (KIRTLAND (final))<br>D COAL (FRUITLAND CO<br>O CLIFFS (PICTURED CLIF<br>SE (CLIFFHOUSE (final))<br>(MENEFEE (final))<br>OKOUT (POINT LOOKOU                                                                                                      | FFS (final))                                                                                    |                                                                        |                                               | 2 3/8in, Tubing (Yellow<br>3-2; 2 3/8i, 7.00<br>2 3/8in, Tubing Pup Jo<br>3; 2 3/8; 2.00<br>SURFACE CASING, 9 5y<br>1-1; 9 5/8; 8.92<br>Shoe, 9 5/8in; 335.00-3<br>8.92<br>INTERMEDIATE CASIN<br>3,371.00; 2-1; 7; 6.46<br>Shoe, 7in; 3,844.00-3,31<br>2 3/8in, Tubing (Yellow<br>6,651.00; 3-4; 2 3/8; 2.00<br>PRODUCTION CASING<br>7,553.00; 3-1; 4 1/2; 4.0<br>4464.4822tKB on 5/26<br>4,464.00-4,822.00; 2000                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>V Band); 14.00-46.57; 32.57</li> <li>ints; 46.57-66.17; 19.60; 3-</li> <li>'8'in; 13.00-335.00; 322.00;</li> <li>i36.00; 1.00; 1-2; 9 5/8;</li> <li>G, 7in; 13.00-3,384.00;</li> <li>Bond); 66.17-6,717.17;</li> <li>0</li> <li>,4 1/2in; 13.00-7,566.00;</li> <li>5/2000 00:00 (Perforated);</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 46.5         2.3/21, 22/21, 200           335.0         2.3/81, TUDING PUD Joints; 4657-6617; 19.60; 3.           335.0         2.3/81, 200           759.8         OLO ALAMO (OLO ALAMO (final))           KIRTLAND (INTLAND (final))         Since 7(in 33600-3385.00; 322.00; 1.1: 9.5/81; 8.92           2264.1         KIRTLAND (INTLAND (final))           PICTURED CLIFFS (PICTURED CLIFFS (final))         Since 7(in 33600-3385.00; 100; 2.2; 7: 6.46           2371.00; 2.1; 7: 6.46         2.3/81, TUDING (VELOW Band); 66.17-6, 717.17; 75.6600; 75.300; 3.114           3383.9         PICTURED CLIFFS (PICTURED CLIFFS (final))         Since 7(in 33600-3385.00; 100; 2.2; 7: 6.46           23/81, TUDING (VELOW Band); 66.17-6, 717.17; 75.6600; 75.300; 3.114         7.33240, 2.378, 2.00           4463.9         CLIFFHOUSE (Inal))         Since 7(in 33600-3385.00; 100; 2.2; 7: 6.46           4464.0         4.464.00; 4.322.00; 2000-05.26         Since 7(in 33600-3085.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.6<br>335.0<br>759.8<br>OJO ALAM<br>2,264.1<br>KIRTLAND<br>2,576.1<br>FRUITLAND<br>2,576.1<br>FRUITLAND<br>2,576.1<br>PICTURED<br>3,88.9<br>4,463.9<br>4,463.9<br>CLIFFHOUS<br>4,664.0<br>MENEFEE (<br>4,821.9<br>5,164.0<br>5,253.9<br>5,600.1<br>MANCOS (<br>GALLUP (S<br>GALLUP (S<br>GALLUP (S<br>CLIFFIC) (S<br>CLIFFHOUS<br>5,164.0<br>POINT LOC<br>5,253.9<br>5,600.1<br>MANCOS (<br>GALLUP (S<br>CLIFFIC) (S<br>CLIFFIC) (S<br>CLIFFHOUS<br>5,164.0<br>POINT LOC<br>5,253.9<br>5,600.1<br>MANCOS (<br>GALLUP (S<br>CLIFFIC) (S<br>CLIFIC) (S<br>CLIFFIC) (S | (KIRTLAND (final))<br>D COAL (FRUITLAND CO<br>O CLIFFS (PICTURED CLIF<br>SE (CLIFFHOUSE (final))<br>(MENEFEE (final))<br>OKOUT (POINT LOOKOU                                                                                                      | FFS (final))                                                                                    |                                                                        | 888<br>888<br>888<br>888<br>888<br>888<br>888 | 2 3/8in, Tubing (Yellow<br>3-2; 2 3/8i, 7.00<br>2 3/8in, Tubing Pup Jo<br>3; 2 3/8; 2.00<br>SURFACE CASING, 9 5y<br>1-1; 9 5/8; 8.92<br>Shoe, 9 5/8in; 335.00-3<br>8.92<br>INTERMEDIATE CASIN<br>3,371.00; 2-1; 7; 6.46<br>Shoe, 7in; 3,844.00-3,31<br>2 3/8in, Tubing (Yellow<br>6,651.00; 3-4; 2 3/8; 2.00<br>PRODUCTION CASING<br>7,553.00; 3-1; 4 1/2; 4.0<br>4464.4822tKB on 5/26<br>4,464.00-4,822.00; 2000                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>V Band); 14.00-46.57; 32.57</li> <li>ints; 46.57-66.17; 19.60; 3-</li> <li>'8'in; 13.00-335.00; 322.00;</li> <li>i36.00; 1.00; 1-2; 9 5/8;</li> <li>G, 7in; 13.00-3,384.00;</li> <li>Bond); 66.17-6,717.17;</li> <li>0</li> <li>,4 1/2in; 13.00-7,566.00;</li> <li>5/2000 00:00 (Perforated);</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 335.0       335.0         793.8       OIO ALAMO (DIO ALAMO (finali))         2264.1       KIRTLAND (INTLAND (finali))         2264.1       KIRTLAND (INTLAND COAL (finali))         333.9       PICTURED CLIFFS (PICTURED CLIFFS (finali))         333.9       PICTURED CLIFFS (PICTURED CLIFFS (finali))         333.9       PICTURED CLIFFS (PICTURED CLIFFS (finali))         4463.9       CLIFFHOUSE (finali))         4,654.0       PICTURED (LIFFS (FICTURED CLIFFS (finali))         5,164.0       POINT LOOKOUT (POINT LOOKOUT (finali))         5,164.0       POINT LOOKOUT (POINT LOOKOUT (finali))         5,253.9       S254-53980tKB on 5/23/2000 0000 (Perforated):         4,717.2       GAULUP (finali))         5,560.1       MANCOS (MANCOS (finali))         5,253.9       S254-53980tKB on 5/723/2000 0000 (Perforated):         5,253.9       S254-53980tKB on 5/723/2000 0000 (Perforated):         7,315.9       CAULUP (finali))       S254-53980tKB on 5/723/2000 0000 (Perforated):         7,315.9       S254-53980tKB on 5/723/2000 0000 (Perforated):         7,315.9       S254-53980tKB on 5/723/2000 0000 (Perforated):         7,315.9       S254-53980tKB on 5/723/80.7384.15; 1.10;         6,717.2       S280, 738.12; 7.383.25;         7,315.9       S236, 7384.15; 7.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 759.8         OJO ALAM           2,264.1         KIRTLAND           2,576.1         FRUITLAND           910         PICTURED           3,883.9         4,463.9           4,463.9         CLIFFHOUS           4,664.0         MENEFEE (           4,821.9         5,164.0           5,164.0         POINT LOC           5,253.9         S600.1           MANCOS (         GALLUP (G           6,717.2         DAKOTA (E           7,351.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (KIRTLAND (final))<br>D COAL (FRUITLAND CO<br>O CLIFFS (PICTURED CLIF<br>SE (CLIFFHOUSE (final))<br>(MENEFEE (final))<br>OKOUT (POINT LOOKOU                                                                                                      | FFS (final))                                                                                    |                                                                        | 888<br>888<br>888<br>888<br>888<br>888<br>888 | <ul> <li>3; 2 3/8; 2.00</li> <li>SURFACE CASING, 9 5/</li> <li>1-1; 9 5/8; 8.92</li> <li>Shoe, 9 5/8in; 335.00-3</li> <li>8:92</li> <li>INTERMEDIATE CASIN</li> <li>3,371.00; 2-1; 7; 646</li> <li>Shoe, 7in; 3,384.00-3,3i</li> <li>2 3/8in, Tubing (Yellow</li> <li>6,651.00; 3-4; 2 3/8; 2.00</li> <li>PRODUCTION CASING</li> <li>7,553.00; 3-1; 4 1/2; 4.0</li> <li>4464.4822ft/B on 5/26</li> <li>4,464.00-4,822.00; 2000</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>(8in; 13.00-335.00; 322.00;</li> <li>(36.00; 1.00; 1-2; 9 5/8;</li> <li>G, 7in; 13.00-3,384.00;</li> <li>(85.00; 1.00; 2-2; 7; 6.46</li> <li>(85.00; 1.00; 2-2; 7; 6.46</li> <li>(9)</li> <li>(9)</li> <li>(10)</li> <li></li></ul> |
| 759.8       OIO ALAMO (DIO ALAMO (Inali))       Shoe, 9 5/8(in 335.00-336.00; 1.00; 1-2; 9 5/8;         2264.1       KIRTLAND (KIRTLAND (Inali))       Shoe, 717; 3384.00-3385.00; 1.00; 1-2; 9 5/8;         2376.1       FRUITLAND COAL (fRUITLAND COAL (finali))       Shoe, 717; 3384.00-3385.00; 1.00; 2-2; 7; 646         2376.1       FRUITLAND COAL (FRUITLAND COAL (finali))       Shoe, 717; 3384.00-3385.00; 1.00; 2-2; 7; 646         2383.9       CLIFFHOUSE (CLIFFHOUSE (finali))       Shoe, 717; 3384.00-3385.00; 1.00; 2-2; 7; 646         4463.9       CLIFFHOUSE (CLIFFHOUSE (finali))       Shoe, 717; 3384.00-3385.00; 1.00; 2-2; 7; 646         4664.0       A463.9       CLIFFHOUSE (CLIFFHOUSE (finali))       A478-5164MXB on 5/25/2000 00000 (Perforated);         5,164.0       POINT LOOKOUT (finali))       State 3386HXB on 5/25/2000 00000 (Perforated);         5,164.0       POINT LOOKOUT (finali))       State 3386HXB on 5/25/2000 00000 (Perforated);         5,164.0       POINT LOOKOUT (finali))       State 3386HXB on 5/17/2000 00000 (Perforated);         5,164.0       POINT LOOKOUT (finali))       State 3386HXB on 5/17/2000 00000 (Perforated);         7,315.9       State 3386HXB on 5/17/2000 00000 (Perforated);       7316.00-7,360.00; 200-05-17         7,315.9       State 3386HXB on 5/17/2000 00000 (Perforated);       7316.00-7,360.00; 0.3537.33.15; 2-7,383.05;         7,331.4       State 3386HXB on 5/17/2000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -OJO ALAM           2,264.1         -KIRTLAND           2,576.1         -FRUITLAND           9,383.9         -           4,663.9         -           4,664.0         -           4,664.0         -           5,164.0         -           5,164.0         -           5,600.1         -           6,717.2         -           7,315.9         -           7,351.4         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (KIRTLAND (final))<br>D COAL (FRUITLAND CO<br>O CLIFFS (PICTURED CLIF<br>SE (CLIFFHOUSE (final))<br>(MENEFEE (final))<br>OKOUT (POINT LOOKOU                                                                                                      | FFS (final))                                                                                    |                                                                        | 888<br>888<br>888<br>888<br>888<br>888<br>888 | Shoe, 9 5/8in; 335.00-3<br>8.92<br>INTERMEDIATE CASIN<br>3,371.00; 2-1; 7; 646<br>Shoe, 7in; 3,384.00-3,31<br>2 3/8in, Tubing (Yellow<br>6,651.00; 3-4; 2 3/8; 2.0<br>PRODUCTION CASING<br>7,553.00; 3-1; 4 1/2; 4.0<br>4464.4822tRK 80 n5/26<br>4,464.00-4,822.00; 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G, 7in; 13.00-3,384.00;<br>85.00; 1.00; 2-2; 7; 6.46<br>/ Band); 66.17-6,717.17;<br>0<br>, 4 1/2in; 13.00-7,566.00;<br>5<br>/2000 00:00 (Perforated);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2,264.1         KIRTLAND (KIRTLAND (KIRTLAND (KIRTLAND COAL (FRUITLAND COAL (FRUITLAND COAL (FRUITLAND COAL (FRUITLAND COAL (final)))         3,310,217,7646           2,576.1         FRUITLAND COAL (FRUITLAND COAL (final))         5,566,717,3384.00-3,385.00,1.00,2-2;7,646           2,576.1         FRUITLAND (KIRTLAND (KIRTLAND COAL (final))         5,566,717,3384.00-3,385.00,1.00,2-2;7,646           2,383.9         Shoe, 717,3384.00-3,385.00,1.00,2-2;7,646         2,378,100,2-1;7,646           4,663.9         CLIFFHOUSE (CLIFFHOUSE (final))         4464.4822ftk3 on 5/25/2000 00:00 (Perforated);           4,664.0         MENEFEE (final))         4464.4822ftk3 on 5/25/2000 00:00 (Perforated);           4,664.0         MENEFEE (final))         4464.4822ftk3 on 5/25/2000 00:00 (Perforated);           5,164.0         POINT LOOKOUT (POINT LOOKOUT (final))         5254-5398ftk3 on 5/23/2000 00:00 (Perforated);           5,164.0         POINT LOOKOUT (final))         5254-5398ftk3 on 5/17/2000 00:00 (Perforated);           5,172.0         Jain, Marker Doint, 7,3494.2; 2,351.52; 2,10; 3.6         53.63,20; 2,200           7,315.9         Z,376,176         Z,376,176         Z,376,176           7,315.9         Z,376,176         Z,376,176         Z,376,176           7,315.9         Z,376,176         Z,376,176         Z,376,176           7,315.9         Z,376,176         Z,376,176 <t< td=""><td>2,264.1 KIRTLAND<br/>2,576.1 FRUITLAND<br/>3,383.9<br/>4,463.9<br/>4,463.9<br/>4,664.0 MENEFEE (<br/>4,821.9<br/>5,164.0<br/>5,253.9<br/>5,600.1 MANCOS (<br/>6,717.2<br/>7,315.9<br/>7,351.4</td><td>(KIRTLAND (final))<br/>D COAL (FRUITLAND CO<br/>O CLIFFS (PICTURED CLIF<br/>SE (CLIFFHOUSE (final))<br/>(MENEFEE (final))<br/>OKOUT (POINT LOOKOU</td><td>FFS (final))</td><td></td><td>888<br/>888<br/>888<br/>888<br/>888<br/>888<br/>888</td><td>3,371.00; 2-1; 7; 646<br/>Shoe, 7in; 3,384.00-3,31<br/>2 3/8in, Tubing (Yellow<br/>6,651.00; 3-4; 2 3/8; 20<br/>PRODUCTION CASING<br/>7,553.00; 3-1; 4 1/2; 40<br/>4464-4822tRK 80 ro 4/2<br/>4,464.00-4,822.00; 2000</td><td>85.00; 1.00; 2-2; 7; 6.46<br/>/ Band); 66.17-6,717.17;<br/>0<br/>, 4 1/2in; 13.00-7,566.00;<br/>5<br/>/2000 00:00 (Perforated);</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,264.1 KIRTLAND<br>2,576.1 FRUITLAND<br>3,383.9<br>4,463.9<br>4,463.9<br>4,664.0 MENEFEE (<br>4,821.9<br>5,164.0<br>5,253.9<br>5,600.1 MANCOS (<br>6,717.2<br>7,315.9<br>7,351.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (KIRTLAND (final))<br>D COAL (FRUITLAND CO<br>O CLIFFS (PICTURED CLIF<br>SE (CLIFFHOUSE (final))<br>(MENEFEE (final))<br>OKOUT (POINT LOOKOU                                                                                                      | FFS (final))                                                                                    |                                                                        | 888<br>888<br>888<br>888<br>888<br>888<br>888 | 3,371.00; 2-1; 7; 646<br>Shoe, 7in; 3,384.00-3,31<br>2 3/8in, Tubing (Yellow<br>6,651.00; 3-4; 2 3/8; 20<br>PRODUCTION CASING<br>7,553.00; 3-1; 4 1/2; 40<br>4464-4822tRK 80 ro 4/2<br>4,464.00-4,822.00; 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85.00; 1.00; 2-2; 7; 6.46<br>/ Band); 66.17-6,717.17;<br>0<br>, 4 1/2in; 13.00-7,566.00;<br>5<br>/2000 00:00 (Perforated);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PICTURED CLIFFS (PICTURED CLIFFS (final))       2 3/8in, Tubing (Yellow Band); 6617-6717.17; 6,65100; 3-4; 2 3/8; 2.00         4,663.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PICTURED           3,383.9           4,664.0           4,664.0           4,664.0           4,664.0           4,821.9           5,164.0           5,164.0           5,164.0           5,600.1           MANCOS (           G6,717.2           DAKOTA (C           7,315.9           7,351.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) CLIFFS (PICTURED CLIF<br>SE (CLIFFHOUSE (final))<br>(MENEFEE (final))<br>OKOUT (POINT LOOKOU                                                                                                                                                    | FFS (final))                                                                                    |                                                                        | 888<br>888<br>888<br>888<br>888<br>888<br>888 | 2 3/8in, Tubing (Yellow)<br>6,651.00; 3-4; 2 3/8; 2.0<br>PRODUCTION CASING<br>7,553.00; 3-1; 4 1/2; 4.0<br>4464-4822ftK8 on 5/2<br>4,464.00-4,822.00; 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | / Band); 66.17-6,717.17;<br>0<br>i, 4 1/2in; 13.00-7,566.00;<br>5<br>5/2000 00:00 (Perforated);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3,383.9       651.00; 3-4; 2.3%; 2.00         4,463.9       CLIFFHOUSE (CLIFFHOUSE (final))         4,664.0       4464.4822tKB on 5/26/2000 0000 (Perforated);<br>4,464.00,4822.00; 2000-05-26         4,821.9       4464.402.4822tKB on 5/25/2000 0000 (Perforated);<br>4,464.00,4822.00; 2000-05-26         5,164.0       4878-5164tKB on 5/25/2000 0000 (Perforated);<br>4,878.00-5,164.00; 2000-05-25         POINT LOOKOUT (POINT LOOKOUT (final))       5254-5398tKB on 5/23/2000 0000 (Perforated);<br>5,254.00-5,398.00; 2000-05-23         5,600.1       MANCOS (MANCOS (final))         5,254.00-5,398.00; 2000-05-23       5254-5398tKB on 5/17/2000 00:00 (Perforated);<br>7,315.9         6,717.2       DAKOTA (DAKOTA (final))         7,351.4       7,351.4         7,351.4       7,351.4         7,383.2       2,3/8in, Tubing (Blue Band); 6,717.17-7,349.42;<br>7,316.07,360.00; 2000-05-17         7,384.8       7,384.8         7,384.8       2,3/8in, Tubing (Blue Band); 7,351.52; 2.10; 3.5; 2.3/8; 2.00         7,384.8       7,384.8         7,452.1       7,422.7452tKB on 5/17/2000 00:00 (Perforated);<br>7,422.07,452.00; 2000-05-17         7,450.7300tKB on 5/17/2000 00:00 (Perforated);<br>7,420.07,452.00; 2000-05-17         7,452.1       7,422.7452tKB on 5/17/2000 00:00 (Perforated);<br>7,420.07,452.00; 2000-05-17         7,555.9       5hoe, 4 1/2hr; 7,566.00, 7,567.00; 1.00; 3-2; 4 1/2; <td>3,383.9<br/>4,463.9<br/>4,664.0<br/>4,821.9<br/>5,164.0<br/>5,253.9<br/>5,600.1<br/>MANCOS (<br/>6,717.2<br/>7,315.9<br/>7,351.4</td> <td>SE (CLIFFHOUSE (final))<br/>(MENEFEE (final))<br/>OKOUT (POINT LOOKOU</td> <td></td> <td></td> <td>888<br/>888<br/>888<br/>888<br/>888<br/>888<br/>888</td> <td>6,651.00; 3:4; 2 3/8; 2.0<br/>PRODUCTION CASING<br/>7,553.00; 3:1; 4 1/2; 4.0<br/>4464.4822ftKB on 5/26<br/>4,464.00-4,822.00; 2000</td> <td>0<br/>, 4 1/2in; 13.00-7,566.00;<br/>5<br/>5/2000 00:00 (Perforated);</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,383.9<br>4,463.9<br>4,664.0<br>4,821.9<br>5,164.0<br>5,253.9<br>5,600.1<br>MANCOS (<br>6,717.2<br>7,315.9<br>7,351.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SE (CLIFFHOUSE (final))<br>(MENEFEE (final))<br>OKOUT (POINT LOOKOU                                                                                                                                                                               |                                                                                                 |                                                                        | 888<br>888<br>888<br>888<br>888<br>888<br>888 | 6,651.00; 3:4; 2 3/8; 2.0<br>PRODUCTION CASING<br>7,553.00; 3:1; 4 1/2; 4.0<br>4464.4822ftKB on 5/26<br>4,464.00-4,822.00; 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>, 4 1/2in; 13.00-7,566.00;<br>5<br>5/2000 00:00 (Perforated);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4,463.3       CLIFFHOUSE (CLIFFHOUSE (final))         4,664.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,664.0         MENEFEE (           4,821.9         MENEFEE (           5,164.0         POINT LOC           5,253.9         S.600.1           MANCOS (         GALLUP (G           6,717.2         DAKOTA (C           7,315.9         7,351.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (MENEFEE (final))                                                                                                                                                                                                                                 |                                                                                                 |                                                                        | 888<br>888<br>888<br>888<br>888<br>888<br>888 | 4464-4822ftKB on 5/26<br>4,464.00-4,822.00; 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5/2000 00:00 (Perforated);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4,664.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4,664.0<br>4,821.9<br>5,164.0<br>5,253.9<br>5,600.1<br>MANCOS (<br>6,717.2<br>0,717.2<br>0,717.5<br>0,717.2<br>0,7351.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (MENEFEE (final))                                                                                                                                                                                                                                 |                                                                                                 |                                                                        | 888<br>888<br>888                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J-UJ-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4,821.9         5,164.0         5,164.0         5,164.0         5,164.0         5,164.0         5,164.0         5,164.0         5,164.0         5,164.0         5,164.0         5,164.0         5,164.0         5,164.0         5,164.0         5,253.9         5,00.1         MANCOS (MANCOS (final))         6,717.2         DAKOTA (DAKOTA (final))         7,315.9         7,315.9         7,351.4         7,351.4         7,351.4         7,383.2         7,383.2         7,383.2         7,364.8         7,362.0         7,363.0         7,363.0         7,363.0         7,383.2         7,383.2         7,384.8         7,384.8         7,384.8         7,385.00         7,452.1         7,452.9         7,460.07.530.00; 2000.05.17         7,460.07.530.00; 2000.05.17         7,460.07.530.00; 2000.05.17         7,460.07.530.00; 2000.00; 17         7,460.07.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,821.9<br>5,164.0<br>5,253.9<br>5,600.1 MANCOS (<br>6,717.2<br>7,315.9<br>7,351.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OKOUT (POINT LOOKOU                                                                                                                                                                                                                               | JT (final))                                                                                     |                                                                        |                                               | 4970 516 48//8 5/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5,164.0       POINT LOOKOUT (POINT LOOKOUT (finall))         5,253.9       S254-S398ftKB on 5/23/2000 00:00 (Perforated);         5,600.1       MANCOS (finall))         GALLUP (GALLUP (GALLUP (finall))       S254-S398ftKB on 5/23/2000 00:00 (Perforated);         5,600.1       MANCOS (finall))         GALLUP (GALLUP (finall))       S2254-S398ftKB on 5/23/2000 00:00 (Perforated);         7,315.9       7316-00-736000; 2000-05-17         DAKOTA (DAKOTA (finall))       7316-00-736000; 2000-05-17         7,315.9       2 3/8in, Tubing (Blue Band); 7,34942-7,351.52; 2.10; 3-6; 2.3/8; 2.00         7,351.4       2 3/8in, Tubing (Blue Band); 7,34942-7,351.52; 2.10; 3-6; 2.3/8; 2.00         7,383.2       2 3/8in, Tubing (Blue Band); 7,34942-7,351.52; 2.10; 3-6; 2.3/8; 2.00         7,384.8       2 3/8in, Tubing (Blue Band); 7,315.2-7,383.05; 315.3; 3-7; 2.3/8; 2.00         7,384.8       2 3/8in, Seating Nipple; 7,383.05-7,384.15; 1.10; -8; 2.9/8; 1.70         7,452.1       7,452.18       7,452.18         7,529.9       7,460-7,530/00; 2000-05-17         7,545.9       5hoe, 4 1/2in; 7,566.00-7,567.00; 1.00; 3-2; 41/2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | POINT LOC<br>5,253.9<br>5,600.1 MANCOS (<br>G,717.2<br>7,315.9<br>7,351.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                 | JT (final)) ————                                                                                |                                                                        | •                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5/2000.00:00 (Perforated):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5253.9       5254-5398ftKB on 5/23/2000 00:00 (Perforated);         5,600.1       MANCOS (MANCOS (final))       5254-5398ftKB on 5/23/2000 -05-23         6,717.2       23/8in, Tubing (Blue Band); 6,717.17-7,349.42;       6323; 53-523/8; 2.00         7,315.9       7316-7360ftKB on 5/17/2000 00:00 (Perforated);         7,315.9       7316.00-7,360.00; 2000-05-17         7,351.4       23/8in, Marker Joint, 7349.42-7,351.52; 2.10; 3-6; 2.3/8; 2.00         7,351.4       23/8in, Marker Joint, 7349.42-7,351.52; 7.10; 3-6; 2.3/8; 1.00         7,383.2       23/8in, Seating Nipple; 7,383.05-7,384.15; 1.10; -38(3,05; 31,52; 3.9; 2.3/8; 2.00         7,384.8       23/8in, Repetable Check (Mule Shoe); 7,384.15; 1.10; -38(3,05; 7,384.15; 7,384.00; 0.85; 3-9; 2.3/8; 2.00         7,352.00       7422-7452.ft/B on 5/17/2000 00:00 (Perforated);         7,385.00       7,452.00; 2000-05-17         7,385.9       7,452.00; 2000-05-17         7,529.9       7,460-7,530.00; 2000-05-17         7,545.9       5hoe, 4 1/2ir; 7,566.00-7,567.00; 1.00; 3-2; 4 1/2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5,253.9<br>5,600.1 MANCOS (<br>6,717.2 OAKOTA (C<br>7,315.9<br>7,351.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                 |                                                                                                 |                                                                        |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GALLUP (GALLUP (final))       2 3/8in, Tubing (Blue Band); 6,117,17-7,349,42; 2         6,717.2       7316.3         DAKOTA (DAKOTA (final))       7316.3         7,351.4       7316.3         7,351.4       2 3/8in, Tubing (Blue Band); 6,117,17-7,349,42; 2         7,351.4       2 3/8in, Marker Joint; 7,349,42: 2         7,351.4       2 3/8in, Marker Joint; 7,349,42: 2         7,351.4       2 3/8in, Tubing (Blue Band); 7,351,52-7,383,05; 31,53; 3-7; 2 3/8; 2.00         7,383.2       2 3/8in, Tubing (Blue Band); 7,351,52-7,383,05; 31,53; 3-7; 2 3/8; 2.00         7,384.8       2 3/8in, Seating Nipple; 7,383,05-7,384,15; 1.10; -8; 0; 8; 1.70         7,384.8       2 3/8in, Expendable Check (Mule Shee); 7,384,15; 1.10; -8; 0; 8; 1.70         7,384.8       7,385,00; 0,85; 3-9; 2 3/8; 2.00         7,452.1       7,460-7530ftKB on 5/17/2000 00:00 (Perforated); 7,452,00; 2000-05-17         7,529.9       7,460-0-7,550,00; 2000-05-17         7,545.9       Shoe, 4 1/2ir; 7,566,00-7,567,00; 1.00; 3-2; 4 1/2; 7,565,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G,717.2 GALLUP (G<br>6,717.2 DAKOTA (D<br>7,315.9<br>7,351.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                   |                                                                                                 |                                                                        |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6,7172       7316.7360ftk8 on 5/17/2000 0000 (Perforated);         7,315.9       7,316.00.7360.00; 2000-05-17         7,351.4       2,378in, Marker Joint; 7,349,42-7,351.52; 2.10; 3.         7,351.4       2,378in, Tubing (Blue Band); 7,351,52-7,383.05;         7,383.2       2,378in, Seating Nipple; 7,383.05-7,384.15; 1.10;         7,384.8       2,378in, Fxpendable Check (Mule Shoe); 7,384.15;         7,384.8       2,378in, Seating Nipple; 7,383.05-7,384.15; 1.10;         7,385.00; 0.85; 3-9; 2,37; 2.00;       2,378in, Expendable Check (Mule Shoe); 7,384.15;         7,384.8       7,365.00; 0.85; 3-9; 2,37; 2.00;         7,452.1       7,460-7530ftKB on 5/17/2000 00:00 (Perforated);         7,529.9       7,460-07,530.00; 2000-05-17         7,565.9       Shoe, 4 1/2ir; 7,566.00-7,567.00; 1.00; 3-2; 4 1/2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,315.9<br>7,351.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                   |                                                                                                 |                                                                        | <b>1</b> ()                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7,315.9       2 3/8in, Marker Joint; 7,349,42-7,351,52; 2.10; 3-6; 2.3/8; 2.00         7,351,4       2 3/8in, Tubing (Blue Band); 7,351,52-7,383,05; 31,53; 3-7; 2.3/8; 2.00         7,383,2       2 3/8in, Seating Nipple; 7,383,05-7,384,15; 1.10; -8; 2.3/8; 1.78         7,384,8       2 3/8in, Expendable Check (Mule Shoe); 7,384,15; 1.10; -8; 2.3/8; 2.00         7,384,8       2 3/8in, Expendable Check (Mule Shoe); 7,384,15; 1.10; -8; 2.3/8; 2.00         7,384,8       2 3/8in, Expendable Check (Mule Shoe); 7,384,15; 1.10; -8; 2.3/8; 2.00         7,384,8       7,385,00         7,452,1       7,422,00-7,452,00; 2000-05-17         7,460,0-7,530,00; 2000-05-17       7,460,0-7,530,00; 2000-05-17         7,545,9       5hoe, 4 1/2ir; 7,566,00-7,567,00; 1.00; 3-2; 4 1/2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,351.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DAKOTA (final)) ———                                                                                                                                                                                                                               |                                                                                                 |                                                                        |                                               | 7316-7360ftKB on 5/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7/2000 00:00 (Perforated);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7,88.2         31.53; 3-7; 2.39; 2.00           7,88.2         2.3/8in, Seating Nipple; 7,383.05-7,384.15; 1.10;<br>-8; 2.39; 1.78           7,384.8         2.3/8in, Expendable Check (Mule Shoe); 7,384.15           7,384.8         7,380,00, 0.85; 3-9; 2.39; 2.00           7,452.1         7,422.00-7,452.00; 2000-05-17           7,559.9         7,460.07,530.00; 2000-05-17           7,565.9         Shoe, 4 1/2ir; 7,566.00-7,567.00; 1.00; 3-2; 4 1/2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                   |                                                                                                 |                                                                        | 1886                                          | 2 3/8in, Marker Joint;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,349.42-7,351.52; 2.10; 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7,3832     -9; 2.3%; 1.78       7,384.8     2.3/8in, Expendable Check (Mule Shoe); 7,384.1!       7,384.8     7,385.00; 0.85; 3-9; 2.3/8; 2.00       7,452.1     7,422.07,452.0; 2000-05-17       7,529.9     7,460.00-7,530.00; 2000-05-17       7,545.9     Shoe, 4 1/2ir; 7,566.00-7,567.00; 1.00; 3-2; 4 1/2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                   |                                                                                                 |                                                                        |                                               | / 31.53; 3-7; 2 3/8; 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7,384.8     7,385.00; 0.85; 3-9; 2.3/8; 2.00       7,452.1     7,422.7452ftkB on 5/17/2000 00:00 (Perforated);<br>7,422.00:7,452.00; 2000-05-17       7,529.9     7,460.00-7,550.00; 2000-05-17       7,545.9     5hoe, 4 1/2ir; 7,566.00-7,567.00; 1.00; 3-2; 4 1/2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                   |                                                                                                 |                                                                        |                                               | -8; 2 3/8; 1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7,529.9<br>7,545.9<br>7,565.9<br>7,565.9<br>7,565.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7,384.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                   |                                                                                                 |                                                                        |                                               | 7,385.00; 0.85; 3-9; 2 3/<br>7422-7452ftKB on 5/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | '8; 2.00<br>7/2000 00:00 (Perforated);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7,529.9 7,460.00-7,530.00; 2000-05-17<br>7,545.9 5hoe, 4 1/2ir; 7,566.00-7,567.00; 1.00; 3-2; 4 1/2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                                                                 |                                                                        |                                               | 7460-7530ftKB on 5/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7/2000 00:00 (Perforated);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7,565.9 Shoe, 4 1/2irr; 7,566.00-7,567.00; 1.00; 3-2; 4 1/2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,529.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                   |                                                                                                 |                                                                        |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,545.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                   |                                                                                                 |                                                                        |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                   |                                                                                                 | J                                                                      |                                               | Shoe, 4 1/2in; 7,566.00<br>4.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -7,567.00; 1.00; 3-2; 4 1/2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7,573.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,573.2<br>www.peloton.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   |                                                                                                 | Page 1/1                                                               |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Report Printed: 6/13/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

.



#### HILCORP ENERGY COMPANY STATE COM O 12 FRUITLAND COAL RECOMPLETE SUNDRY

| API / UWI                          | STATE      | E COM O #12<br>Surface Legal Location<br>016-029N-008W-I                | Field Name                                       | License No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | State Province                                                                                                                                    | Well Configuration Type                                                                                                           |
|------------------------------------|------------|-------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 3004529748<br>Driginal KB/RT Eleva | ation (ft) | RKB to GL (ft)                                                          | MV/DK COM<br>Original Spud Date                  | Rig Release D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date                       | NEW MEXICO<br>PBTD (All)                                                                                                                          | Total Depth All (TVD)                                                                                                             |
| 6,409.00<br>Most Recent J          | lob        | 13.00                                                                   | 4/30/2000 00:00                                  | 5/10/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00:00                      |                                                                                                                                                   |                                                                                                                                   |
| Job Category<br>Expense Work       |            | Primary Job Type<br>TUBING REPAIR                                       | Secondary Job                                    | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Actual Start D<br>2/2/2023 |                                                                                                                                                   | End Date<br>2/9/2023                                                                                                              |
| TD: 7,573.0                        |            |                                                                         | Origin                                           | al Hole [Vertica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | •                                                                                                                                                 |                                                                                                                                   |
| MD (ftKB)                          |            |                                                                         | -                                                | /ertical schema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                   |                                                                                                                                   |
| - 13.1 -                           |            | - 11. 11. 11. 11. and a barrent attribution who are been attributed and | Inda Mark Market and a Mark Market Provide State | and a state of the |                            | Tubing Hanger                                                                                                                                     | ; 13.00-14.00; 1.00; 3-1; 7; 2.0                                                                                                  |
| 46.6<br>335.0<br>759.8             | COA        | POSED FRUITL<br>AL PERFORATIC<br>5' - <b>3,055'</b>                     | 232.9                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 2 3/8in, Tubing Yel<br>3-2; 2 3/8; 2.00<br>2 3/8in, Tubing Pup<br>3; 2 3/8; 2.00<br>SURFACE CASING, 1<br>1-1; 9 5/8; 8.92<br>Shoe, 9 5/8in; 335.0 | Iow Band); 14.00-46.57; 32.57<br>Joints; 46.57-66.17; 19.60; 3-<br>9 5/8in; 13.00-335.00; 322.00;<br>10-336.00; 1.00; 1-2; 9 5/8; |
|                                    |            | MO (OJO ALAMO (final))                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 8.92                                                                                                                                              | SING, 7in; 13.00-3,384.00;                                                                                                        |
| 2,264.1                            | -KIRTLAN   | D (KIRTLAND (final)) —                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 3,371.00; 2-1; 7; 6.40                                                                                                                            |                                                                                                                                   |
| 2,576.1                            |            | ND COAL (FRUITLAND C                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Shoe, 7in; 3,384.00-                                                                                                                              | 3,385.00; 1.00; 2-2; 7; 6.46 —                                                                                                    |
| 3.383.9                            | -PICTURE   | D CLIFFS (PICTURED CLI                                                  | FFS (final))                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | lr.                                                                                                                                               | _                                                                                                                                 |
|                                    |            |                                                                         | 8                                                | <b>4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                                                                                                                                   | ING, 4 1/2in; 13.00-7,566.00;                                                                                                     |
| 4,463.9                            | CUEENO     | USE (CLIFFHOUSE (final))                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 825                        | 7,553.00; 3-1; 4 1/2;<br>4464-4822ftKB on 5                                                                                                       | 5/26/2000 00:00 (Perforated);                                                                                                     |
| 4,664.0                            |            | USE (CENTROUSE (IIIIai))                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 800                        | 4,464.00-4,822.00; 2                                                                                                                              | 000-05-26                                                                                                                         |
|                                    | -MENEFE    | E (MENEFEE (final))                                                     |                                                  | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                        |                                                                                                                                                   |                                                                                                                                   |
| 4,821.9                            |            |                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 4878-5164ftKB on 5                                                                                                                                | 5/25/2000 00:00 (Perforated);                                                                                                     |
| 5,164.0                            |            |                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                          | 4,878.00-5,164.00; 2                                                                                                                              |                                                                                                                                   |
| 5,253.9                            | -POINT LC  | DOKOUT (POINT LOOKOL                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 5254-5398ftKB on 5<br>5,254.00-5,398.00; 2                                                                                                        | 5/23/2000 00:00 (Perforated);<br>2000-05-23                                                                                       |
| 5,600.1                            |            | 5 (MANCOS (final))                                                      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                   |                                                                                                                                   |
| 6,717.2                            | GALLOP     | (GALLUP (final))                                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 7                                                                                                                                                 | ≤/<br>5/17/2000 00:00 (Perforated);                                                                                               |
|                                    | - DAKOTA   | (DAKOTA (final))                                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 7,316.00-7,360.00; 2                                                                                                                              |                                                                                                                                   |
| 7,315.9                            |            |                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                   |                                                                                                                                   |
| 7,351.4                            |            |                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                        | 7                                                                                                                                                 |                                                                                                                                   |
| 7,383.2                            |            |                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                   |                                                                                                                                   |
| 7,384.8                            |            |                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                          |                                                                                                                                                   |                                                                                                                                   |
| 7,452.1                            |            |                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 7,422.00-7,452.00; 2                                                                                                                              |                                                                                                                                   |
| 7,529.9                            |            |                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 7,460.00-7,530.00; 2                                                                                                                              | 5/17/2000 00:00 (Perforated);<br>1000-05-17                                                                                       |
| 7,545.9                            |            |                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                   |                                                                                                                                   |
| 7,565.9                            |            |                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Shoe, 4 1/2in; 7,566                                                                                                                              | .00-7,567.00; 1.00; 3-2; 4 1/2;                                                                                                   |
| 7,573.2                            |            |                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                   |                                                                                                                                   |
| www.peloto                         | n.com      |                                                                         |                                                  | Page 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                                                                                                                                   | Report Printed: 6/13/20                                                                                                           |

#### District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

### **District IV**

Г

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 20 of 50

٦

Form C-102 August 1, 2011 Permit 367272

### WELL LOCATION AND ACREAGE DEDICATION PLAT

| 1. API Number                                                                                       | 2. Pool Code         | 3. Pool Name               |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------|----------------------------|--|--|--|--|--|
| 30-045-29748                                                                                        | 71629                | BASIN FRUITLAND COAL (GAS) |  |  |  |  |  |
| 4. Property Code                                                                                    | 5. Property Name     | 6. Well No.                |  |  |  |  |  |
| 319097                                                                                              | STATE COM O          | 012                        |  |  |  |  |  |
| 7. OGRID No.     8. Operator Name     9. Elevation       372171     HILCORP ENERGY COMPANY     6396 |                      |                            |  |  |  |  |  |
|                                                                                                     | 10. Surface Location |                            |  |  |  |  |  |

| Γ | UL - Lot | Section | Township | Range | Lot Idn | Feet From | N/S Line | Feet From | E/W Line | County   |
|---|----------|---------|----------|-------|---------|-----------|----------|-----------|----------|----------|
|   | I        | 16      | 29N      | W80   |         | 1825      | S        | 790       | E        | SAN JUAN |
|   |          |         |          |       |         |           |          |           |          |          |

#### **11. Bottom Hole Location If Different From Surface** UL - Lot Township Lot Idn Feet From N/S Line Feet From E/W Line Section Range County 14. Consolidation Code 12. Dedicated Acres 13. Joint or Infill 15. Order No. 320.00 E/2

#### NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

| OPERATOR CERTIFICATION<br>I hereby certify that the information contained herein is true and complete to the best of my<br>knowledge and belief, and that this organization either owns a working interest or unleased<br>mineral interest in the land including the proposed bottom hole location(s) or has a right to drill<br>this well at this location pursuant to a contract with an owner of such a mineral or working<br>interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered<br>by the division.<br>E-Signed By: Cherylene Weston |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title: Operations/Regulatory Tech-Sr.<br>Date: 6/13/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SURVEYOR CERTIFICATION<br>I hereby certify that the well location shown on this plat was plotted from field notes of actual<br>surveys made by me or under my supervision, and that the same is true and correct to the best<br>of my belief.                                                                                                                                                                                                                                                                                                                                        |
| Surveyed By: Neale C. Edwards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Date of Survey: 11/14/1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Certificate Number: 6857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| State of New MexicoSubmit ElecEnergy, Minerals and Natural Resources DepartmentVia E-permi                            |                                                          |                            |                                         |                            |            |             | nit Electronically<br>E-permitting   |                       |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------|-----------------------------------------|----------------------------|------------|-------------|--------------------------------------|-----------------------|
| Oil Conservation Division<br>1220 South St. Francis Dr.<br>Santa Fe, NM 87505                                         |                                                          |                            |                                         |                            |            |             |                                      |                       |
|                                                                                                                       | N                                                        | ATURAL G                   | AS MANAC                                | GEMENT PI                  | LAN        |             |                                      |                       |
| This Natural Gas Mana                                                                                                 | agement Plan mi                                          | ist be submitted v         | vith each Applicati                     | on for Permit to I         | Drill (Al  | PD) for a   | new oi                               | recompleted well.     |
|                                                                                                                       |                                                          |                            | <u>1 – Plan De</u><br>Effective May 25, |                            |            |             |                                      |                       |
| I. Operator: Hilcorp                                                                                                  | Energy Compan                                            | У                          | OGRID:                                  | 372171                     |            | Date:       | 06 /                                 | 19 /2024              |
| II. Type: 🛛 Original                                                                                                  | □ Amendment                                              | due to □ 19.15.22          | 7.9.D(6)(a) NMAC                        | C□ 19.15.27.9.D(           | (6)(b) N   | MAC 🗆 (     | Other.                               |                       |
| If Other, please describ                                                                                              | be:                                                      |                            |                                         |                            |            |             |                                      |                       |
| III. Well(s): Provide t<br>be recompleted from a                                                                      |                                                          |                            |                                         |                            | wells pr   | oposed to   | be dri                               | lled or proposed to   |
| Well Name                                                                                                             | API                                                      | ULSTR                      | Footages                                | Anticipated<br>Oil BBL/D   |            |             |                                      | roduced Water         |
| State Com O 12                                                                                                        | 3004529748                                               | I-16-29N-08W               | 1825' FSL & 790' FE                     | 0 bbl/d                    | 145        | mcf/d       |                                      | 3 bbl/d               |
| IV. Central Delivery                                                                                                  | Point Name:                                              | Chaco-Bla                  | nco Processing Pla                      | nt                         |            | [See 1      | 9.15.2                               | 7.9(D)(1) NMAC]       |
| V. Anticipated Sched<br>proposed to be recomp                                                                         |                                                          |                            |                                         |                            | vell or se | et of wells | propo                                | esed to be drilled or |
| Well Name                                                                                                             | API                                                      | Spud Date                  | TD Reached<br>Date                      | Completion<br>Commencement |            |             | Initial Flow First Pr<br>Back Date D |                       |
| State Com O 12                                                                                                        | 3004529748                                               |                            |                                         |                            |            |             |                                      | <u>2024</u>           |
| VI. Separation Equip<br>VII. Operational Pra<br>Subsection A through<br>VIII. Best Manageme<br>during active and plan | ctices: ⊠ Attac<br>F of 19.15.27.8 ]<br>ent Practices: ₽ | h a complete deso<br>NMAC. | cription of the acti                    | ons Operator wil           | l take to  | o comply    | with t                               | he requirements of    |

.

# Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

# IX. Anticipated Natural Gas Production:

| Well | API | Anticipated Average<br>Natural Gas Rate MCF/D | Anticipated Volume of Natural<br>Gas for the First Year MCF |
|------|-----|-----------------------------------------------|-------------------------------------------------------------|
|      |     |                                               |                                                             |
|      |     |                                               |                                                             |

### X. Natural Gas Gathering System (NGGS):

| Operator | System | ULSTR of Tie-in | Anticipated Gathering<br>Start Date | Available Maximum Daily Capacity<br>of System Segment Tie-in |
|----------|--------|-----------------|-------------------------------------|--------------------------------------------------------------|
|          |        |                 |                                     |                                                              |
|          |        |                 |                                     |                                                              |

**XI. Map.**  $\Box$  Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

**XII.** Line Capacity. The natural gas gathering system  $\Box$  will  $\Box$  will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

**XIII.** Line Pressure. Operator  $\Box$  does  $\Box$  does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

**XIV. Confidentiality:**  $\Box$  Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

# <u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 $\square$  Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 $\Box$  Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:* 

**Well Shut-In.**  $\Box$  Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

**Venting and Flaring Plan.**  $\Box$  Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

# Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

| Signature:      | Cherylene Weston                                                                   |
|-----------------|------------------------------------------------------------------------------------|
| Printed Name:   | Cherylene Weston                                                                   |
| Title:          | Operations/Regulatory Tech-Sr.                                                     |
| E-mail Address  | <sup>e</sup> cweston@hilcorp.com                                                   |
| Date:           | 6/19/2024                                                                          |
| Phone:          | 713-289-2615                                                                       |
|                 | OIL CONSERVATION DIVISION<br>(Only applicable when submitted as a standalone form) |
| Approved By:    |                                                                                    |
| Title:          |                                                                                    |
| Approval Date:  |                                                                                    |
| Conditions of A | pproval:                                                                           |
|                 |                                                                                    |
|                 |                                                                                    |
|                 |                                                                                    |
|                 |                                                                                    |

VI. Separation Equipment:

Hilcorp Energy Company (HEC or Operator) production facilities include separation equipment designed to efficiently separate gas from liquid phases to optimize gas capture based on projected and estimated volumes from the targeted pool of our recomplete project. HEC will utilize flowback separation equipment and production separation equipment designed and built to industry specifications after the recomplete to optimize gas capture and send gas to sales or flare based on analytical composition. HEC operates facilities that are typically one-well facilities. Production separation equipment is upgraded prior to well being completed, if determined to be undersized or inadequate. This equipment is already on-site and tied into our sales gas lines prior to the recomplete operations.

- VII. Operational Practices:
- 1. Subsection (A) Venting and Flaring of Natural Gas
  - HEC understands the requirements of NMAC 19.15.27.8 which outlines that the venting and flaring of natural gas during drilling, completion or production operations that constitutes waste as defined in 19.15.2 are prohibited.
- 2. Subsection (B) Venting and Flaring during drilling operations
  - This gas capture plan isn't for a well being drilled.
- 3. Subsection (C) Venting and flaring during completion or recompletion
  - Flowlines will be routed for flowback fluids into a completion or storage tank and if feasible under well conditions, flare rather than vent and commence operation of a separator as soon as it is technically feasible for a separator to function.
  - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
- 4. Subsection (D) Venting and flaring during production operations
  - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
  - Monitor manual liquid unloading for wells on-site or in close proximity (<30 minutes' drive time), take reasonable actions to achieve a stabilized rate and pressure at the earliest practical time, and take reasonable actions to minimize venting to the maximum extent practicable.
  - HEC will not vent or flare except during the approved activities listed in NMAC 19.15.27.8 (D) 1 4.
- 5. Subsection (E) Performance standards
  - All tanks and separation equipment are designed for maximum throughput and pressure to minimize waste.
  - If a flare is utilized during production operations it will have a continuous pilot and is located more than 100 feet from any known well or storage tanks.
  - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.

- 6. Subsection (F) Measurement or estimation of vented and flared natural gas
  - Measurement equipment is installed to measure the volume of natural gas flared from process piping.
  - When measurement isn't practicable, estimation of vented and flared natural gas will be completed as noted in 19.15.27.8 (F) 5-6.

VIII. Best Management Practices:

- 1. Operator has adequate storage and takeaway capacity for wells it chooses to recomplete as the flowlines at the sites are already in place and tied into a gathering system.
- 2. Operator will flare rather than vent vessel blowdown gas when technically feasible during active and/or planned maintenance to equipment on-site.
- 3. Operator combusts natural gas that would otherwise be vented or flared, when technically feasible.
- 4. Operator will shut in wells in the event of a takeaway disruption, emergency situation, or other operations where venting or flaring may occur due to equipment failures.



June 20, 2024

Mailed Certified with Electronic Return Receipt

To: All Interest Owners

RE: Application to Downhole Commingle Production Well: State Com O 012 API: 30-045-29748 Section 16, Township 29 North, Range 08 West San Juan County, New Mexico

Ladies and Gentlemen:

Hilcorp Energy Company ("Hilcorp"), as Operator of the subject well, has filed application with the New Mexico Oil Conservation Division for approval to downhole trimmingle production from the **Basin Fruitland Coal**, a formation Hilcorp soon intends to perforate, with existing production from the **Basin Dakota** and **Blanco Mesaverde** formations. This letter and the application copy enclosed serve to provide you, an owner in one or more of the aforementioned formations, with written notice as prescribed by Subsection C of 19.15.12.11 New Mexico Administrative Code.

No action is required by you <u>unless</u> you wish to pursue a formal protest (see details italicized below).

If you no longer own an interest in this well or need to make changes to your address, etc., please email <u>ownerrelations@hilcorp.com</u>. For those without email access, please call (713) 209-2457.

Hilcorp is eager to explore this potential opportunity to enhance production. Thank you for your support.

Sincerely,

Carson Parker Rice Landman 713.757.7108 carice@hilcorp.com

CPR:dpk Enclosures

### **Protesting**:

Protests must be in writing and received <u>within twenty (20) days from the date of this letter</u>. In your response, please include your contact information, details referenced herein and the specific concerns and/or reasoning behind your decision. You are encouraged to email me an electronic copy and, subsequently, mailing (overnight) a hard copy to my attention at the address in the footer below. Upon receipt, I will follow up by phone to discuss your concerns. Should we be unable to resolve them, a formal protest will be set for hearing with the New Mexico Oil & Conservation Division in Santa Fe, NM, wherein your attendance and testimony will be required.

District I 1625 N. French Drive, Hobbs, NM 88240 District II 811 S. First St. Artesia, NM 88210

1220 S. St. Francis Dr., Santa Fe, NM 87505

Road Aztec NM 87410

State of New Mexico Energy, Minerals and Natural Resources Department

> **Oil Conservation Division** 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

Form C-107A Revised August 1, 2011

APPLICATION TYPE Single Well Establish Pre-Approved Pools EXISTING WELLBORE <u>X</u>Yes No

#### APPLICATION FOR DOWNHOLE COMMINGLING

#### Hilcorp Energy Company Received by OCD: 38/22/2024 1:16:17 PM

District III

District IV

#### 382 Road 3100, Aztec, NM 87410

Address State Com O 12 I-16-T29N-R08W San Juan County, NM Lease Well No. Unit Letter-Section-Township-Range County

OGRID No. 37217 Property Code 319097 \_ API No. <u>30-045-29748</u> \_\_ Lease Type: \_\_\_\_Federal \_X\_State \_\_\_\_Fee

| DATA ELEMENT                                                                                                                                                                                   | UPPER ZONE      |   | INTE            | CRMEDIATE ZO                                  | NE | I               | LOWER ZONE                                    |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|-----------------|-----------------------------------------------|----|-----------------|-----------------------------------------------|---|
| Pool Name                                                                                                                                                                                      | Fruitland Coal  |   | Bla             | nco Mesaverde                                 |    | В               | asin Dakota                                   |   |
| Pool Code                                                                                                                                                                                      | 7162            |   |                 | 7231                                          |    |                 | 7159                                          |   |
| Top and Bottom of Pay Section<br>(Perforated or Open-Hole Interval)                                                                                                                            | 2,875' - 3,055' |   |                 | 5,254' - 5,398'                               |    |                 | 7,530' - 7,316'                               |   |
| Method of Production<br>(Flowing or Artificial Lift)                                                                                                                                           | Artificial      |   |                 | Artificial                                    |    |                 | Artificial                                    |   |
| Bottomhole Pressure<br>(Note: Pressure data will not be required if the bottom<br>perforation in the lower zone is within 150% of the<br>depth of the top perforation in the upper zone)       | 88 psi          |   |                 | 127 psi                                       |    |                 | 153 psi                                       |   |
| Oil Gravity or Gas BTU<br>(Degree API or Gas BTU)                                                                                                                                              | 1261 BTU        |   |                 | 1113 BTU                                      |    |                 | 1127 BTU                                      |   |
| Producing, Shut-In or<br>New Zone                                                                                                                                                              | New             |   |                 | Producing                                     |    |                 | Producin                                      |   |
| Date and Oil/Gas/Water Rates of<br>Last Production.<br>(Note: For new zones with no production history,<br>applicant shall be required to attach production<br>estimates and supporting data.) | Date:<br>Rates: |   | Date:<br>Rates: | 4/1/2024<br>Oil - 6 bbl<br>Gas - 2,269<br>mcf |    | Date:<br>Rates: | 4/1/2024<br>Oil - 4 bbl<br>Gas - 1,578<br>mcf |   |
| Fixed Allocation Percentage<br>(Note: If allocation is based upon something other<br>than current or past production, supporting data or<br>explanation will be required.)                     | Oil Gas<br>%    | % | Oil             | Gas<br>%                                      | %  | Oil             | Gas<br>%                                      | % |

#### ADDITIONAL DATA

| Are all working, royalty and overriding royalty interests identical in all commingled zones?<br>If not, have all working, royalty and overriding royalty interest owners been notified by certified mail?  | Yes<br>Yes_X |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|
| Are all produced fluids from all commingled zones compatible with each other?                                                                                                                              | Yes_X        | No   |
| Will commingling decrease the value of production?                                                                                                                                                         | Yes          | No_X |
| If this well is on, or communitized with, state or federal lands, has either the Commissioner of Public Lands or the United States Bureau of Land Management been notified in writing of this application? | Yes_X        | No   |
| NMOCD Reference Case No. applicable to this well:                                                                                                                                                          |              |      |

Attachments:

C-102 for each zone to be commingled showing its spacing unit and acreage dedication. Production curve for each zone for at least one year. (If not available, attach explanation.)

For zones with no production history, estimated production rates and supporting data.

Data to support allocation method or formula.

Notification list of working, royalty and overriding royalty interests for uncommon interest cases.

Any additional statements, data or documents required to support commingling.

#### PRE-APPROVED POOLS

If application is to establish Pre-Approved Pools, the following additional information will be required:

List of other orders approving downhole commingling within the proposed Pre-Approved Pools List of all operators within the proposed Pre-Approved Pools Proof that all operators within the proposed Pre-Approved Pools were provided notice of this application.

Bottomhole pressure data.

I hereby certify that the information above is true and complete to the best of my knowledge and belief.

SIGNATURE Cherylene Weston TITLE\_Operations/Regulatory Tech-Sr. \_DATE\_\_\_\_6/19/2024

TYPE OR PRINT NAME\_ Cherylene Weston \_TELEPHONE NO. (\_\_\_713\_\_\_) 289-

cweston@hilcorp.co E-MAIL ADDRESS

Page 28 of 50

#### District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

### District IV

Г

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 29 of 50

Form C-102 August 1, 2011 Permit 367272

### WELL LOCATION AND ACREAGE DEDICATION PLAT

| 1. API Number        | 2. Pool Code           | 3. Pool Name               |  |  |  |
|----------------------|------------------------|----------------------------|--|--|--|
| 30-045-29748         | 71629                  | BASIN FRUITLAND COAL (GAS) |  |  |  |
| 4. Property Code     | 5. Property Name       | 6. Well No.                |  |  |  |
| 319097               | STATE COM O            | 012                        |  |  |  |
| 7. OGRID No.         | 8. Operator Name       | 9. Elevation               |  |  |  |
| 372171               | HILCORP ENERGY COMPANY | 6396                       |  |  |  |
| 10. Surface Location |                        |                            |  |  |  |

| _ |          |         |          |       | 1010    |           |          |           |          |        |      |
|---|----------|---------|----------|-------|---------|-----------|----------|-----------|----------|--------|------|
|   | UL - Lot | Section | Township | Range | Lot Idn | Feet From | N/S Line | Feet From | E/W Line | County |      |
|   | I        | 16      | 29N      | 08W   |         | 1825      | S        | 790       | E        | SAN    | JUAN |
|   |          |         |          |       |         |           |          |           |          |        |      |

#### **11. Bottom Hole Location If Different From Surface** UL - Lot Lot Idn Feet From N/S Line Feet From E/W Line Section Township Range County 14. Consolidation Code 12. Dedicated Acres 13. Joint or Infill 15. Order No. 320.00 E/2

#### NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

| <b>OPERATOR CERTIFICATION</b><br>I hereby certify that the information contained herein is true and complete to the best of my<br>knowledge and belief, and that this organization either owns a working interest or unleased<br>mineral interest in the land including the proposed bottom hole location(s) or has a right to drill<br>this well at this location pursuant to a contract with an owner of such a mineral or working<br>interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered<br>by the division. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E-Signed By: Cherylene Weston<br>Title: Operations/Regulatory Tech-Sr.<br>Date: 6/13/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SURVEYOR CERTIFICATION<br>I hereby certify that the well location shown on this plat was plotted from field notes of actual<br>surveys made by me or under my supervision, and that the same is true and correct to the best<br>of my belief.                                                                                                                                                                                                                                                                                                              |
| Surveyed By: Neale C. Edwards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Date of Survey: 11/14/1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Certificate Number: 6857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

District I PO Box 1980, Hobbs, NM 88241-1980 District II 811 South First, Artesia, NM 88210 District III 1000 Rio Brazos Rd., Aztec, NM 87410 District IV 2040 South Pacheco, Santa Fe, NM 87505

#### OIL CONSERVATION DIVISION 2040 South Pacheco Santa Fe, NM 87505

Form C-102 Revised October 18, 1994 Instruction on back Submit to Appropriate District Office State Lease - 4 Copies Fee Lease - 3 Copies

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

|                       |          |                | -               |                      |                     | ICICL. IGL DLD     | ICATION I     | LAI       |      |                          |  |
|-----------------------|----------|----------------|-----------------|----------------------|---------------------|--------------------|---------------|-----------|------|--------------------------|--|
| 1                     | API Numb | er             |                 | <sup>2</sup> Pool Co |                     | Pool Name          |               |           |      |                          |  |
| 30-045-297            | 48       |                | 7231            | 9/71599              | )   E               | BLANCO MESAVE      | ERDE / BASIN  |           | 4    |                          |  |
| <sup>4</sup> Property | Code     |                |                 |                      |                     | erty Name          |               |           |      | <sup>o</sup> Well Number |  |
| 003275                |          | STATE C        | OM O            |                      |                     |                    |               |           | 12   |                          |  |
| <sup>7</sup> OGRID    | No.      |                |                 |                      | * Oper              | ator Name          |               |           |      | <sup>9</sup> Elevation   |  |
| 005073                |          | CONOCO         | ), INC.         |                      | -                   |                    |               |           |      |                          |  |
|                       |          |                |                 |                      | <sup>10</sup> Surfa | ce Location        |               |           |      |                          |  |
| UL or lot no.         | Section  | Township       | Range           | Lot Idn              | Feet from the       | North/South line   | Feet from the | East/West | line | County                   |  |
| 1                     | 16       | 29N            | 8W              |                      | 1825                | SOUTH              | 790           | EAST      |      | SAN JUAN                 |  |
|                       |          |                | <sup>11</sup> B | ottom Ho             | ole Location        | n If Different Fro | m Surface     |           |      |                          |  |
| UL or lot no.         | Section  | Township       | Range           | Lot Idn              | Feet from the       | North/South line   | Feet from the | East/West | line | County                   |  |
|                       |          |                |                 |                      |                     |                    |               |           |      |                          |  |
| 12 Dedicated Acr      |          | or Infill 14 C | onsolidatio     | on Code 15O          | rder No.            |                    |               |           |      |                          |  |
| 80400 E P             |          |                |                 |                      |                     |                    |               |           |      |                          |  |

#### NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

| 16 | MAY 2000<br>RECEIVED<br>OILCON. DAV<br>DIST. 3 | 17 OPERATOR CERTIFICATION<br>I hereby certify that the information contained herein is true<br>and complete to the best of my knowledge and belief<br> |
|----|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                | <ul> <li>DEBORAH MARBERRY</li> <li></li></ul>                                                                                                          |
|    | · · · · · · · · · · · · · · · · · · ·          | Date of Survey<br>Signature and Seal of Professional Surveyer<br>Certificate Number                                                                    |

# Page 30 of 50

•

| Certified Number           | Sender        | Recipient                                                                                                         | Date<br>Mailed | Delivery Status      |
|----------------------------|---------------|-------------------------------------------------------------------------------------------------------------------|----------------|----------------------|
| 92148969009997901837096089 | Dani<br>Kuzma | , SILVERADO OIL and GAS LLP, , TULSA, OK, 74152-0308<br>Code: STATE COM O 12 DHC NOTICE                           | 6/20/2024      | Signature<br>Pending |
| 92148969009997901837096096 | Dani<br>Kuzma | , PIONEER NATURAL RES USA INC, KATHY NAVARRETE, MIDLAND,<br>TX, 79702<br>Code: STATE COM O 12 DHC NOTICE          | 6/20/2024      | Signature<br>Pending |
| 92148969009997901837096102 | Dani<br>Kuzma | , JESSICA PECANTY USEY, , THIBODAUX, LA, 70301<br>Code: STATE COM O 12 DHC NOTICE                                 | 6/20/2024      | Signature<br>Pending |
| 92148969009997901837096119 | Dani<br>Kuzma | , JENNIFER PECANTY SAVOIE, , THIBODAUX, LA, 70301<br>Code: STATE COM O 12 DHC NOTICE                              | 6/20/2024      | Signature<br>Pending |
| 92148969009997901837096126 | Dani<br>Kuzma | , MESA ROYALTY TRUST, ATTN NEW MEXICO PROPERTIES,<br>BARTLESVILLE, OK, 74004<br>Code: STATE COM O 12 DHC NOTICE   | 6/20/2024      | Signature<br>Pending |
| 92148969009997901837096133 | Dani<br>Kuzma | , MIDLAND AOG PARTNERS LTD, , MIDLAND, TX, 79702<br>Code: STATE COM O 12 DHC NOTICE                               | 6/20/2024      | Signature<br>Pending |
| 92148969009997901837096140 | Dani<br>Kuzma | , JEREMY LEONARD PECANTY, , THIBODAUX, LA, 70301<br>Code: STATE COM O 12 DHC NOTICE                               | 6/20/2024      | Signature<br>Pending |
| 92148969009997901837096157 | Dani<br>Kuzma | , F J ODENDAHL INVESTMENTS INC, , WHEATLAND, WY, 82201<br>Code: STATE COM O 12 DHC NOTICE                         | 6/20/2024      | Signature<br>Pending |
| 92148969009997901837096164 | Dani<br>Kuzma | , LINDEN FAMILY TRUST, MARY ANN LINDEN TRUSTEE, ROCK<br>ISLAND, IL, 61201-6128<br>Code: STATE COM O 12 DHC NOTICE | 6/20/2024      | Signature<br>Pending |



| Campaign No. | 22318                    |
|--------------|--------------------------|
| Today's Date | 21 Jun 2024              |
| P.O. Number  |                          |
| Sales Rep    | Odette Capistrano-Zenizo |
|              |                          |

#### This is a quote for approval, not an invoice. Advanced payments may be accepted.

#### bill-to

**Hilcorp Energy Company** 1111 Travis Street HOUSTON, TX 77002 Tel: 832 839-4570 Account No: 109863

# campaign summary

| State Com O 012 (Dani Kuzma) |
|------------------------------|
| 6/26/2024                    |
| 6/26/2024                    |
|                              |
|                              |
|                              |

#### advertiser

Hilcorp Energy Company 1111 Travis Street HOUSTON, TX 77002 Tel: 832 839-4570 Account No: 109863

| cost summary      |         |
|-------------------|---------|
| Base Amount       | \$76.50 |
| Adjustments       | \$0.00  |
| Gross Amount      | \$76.50 |
| Agency Commission | \$0.00  |
| Net Amount        | \$76.50 |
| Estimated Tax     | \$6.26  |
| Total             | \$82.76 |

| Pre-Payment Details |                  |                      |
|---------------------|------------------|----------------------|
| Pre-Payment Amount  | Pre-Payment Date | Pre-Payment Card No. |

No Pre-Payments on this order

| print lines |                    |                      |                                                                                                        |                                                                                              |                                                                                                                                                           |               |        |
|-------------|--------------------|----------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|
| Line<br>No. | Product            | Description          | Issue / Run<br>Date                                                                                    | Quantity                                                                                     | Rate                                                                                                                                                      | Adjusted Rate | Amount |
| 46007       | Tri-City<br>Record | TCR Private<br>Legal | 6/26/2024                                                                                              | 1                                                                                            | 76.50                                                                                                                                                     | 76.50         | 76.50  |
|             |                    |                      | Company<br>Comming<br>County,<br>Pursuant<br>Subsection<br>NMAC,<br>Company,<br>filed form<br>Mexico E | for<br>Jling, S<br>New<br>to Paragr<br>n C of<br>Hilcorp<br>as Ope<br>C-107A w<br>inergy, Mi | <b>p Energy</b><br><b>Downhole</b><br><b>an Juan</b><br><b>Mexico.</b><br>aph (2) of<br>19.15.12.11<br>Energy<br>erator, has<br>ith the New<br>nerals and |               |        |

Released to Imaging: 8/22/2024 1:19:14 PM

.

| Line<br>No. | Product | Description | Issue / Run Quantity Rate                                     | Adjusted Rate | Amour |
|-------------|---------|-------------|---------------------------------------------------------------|---------------|-------|
|             |         |             |                                                               |               |       |
|             |         |             | - Oil Conservation Division                                   |               |       |
|             |         |             | (NMOCD) seeking                                               |               |       |
|             |         |             | administrative approval to                                    |               |       |
|             |         |             | downhole commingle new production from the Basin-             |               |       |
|             |         |             | Fruitland Coal Pool (71629)                                   |               |       |
|             |         |             | with existing production from                                 |               |       |
|             |         |             | the Basin-Dakota Gas Pool                                     |               |       |
|             |         |             | (71599) and the Blanco-                                       |               |       |
|             |         |             | Mesaverde Gas Pool (72319) in                                 |               |       |
|             |         |             | the State Com O 012 well (API                                 |               |       |
|             |         |             | No. 30-045-29748) located in                                  |               |       |
|             |         |             | Unit I, Section 16, Township 29                               |               |       |
|             |         |             | North, Range 08 West, NMPM,                                   |               |       |
|             |         |             | San Juan County, New Mexico.                                  |               |       |
|             |         |             | Commingling will not reduce the                               |               |       |
|             |         |             | value of production. Allocation                               |               |       |
|             |         |             | method to be determined upon completion of this project. This |               |       |
|             |         |             | notice is intended for certain                                |               |       |
|             |         |             | unlocatable royalty interest                                  |               |       |
|             |         |             | owners in the aforementioned                                  |               |       |
|             |         |             | well for which certified mail                                 |               |       |
|             |         |             | delivery is not possible. Should                              |               |       |
|             |         |             | you (the interest owner for                                   |               |       |
|             |         |             | which this notice is intended)                                |               |       |
|             |         |             | have an objection, you are                                    |               |       |
|             |         |             | required to respond within                                    |               |       |
|             |         |             | twenty (20) days from the date                                |               |       |
|             |         |             | of this publication. Please mail                              |               |       |
|             |         |             | your objection letter,                                        |               |       |
|             |         |             | referencing the well details                                  |               |       |
|             |         |             | above, to the following address:                              |               |       |
|             |         |             | Hilcorp Energy Company, Attn:<br>San Juan Land, 1111 Travis   |               |       |
|             |         |             | Street, Houston, TX 77002                                     |               |       |
|             |         |             |                                                               |               |       |
|             |         |             | Published in Tri-City Record                                  |               |       |

June 26, 2024

# digital lines

# NEW MEXICO STATE LAND OFFICE Guidelines for Requesting Commingling Approval

- 1. A commingling agreement from the New Mexico State Land Office is not required if the commingling operation does not contain New Mexico State Trust acreage.
- 2. If State Trust acreage will be part of a proposed commingling operation:
  - a. Commingling of production of all wells from the same pool within a single lease or unit area is permitted without additional Land Commissioner approval.
  - b. Surface commingling (including off-lease storage) from more than one pool, and/or from more than one lease, communitized area, unit area, or a combination of leases/communitized areas/unit areas, requires additional Land Commissioner approval.

The attached application form describes the process for submitting a commingling application to the New Mexico State Land Office.

# **APPLICATION FOR**

NEW MEXICO STATE LAND OFFICE

# COMMINGLING AND OFF-LEASE STORAGE

# ON STATE TRUST LANDS



This application form is required for all commingling applications requiring approval by the Commissioner of Public Lands.

| Applicant: Hilcorp Energy Company                            | OGRID #: 372171            |
|--------------------------------------------------------------|----------------------------|
| Well Name: State Com O 12                                    | API #: <u>30-045-29748</u> |
| Pool: Basin Fruitland Coal / Blanco Mesaverde / Basin Dakota |                            |

| OPERATOR NAME: | Hilcorp Energy Company Attn: Cheryl Weston, Rm. 12.201 |
|----------------|--------------------------------------------------------|
|                |                                                        |

OPERATOR ADDRESS: 1111 Travis Street, Houston, TX 77002

# **APPLICATION REQUIREMENTS – SUBMIT:**

- 1. New Mexico Oil Conservation Division (NMOCD) application packet (or equivalent information if no application is required by NMOCD),
- 2. Commingling application fee of \$150.

CERTIFICATION: To the best of my knowledge,

- All business leases and rights-of-way necessary for conducting the proposed operation on State Trust lands have been applied for or obtained,
- The information submitted with this application is **accurate** and **complete**, and
- No loss will accrue to the state of New Mexico as a result of the proposed operation.

I also understand that **no action** will be taken on this application until the required information and fee are submitted to the State Land Office.

# Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

Cherylene Weston Print or Type Name

Cherylene Weston Signature

Signature

6/19/2024 Date 713-289-2615 Phone Number

cweston@hilcorp.com e-mail Address

# Submit application to:

Commissioner of Public Lands Attn: Commingling Manager PO Box 1148 Santa Fe, NM 87504-1148 Questions? Contact the Commingling Manager: 505.827.6628 Upon approval, the requesting organization will receive an acknowledgment letter from the Commissioner of Public Lands.

.

# Cheryl Weston

| From:    | HoustonMail                    |
|----------|--------------------------------|
| Sent:    | Friday, June 21, 2024 12:10 PM |
| То:      | Cheryl Weston                  |
| Subject: | FEDEX TRACKING NUMBER          |

740203001839 COMMISSIONER OF PUBLIC LAND

| From:    | McClure, Dean, EMNRD                       |
|----------|--------------------------------------------|
| To:      | Cheryl Weston; Mandi Walker                |
| Cc:      | Lowe, Leonard, EMNRD; McClure, Dean, EMNRD |
| Subject: | RE: [EXTERNAL] Action ID: 356651; DHC-5405 |
| Date:    | Wednesday, July 17, 2024 5:05:12 PM        |

Cheryl,

Review of this application cannot continue until notice is conducted such that the stipulations within 19.15.12.11 C.(1)(a) NMAC may be met. As such, the Division will be placing review of this application on hold for the earlier of either: (a) Hilcorp has provided documentation demonstrating that the interest owners have been instructed to provide their protests to the Division; or (b) 30 days. The Division will make an evaluation of how to proceed in this case upon re-opening the application for review.

If you have any questions, please feel free to reach out.

Dean McClure Petroleum Engineer, Oil Conservation Division New Mexico Energy, Minerals and Natural Resources Department (505) 469-8211

From: Cheryl Weston <cweston@hilcorp.com>
Sent: Saturday, July 13, 2024 9:32 AM
To: McClure, Dean, EMNRD <Dean.McClure@emnrd.nm.gov>; Mandi Walker
<mwalker@hilcorp.com>
Cc: Lowe, Leonard, EMNRD <Leonard.Lowe@emnrd.nm.gov>
Subject: RE: [EXTERNAL] Action ID: 356651; DHC-5405

Dean,

The administrative checklist, revised C-107A page, water analysis and allocation is attached.

Thanks, Cheryl

From: McClure, Dean, EMNRD <<u>Dean.McClure@emnrd.nm.gov</u>>
Sent: Friday, July 12, 2024 2:15 PM
To: Cheryl Weston <<u>cweston@hilcorp.com</u>>; Mandi Walker <<u>mwalker@hilcorp.com</u>>
Cc: Lowe, Leonard, EMNRD <<u>Leonard.Lowe@emnrd.nm.gov</u>>
Subject: [EXTERNAL] Action ID: 356651; DHC-5405

**CAUTION:** External sender. DO NOT open links or attachments from UNKNOWN senders.

To whom it may concern (c/o Cheryl Weston for Hilcorp Energy Company),

| Action ID | 356651                          |
|-----------|---------------------------------|
| Admin No. | DHC-5405                        |
| Applicant | Hilcorp Energy Company (372171) |
| Title     | State Com O #12                 |
| Sub. Date | 6/21/24                         |

The Division is reviewing the following application:

## Please provide the following additional supplemental documents:

• Please provide an application checklist

## Please provide additional information regarding the following:

- Please review the MV and DK perfs on form C-107A and submit an amended form C-107A with those perfs corrected.
- Please provide a method to allocate the gas for the MV and DK pools.
- Please confirm the quantity of other total dissolved solids within the FLC water sample.

## Additional notes:

٠

All additional supplemental documents and information may be provided via email and should be done by replying to this email. The produced email chain will be uploaded to the file for this application.

Please note that failure to take steps to address each of the requests made in this email within 10 business days of receipt of this email may result in the Division rejecting the application requiring the submittal of a new application by the applicant once it is prepared to address each of the topics raised.

Dean McClure Petroleum Engineer, Oil Conservation Division New Mexico Energy, Minerals and Natural Resources Department (505) 469-8211

The information contained in this email message is confidential and may be legally privileged and is intended only for the use of the

individual or entity named above. If you are not an intended recipient or if you have received this message in error, you are hereby notified that any dissemination, distribution, or copy of this email is strictly prohibited. If you have received this email in error, please immediately notify us by return email or telephone if the sender's phone number is listed above, then promptly and permanently delete this message.

While all reasonable care has been taken to avoid the transmission of viruses, it is the responsibility of the recipient to ensure that the onward transmission, opening, or use of this message and any attachments will not adversely affect its systems or data. No responsibility is accepted by the company in this regard and the recipient should carry out such virus and other checks as it considers appropriate.

| From:        | Cheryl Weston                                   |
|--------------|-------------------------------------------------|
| То:          | McClure, Dean, EMNRD; Mandi Walker              |
| Cc:          | Lowe, Leonard, EMNRD                            |
| Subject:     | RE: [EXTERNAL] Action ID: 356651; DHC-5405      |
| Date:        | Saturday, July 13, 2024 9:32:41 AM              |
| Attachments: | STATE COM O 12 Water Analysis.pdf               |
|              | State Com O 12 Allocation.pdf                   |
|              | State Com O 12 DHC C-107A Revised.pdf           |
|              | State Com O 12 NMOCD Admin Applic Checklist.pdf |

Dean,

The administrative checklist, revised C-107A page, water analysis and allocation is attached.

Thanks,

Cheryl

From: McClure, Dean, EMNRD <Dean.McClure@emnrd.nm.gov>
Sent: Friday, July 12, 2024 2:15 PM
To: Cheryl Weston <cweston@hilcorp.com>; Mandi Walker <mwalker@hilcorp.com>
Cc: Lowe, Leonard, EMNRD <Leonard.Lowe@emnrd.nm.gov>
Subject: [EXTERNAL] Action ID: 356651; DHC-5405

CAUTION: External sender. DO NOT open links or attachments from UNKNOWN senders.

To whom it may concern (c/o Cheryl Weston for Hilcorp Energy Company),

| The Division | is review | wing the 1 | following | annlication |
|--------------|-----------|------------|-----------|-------------|
|              | 1010100   |            |           | appuouton   |

| Action ID | 356651                          |
|-----------|---------------------------------|
| Admin No. | DHC-5405                        |
| Applicant | Hilcorp Energy Company (372171) |
| Title     | State Com O #12                 |
| Sub. Date | 6/21/24                         |

Please provide the following additional supplemental documents:

• Please provide an application checklist

#### Please provide additional information regarding the following:

- Please review the MV and DK perfs on form C-107A and submit an amended form C-107A with those perfs corrected.
- Please provide a method to allocate the gas for the MV and DK pools.
- Please confirm the quantity of other total dissolved solids within the FLC water sample.

Additional notes:

All additional supplemental documents and information may be provided via email and should be done by replying to this email. The produced email chain will be uploaded to the file for this application.

Please note that failure to take steps to address each of the requests made in this email within 10 business days of receipt of this email may result in the Division rejecting the application requiring the submittal of a new application by the applicant once it is prepared to address each of the topics raised.

Dean McClure Petroleum Engineer, Oil Conservation Division New Mexico Energy, Minerals and Natural Resources Department (505) 469-8211

The information contained in this email message is confidential and may be legally privileged and is intended only for the use of the individual or entity named above. If you are not an intended recipient or if you have received this message in error, you are hereby notified that any dissemination, distribution, or copy of this email is strictly prohibited. If you have received this email in error, please immediately notify us by return email or telephone if the sender's phone number is listed above, then promptly and permanently delete this message.

While all reasonable care has been taken to avoid the transmission of viruses, it is the responsibility of the recipient to ensure that the onward transmission, opening, or use of this message and any attachments will not adversely affect its systems or data. No responsibility is accepted by the company in this regard and the recipient should carry out such virus and other checks as it considers appropriate.

## **Cheryl Weston**

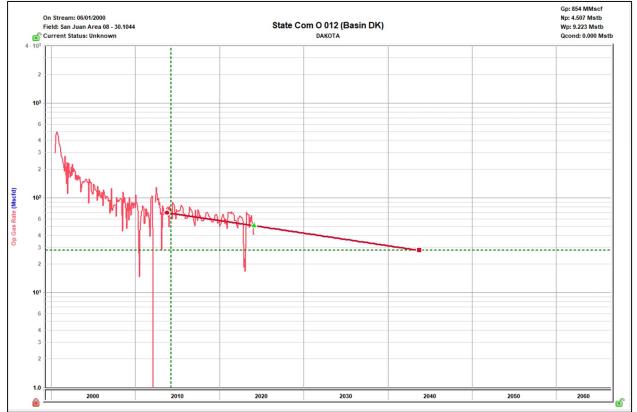
| HoustonMail                    |
|--------------------------------|
| Friday, June 21, 2024 12:10 PM |
| Cheryl Weston                  |
| FEDEX TRACKING NUMBER          |
|                                |

## 740203001839 COMMISSIONER OF PUBLIC LAND



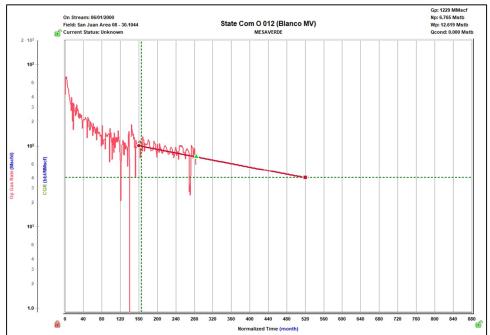
## State Com O 12 Production Allocation Method – Subtraction

These zones are proposed to be commingled because the application of dual completions impedes the ability to produce the shallow zone without artificial lift and the deeper zones with reduced artificial lift efficiency. All horizons will require artificial lift due to low bottomhole pressure (BHP) and permeability.

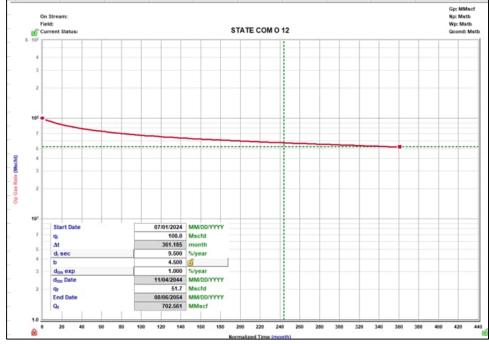

The BHPs of all zones, producing and non-producing, were estimated based upon basin wide Moving-Domain Material Balance models that have proven to approximate the pressure in the given reservoirs well in this portion of the basin, in conjunction with shut-in pressure build-ups. These models were constructed incorporating reservoir dynamics and physics, historic production, and observed pressure data. Historic commingling operations have proven reservoir fluids are compatible.

#### **Gas Allocation:**

Production for the downhole commingle will be allocated using the subtraction method in agreement with local agencies. The base formation is the Mesaverde/Dakota and the added formation to be trimmingled is Fruitland Coal. The subtraction method applies an average monthly production forecast to the base formation using historic production. All production from this well exceeding the base formation forecasts will be allocated to the new formation.


Hilcorp intends to continue to allocate the projected base production on the same fixed percentages to the following pools 59% (MV) 41% (DK) while the subtraction method is being used to determine the allocation to the new zone.

After 3 years production will stabilize. A production average will be gathered during the 4th year and will be utilized to create a fixed percentage-based allocation.




#### Current Zone 1 Forecast – Dakota

#### Current Zone 2 Forecast – Mesaverde

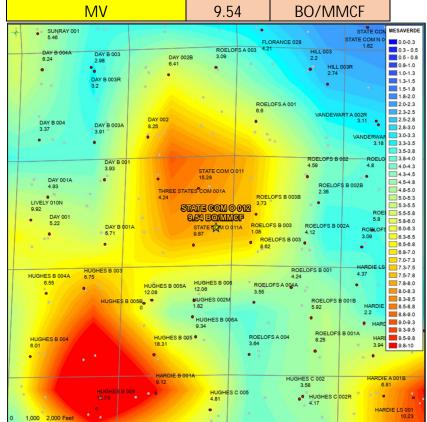


#### **Proposed Zone Forecast – Fruitland Coal**



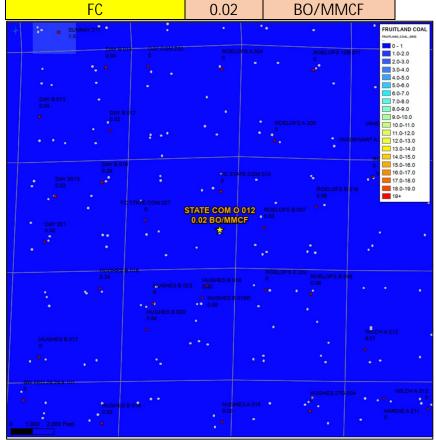
Average initial production curve in geologic region.

#### **Oil Allocation:**


Oil production will be allocated based on average formation yields from offset wells and will be a fixed rate for 4 years. After 4 years oil will be reevaluated and adjusted as needed based on average formation yields and new fixed gas allocation.

| Formation | Yield (bbl/MM) | Remaining Reserves (MMcf) | % Oil Allocation |
|-----------|----------------|---------------------------|------------------|
| FRC       | 0.02           | 702                       | 0.333%           |
| MV        | 9.54           | 397                       | 89.735%          |
| DK        | 1.53           | 274                       | 9.933%           |

## DK 1.53 **BO/MMCF** SUNF DAKOTA 0.0 0.1 - 1.0 1.1 - 2.0 2.1 - 3.0 3.1 - 4.0 4.1 - 5.0 5.1 - 6.0 LIVELY 003E 5.1 - 6.0 6.1 - 7.0 7.1 - 8.0 8.1 - 9.0 9.1 - 10.0 10.1 - 11.0 11.1 - 12.0 12.1 - 13.0 12.1 - 13.0 13.1 - 14.0 14.1 - 15.0 15.1 - 16.0 16.1 - 17.0 17.1 - 18.0 18.1 - 19.0 19.1 - 19.0 19.1 - 20.0 20.1 - 21.0 21.1 - 22.0 22.1 - 23.0 STATE COM 0 012 1.53 BO/MMCF 23.1 - 24.0 24.1 - 25.0 HUGHES 0028 5.93 HUGHES 001 6.53 ROELOFS 00 4.59 2.89 LCH A 001-2 11 5.01 HARDIE 001 A 003 HUGI 8.76


#### Current Zone 1 – Dakota Oil Yield Map

9-Section Area Map of Standalone Oil Yields. Sampled well to this map.



## Current Zone 2 – Mesaverde Oil Yield Map

### **Proposed Zone – Fruitland Coal Oil Yield Map**



9-Section Area Map of Standalone Oil Yields. Sampled well to this map.

## **Supplemental Information:**

Shut in pressures were calculated for operated offset standalone wells in each of the zones being commingled in the well in question via the following process:

- 1) Wells were shut in for 24 hours
- 2) Echometer was used to obtain a fluid level
- 3) Shut in BHP was calculated for the proposed commingled completion

List of wells used to calculate BHPs for the Project:

| 3004508245 | DAY 1          | MV |
|------------|----------------|----|
| 3004524939 | HARDIE 2E      | DK |
| 3004527513 | FC STATE COM 5 | FC |

I believe each of the reservoirs to be continuous and in a similar state of depletion at this well and at each of the wells from which the pressures are being derived.

#### Water Compatibility in the San Juan Basin

- The San Juan basin has productive siliciclastic reservoirs (Pictured Cliffs, Blanco Mesaverde, Basin Dakota, etc.) and a

productive coalbed methane reservoir (Basin Fruitland Coal).

- These siliciclastic and coalbed methane reservoirs are commingled extensively throughout the basin in many different combinations with no observed damage from clay swelling due to differing formation waters.

- The samples below all show fresh water with low TDS.

| Well Name      | API        |
|----------------|------------|
| STATE COM 0 12 | 3004529748 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C STATE COM 5<br>13.12<br>1.11<br>6.79<br>-0.52<br>0.21<br>0<br>13.07<br>8.25<br>3.57<br>3680.55<br> | API<br>Property<br>CationBarium<br>CationBoron<br>CationCalcium<br>CationIron<br>CationMagnesium<br>CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationCopper<br>CationLead<br>CationLithium<br>CationNickel | 0.2<br>0.06<br>69.9<br>0.65<br>0.86<br>0.09<br>20<br>20<br>20<br>20<br>10.7 | DK OFFSI<br>API<br>Property<br>CationBarium<br>CationBoron<br>CationCalcium<br>CationMagnesium<br>CationMagnese<br>CationManganese<br>CationPhosphorus<br>CationPhosphorus<br>CationPhosphorus<br>CationPhosphorus<br>CationStrontium<br>CationSodium<br>CationSolica<br>CationCopper<br>CationCopper<br>CationCopper | 3004526314<br>SUNRAY 8<br>0.1<br>93<br>249<br>49<br>0.9<br>0.9<br>0.2<br>12.14 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| CationBarium         CationBoron         CationCalcium         CationIron         CationMagnesium         CationManganese         CationPhosphorus         CationPotassium         CationSodium         CationSilica         CationOpper         CationCopper         CationNickel         CationCobalt         CationChromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.12<br>1.11<br>6.79<br>-0.52<br>0.21<br>0<br>13.07<br>8.25<br>3.57<br>3680.55<br>0.79              | CationBarium<br>CationBoron<br>CationCalcium<br>CationIron<br>CationMagnesium<br>CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium                                | 0.2<br>0.06<br>69.9<br>0.65<br>0.86<br>0.09<br>20<br>20<br>20<br>10.7<br>1  | CationBarium<br>CationBoron<br>CationCalcium<br>CationIron<br>CationMagnesium<br>CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper                                                         | 0.1<br>93<br>249<br>49<br>0.9                                                  |
| CationBarium         CationBoron         CationCalcium         CationIron         CationMagnesium         CationPhosphorus         CationPotassium         CationSdium         CationSdium         CationZinc         CationCopper         CationLead         CationNickel         CationCoplat         CationChum         CationCoplat         CationChum         Cat | 13.12<br>1.11<br>6.79<br>-0.52<br>0.21<br>0<br>13.07<br>8.25<br>3.57<br>3680.55<br>0.79              | CationBarium<br>CationBoron<br>CationCalcium<br>CationIron<br>CationMagnesium<br>CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium                                | 0.2<br>0.06<br>69.9<br>0.65<br>0.86<br>0.09<br>20<br>20<br>20<br>10.7<br>1  | CationBarium<br>CationBoron<br>CationCalcium<br>CationIron<br>CationMagnesium<br>CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper                                                         | 93<br>249<br>49<br>0.9                                                         |
| CationBoron         CationCalcium         CationIron         CationMagnesium         CationManganese         CationPotassium         CationStrontium         CationSilica         CationCopper         CationCopper         CationCopper         CationCobalt         CationCobalt         CationCoplet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.11<br>6.79<br>-0.52<br>0.21<br>0<br>13.07<br>8.25<br>3.57<br>3680.55<br>0.79                       | CationBoron<br>CationCalcium<br>CationIron<br>CationMagnesium<br>CationManganese<br>CationProsphorus<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium                                                                   | 0.06<br>69.9<br>0.65<br>0.86<br>0.09<br>20<br>20<br>20<br>10.7<br>1         | CationBoron<br>CationCalcium<br>CationIron<br>CationMagnesium<br>CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationStrontium<br>CationStrontium<br>CationSilica<br>CationZilica<br>CationZinc<br>CationAluminum<br>CationCopper                                                                         | 93<br>249<br>49<br>0.9                                                         |
| CationCalcium         CationIron         CationMagnesium         CationManganese         CationPhosphorus         CationPotassium         CationStrontium         CationSdium         CationZinc         CationAluminum         CationCopper         CationLead         CationCobalt         CationCobalt         CationChromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.79<br>-0.52<br>0.21<br>0<br>13.07<br>8.25<br>3.57<br>3680.55<br>0.79                               | CationCalcium<br>CationIron<br>CationMagnesium<br>CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationCopper<br>CationLead<br>CationLithium                                                                                      | 69.9<br>0.65<br>0.86<br>0.09<br>20<br>20<br>20<br>10.7<br>1                 | CationCalcium<br>CationIron<br>CationMagnesium<br>CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper                                                                                           | 249<br>49<br>0.9<br>0.2                                                        |
| CationIron         CationMagnesium         CationPhosphorus         CationPotassium         CationStrontium         CationSdium         CationZinc         CationAluminum         CationCopper         CationLithium         CationNickel         CationCopalt         CationCoplet         CationCoplet         CationCoplet         CationCoplet         CationCoplet         CationCobalt         CationChromium         CationChromium         CationChromium         CationChromium         CationChromium                                                                                                                                                                                                                                                                                                                                                                                         | -0.52<br>0.21<br>0<br>13.07<br>8.25<br>3.57<br>3680.55<br>0.79                                       | CationIron<br>CationMagnesium<br>CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium                                                                     | 69.9<br>0.65<br>0.86<br>0.09<br>20<br>20<br>20<br>10.7<br>1                 | CationIron<br>CationMagnesium<br>CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper                                                                                                            | 249<br>49<br>0.9<br>0.2                                                        |
| CationMagnesium         CationManganese         CationPhosphorus         CationPotassium         CationStrontium         CationSdium         CationSilica         CationAluminum         CationCopper         CationLead         CationNickel         CationCopalt         CationCobalt         CationChromium         CationCobalt         CationChromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.21<br>0<br>13.07<br>8.25<br>3.57<br>3680.55<br>0.79                                                | CationMagnesium<br>CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium                                                                                   | 0.65<br>0.86<br>0.09<br>20<br>2<br>20<br>10.7<br>1                          | CationMagnesium<br>CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper                                                                                                                                          | 49<br>0.9<br>0.2                                                               |
| CationManganese         CationPhosphorus         CationPotassium         CationStrontium         CationSdium         CationSilica         CationZinc         CationCopper         CationLead         CationNickel         CationCopalt         CationCobalt         CationChromium         CationCobalt         CationChromium         CationChromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>13.07<br>8.25<br>3.57<br>3680.55<br>0.79                                                        | CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium                                                                                                      | 0.86<br>0.09<br>20<br>20<br>20<br>10.7<br>1                                 | CationManganese<br>CationPhosphorus<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper                                                                                                                                                             | 0.9                                                                            |
| CationPhosphorus<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationCopper<br>CationCopper<br>CationLead<br>CationLithium<br>CationNickel<br>CationCobalt<br>CationChromium<br>CationChromium<br>CationSilicon<br>CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.07<br>8.25<br>3.57<br>3680.55<br>0.79                                                             | CationPhosphorus<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium                                                                                                                                         | 0.09<br>20<br>20<br>10.7<br>1                                               | CationPhosphorus<br>CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper                                                                                                                                                                                | 0.2                                                                            |
| CationPotassium         CationStrontium         CationSodium         CationSilica         CationZinc         CationAluminum         CationCopper         CationLead         CationNickel         CationChromium         CationCobalt         CationChromium         CationChromium         CationChromium         CationChromium         CationChromium         CationChromium         CationChromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.25<br>3.57<br>3680.55<br>0.79                                                                      | CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium                                                                                                                                                             | 20<br>2<br>20<br>10.7<br>1                                                  | CationPotassium<br>CationStrontium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper                                                                                                                                                                                                    |                                                                                |
| CationStrontium<br>CationSolium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium<br>CationNickel<br>CationChoalt<br>CationChromium<br>CationSilicon<br>CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.57<br>3680.55<br>0.79                                                                              | CationStrontium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium                                                                                                                                                                                | 2<br>20<br>10.7<br>1                                                        | CationStrontium<br>CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper                                                                                                                                                                                                                       |                                                                                |
| CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium<br>CationNickel<br>CationCobalt<br>CationChromium<br>CationSilicon<br>CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3680.55<br>0.79                                                                                      | CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium                                                                                                                                                                                                   | 20<br>10.7<br>1                                                             | CationSodium<br>CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper                                                                                                                                                                                                                                          |                                                                                |
| CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium<br>CationNickel<br>CationCobalt<br>CationChromium<br>CationSilicon<br>CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.79                                                                                                 | CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium                                                                                                                                                                                                                   | 10.7                                                                        | CationSilica<br>CationZinc<br>CationAluminum<br>CationCopper                                                                                                                                                                                                                                                          | 12.14                                                                          |
| CationZinc<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium<br>CationNickel<br>CationCobalt<br>CationChromium<br>CationSilicon<br>CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.79                                                                                                 | CationZinc<br>CationAluminum<br>CationCopper<br>CationLead<br>CationLithium                                                                                                                                                                                                                                   | 1                                                                           | CationZinc<br>CationAluminum<br>CationCopper                                                                                                                                                                                                                                                                          |                                                                                |
| CationAluminum<br>CationCopper<br>CationLead<br>CationLithium<br>CationNickel<br>CationCobalt<br>CationChromium<br>CationSilicon<br>CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      | CationAluminum<br>CationCopper<br>CationLead<br>CationLithium                                                                                                                                                                                                                                                 |                                                                             | CationAluminum<br>CationCopper                                                                                                                                                                                                                                                                                        |                                                                                |
| CationCopper<br>CationLead<br>CationLithium<br>CationNickel<br>CationCobalt<br>CationChromium<br>CationSilicon<br>CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      | CationCopper<br>CationLead<br>CationLithium                                                                                                                                                                                                                                                                   | 2                                                                           | CationCopper                                                                                                                                                                                                                                                                                                          |                                                                                |
| CationLead<br>CationLithium<br>CationNickel<br>CationCobalt<br>CationChromium<br>CationSilicon<br>CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      | CationLead<br>CationLithium                                                                                                                                                                                                                                                                                   | 2                                                                           |                                                                                                                                                                                                                                                                                                                       |                                                                                |
| CationLithium<br>CationNickel<br>CationCobalt<br>CationChromium<br>CationSilicon<br>CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      | CationLithium                                                                                                                                                                                                                                                                                                 | 2                                                                           | CationLead                                                                                                                                                                                                                                                                                                            |                                                                                |
| CationNickel CationCobalt CationCobalt CationChromium CationChromium CationSilicon CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                                                                                                                                                                                                                                       | 1                                                                              |
| CationCobalt<br>CationChromium<br>CationSilicon<br>CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      | CationNickel                                                                                                                                                                                                                                                                                                  | +                                                                           | CationLithium                                                                                                                                                                                                                                                                                                         | <b></b>                                                                        |
| CationChromium<br>CationSilicon<br>CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      | 0.11 0.1 11                                                                                                                                                                                                                                                                                                   |                                                                             | CationNickel                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                       |
| CationSilicon<br>CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      | CationCobalt                                                                                                                                                                                                                                                                                                  |                                                                             | CationCobalt                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                       |
| CationMolybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      | CationChromium                                                                                                                                                                                                                                                                                                |                                                                             | CationChromium                                                                                                                                                                                                                                                                                                        | 4                                                                              |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      | CationSilicon                                                                                                                                                                                                                                                                                                 | 10                                                                          | CationSilicon                                                                                                                                                                                                                                                                                                         | 1                                                                              |
| AnionChlorido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      | CationMolybdenum                                                                                                                                                                                                                                                                                              |                                                                             | CationMolybdenum                                                                                                                                                                                                                                                                                                      |                                                                                |
| AHIUHUHUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      | AnionChloride                                                                                                                                                                                                                                                                                                 | 10                                                                          | AnionChloride                                                                                                                                                                                                                                                                                                         | 84                                                                             |
| AnionCarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | AnionCarbonate                                                                                                                                                                                                                                                                                                | 10                                                                          | AnionCarbonate                                                                                                                                                                                                                                                                                                        | 0                                                                              |
| AnionBicarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      | AnionBicarbonate                                                                                                                                                                                                                                                                                              | 17                                                                          | AnionBicarbonate                                                                                                                                                                                                                                                                                                      | 280                                                                            |
| AnionBromide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      | AnionBromide                                                                                                                                                                                                                                                                                                  |                                                                             | AnionBromide                                                                                                                                                                                                                                                                                                          |                                                                                |
| AnionFluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      | AnionFluoride                                                                                                                                                                                                                                                                                                 |                                                                             | AnionFluoride                                                                                                                                                                                                                                                                                                         |                                                                                |
| AnionHydroxyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      | AnionHydroxyl                                                                                                                                                                                                                                                                                                 | 10                                                                          | AnionHydroxyl                                                                                                                                                                                                                                                                                                         | 0                                                                              |
| AnionNitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      | AnionNitrate                                                                                                                                                                                                                                                                                                  |                                                                             | AnionNitrate                                                                                                                                                                                                                                                                                                          |                                                                                |
| AnionPhosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | AnionPhosphate                                                                                                                                                                                                                                                                                                | 0.28                                                                        | AnionPhosphate                                                                                                                                                                                                                                                                                                        |                                                                                |
| AnionSulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      | AnionSulfate                                                                                                                                                                                                                                                                                                  |                                                                             | AnionSulfate                                                                                                                                                                                                                                                                                                          | 108                                                                            |
| phField                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                      | phField                                                                                                                                                                                                                                                                                                       |                                                                             | phField                                                                                                                                                                                                                                                                                                               | 6.51                                                                           |
| phCalculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      | phCalculated                                                                                                                                                                                                                                                                                                  |                                                                             | phCalculated                                                                                                                                                                                                                                                                                                          | 0.01                                                                           |
| TempField                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      | TempField                                                                                                                                                                                                                                                                                                     |                                                                             | TempField                                                                                                                                                                                                                                                                                                             | 64                                                                             |
| TempLab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                      | TempLab                                                                                                                                                                                                                                                                                                       | 01.0                                                                        | TempLab                                                                                                                                                                                                                                                                                                               |                                                                                |
| OtherFieldAlkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      | OtherFieldAlkalinity                                                                                                                                                                                                                                                                                          | 80                                                                          | OtherFieldAlkalinity                                                                                                                                                                                                                                                                                                  | -                                                                              |
| OtherSpecificGravity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      | OtherSpecificGravity                                                                                                                                                                                                                                                                                          |                                                                             | OtherSpecificGravity                                                                                                                                                                                                                                                                                                  | 0                                                                              |
| OtherTDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                    | OtherTDS                                                                                                                                                                                                                                                                                                      |                                                                             | OtherTDS                                                                                                                                                                                                                                                                                                              | 876.34                                                                         |
| OtherCaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      | OtherCaCO3                                                                                                                                                                                                                                                                                                    |                                                                             | OtherCaCO3                                                                                                                                                                                                                                                                                                            | 070.34                                                                         |
| OtherConductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                                                                                                   |                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                                                                                                                                                                                                                                       | 1260.20                                                                        |
| DissolvedCO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      | OtherConductivity<br>DissolvedCO2                                                                                                                                                                                                                                                                             |                                                                             | OtherConductivity<br>DissolvedCO2                                                                                                                                                                                                                                                                                     | 1369.28                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      | DissolvedCO2                                                                                                                                                                                                                                                                                                  | 120                                                                         |                                                                                                                                                                                                                                                                                                                       | 110                                                                            |
| DissolvedO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                    |                                                                                                                                                                                                                                                                                                               |                                                                             | DissolvedO2                                                                                                                                                                                                                                                                                                           | 0.50                                                                           |
| DissolvedH2S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                    | DissolvedH2S                                                                                                                                                                                                                                                                                                  | 0                                                                           | DissolvedH2S                                                                                                                                                                                                                                                                                                          | 0.52                                                                           |
| GasPressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                      | GasPressure                                                                                                                                                                                                                                                                                                   |                                                                             | GasPressure                                                                                                                                                                                                                                                                                                           | 100                                                                            |
| GasCO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                      | GasCO2                                                                                                                                                                                                                                                                                                        |                                                                             | GasCO2                                                                                                                                                                                                                                                                                                                | 0                                                                              |
| GasCO2PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      | GasCO2PP                                                                                                                                                                                                                                                                                                      |                                                                             | GasCO2PP                                                                                                                                                                                                                                                                                                              | 0                                                                              |
| GasH2S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                      | GasH2S                                                                                                                                                                                                                                                                                                        |                                                                             | GasH2S                                                                                                                                                                                                                                                                                                                | 0                                                                              |
| GasH2SPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      | GasH2SPP                                                                                                                                                                                                                                                                                                      |                                                                             | GasH2SPP                                                                                                                                                                                                                                                                                                              | 0                                                                              |
| PitzerCaCO3_70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | PitzerCaCO3_70                                                                                                                                                                                                                                                                                                |                                                                             | PitzerCaCO3_70                                                                                                                                                                                                                                                                                                        | -0.81                                                                          |
| PitzerBaSO4_70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | PitzerBaSO4_70                                                                                                                                                                                                                                                                                                |                                                                             | PitzerBaSO4_70                                                                                                                                                                                                                                                                                                        | 0.33                                                                           |
| PitzerCaSO4_70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | PitzerCaSO4_70                                                                                                                                                                                                                                                                                                |                                                                             | PitzerCaSO4_70                                                                                                                                                                                                                                                                                                        | -1.54                                                                          |
| PitzerSrSO4_70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | PitzerSrSO4_70                                                                                                                                                                                                                                                                                                |                                                                             | PitzerSrSO4_70                                                                                                                                                                                                                                                                                                        | -2.54                                                                          |
| PitzerFeCO3_70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | PitzerFeCO3_70                                                                                                                                                                                                                                                                                                |                                                                             | PitzerFeCO3_70                                                                                                                                                                                                                                                                                                        |                                                                                |
| PitzerCaCO3_220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      | PitzerCaCO3_220                                                                                                                                                                                                                                                                                               |                                                                             | PitzerCaCO3_220                                                                                                                                                                                                                                                                                                       | -0.01                                                                          |
| PitzerBaSO4_220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      | PitzerBaSO4_220                                                                                                                                                                                                                                                                                               | İ                                                                           | PitzerBaSO4_220                                                                                                                                                                                                                                                                                                       | -0.22                                                                          |
| PitzerCaSO4_220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      | PitzerCaSO4_220                                                                                                                                                                                                                                                                                               | 1                                                                           | PitzerCaSO4_220                                                                                                                                                                                                                                                                                                       | -1.43                                                                          |
| PitzerSrSO4_220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      | PitzerSrSO4_220                                                                                                                                                                                                                                                                                               |                                                                             | PitzerSrSO4_220                                                                                                                                                                                                                                                                                                       | -2.34                                                                          |
| PitzerFeCO3 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      | PitzerFeCO3 220                                                                                                                                                                                                                                                                                               |                                                                             | PitzerFeCO3 220                                                                                                                                                                                                                                                                                                       | 2.34                                                                           |

#### Received by OCD: 8/22/2024 1:16:17 PM

District I 1625 N. French Drive, Hobbs, NM 88240

District II 811 S. First St., Artesia, NM 88210

District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV

District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy, Minerals and Natural Resources Department Form C-107A Revised August 1, 2011

Page 48 of 50

**Oil Conservation Division** 1220 South St. Francis Dr. Santa Fe, New Mexico 87505 APPLICATION TYPE \_\_Single Well \_\_Establish Pre-Approved Pools EXISTING WELLBORE \_\_X\_Yes \_\_\_\_No

## APPLICATION FOR DOWNHOLE COMMINGLING

Hilcorp Energy Company382 Road 3100, Aztec, NM 87410OperatorAddressState Com O12I-16-T29N-R08WSan Juan County, NMLeaseWell No.Unit Letter-Section-Township-RangeCounty

OGRID No. 372171 Property Code 319097 API No. 30-045-29748 Lease Type: \_\_\_\_Federal \_X\_State \_\_\_\_Fee

| DATA ELEMENT                                                                                                                                                                                   | UPPER ZONE      |                 | INTE            | CRMEDIATE ZON                                                | IE              | ]               | LOWER ZONE                                                   |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|--------------------------------------------------------------|-----------------|-----------------|--------------------------------------------------------------|---|
| Pool Name                                                                                                                                                                                      | Fruitland Coal  |                 | Bla             | nco Mesaverde                                                |                 | E               | Basin Dakota                                                 |   |
| Pool Code                                                                                                                                                                                      | 71629           | 72319           |                 |                                                              | 71599           |                 |                                                              |   |
| Top and Bottom of Pay Section<br>(Perforated or Open-Hole Interval)                                                                                                                            | 2,875' - 3,055' |                 |                 | 4,464' - 5,398'                                              |                 |                 | 7,316' - 7,530'                                              |   |
| Method of Production<br>(Flowing or Artificial Lift)                                                                                                                                           | Artificial Lift | Artificial Lift |                 |                                                              | Artificial Lift |                 |                                                              |   |
| Bottomhole Pressure<br>(Note: Pressure data will not be required if the bottom<br>perforation in the lower zone is within 150% of the<br>depth of the top perforation in the upper zone)       | 88 psi          |                 | 127 psi         |                                                              | 153 psi         |                 |                                                              |   |
| Oil Gravity or Gas BTU<br>(Degree API or Gas BTU)                                                                                                                                              | 1261 BTU        |                 |                 | 1113 BTU                                                     |                 |                 | 1127 BTU                                                     |   |
| Producing, Shut-In or<br>New Zone                                                                                                                                                              | New Zone        |                 |                 | Producing                                                    |                 |                 | Producing                                                    |   |
| Date and Oil/Gas/Water Rates of<br>Last Production.<br>(Note: For new zones with no production history,<br>applicant shall be required to attach production<br>estimates and supporting data.) | Date:<br>Rates: |                 | Date:<br>Rates: | 4/1/2024<br>Oil - 6 bbl<br>Gas - 2,269 mcf<br>Water - 40 bbl |                 | Date:<br>Rates: | 4/1/2024<br>Oil - 4 bbl<br>Gas - 1,578 mcf<br>Water - 40 bbl |   |
| Fixed Allocation Percentage<br>(Note: If allocation is based upon something other<br>than current or past production, supporting data or<br>explanation will be required.)                     | Oil Gas<br>%    | %               | Oil             | Gas<br>%                                                     | %               | Oil             | Gas<br>%                                                     | % |

## ADDITIONAL DATA

| Are all working, royalty and overriding royalty interests identical in all commingled zones?<br>If not, have all working, royalty and overriding royalty interest owners been notified by certified mail?  | Yes<br>YesX  | _ No_X<br>_ No |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
| Are all produced fluids from all commingled zones compatible with each other?                                                                                                                              | Yes X        | No             |
| Will commingling decrease the value of production?                                                                                                                                                         | Yes          | X              |
| If this well is on, or communitized with, state or federal lands, has either the Commissioner of Public Lands or the United States Bureau of Land Management been notified in writing of this application? | Yes <u>X</u> | _ No           |
| NMACOD Deference Core Ne combined to this wells                                                                                                                                                            |              |                |

NMOCD Reference Case No. applicable to this well:

Attachments:

C-102 for each zone to be commingled showing its spacing unit and acreage dedication.Production curve for each zone for at least one year. (If not available, attach explanation.)For zones with no production history, estimated production rates and supporting data.Data to support allocation method or formula.Notification list of working, royalty and overriding royalty interests for uncommon interest cases.Any additional statements, data or documents required to support commingling.

## PRE-APPROVED POOLS

If application is to establish Pre-Approved Pools, the following additional information will be required:

List of other orders approving downhole commingling within the proposed Pre-Approved Pools List of all operators within the proposed Pre-Approved Pools Proof that all operators within the proposed Pre-Approved Pools were provided notice of this application. Bottomhole pressure data.

| Thomahr  |       | +hat t  | hain  | formation | aharra | in terms | and |      | lata to | the | haat | of more | 1-morrile | daa | and | haliat | 2 |
|----------|-------|---------|-------|-----------|--------|----------|-----|------|---------|-----|------|---------|-----------|-----|-----|--------|---|
| I nereby | cerun | y mai i | ine m | formation | above  | is true  | anu | comp | nete to | une | Dest | ог шу   | KHOWIE    | age | ana | bener  | • |

| SIGNATURE Cherylene Weston          | TITLE_Operations/Regulatory Tech-Sr. DATE 6/19/2024 |
|-------------------------------------|-----------------------------------------------------|
| TYPE OR PRINT NAME Cherylene Weston | TELEPHONE NO. ( 713 ) 289-2615                      |

E-MAIL ADDRESS \_\_\_\_\_ cweston@hilcorp.com

| RECEIVED:                        | REVIEWER:                                                                                                                                                                                                                                                                              | TYPE:                                                                                                                                                                                             | APP NO:                                                                                                            |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                  | - Geologic                                                                                                                                                                                                                                                                             | ABOVE THIS TABLE FOR OCC DIVISION<br><b>D OIL CONSERVAT</b><br>al & Engineering E<br>Incis Drive, Santa                                                                                           | ION DIVISION<br>Bureau –                                                                                           |
| THIS CI                          | HECKLIST IS MANDATORY FOR ALL                                                                                                                                                                                                                                                          | ATIVE APPLICATION<br>ADMINISTRATIVE APPLICATION<br>QUIRE PROCESSING AT THE DIV                                                                                                                    | DNS FOR EXCEPTIONS TO DIVISION RULES AND                                                                           |
| Vell Name:                       |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                   | OGRID Number:<br>API:<br>Pool Code:                                                                                |
| SUBMIT ACCURA                    | TE AND COMPLETE INFO                                                                                                                                                                                                                                                                   | Ormation Require<br>Indicated Below                                                                                                                                                               | D TO PROCESS THE TYPE OF APPLICATION                                                                               |
| A. Location -                    | e only for [1] or [1]<br>ningling – Storage – Me<br>DHC CTB PL<br>ion – Disposal – Pressur<br>WFX PMX SW<br><b>REQUIRED TO:</b> Check t<br>operators or lease holo<br>y, overriding royalty ow<br>ation requires publishe<br>ation and/or concurre<br>ation and/or concurre<br>e owner | aneous Dedication<br>DECT AREA) DESC<br>C PC OLS<br>Te Increase – Enhan<br>/D IPI EOF<br>hose which apply.<br>lers<br>vners, revenue owne<br>d notice<br>nt approval by SLO<br>nt approval by BLM | G OLM<br>Ced Oil Recovery<br>R PPR<br>FOR OCD ONLY<br>Notice Complete<br>Prs<br>Application<br>Content<br>Complete |
| administrative a understand that | approval is <b>accurate</b> a                                                                                                                                                                                                                                                          | nd <b>complete</b> to the<br>en on this application                                                                                                                                               | nitted with this application for<br>e best of my knowledge. I also<br>on until the required information and        |
| Not                              | e: Statement must be complete                                                                                                                                                                                                                                                          | ed by an individual with ma                                                                                                                                                                       | anagerial and/or supervisory capacity.                                                                             |
|                                  |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                   | Date                                                                                                               |

Print or Type Name

Cherylene Weston

Signature

e-mail Address

Phone Number

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:              | OGRID:                                         |
|------------------------|------------------------------------------------|
| HILCORP ENERGY COMPANY | 372171                                         |
| 1111 Travis Street     | Action Number:                                 |
| Houston, TX 77002      | 376619                                         |
|                        | Action Type:                                   |
|                        | [IM-SD] Admin Order Support Doc (ENG) (IM-AAO) |

#### CONDITIONS Created By Condition Condition Date The application designated as Application ID: 356651 and DHC-5405 has been rejected by the Division due to the applicant's failure to conduct notice such 8/22/2024 dmcclure that the stipulations within 19.15.12.11 C.(1)(a) NMAC may be met. The applicant may resubmit an application for this proposed downhole commingling project once proper notice has been conducted. If you have any questions, please feel free to reach out.

CONDITIONS

Page 50 of 50

Action 376619